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Abstract
Cross-collection topic models extend previous single-collection topic models, such as Latent Dirichlet Allocation (LDA), to
multiple collections. The purpose of cross-collection topic modeling is to model document-topic representations and reveal
similarities between each topic and differences among groups. However, the restriction of Dirichlet prior and the significant
privacy risk have hampered those models’ performance and utility. Training those cross-collection topic models may, in
particular, leak sensitive information from the training dataset. To address the two issues mentioned above, we propose
a novel model, cross-collection latent Beta-Liouville allocation (ccLBLA), which operates a more powerful prior, Beta-
Liouville distribution with a more general covariance structure that enhances topic correlation analysis. To provide privacy
protection for the ccLBLA model, we leverage the inherent differential privacy guarantee of the Collapsed Gibbs Sampling
(CGS) inference scheme and then propose a hybrid privacy protection algorithm for the ccLBLA model (HPP-ccLBLA)
that prevents inferring data from intermediate statistics during the CGS training process without sacrificing its utility. More
crucially, our technique is the first attempt to use the cross-collection topic model in image classification applications and
investigate the cross-collection topic model’s capabilities beyond text analysis. The experimental results for comparative
text mining and image classification will show the merits of our proposed approach.

Keywords Cross-collection model · Beta-Liouville prior · Topic correlation · Comparative text mining ·
Image classification · Differential privacy

1 Introduction

As social media platforms proliferate, our internet collects
unprecedented information from large-scale applications,
making extracting knowledge and patterns from large and
complex data sets more critical. Some researchers find that
“comparative thinking” is the most effective way to improve
learning knowledge and some real-world applications
[1, 2]. So far, more and more people have begun to pay
attention to privacy using real-world applications. However,
most current machine learning models with comparative
thinking may expose the sensitive text information in the
training data, thus causing significant privacy concerns
[3]. Therefore, researching efficient machine learning
techniques with comparative thinking to handle massive
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data collections, such as text documents and images, and
addressing privacy issues in these techniques is essential.

In unsupervised topic modeling, text documents and
images are generalized as documents manipulated using
count vectors according to the Bag of Words (BOW)
approach. The objective is to construct meaningful top-
ics to efficiently predict unseen documents in information
retrieval and document classification tasks. In further detail,
topics represent the intermediate low-dimensional repre-
sentations of documents [4–7]. A well-known topic model
is Latent Dirichlet Allocation (LDA) [4] incorporating the
Dirichlet distribution as conjugate prior to the multinomial
distribution. In the LDA model, documents appear as a
combination of topics, and topics are vocabulary distribu-
tions. Moreover, LDA is frequently used as a dimensionality
reduction tool to examine documents by topic and extract
useful information from a large amount of unstructured data.
Recently, LDA has been the subject of various extension
techniques [6] to cluster text documents, and images [8–10]
through their latent topics based on words (or visual words
in case of images) co-occurrence. Even though there are
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many research efforts on topic modeling to enhance LDA
model in text mining [3, 6, 7], most of the existing research
has failed to compare document collections. However, more
and more real-world applications need to understand the
relationships among various collections such as decision-
making task [11, 12], interactive learning [13], and event
summarization [1, 14, 15]. Moreover, privacy preservation
has also drawn great attention in many real-world appli-
cations. Nevertheless, the training process of many topic
models may expose sensitive textual information of training
data [3], which leads to serious privacy issues when apply-
ing the topic model to real-world applications. In this work,
we would like to answer the following question: How can
we facilitate a comparative analysis of document collections
with privacy protection using the topic model?

Comparative analysis of document collections is highly
desirable in various real-world applications. To achieve
this goal, we first need to reveal common and distinctive
topics. Figure 1 presents an example of the results obtained
by our proposed ccLBLA model on newspapers related
to the COVID-19 virus in 2020. Specifically, Fig. 1(a)
shows distinctive topics of news in the USA, suggesting
that the most important words are related to the national
economy, such as “country”, “stock”, and “product”. On
the other hand, as shown in Fig. 1(c), most words from
UK’s specific topics represent the coronavirus situation,
such as “report”, “case”, and “outbreak”. From Fig. 1(b),
we can conclude that both share common concerns with the
spread of coronavirus such as “virus”, “China”, “spread”,
and “global”. Because most topic models only consider a
single collection of texts, they are insufficient for comparing
the similarities and differences of multiple collections. This
problem also makes it impossible to discover the potential
common topics in all corpora. To deal with this challenge,
some scholars have offered cross-collection topic models
for comparative text mining tasks as a solution [2, 16–18],
which entail the extraction of useful information from
several datasets.

Second, it is important to capture good correlations
between common and unique topics in comparative
text mining. Many existing topic models and cross-
collection topic models continue to rely on the traditional
LDA with Dirichlet distribution as conjugate prior to
multinomial distribution. Despite its popularity in topic
modeling because of its convenience in computing, the
Dirichlet distribution has drawbacks. Due to its restrictive
negative covariance matrix structure [19–23], the Dirichlet
distribution cannot capture the correlation between topics.
In contrast, the topic correlation is a critical feature for
recapitulating the relation of multiple collections in the
cross-collections topic model. Because of the limitation
of Dirichlet prior, researchers began looking into other
more flexible priors, such as Generalized Dirichlet (GD)
distribution [24, 25] and Beta-Liouville (BL) distribution
[10, 26] in replacement of Dirichlet distribution to tackle the
problem of correlation in the traditional topic model.

Third, a model capable of comparative text analysis
should have good privacy protection for the whole train-
ing process. As shown in Fig. 2, traditional topic models
such as LDA may be trained on datasets including sensi-
tive information. However, these topic models will inex-
orably memorize some critical knowledge about the dataset
after the training process, which is characteristic of typi-
cal machine learning techniques. Nevertheless, it has been
demonstrated that some attack methodologies may success-
fully extract sensitive information from training datasets
in machine learning models. Evidence suggests that model
inversion attack [27] and membership inference attack [28],
according to recent findings, can both pose a privacy issue
for machine learning models in different ways. Dwork et al.
[29] proposed the differential privacy (DP) strategy for pri-
vacy preservation in machine learning models to address
these privacy problems. Because differential privacy pro-
vides a mathematical framework for measuring the security
of several machine learning techniques, there has been an
increasing interest in applying differential privacy in topic

Fig. 1 Topic summaries of newspapers published related to COVID-19 in 2020
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Fig. 2 Application scenarios of topic model training

models such as LDA. For example, the authors in [30]
attempted to inject additional noise into the training pro-
cess of LDA to create a differential privacy guarantee in
Collapsed Gibbs sampling (CGS) inference scheme [31]
for centralized training datasets. However, these approaches
implicitly assume that the LDA model is trained on central-
ized datasets by a trustworthy server. But, the central server
may also act as an adversary and steal training datasets
(Attack Point in Fig. 2). Besides, many earlier investiga-
tions of DP in LDA training have not dealt with the inherent
privacy of the CGS inference of the LDA scheme. In con-
trast, the CGS inference scheme provides some level of
privacy guarantee because of its intrinsic unpredictability,

and uncertainty [32, 33]. Although several studies [3] rec-
ognized the intrinsic privacy of the CGS inference scheme,
they only focused on the LDA model.

In this article, to answer the question and alleviate
the restrictions described above, we first propose a
cross-collection latent topic model (ccLBLA) with more
flexibility and scalability by offering a better prior
distribution, the Beta-Liouville distribution. ccLBLA is a
hierarchical Bayesian model developed to learn common
and distinct topics from document collections at the same
time. This is also a novel enhanced cross-collection topic
model that combines the state-of-the-art cross-collection
topic model [17] and the completely LBLA model [10, 26].
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To address privacy and utility issues, we present a hybrid
privacy-preserving approach of the ccLBLA model (HPP-
ccLBLA) based on a systematic analysis of the intrinsic
differential privacy guarantee of topic model training on
centralized datasets by taking advantage of HDP-LDA
model [3]. Experimental results in text document analysis
and image classification demonstrate the merits of our
novel approach. This paper’s overall contributions can be
summarized as follows:

• The proposed ccLBLA model is a novel hierarchical
Bayesian model to focus on identifying common and
distinctive topics among multiple datasets emerging
from a wide range of applications. The generative
process of LDA [4], LBLA [10, 24, 26], and the ccLDA
[17] have all been improved by the new model.

• Our proposed model replaces Dirichlet distribution
with Beta-Liouville (BL) distribution as a more
flexible prior to overcome its shortcomings related to
document and corpus parameters. Therefore, this novel
model prioritizes the topic correlation to improve the
performance of comparative text mining with a more
generic covariance structure that does not rely on the
Dirichlet distribution’s restrictive negative covariance.

• We investigate the intrinsic privacy of the CGS-based
ccLBLA model by utilizing the HDP-LDA model [3].
We present the HPP-ccLBLA model, the first privacy-
preserving cross-collection topic modeling technique
based on the exponential mechanism of differential
privacy and the consistency of the CGS inference
scheme. Compared with the state-of-the-art privacy-
preserving topic model (HDP-LDA), our proposed
model can discover topics’ similarities and differences
across multiple collections. Indeed, our HPP-ccLBLA
model utilizes a more flexible prior (BL) and safeguards
the CGS-based training process of the ccLBLA model
with centralized training datasets.

• We deliver the first study on adopting the cross-
collection topic model for image classification applica-
tion by processing each image as a separate document
using the Bag of Visual Words methodology [8–10].

• To validate the new model’s performance, our exper-
iments include a variety of real-world datasets such
as newspapers, academic articles, customer reviews,
and natural scene images. Our studies indicate that
our proposed model (ccLBLA) can achieve a much
higher generalization performance in comparative text
mining and document and image classification. Fur-
thermore, the HPP-ccLBLA strategy can obtain a
good model utility while maintaining sufficient privacy
guarantees.

The paper is organized as follows. Section 2 discusses
the related work regarding topic models and differential

privacy. Section 2 will also review the base information
of the LDA, the ccLDA, and the LBLA models and
then analyze the relationship between topic modeling and
differential privacy. We present our ccLBLA model and
propose the intrinsic privacy study of CGS-based ccLBLA
(HPP-ccLBLA) in Section 3. Section 4 is devoted to the
experimental results. Section 5 concludes this paper and
gives our conclusions.

2 Related works and background

This section reviews the existing literature related to the
problem studied in this article. There are three main
branches of research related to this work, traditional topic
modeling techniques [4, 10, 26], cross-collection topic
modeling [16–18, 34], and topic modeling with privacy
protection [3, 35, 36]. Although these existing models are
related to the HPP-ccLBLA model, none can handle the
comparison between different collections under privacy
protection during the training process. The full comparison
between the previous techniques and our model is provided
by Table 1.

2.1 Traditional topic models

LDA model [4], as an extension of the pLSI model [37],
is a complete generative probabilistic model that improves
generalization capability by introducing Dirichlet prior to
overcome the overfitting and the difficulty in predicting
documents probability problems. In particular, the LDA
model utilizes the BOW method for various applications,
including text modeling and computer vision, and its
generative process has been extensively documented in
several articles [4, 6]. Even though the LDA model plays
a fundamental role in topic modeling and many machine
learning applications, numerous studies [38, 39] have shown
that the constraints of Dirichlet prior hamper the LDA’s
performance. Bakhtiari and Bouguila [24] showed that
using more flexible priors such as Generalized Dirichlet
(GD) and Beta-Liouville (BL) distributions in document
parameters can improve the performance of the LDA
model in text modeling and computer vision applications.
Moreover, Ihou and Bouguila [9, 10] proposed new models
that replace the Dirichlet distribution on both the corpus
and the document parameters with GD or BL priors, and
their experiments show that those more flexible priors can
perform well in topic correlated environments. Compared
with the GD distribution, the BL distribution has fewer
parameters and is also a generalization of the Dirichlet
distribution [10]. Therefore, the BL distribution is superior
for LDA-based topic modeling because of its computation
efficiency.
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Table 1 Comparison between the new HPP-LBLA model and other schemes

Capability Privacy protection

LDA It is based on the Dirichlet prior, which is found to be very limited. Without any privacy protection during the whole

This model conceptually focused on one single collection training process

which is inadequate for comparative text analyses.

LBLA It replaces the Dirichlet distribution on both the corpus and the Without any privacy protection during the whole

document parameter with BL prior, shown to be training process

more flexible than the Dirichlet distribution. This model is inadequate

for the comparative analysis of document collections.

ccLDA It can discover topics across multiple text collections and model Without any privacy protection during the whole

their similarities and differences, but its performance suffers from training process

limitation of Dirichlet distribution.

HDP-LDA It doesn’t have ability to do comparative analysis of document Take advantage of inherent differential privacy

collections. Also, it is a Dirichlet-based model (as a result, it is guarantee of CGS-based LDA training on centralized

limited) datasets. This algorithm can protect all the intermediate

statistics of the whole training process.

HPP-ccLBLA It is our proposed model to improve the ccLDA and LBLA models. It Take advantage of inherent differential privacy

automatically combines the advantage of both BL prior and the ability guarantee of CGS-based LBLA training on centralized

of comparative text analyses. datasets to address the privacy issue. Our proposed

model can prevent data inference from intermediate

statistics during training.

2.1.1 Differences in prior information

Because the Dirichlet distribution has a very restrictive
negative covariance structure, it has difficulties performing
in a topic correlation analysis [21]. Even though Blei
et al. [40] proposed a Correlated Topic Model (CTM)
to overcome such problems in the topic model by
incorporating the normal logistic distribution. However, this
distribution is not a conjugate prior to the multinomial
distribution [40, 41], so the CTM is very challenging to
implement. Recent breakthroughs in topic modeling have
highlighted the necessity for more flexible priors. Beta-
Liouville distribution is becoming increasingly popular. For
Beta-Liouville distribution, in dimension (K) space, φ =
(φ1, ..., φK) and

∑K
k=1φk = 1, with hyperparameter vector

ζ = (α1, α2, ..., α(K−1), α, β) is defined by:

p(φ | ζ ) = �(
∑K−1

k=1 αk)�(α + β)

�(α)�(β)

K−1∏

k=1

φ
αk−1
k

�(αk)

×
(

K−1∑

k=1

φk

)α−∑K−1
k=1 αk (

1 −
K−1∑

k=1

φk

)β−1

(1)

φ is the K-dimensional multinomial parameter drawn
from the BL(φ) distribution. When the generator has a
Beta distribution with parameters

∑K−1
k=1 αk and αK , the

Beta-Liouville distribution is reduced to Dirichlet distri-
bution [21]. Thus, Beta-Liouville includes the Dirichlet
distribution as a particular case. Compared with the Dirich-
let distribution, the Beta-Liouville distribution has more
parameters and is more flexible for several applications
[21]. The mean and the variance of the Beta-Liouville
distribution are given by:

E[φk] = α

α + β

αk
∑K−1

k=1 αk

(2)

var(φk) =
(

α

α + β

)2
αk(αk + 1)

(∑K−1
k=1 αk

) (∑K−1
k=1 αk + 1

)

−E[φk] α2
k

(∑K−1
k=1 αk

)2 (3)

and the covariance between φi and φj is as following [26]:

Cov(φi, φj ) = αiαj
∑K−1

k=1 αk

(
α+1

α+β+1
α

α+β
∑K−1

k=1 αk + 1
−

α
α+β

∑K−1
k=1 αk

)

(4)

According to (4), the covariance matrix of the Beta-
Liouville distribution is not strictly negative like the
Dirichlet distribution because two variables with the same
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mean value can have different variances. Therefore, the
Beta-Liouville distribution has a more general covariance
structure. What is more, the Beta-Liouville distribution is
also a conjugate prior of the multinomial distribution. The
above advantages make the BL distribution more powerful
and practical in topic modeling. Hence, introducing BL
distribution to replace the Dirichlet prior in the LDA model
improves topic correlation and is convenient for practical
applications. Consequently, the LBLA model can provide
more practical capabilities than the original LDA model and
includes it as a particular case [10, 26].

Because this study is an extension of the LBLA model
[10], it is necessary to summarize the generative process of
the original LBLA graphical model. In the LBLA scheme,
there are three main generating phases:

• For each document d, draw a topic mixture θd from
BL(ζ ).

• Draw a corpus multinomial word distribution φk from
BL(ε) for each topic z.

• For each word wi in d:

– Choose a topic zi from Mult (θd)

– Choose a word wi from Mult (φk)

2.2 Cross-collection topic model

So far, natural language processing, computer vision,
pattern recognition, and other disciplines are increasingly
using the LDA model and its extensions, such as the
LBLA. Due to different practical problems, there are
more and more different new topic models inspired by
LDA. For example, Zhai et al. [16] introduced a topic
model, the Cross-Collection Mixture model (ccMix), based
on the pLSI model [37], for handling comparative text
mining problems. Due to the limitation of the ccMix
model, Paul and Girju [17] presented a Cross-Cultural
LDA (ccLDA) model, which is the extension of LDA and
ccMix frameworks. The cross-collection topic models try
to extract the common information from all collections
and figure out what is unique to a specific collection in
different dataset collections. As the state-of-the-art cross-
collection topic model, the ccLDA model provides better
generalization capabilities and less relies on user-defined
parameters. Moreover, ccLDA model shares assumption
with the LDA-Collection [34] and Topical N-Gram models
[42]. Those models assume that each word can be generated
from two different distributions. Based on ccLDA model,
Julian and Ralf [18] offered an entropy-based ccLDAmodel
which distinguishes collection-independent and collection-
specific words according to information entropy. The BOW
assumption is maintained in both ccLDA and entropy-based
ccLDA models; thus, each word depends on the different
dataset collection.

2.2.1 Differences in the generative process

The ccLDA model can detect topics among multiple data
collections and differences between those data collections.
Specifically, the ccLDA model first samples a collection c

(observable data), then chooses a topic z and flips a coin x

to determine whether to draw from the shared topic-word
distribution or the topic’s collection-specific distribution.
The probability of x is 1 or 0 and comes from a Beta
distribution. The generative process of the ccLDA model is
based on the following steps:

• Draw a collection-independent multinomial word dis-
tribution φz from Dirichlet (β) for each topic z

• Draw a collection-specific multinomial word distribu-
tion σz,c from Dirichlet (δ) for each topic z and each
collection c

• Draw a Bernoulli distribution ψz,c from Beta(γ0, γ1)

for each topic z and each collection c
• For each document d, choose a collection c and draw

a topic mixture θd from Dirichlet (αc). Then for each
word wi in d:

– Sample a topic zi from Mutl(θd)

– Sample xi from Bernoulli(ψz,c)

– If xi = 1, sample a word wi from Mutl(σz,c)

else xi = 0, sample a word wi from Mutl(φz)

Although the ccLDA model generalizes the LDA
model by adding comparative analyses of different data
collections, the limitations of the Dirichlet distribution to
capture the correlation between topics have impeded the
performance of the ccLDA model and its extensions in
various text analysis or classification applications. The
state-of-the-art LBLA model improves the generative data
process and effectively captures the semantic relationships
between topics. Integrating the BL distribution and ccLDA
model can naturally improve the cross-collection topic
model’s performance. However, the topic models mentioned
above are without any privacy protection. Specifically,
those models can not defend against adversaries with full
knowledge of the training process, posing severe privacy
concerns.

2.3 Topic model with privacy protection

Many machine learning models [43–45] have applied dif-
ferential privacy to address privacy attack vulnerabilities
by perturbing the model during different training parts.
Specifically, there are a lot of different ways to adopt
differential privacy in ML models such as output perturba-
tion, objective perturbation [46], intermediate perturbation
[47, 48] and input perturbation. In recent years, there has
been an increasing interest in input perturbation, and local
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differential privacy [49], demonstrating that enormous ran-
domized crowdsourced data may leak valuable statistics.
The input perturbation can guarantee privacy by eliminating
the premise of trustworthy servers.

As a classic machine learning approach, topic models
also can achieve differential privacy protection by perturb-
ing the intermediate parameters during the training process
via input perturbation. For instance, by perturbing the sam-
pling distribution in the final iteration, Zhu et al. [30]
suggested a DP guarantee CGS-LDA model. While per-
forming a variational Bayesian inference scheme, Park et al.
[48] used differential privacy in LDA by perturbing the
adequate statistics data in each iteration. Like the above
works, Decarolis et al. [50] altered the intermediate statistics
in the spectral methodology. However, those DP guarantee
methods [30, 48, 50] cannot tackle the problem of untrust-
worthy data curators by design. Wang et al. [32] established
a locally private LDA strategy for a federated environment,
but this approach is not a generic solution to the standard
approach for the batch-based LDA model.

2.3.1 Instrisic privacy of CGS-LDA algorithm

Recent improvements [32, 51] in intrinsic privacy have
heightened that the Bayesian sampling can generate the
inherent privacy guarantee without introducing further noise
to sample statistics variables. Foulds et al. [33] expanded on
this work, concluding that the generic MCMC mechanism
may also process inherent privacy guarantees and acquire
privacy protection similar to the Laplace mechanism. Then,
Zhao et al. [3] proposed a differential privacy solution for
traditional batch LDA training, a hybrid privacy-preserving
algorithm (HDP-LDA), which injects the noise to obfuscate
the word count in each training iteration and takes advantage
of the inherent randomness of Markov Chain Monte Carlo
(MCMC) techniques. The inherent privacy guarantee is an
essential feature of the CGS-LDA method.

Measuring the inherent privacy guarantee in a topic
model such as the LDA model is still challenging. Even
though HDP-LDA [3] has been demonstrated to be effective
and outperforms some methods mentioned above [30, 48,
50], this scheme still suffers from the restriction of Dirichlet
prior and insufficient for comparative datasets analysis. In
this paper, we present a cross-collection topic model that
overcomes the limitations of Dirichlet prior by adopting a
more flexible prior and using differential privacy for privacy
preservation, which can secure sensitive information from
attackers who are aware of the training process.

3 Themodel

This section mainly describes our Cross-Collection Latent
Beta-Liouville Allocation (ccLBLA) model and the hybrid
private ccLBLA (HPP-ccLBLA) framework.

3.1 Problem statement

Our HPP-ccLBLAmodel is a generative probabilistic model
for analyzing multiple datasets. The basic assumption is
that documents are represented as random mixtures over
latent topics, where each topic is a distribution over
words. Specifically, the common topics are shared with all
collections, while distinctive topics belong to a specific
collection. This approach aims to generate common and
specific topics under privacy protection during the training
process.

Our approach integrates LBLA [10, 26] and ccLDA [17],
and HDP-LDA [3] as a privacy preservation cross-collection
topic model that takes BL distribution on both document
and corpus parameters. We will start with a study of the
generative process of the fundamental ccLBLA model.
Then, we introduce our extension of the ccLBLA model to
the hybrid privacy-preserving learning scheme applying the

Fig. 3 Graphical representation
of ccLBLA

17830



Cross-collection latent Beta-Liouville allocation model...

Table 2 Model variables and definitions

C - total number of collections

D - total number of documents

W - total number of words in each document

K - total number of topics

w = wij - observed words

z = zij - latent variables

θj - mixing proportions

φk - corpus parameters in collection-independent distribution

σk,c - corpus parameters in collection-specific distribution

ψk,c - parameter in Bernoulli distribution

θj ∼ BL(ζc) - Beta-Liouville distribution

φk ∼ BL(ε) - Beta-Liouville distribution

σk,c ∼ BL(τc) - Beta-Liouville distribution

ψk,c ∼ Beta(γ0, γ1) - Beta distribution

x ∼ Bernoulli(ψck) - Bernoulli distribution

zjk/θjk ∼ Mult (θj ) - multinomial distribution

xjk/zjk, φk, x = 0 ∼ Mult (φk) - multinomial distribution

xjk/zjk, σk,c, x = 1 ∼ Mult (σck) - multinomial distribution

method on the HDP-LDA model [3], which includes cross-
collection and CGS inference method with BL distribution
prior. The topic graphical model (Fig. 3) is described by a
list of variables. It demonstrates the conditional dependence
structure between these variables. The variables in this
paper are provided in Table 2 to allow readers to understand
our models and follow the inference steps easily.

3.2 The cross-collection LBLAmodel

3.2.1 The generative process of ccLBLAmodel

For the complete analysis of the ccLBLA model, we will
first state the generative process of the ccLBLA model, and
then we will develop the inference equations when using
the collapsed Gibbs sampling for learning (CGS-ccLBLA).
The ccLBLA model first samples a collection c (observable
data), then choose a topic z and flips a coin x to determine
whether to draw from the shared topic-word distribution or
the topic’s collection-specific distribution. The probability
of x is 1 or 0 and is supported to be generated from a
Bernoulli distribution.

• Draw a collection-independent multinomial word dis-
tribution φk from BL(ε) for each topic z

• Draw a collection-specific multinomial word distri-
bution σk,c from BL(τc) for each topic z and each
collection c

• Draw a Bernoulli distribution ψk,c from Beta(γ0, γ1)

for each topic z and each collection c

• For each document d, choose a collection c and draw a
topic mixture θd from BL(ζc). Then for each word wi

in d:

– Sample a topic zi from Mutl(θd)

– Sample xi from Bernoulli(ψk,c)

– If xi = 1, sample a word wi from Mutl(σk,c)

else xi = 0, sample a word wi from Mutl(φk)

3.2.2 Inference

Because the estimation of the posterior distribution in
Bayesian topic models is intractable, inference methods
such as VB and MCMC have become the standard choices
to estimate the latent topics and the model parameters.
For the inference of the ccLBLA model, we choose
collapsed space representation because it contributes to
the performance of batch models [31, 52]. Details about
collapsed Gibbs sampling inference will be provided.
Specifically, ζc carries the document hyperparameters αc

and βc, ε includes the collection-common hyperparameters
η and λ, as well as the variable τc holds collection-
specific hyperparameters ηc and λc. In more detail, (ζc) =
(αc1, ..., αc(K−1), αc, βc) means the hyperparameter set of
a document with class c, and K is the number of topics.
The collection-independent hyperparameter variable ε can
be extended as ε = (λ1, ..., λV −1, λ, η) while V is the size
of the vocabulary or codebook. Similarly, the collection-
specific hyperparameter variable ζc can be expressed
as τc = (λc1, ..., λc(V −1), λc, ηc) while V is also the
size of the vocabulary. The document, topic’s collection-
common, and collection-specific distribution are sampled
from Beta-Liouville distributions in our scheme. Therefore,
in our implementation, ζc is the K − 1 dimensional BL
hyperparameter (αc1, ..., αc(K−1), αc, βc) for the document
in class c in a K dimensional space. The ε and τc are the V

dimensional BL hyperparameters for the vocabulary in a V

dimensional space.
In collapsed space, the parameters are marginalized,

leaving only the latent variables that are conditionally
independent [53], and the collapsed space of latent variables
is a low dimensional space as compared with joint space.
Estimation in collapsed space is faster than in joint space
because the parameters φ, σ , and θ are marginalized.
The collapsed Gibbs sampling inference approach uses a
Bayesian network to estimate the posterior distributions
by computing expectations through a sampling process
of the latent variables. The CGS is easier to implement
and computationally quicker than ordinary Gibbs sampling
in the joint space. Because the CGS inference does
not need the usage of digamma functions, it increases
computational efficiency. As a result, when the Markov
chain achieves its stationary distribution, the CGS inference
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accurately approximates the actual posterior distribution.
The ccLDA and its extensions [17, 18] are based on
CGS inference to estimate posterior distribution because
of its advantages. Furthermore, in the next section, we
will describe our privacy-preserving ccLBLA method by
utilizing the intrinsic privacy guarantee feature of the CGS
inference scheme.

3.2.3 Hidden variables

In the CGS-ccLBLA scheme, the conditional probabilities
of latent variable zij are calculated by the current state
of all variables except the particular variable zij being
processed in the marginal joint distribution p(w, z | xij =
0, ζc, ε) or p(w, z | xij = 1, ζc, τc) between collection-
common and collection-specific case. This algorithm
applies the collapsed Gibbs sampler for topic assignments.
The conditional probability of zij is p(zij = k | xi =
0, z−ij ,w, ζc, ε) or p(zij = k | xi = 1, z−ij ,w, ζc, τc).
The −ij represents the counts with zij excluded [53].
This conditional probability of collection-common and
collection-specific is expressed as:

p(zij = k | xij = 0, z−ij ,w, ζc, ε)

= p(zij = k, z−ij ,w | xij = 0, ζc, ε)

p(z−ij ,w | xij = 0, ζc, ε)
(5)

p(zij = k | xij = 1, z−ij ,w, ζc, τc)

= p(zij = k, z−ij ,w | xij = 1, ζc, τc)

p(z−ij ,w | xij = 1, ζc, τc)
(6)

Equations 5 and 6 can be simplified as following:

p(zij = k | xij = 0, z−ij ,w, ζc, ε) ∝
p(zij = k, z−ij ,w | xij = 0, ζc, ε) (7)

p(zij = k | xij = 1, z−ij ,w, ζc, τc) ∝
p(zij = k, z−ij ,w | xij = 1, ζc, τc) (8)

In the CGS-ccLBLA model, the parameters θ , φ, and
σ are drawn from the BL distribution. To speed up the
training process, we marginalize these parameters in the
collapsed space because sampling in the collapsed space
is much faster than in the joint space of latent variables
and parameters [10, 53]. By integrating out the parameters,
Gibbs sampler’s equations are obtained as expectation
expressions:

p(zij = k | xij = 0, z−ij ,w, ζc, ε)

= Ep(zij =k|xij =0,w,ζc,ε)[p(zij = k | xij

= 0, z−ij ,w, ζc, ε)] (9)

p(zij = k | xij = 1, z−ij ,w, ζc, τc)

= Ep(zij =k|xij =1,w,ζc,τc)[p(zij = k | xij

= 1, z−ij ,w, ζc, τc)] (10)

In the collapsed space, we can integrate out θ , φ, σ ,
and ψ to get (11)–(14) according to the conjugacy of the
Beta/Binomial and BL/Multinomial distributions based on
the inference equations developed for CGS-ccLDA and
CGS-LBLA [10, 17]. In CGS algorithm iterations, we
sample new assignment of z and x alternately with the
following equations:

p(zi = k | xi = 0, z−i ,w, ζc, ε)

∝
(
αck + N

−ij
jk

)

(∑K−1
l=1 αcl + ∑K−1

l=1 N
−ij
j l

) ×
(
αc + ∑K−1

l=1 N
−ij
j l

)

(
αc+βc + ∑K

l=1N
−ij
j l

)

×
(
λv + N

−ij
kv

)

(∑V −1
l=1 λl + ∑V −1

l=1 N
−ij
kl

) ×
(
λ + ∑V −1

l=1 N
−ij
kl

)

(
λ + η + ∑V

l=1N
−ij
kl

)

(11)

p(xi = 0 | x−i , z,w, γ, s, t)

∝ N
k,c
x=0 + γ0

Nk,c
. + γ0 + γ1

×
(
λv + N

−ij
kv

)

(∑V −1
l=1 λl + ∑V −1

l=1 N
−ij
kl

)

×
(
λ + ∑V −1

l=1 N
−ij
kl

)

(
λ + η + ∑V

l=1N
−ij
kl

) (12)

For (11) and (12), all counts only refer to the words for
which xi = 0, which are the words assigned to the topic
model. Specifically, N is the total number of words for
which xi = 0, not the total number of words in the corpus.
Same for (13) and (14), the count only includes the words
for which xi = 1, which means that N is the total number
of words for which xi = 1.

p(zi = k | xi = 1, z−i ,w, ζc, τc)

∝
(
αck + N

−ij
jk

)

(∑K−1
l=1 αcl + ∑K−1

l=1 N
−ij
j l

) ×
(
αc + ∑K−1

l=1 N
−ij
j l

)

(
αc+βc + ∑K

l=1N
−ij
j l

)

×
(
λcv + N

−ij
ckv

)

(∑V −1
l=1 λcl + ∑V −1

l=1 N
−ij
ckl

) ×
(
λc + ∑V −1

l=1 N
−ij
ckl

)

(
λc + ηc + ∑V

l=1N
−ij
ckl

)

(13)
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p(xi = 1 | x−i , z,w, γ, τc)

∝ N
k,c
x=1 + γ1

Nk,c
. + γ0 + γ1

× (λcv + N
−ij
ckv )

(∑V −1
l=1 λcl + ∑V −1

l=1 N
−ij
ckl

)

× (λc + ∑V −1
l=1 N

−ij
ckl )

(λc + ηc + ∑V
l=1N

−ij
ckl )

(14)

The count N
ij
jk is the number of words wi in the

document j and topic k in class c. Besides, N
−ij
jk is the

total number of words in document j and topic k in class
c except for the word wi being sampled. The count N

ij
kwij

is the number of times the word wij appears in topic k

and document j . In addition, N
−ij
kwij

is the number of times
the word wij appears in document j and topic k except

being sampled. Nij
ckwij

is the number of times the word wij

appears in topic k and document j in specific collection
c. In addition, N

−ij
ckwij

is the number of times the word wij

appears in document j and topic k in specific collection c
except being sampled. N

k,c
x is the number of x in topic k,

and collection c. x should be initialized as 0 for all tokens.
We initially assume that everything comes from the shared
collection word distribution.

3.2.4 Multinomial parameters

For parameters estimation, the document parameter distri-
bution is:

θjk = (αck + Njk)
(∑K−1

l=1 αcl + ∑K−1
l=1 Njl

) ×
(
αc + ∑K−1

l=1 Njl

)

(
αc + βc + ∑K

l=1Njl

)

(15)

Algorithm 1 Summary of CGS-ccLBLA model.

The predictive distributions of the collection-independent
and collection-specific words are:

φkw = (λv + Nkv)
(∑V −1

l=1 λl + ∑V −1
l=1 Nkl

) ×
(
λ + ∑V −1

l=1 Nkl

)

(
λ + η + ∑V

l=1Nkl

)

(16)

σckw = (λcv + Nckv)
(∑V −1

l=1 λcl + ∑V −1
l=1 Nckl

)

×
(
λc + ∑V −1

l=1 Nckl

)

(
λc + ηc + ∑V

l=1Nckl

) (17)

The algorithm 1 shows the summary of the CGS-
ccLBLA model.

3.3 Hybrid privacy-preserving ccLBLA scheme

This section will first introduce the differential privacy
and exponential mechanism. Then, we point out the limi-
tations of existing methods in protecting the intermediate
statistics in the topic model training process. Moreover, we
thoroughly analyze the inherent differential privacy guar-
antee of CGS-ccLBLA training on centralized datasets.
Finally, based on the study above, we will present a hybrid
privacy-preserving method for the cross-collection topic
model (HPP-ccLBLA). In the HPP-ccLBLA scheme, all the
intermediate statistics of the CGS-ccLBLA model can be
protected during the training process.

3.3.1 Differential privacy and exponential mechanism

Differential privacy [29] is a de-facto standard for privacy
protection framework with rigorous mathematical proof.
So far, DP has been widely utilized in the past to assess
the privacy issue of random algorithms by comparing the
mathematical differences between neighboring datasets.

Theorem 1 (Differential Privacy [29]) A randomized
mechanism f : D −→ Y offers (ε, δ − DP) if for any
adjacent D, D′ ∈ D and Y ∈ Y, there is:

Pr(f (D) ∈ Y) ≤ eεP r(f (D′) ∈ Y) + δ (18)

The Pr() refers to the probability and ε is the privacy level
of f . This definition restrains an adversary’s ability to infer
whether the training or input dataset is D or D′.

According to Dework et al. [29], the exponential
mechanism is a base approach to obtain ε − DP . The main
concern of the exponential mechanism is to return the result
sampled from a definite distribution with a fixed output
set.
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Theorem 2 (Exponential Mechanism [29]) Given a range
R, a dataset D, a function u, and a privacy parameter ε, the
mechanism ME(x, u,R) : D −→ R satisfies ε − DP if
ME(x, u,R) output an element r ∈ R with probability Pr

satisfies that:

Pr ∝ exp
( ε

2 � u
u(x, r)

)
(19)

where u(x, r) is the utility function and � u is sensitivity.

3.3.2 Limitations of the existing methods

The direct way to achieve DP in topic modeling is to add
noise to the intermediate statistics [30, 33]. For example,
Fould et al. [33] achieve DP in Gibbs sampling by adding
Laplace noise to the sufficient statistics at the beginning of
the Gibbs Sampling process. Zhu et al. [30] try to obtain DP
by adding Laplace noise to sufficient statistics in the last
iteration. Zhao et al. [3] point out that those methods cannot
protect the training process against strong adversaries with
full knowledge of the training and access to intermediate
statistics in CGS-based topic model such as the LDA model
due to two reasons: insufficient protection on word-counts
and no protection on the sampled topics. Zhao et al. [3]
address those issues in the CGS-LDA model, but this model
is inadequate for comparative text analyses. Indeed, privacy
protection of cross-collection topic models has not been
previously described.

3.3.3 Model assumptions

Here we use the same assumptions as Zhao et al. [3] for
adversary models and neighboring datasets.

• Adersary Model: We assume the data curator is
trustworthy, but the adversary can observe the sampled
topic assignments and the word count in each iteration
during the training process.

• Neihboring Datasets: We construct the neighboring
dataset D′ by using word replacement [3]. Then,
we assume that we can prevent the adversary from
detecting the impact of word replacement on the
training process.

3.3.4 Inherent privacy of CGS inference scheme

We will comprehensively analyze the inherent privacy of
the CGS-based topic model training algorithm. Because
Gibbs sampling has the same process with an exponential
mechanism for differential privacy, Foulds et al. [33]
highlighted that the Gibbs sampling method inherently
generates some intrinsic differential privacy. The CGS

technique has the same property since it is one of the
versions of Gibbs sampling. Furthermore, during each
iteration of learning a topic-word distribution, the CGS
inference outputs a topic from the topic set. Thus, Zhao
et al. [3] began to investigate the CGS process in terms
of the exponential mechanism, and they successfully
concluded the inherent privacy of the CGS algorithm in
the LDA model. They indeed specifically analyze the
intrinsic privacy loss in each iteration before composing
the privacy in total interactions of the CGS training
scheme of LDA. We will employ the same concepts and
then extend this idea to our proposed model so that
we will use the same propositions in the HPP-ccLBLA
model.

According to Zhao et al. [3], the intrinsic privacy
of LDA’s CGS inference technique has two significant
drawbacks:

• Because privacy loss grows linearly, the privacy loss
will accumulate rapidly.

• During the CGS inference process, there is no
protection for word-count information since intrinsic
privacy cannot secure the word-count data, leading to a
privacy leakage issue.

We will address these two potential difficulties of
inherent privacy after leveraging CGS’s inherent privacy
feature and present a privacy-preserving solution for our
new model (HPP-ccLBLA).

3.3.5 Hybrid privacy-preserving ccLBLA algorithm

We first summarized the limitations of existing works
in protecting sampled topics in the cross-collection topic
model. Then, we studied the inherent privacy lack of
protection on the word-count information. We propose a
hybrid privacy protection algorithm for the ccLBLA model
(HPP-ccLBLA) to address these issues.

The HPP-ccLBLA model described in this section
integrates the inherent privacy of the CGS inference
approach with external privacy provided by noise injection.
We provide suitable noise in each iteration of the CGS
technique to secure the word-count statistical information
to overcome the possible privacy concern of intrinsic
privacy.

We introduce the noise to obfuscate the difference
between Ndk or Ncdk in each iteration. Besides, we
minimize the rapid accumulation of privacy loss by setting
the upper bound of the topic-word count. We choose the
same method for HDP-LDA [3], which resorts to a clipping
method to restrict the inherent privacy in each iteration.
Specifically, the clipping only impacts a copy of Ndk or
Ncdk in the computation of sampling but not the updating of
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CGS inference. Algorithm 2 meets (εL + εI ) − DP in each
iteration. εI is the inherent privacy loss:

εI =
⎧
⎨

⎩

2 log
(

C
λv

+ 1
)

, if xij = 0

2 log
(

C
λcw

+ 1
)

, if xij = 1
(20)

The εL denotes the privacy loss incurred by the Laplace
noise, and the CC is the clipping bound for Ndk or Ncdk .

Algorithm 2 Summary of HPP-ccLBLA algorithm.

In Algorithm 2, the privacy loss in the HPP-ccLBLA
model includes privacy loss εL incurred by Laplace
noise and the inherent privacy loss εI of CGS inference.
According to (20), we can conclude that the rapid increase
of inherent privacy loss has been limited, and the word-
count statistical information also gets privacy protection.

4 Experimental results

The cross-collection topic model was evaluated via perplex-
ity, classification accuracy, and topic coherence using sev-
eral applications such as comparative text mining and image
classification. We also compare topic examples across mul-
tiple text datasets to demonstrate the strengths of our
technique. The experiments utilize four text datasets with
different collection numbers, document lengths, domains,
and one well-known image dataset. In this section, we use
the Scale Invariant Feature Transform (SIFT), and K-means
approaches to successfully apply our cross-collection topic
model (ccLBLA) to an image classification assignment
using the Bag of Visual Words (BOVW) approach. Finally,
we validate the HPP-ccLBLA algorithm’s performance in
model utility, such as perplexity, to show our approach’s
merits.

4.1 The datasets

Table 3 displays an overview of each dataset size for the text
datasets. The COVID-19 newspapers dataset contains online
newspapers from the United States of America, which
is collected from COVID-NEWS-US-NNKDATASET1.
Whereas, the second collection of this dataset is from
several different British newspaper websites.2 Indeed, we
can use this novel dataset for comparative text mining
tasks in aggregation and summarization to extract common
and different effects and knowledge about the virus in
two countries and demonstrate our proposed model’s
merits. Besides, the second text dataset mainly focuses
on computer science academic papers, including the
abstracts of NeurIPS3 and CVPR4 papers published in
2019. We apply our model to comparative text analysis to
automatically spot different topics and trends in these two
conferences. The third text dataset consists of a subset of
the New York Times (NYT) comments,5 which contains
more than two million comments from 2017 to 2018. We
decided to use all comments posted on NYT articles in the
period Jan - April 2017 and Jan - April 2018 to compare
the performance of the ccLBLA model with ccLDA [17],
and LDA [31] models. The dataset of NYT comments
forms the largest dataset in our evaluation. We also reuse
the dataset6 reported in ccLDA [17] so that we can make

1https://github.com/nnk&minus;dataset/usa&minus;nnk
2https://www.kaggle.com/jwallib/coronavirus&minus;
newspaper&minus;classification/data
3https://www.kaggle.com/rowhitswami/nips&minus;papers&minus;
1987&minus;2019&minus;updated
4https://www.kaggle.com/paultimothymooney/cvpr&minus;
2019&minus;papers
5https://www.kaggle.com/aashita/nyt&minus;comments
6http://www.michaeljpaul.com/downloads/ccdata.php
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Table 3 Datasets - number of documents D and average number
of words per document W/D (without stop words)

Text Datasets

Dataset Collection D W/D

COVID-19 Newspapers USA UK 2731 433

Academic Papers NIPS CVPR 2787 91

Traveler Forum India Singapore UK 4174 247

NYT Comments 2017 44465 214

2018 48903 237

a fair comparison. The last text dataset crawled from an
online travel platform, including three different countries’
discussion forums of India, Singapore, and the UK, with
thousands of threads in each collection [17]. Therefore, our
experiment utilized four domains of datasets: newspapers,
academic papers, customer comments, and travel blogs,
to prove that our approach can handle different types of
documents.

For the image-based application, we used the famous
grayscale natural scenes dataset [55]. As shown in Table 4
and Fig. 4, this image dataset includes the following
categories: kitchen, office, bedroom, suburb, highway,
living room, street, downtown, industry, store, forest,
skyscraper, coast, mountain, and rural area.

4.2 Experiments for text mining

For comparative text mining application, we preprocess the
text datasets by first tokenizing words with the Natural

Table 4 Size of each image category

Natural scenes images dataset

Categories Size

Kitchen 210

Office 215

Bedroom 216

Suburb 241

Highway 260

Living Room 289

Street 292

Downtown 308

Industry 311

Store 315

Forest 328

Skyscraper 356

Coast 360

Mountain 374

Rural Area 410

Language ToolKit (NLTK) [56], removing punctuation,
stop-words and then lemmatizing tokens to derive their
common base form. We choose BL priors hyperparameters
following the same setting of the asymmetric BL priors in
[10]. For Dirichlet-based model, the topic distribution priors
are fixed and α = 0.1. Then, we set β and δ to 0.01; for γ0
and γ1, we use the same value, 1.0. The LDA and ccLDA
(LDA and ccLDA)7 are based on a widely used open-
source package GibbsLDA++. For the text experiment
validation, we use ten-fold cross-validation, which separates
each dataset with a 90% training set and 10% test set. In the
Gibbs sampling, the burn-in period is five hundred, and then
we collect ten samples separated by lags of ten iterations.
The average of ten samples is the final result of the
model. After, we calculate the document-topic parameter
θ , the collection-independent word distribution parameter
φ, the collection-specific word distribution parameters σ ,
and ψ . Moreover, we assessed model perplexity, document
classification accuracy, and mixed topic coherence based on
these parameters and results.

4.2.1 Perplexity

Perplexity evaluates how well a trained topic model
predicts the co-occurrence of words on the unseen test
data. Perplexity focuses on the topic model’s ability to
generate word probabilities for the unseen dataset, so
a lower perplexity score indicates better generalization
performance. Based on Hofmann [37], we use the “fold-
in” approach for this experiment. This method evaluates
the model by only learning the test dataset’s document-
topic probabilities θ . All other topic model probabilities
parameters are kept the same from the training dataset—the
validation Gibbs sampling measure only the document-topic
distributions on the test documents.

In the cross-collection topic model, for a test dataset of
M documents, the perplexity is:

Perplexity(Dtest ) = 2− 1
M

∏
w likelihood(w|θdnew ,c) (21)

In this formula, after getting the topic probabilities θd

and the collection c of a test document d, the likelihood of
a word w in test document d is:

likelihood(w | θdnew , c) =
∑

z

P (z | θdnew )

×[P(w | z, x = 0)P (x = 0)

+P(w | z, c, x = 1)P (x = 1)]
(22)

7http://www.michaeljpaul.com/downloads/mftm.php
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Fig. 4 Examples from the natural scenes images dataset (Total Fifteen Categories)
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P(x = 0) is the probability that word w is collection-
independent, and x = 1 means the likelihood of word
w being collection-specific. P(w | z, x) denotes the
possibility of word w sampled from collection-common or
collection-specific when topic z is sampled.

The perplexity for each model on both corpora for dif-
ferent values of topics is shown in Fig. 5. As expected,
cross-collection topic models (ccLBLA and ccLDA) gener-
ally achieve a lower perplexity than single-collection topic
models such as the LDA model because these models uti-
lize extra information to assign a greater probability to
words more likely to exist in a document. According to
Fig. 5, The ccLBLA and ccLDA models have compara-
ble performance when the number of topics is negligible
since the topic number is not ideal for specific datasets. The
ccLBLA models achieve lower perplexity than the ccLDA
models as the number of topics increases. The ccLBLA
and ccLDA models produce similar results on the trav-
eler forum dataset, although the difference between the
two models is not significant. After examining the trav-
eler forum dataset, we notice that each collection contains
many duplicate documents, implying that this dataset cannot
accurately demonstrate the capabilities of a cross-collection
topic model to predict unseen documents. In the other
three text datasets, ccLBLA has a lower perplexity than the
ccLDA model. This result also demonstrates the flexibility
of the BL prior (general covariance structure in (4)) com-
pared to the Dirichlet distribution, which is very limited
for its inability to perform in the case of positively corre-
lated datasets. Therefore, we can conclude that the main
reason for our proposed model’s (ccLBLA) improvement
is that the BL distribution prior has better topic correla-
tion, flexibility, generalization, and modeling capabilities
[10, 26].

4.2.2 Document classification

Cross-collection topic models like ccLBLA and ccLDA
can produce collection predictions for unseen documents
since they can generate a document likelihood that relies
on the document’s collection [17]. Each model predicts
the collection of test documents based on the words in
this task. Furthermore, the document classification accuracy
may be used to assess the model’s separation of collection-
common and collection-specific words [17, 18]. The cross-
collection topic model provides a probability for each
collection and assigns the most likely collection for the
test document. This probabilistic classification enables a
more precise assessment of each topic model’s degree
of certainty. Therefore, we can objectively measure the
performance of these models in document classification.
The cross-collection topic model calculates the category
of an unlabeled document d for choosing collection

Fig. 5 Perplexity results on four different datasets for LDA, ccLDA
and ccLBLA
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Table 5 Document classification accuracy results on four different
datasets for ccLDA and ccLBLA

Document Classification Accuary

Dataset ccLDA ccLBLA

COVID-19 Newspapers 0.40 0.59

Academic Papers 0.76 0.91

NYT Comments 0.67 0.81

Traveler Forum 0.45 0.63

c as:

label = argmax
c

P (c)
∏

w

∑

z

P (z | θdnew , c)

×[P(w | z, x = 0)P (x = 0)

+P(w | z, c, x = 1)P (x = 1)] (23)

We can get the predicted collection c by using (23).
Expect for P(z | θd, c) and P(c); other probabilities
are generated from the training document because P(z |
θd, c) and P(c) depend on the new test document.
Following Paul’s approach [17], we assign a collection
c for the unlabeled document, and then we use another
Gibbs sampling procedure to learn these probabilities. The
classification accuracy for the new test datasets is Dcorrect

Dtestset
.

Table 5 and Fig. 6 demonstrates all document classifi-
cation accuracy results for four different datasets among
ccLBLA and ccLDA models. As shown in Table 5, the per-
formance of the ccLBLA model is much better than the
ccLDA model in the document classification task on the
whole. On the COVID-19 newspapers dataset, the docu-
ment classification accuracy of the ccLBLAmodel is almost
45% higher than the ccLDA model. Also, the ccLBLA
model achieves about 40% greater than ccLDA’s accu-
racy. The ccLBLA model gets about 20% higher accuracy
in academic papers and NYT comments datasets than the
other two datasets. We can find that the ccLBLA model’s
accuracy does not drop like the ccLDA model with increas-
ing the number of topics from Fig. 6. Based on those
results, compared with the ccLDA model, we can conclude
that the ccLBLA model obtains a better ability to sepa-
rate collection-common and collection-specific words by
introducing BL distribution.

4.2.3 Topic coherence

The topic coherence evaluation compares the ccLBLA and
ccLDA models for clustering words inside the collection-
independent topic and between multiple collection-specific
topics through semantic similarity. In particular, the model’s
capacity to align topics from distinct collections among
different collection-specific topic-word distributions was

Fig. 6 Document classification results on four different datasets for
ccLDA and ccLBLA
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tested. On the other hand, the current topic coherence
metric only examines a single word distribution per topic,
not several word distributions inside a single topic. As a
result, we use the mix topic coherence [18], which mixes
the topic representation of the collection-independent word
distribution with the collection-specific word distribution.
As a result, we employ the union of these representations
as a unified topic representation, which is distributed by
particular topic terms and is independent of the individual
collections. This union’s coherence can be evaluated to
determine the current topic coherence score.

This mixed topic coherence may also be used to
evaluate the topical alignment of different collection word
distributions according to Risch, and Krestel [18]. The
CV technique [57] is chosen as the topic coherence
evaluation method. This coherence measurement is based
on a sliding window, segmentation of a set of top words,
indirect confirmation measures using normalized pointwise
mutual information (NPMI), and cosine similarity. This
coherence metric retrieves the co-occurrence count for a
given word using a sliding window and a constant window
size. The NPMI is calculated using these counts. When
a collection of top-level words is segmented, the cosine
similarity between each top word vector and the sum of all
complete word vectors is calculated. The arithmetic mean
of these similarities is thus CV Coherence. Even though CV

coherence measurement considers human judgments, this
topic coherence has limits since CV coherence implies that
words that never appear together in the reference dataset
are inconsistent. This assumption is not suitable for some
datasets with strong language contrast.

In this experiment, we use the Palmetto library8 to
evaluate the topic coherence automatically. Table 6 shows
the CV -based topic coherence of four datasets, which
averages all topics’ coherence scores. The number of topics
in the mixed topic coherence evaluation is based on the
result from perplexity and document classification. From
Table 6, we can conclude that the ccLBLA model obtains
slightly higher topic coherence values than the ccLDA
model. Especially for the academic papers dataset, our
proposed model gets around 8.3% improvement. Indeed,
the ccLBLA model obtains almost 4.5% advancement
compared with the ccLDA model in the COVID-19
newspapers and travel forum dataset.

4.2.4 Topics analysis and discussion

We modeled this dataset with 30 topics based on perplexity
and topic coherence findings in the COVID-19 newspapers
datasets. The top 10 words for collection-independent and
each collection local word distribution from the ccLBLA

8https://github.com/dice-group/Palmetto

Table 6 Topic coherence comparison with ccLDA and ccLBLA
models

Topic Coherence

Dataset ccLDA ccLBLA

COVID-19 Newspapers 0.3832 0.4008

Academic Papers 0.3886 0.4211

NYT Comments 0.4173 0.4291

Traveler Forum 0.3833 0.4013

model are shown in Table 7. Topic 15, which is about
maintaining public health during the Covid-19 pandemic,
may be deduced from the collection-independent topic
terms. Indeed, when comparing the methods used in the
United Kingdom and the United States, it is evident that
the United States government advises individuals to work
from home and stay at a safe distance from public places to
prevent the spread of Covid-19 in the USA collection. The
UK government recommends that people wear masks and
wash their hands to protect themselves.

Moreover, Topic 19 presents the symptom of COVID-
19. Topic 23 is a Coronavirus study report. The newspapers
in the United States and the United Kingdom have
distinct concerns. The US newspaper emphasized the virus’s
instances and patients in China. In contrast, the COVID-19
virus’s data across the world and vaccine manufacture were
the focus of the UK media.

Furthermore, Table 8 compares ccLDA and ccLBLA
models to world economic issues from the New York
Times Comments dataset. Our method, the ccLBLA model,
also results in superior separation of collection-specific
terms and theme coherence in this dataset. The 2017
collection is assigned the terms “bank” and “estate” by
the ccLDA model, whereas the world economy themes
are assigned the words “job”, “work”, and “worker” by
the ccLBLA model. Labor costs have a considerably more
significant impact on the global economy than real estate
and banks because real estate and banks can affect the
local economy. Moreover, both models provide the same
outcome in the 2018 collection regarding China’s impact
on global commerce. The ccLDA model, on the other
hand, is limited to the Sino-Canadian economic connection.
ccLBLA, on the other hand, assigns “China” and “global” to
2018 collections, which is more relevant to the collection’s
specific topic: the global economy.

4.3 Image classification

This section successfully applies the cross-collection topic
model in an image classification following the bag of visual
words framework [8, 10]. Figure 7 illustrates an overview
of the feature extraction, clustering, and ccLBLA pipeline.
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Table 7 ccLBLA model with three topics for COVID-19 newspapers dataset

Topic 15 Topic 19 Topic 23

Coronaviru, health, work, Symptom, infect, viru viru, disease, conronavirue

week, continue, virue, time day, ill, coronavirus, sever animal, vaccine, spread, human

emerg, country, clear people, cough, fever research, study, scientist

UK Collection USA Collection UK Collection USA Collection UK Collection USA Collection

Mask peopl health hand vaccin infect

Worker govern case breath world China

Suppli stay peopl test data patient

Protect home covid19 cough use Wuhan

Wear social test covid19 develop outbreak

Face test viru lung medium ill

Product distanc infect suffer research test

Hand offic diseas bodi work pandem

Equip public spread throat inform cent

Hospit rule death clean report public

Specifically, we use the Scale Invariant Feature Transform
(SIFT) algorithm to extract the local features from local
patches through the whole corpus collection, the vectors
of counts in each image. The K-means algorithm clusters
the set of training image descriptors to find the unique
local feature representation. After that, we can obtain the
codeword from the cluster center and the codebook or the
dictionary of image vocabulary. The codebook contains
a vector of counts for each image. Using this bag of
visual words approach, we can consider each image as a
document and train them into our proposed ccLBLA model.
Besides, in this well-known grayscale fifteen-categories

Table 8 Example of topics from the NYT Comments dataset as
discovered by the ccLDA and ccLBLA models

ccLDA ccLBLA

busi, market, product, money, econom, economi, job,

trade, compani, economi, polici, worker, increas,

econom, good, price corpor, employ, product, cost

2017 Collection 2018 Collection 2017 Collection 2018 Collection

Regul trade job trade

Bank china work china

Estat tariff worker market

Reduc steel labor global

Econom manufactur class industri

Growth chine busi good

2008 aluminum incom compani

Doddfrank canada rate rate

Mortaga industri rich cost

Banker impos growth product

natural scenes dataset, the data is separated into training and
testing sets in each category: the testing set has a hundred
random images while the remaining constitute the training
set. In the model section, we set the range of topic numbers
from 10 to 80. Then, we can use the bags of visual word
representation for each image to evaluate the performance
of the ccLBLA model in the image classification task based
on Eq. 23.

class = argmax
c

∏

w

∑

z

P (z | θdnew , c)

×[P(w | z, x = 0)P (x = 0)

+P(w | z, c, x = 1)P (x = 1)] (24)

Because the cross-collection topic model can generate an
image (document) likelihood which depends on the image’s
collection [17], cross-collection models like ccLBLA and
ccLDA are capable of making collection predictions for
unseen documents. Therefore, the cross-collection topic
model naturally suits the classification task, and each model
can predict the collection of test documents based on
the visual words. Specifically, The predictive model is
created by estimating the topic parameters using (15). The
predictive topic distributions and the empirical likelihood
framework lead to the estimation of the class likelihood.
Based on (24), we can obtain the class conditionals to
predict the class label of unseen images. Therefore, the
collection of the unseen image is chosen with the highest
class posterior distribution.

Our experiment uses the same training and testing dataset
to implement the LDA, LBLA, ccLDA, and ccLBLA
models by estimating the class likelihood to predict the
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Fig. 7 An overview of the feature extraction, clustering, and ccLBLA pipeline

class label of unseen images. The highest class posterior
distribution will assign the class for the unseen image.

From Table 9, we can conclude that the ccLBLA
model provides better accuracy than the other topic
models. Precisely, our proposed model achieves 57% (CGS-
LDA), 25% (CGS-LBLA), and 12% (CGS-ccLDA) higher
accuracy. Figure 8(a) and (b) show that the optimal
vocabulary size is V=700, and we find that the optimal
number of topics is K=50 in model selection. The high
average accuracy is 85.75 and high accuracy rate is 90.97,
shown in the confusion matrix (Fig. 9), which outperforms
its competitors (see Table 9). These results demonstrate
that the generative schemes with more flexible priors
(BL distribution) can enhance the cross-collection topic
model’s performance and reinforce the ccLDA model’s
generalization by overcoming the negative covariance
structure of the Dirichlet distribution.

4.4 Performance of HPP-ccLBLA

This section details our assessment of the HPP-ccLBLA
model, emphasizing its utility. We implement our method
on three real-world text datasets: Covid19 newspapers,
academic publications, and comments from the New York
Times. The statistics for these datasets are presented in
Table 6. Because the traveler forum dataset contains many
duplicate documents which cannot accurately demonstrate

Table 9 The accuracies of different tested models applied to the
natural scene dataset

LDA LBLA ccLDA ccLBLA

57.93% 72.67% 81.37% 90.97% Fig. 8 The accuracy as a function of the vocabulary size for image
classification
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Fig. 9 Confusion matrix
for the natural scenes
classification

the capabilities of a cross-collection topic model, we will
not use this dataset in this experiment.

In this experiment, we select perplexity as the evaluation
standard for topic model utility, similar to Zhao et al.
[3], because perplexity emphasizes the generative aspect
of topic models to predict word probabilities for unseen
documents in the test dataset [4, 18]. A lower perplexity
indicates a higher likelihood and better model utility. To
compute the perplexity and likelihood of a cross-collection
topic model, we apply (21) and (22). To evaluate our
strategy, we will compare it to CDP-ccLBLA+, which
protects the training process by introducing Laplace noise
into Ndk , Nkw, and Nckw in each iteration. In addition, we
will compare the differences in topic samples between HPP-
ccLBLA and Non-privacy protection ccLBLA to validate
the utility of our approach.

4.4.1 Utility

The perplexity of HPP-ccLBLA and CDP-ccLBLA+ with
different Laplace privacy ε settings is shown in Fig. 10. In
Fig. 10, we also compare the plain CGS algorithm (Non-
Privacy), which lacks privacy protection. Furthermore, we
employ several BL parameter configurations in ccLBLA
experiments in this utility experiment. To limit the inherent
privacy, we explicitly set a larger λw, and λcw, as well
as a proper clipping bound C, during the training process.

Then, we set the intrinsic privacy level of HPP-ccLBLA to
10 in each iteration. Because we utilize a more significant
parameter in BL distribution, the prior information can
improve the model utility ability to the noise. The limited
Inherent means that the HPP-ccLBLA has the same setting
for inherent privacy level but no Laplace noise for Nkw

and Nckw. From Fig. 10, we can infer that Limited
Inherent has a utility degradation compared with the plain
CGS algorithm (Non-Privacy) because Limited Inherent
integrates a stronger inherent privacy guarantee. Even
though CDP-ccLBLA+ introduces more Laplace noise
and privacy loss than the HPP-ccLBLA scheme, including
the intrinsic privacy loss, the utility of HPP-ccLBLA
outperforms the CDP-ccLBLA+ method in that three real-
world datasets based on the BL prior information.

We tested our ccLBLA model and compared it with
LDA and ccLDA models using four evaluation methods
in text application and image classification. The model
in all the evaluation methods shows similar or improved
results compared to LDA and ccLDA models. Compared
with these models, the ccLBLA model not only replaces the
Dirichlet prior for the document parameter but also does
it for the corpus parameter. Therefore, our model provides
a stronger generalization than those Dirichlet-based topic
models. Specifically, in dimension D, the Dirichlet has
D + 1 parameters while the Beta-Liouville has D + 2.
Thus, compared to the Dirichlet, Beta-Liouville has one
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Fig. 10 Perplexity results on three different datasets vs. Privacy level
of HPP-ccLBLA

extra parameter. Indeed, the general covariance structure in
the BL is also suitable for any data modeling within the
BoW framework. This is not the case for the Dirichlet for its
limitation in the case of positively correlated datasets. Then,
our proposed model (HPP-ccLBLA) naturally outperforms
the HDP-LDA model in utility with a similar assumption

and privacy protection algorithm. Moreover, compared with
the HDP-LDA model, our HPP-ccLBLA model can extract
more useful information with a better topic correlation
structure by modeling multiple document collections.

5 Conclusion

This paper first presents and implements a novel cross-
collection topic model (ccLBLA model) that utilizes
the BL distribution instead of Dirichlet for various
domain text collections to improve previous cross-collection
topic models because the BL distribution can provide a
better topic correlation representation. Furthermore, we
investigate the privacy protection of topic models with
differential privacy and propose a centralized privacy-
preserving algorithm for the ccLBLA model (HPP-
ccLBLA), which takes advantage of the Collapsed Gibbs
Sampling inference approach’s inherent differential privacy
guarantee to address the privacy issue.

The ccLBLA model extends the ccLDA and LBLA
models. These previous models suffer from the limitation
of Dirichlet prior or focusing only on one individual
data collection. All of these issues are addressed by the
ccLBLA model. In particular, our new model replaced the
Dirichlet distribution with the BL prior in the generating
process, making our model more flexible. We compare our
experimental results to the ccLDA and LDA models to
demonstrate the merit of our new technique. The perplexity
of the topic model, document classification accuracy,
topic coherence, and topic samples are all examined.
Experimental findings show that our ccLBLA beats ccLDA
and LDAmodels on all four quality metrics across four real-
world text datasets with varying domains and numbers of
collections. Moreover, we present the first study on applying
the cross-collection topic model to image classification
applications. Because of the general covariance structure in
the BL distribution, the performance of the ccLBLA model
in image classification demonstrates a higher classification
accuracy than the ccLDA, LBLA, and LDA models.
Extensive experiments reveal that our HPP-ccLBLA model
can prevent data inference from intermediate statistics
during training, and this algorithm can achieve a goodmodel
utility under differential privacy.

For our future work, we plan to improve the efficiency
of the HPP-ccLBLA model so that it can be used for real-
time streaming data such as investigating an online-based
ccLBLA model under privacy protection. In addition, it is
possible to extend our model from a centralized privacy-
preserving algorithm to a local privacy algorithm. One can
also naturally extend the proposed model by introducing
a more flexible prior to improve the model’s performance.
For reproducibility and future improvement by other
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researchers, the complete source code is provided in the
following repository: https://github.com/zluo149/ccLBLA.
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