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Abstract
Noninvasive assessment of skin structure using hyperspectral images has been intensively studied in recent years. Due to
the high computational cost of the classical methods, such as the inverse Monte Carlo (IMC), much research has been
done with the aim of using machine learning (ML) methods to reduce the time required for estimating parameters. This
study aims to evaluate the accuracy and the estimation speed of the ML methods for this purpose and compare them to the
traditionally used inverse adding-doubling (IAD) algorithm. We trained three models – an artificial neural network (ANN),
a 1D convolutional neural network (CNN), and a random forests (RF) model – to predict seven skin parameters. The models
were trained on simulated data computed using the adding-doubling algorithm. To improve predictive performance, we
introduced a stacked dynamic weighting (SDW) model combining the predictions of all three individually trained models.
SDW model was trained by using only a handful of real-world spectra on top of the ANN, CNN and RF models that
were trained using simulated data. Models were evaluated based on the estimated parameters’ mean absolute error (MAE),
considering the surface inclination angle and comparing skin spectra with spectra fitted by the IAD algorithm. On simulated
data, the lowest MAE was achieved by the RF model (0.0030), while the SDW model achieved the lowest MAE on in vivo
measured spectra (0.0113). The shortest time to estimate parameters for a single spectrum was 93.05 μs. Results suggest
that ML algorithms can produce accurate estimates of human skin optical parameters in near real-time.
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1 Introduction

Noninvasive, contactless optical imaging techniques have
shown promise for biomedical applications, particularly
in disease diagnosis, surgery, and therapy, because they
are generally inexpensive, user-friendly, and provide high
resolution and contrast of biological tissue.

Among these techniques, hyperspectral imaging (HSI),
a hybrid optical technique that combines imaging and
spectroscopy, can be used to measure spatially resolved
spectra of reflected, transmitted, or fluorescent light
propagating from the imaged sample to the detector. The
measured data are collected in a 3D dataset known as a
hypercube with two spatial dimensions (X and Y) and one
spectral dimension (Z). HSI divides the light spectrum into
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hundreds of spectral bands covering the selected spectral
region, which can include ultraviolet (UV), visible (VIS)
and infrared (IR) light spectra [1, 2].

The spectrum in each image pixel results from local
tissue chromophores (e.g., melanin, haemoglobin, and
water) and scatterers (e.g., mitochondria, lysosomes, and
collagen fibrils) [3]. It is known that the presence and
progression of diseases alter spectra [4]. Based on this
knowledge, HSI can provide relevant diagnostic information
for the early detection of disease.

Traditionally, to obtain relevant information from hyper-
spectral images, biological tissue is modelled (i.e. optical
properties are assigned to the tissue), and light propaga-
tion in this model is performed. The most common methods
for determining optical parameters are based on simple
approaches such as the Beer-Lambert (BL) law or solving
the inverse scattering problem using theoretical models of
light propagation in tissue [5]. The inverse diffusion approx-
imation (IDA) is a simple and fast, but inaccurate method
that applies to strongly scattering media [6, 7]. Inverse
Monte Carlo is a gold standard that gives exceptionally
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accurate results in any geometry, but is very computation-
ally intensive and therefore time consuming [5, 8]. Inverse
adding-doubling (IAD), on the other hand, can give accurate
results compared to IMC but is much faster [9]. A com-
parison of the GPU-accelerated IAD algorithm presented in
Section 2.4 to GPU-accelerated MCML [8] confirmed that
IAD was at least 2,000 times faster than MCML in extract-
ing tissue properties from a single reflectance spectrum
while achieving the absolute agreement down to the fourth
decimal place. However, both approaches are too slow to
enable real-time analysis of hyperspectral images or would
require substantial computational resources to do so. More-
over, due to its analytic origin, IAD can only simulate light
propagation in laterally infinitely layered tissue with broad
homogeneous illumination.

In recent years, machine learning (ML) has been exten-
sively studied and used to estimate various physiological
parameters from diffuse reflectance spectra measurements,
mainly due to its much faster fitting speed than the tradi-
tional IMC approach [10, 11]. Currently, the most widely
used ML methods for analysing diffuse reflectance spectra
measurements are random forests (RFs) and artificial neu-
ral networks (ANNs). In a paper by Panigrahi and Gioux,
the RF algorithm is applied to the diffuse reflectance hand
images, achieving an error rate of 0.556% for the absorp-
tion and 0.126% for the reduced scattering coefficient [12].
It was reported that the estimation of the parameters for a
single image took 450 ms. Nguyen et al. used ANN, RF,
gradient boosting machine (GBM) and generalised linear
model (GLM) to extract physiological parameters from a set
of simulated diffuse reflectance spectra, resulting in abso-
lute percentage errors below 10% [11]. The models were
compared with the Monte Carlo lookup table (MCLUT).
ANN models outperformed all other models and achieved
the best computation time. In a paper by Zhang et al., an
ANN was used to estimate the scattering and absorption
coefficients of human skin tissue from diffuse reflectance
spectra, resulting in a relative error of 3% for the reduced
scattering coefficient and 9% for the absorption coeffi-
cients [13]. Dremin et al. used neural networks on the HSI
spectra in the range of 510 − 900 nm to analyse skin com-
plications of diabetes mellitus by estimating blood volume
fraction (BVF) and skin blood oxygenation (SBO) [14].
In this study, the polarisation index (PI) was used as an
additional parameter to improve the model’s performance,
achieving a sensitivity up to 95%. Ewerlöf et al. trained an
ANN on in vivo data, which was acquired on healthy volun-
teers with Fitzpatrick skin type I–III [15] in order to estimate
the haemoglobin oxygen saturation, achieving an average
error rate of 9.5% on all evaluation data. Tsui et al. used
an ANN in combination with an iterative curve-fitting algo-
rithm to improve the speed of estimating parameters of a
multi-layered skin model and reduce the computation time

by 1,000 times compared to the GPU-MC approach [10].
In another paper, several ANNs were trained for different
types of spatially resolved reflectance curves, achieving an
average relative error of 6.1% for the absorption coeffi-
cient and 2.9% for the reduced scattering coefficient [16].
Balasubramaniam and Arnon used a cascaded feed-forward
NN, where the skip connections are added to every layer, to
improve image reconstruction in diffuse optical tomography
achieving the improvement of 30% in contrast with the ana-
lytical solution [17]. Convolutional neural networks (CNNs)
have also been shown to perform well on hyperspectral data,
where most CNN architectures applied to hyperspectral data
have been used for classifying different terrain types [18,
19]. In recent years, the use of CNNs is also becoming
popular in medical applications. Halicek et al. proposed a
CNN architecture for classifying various types of cancer
from head and neck tissue samples, achieving 96.4% accu-
racy and outperforming support vector machines (SVMs),
which achieved 92.3% accuracy [20]. Wang et al. proposed
a 3D fully convolutional network called Hyper-net to seg-
ment melanoma from hyperspectral pathology images and
achieved an overall accuracy of 92 % [21]. Although most
CNNs are proposed for hyperspectral data to solve classi-
fication problems, there are also examples of using CNNs
in regression problems. Wirkert et al. proposed a method
for simulating 2D patches of multispectral images, and the
2D CNN architecture has been used to estimate oxygena-
tion during laparoscopy [22]. Three models were compared,
namely CNN, RF and BL. The error of estimating oxygena-
tion was 12% for CNN, 13.3% for RF and 18.1% for BL,
respectively.

Although much work has been done in applying ML for
predictive modelling, most studies involve different imaging
techniques than HSI we are presenting. For example, in
the case of spatial frequency domain imaging (SFDI),
information at different spatial frequencies but involving
significantly fewer spectral bands is obtained. The results
are maps of tissue absorption and scattering coefficients at
selected spectral bands. In the case of HSI, the information
about particular tissue constituents from a single spectrum
(not images) or a limited number of spectral points (e.g., 6)
is extracted. Our problem can be ill-posed, and therefore the
tissue properties extraction performs completely different
than when other imaging modalities are used. Some ML
pioneering work was performed on HSI data showing
that the extraction of tissue parameters is possible but
the procedure was not robust [23]. However, a thorough
assessment of the ML approaches to extract tissue properties
from HSI data is still lacking.

For medical applications of HSI, given a large amount
of hyperspectral data fast extraction of optical parameters is
crucial for obtaining relevant information about biological
tissue in real-time. In this study, a GPU-accelerated IAD
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algorithm was used for hyperspectral image analysis instead
of the slower IMC method. However, IAD is still nowhere
near from being applicable to analysing hyperspectral data
in real-time, which inspired us to develop three different
ML models based on RF, ANN and CNN. These models
were trained on skin spectra simulated with a two-layer
GPU-accelerated IAD algorithm and used to predict optical
parameters from a dataset of 17 measured hyperspectral
images of human hands acquired before, during, and
after arterial occlusion. Results from all ML models were
compared to IAD, and spectra calculated based on IAD
and ML were compared with measured reflectance spectra.
Finally, to summarise, the contributions of this work are as
follows:

1. We use various ML models to estimate a total of
seven tissue parameters describing physiology and
morphology, providing ample information about the
biological tissue.

2. We train all our models on a large synthetic dataset
generated using the adding-doubling (AD) algorithm.
This effectively eliminates the need for obtaining
sizeable in vivo datasets to train complex models.

3. We propose a stacked dynamic weighting (SDW) model
to combine the predictions of all previously trained
models by tuning it to a small number of in vivo
measured diffuse reflectance spectra.

4. We perform a comprehensive analysis of all models
in terms of accuracy and estimation speed and show
that our method can be used to rapidly extract tissue
parameters (up to two images per second) from sizeable
hyperspectral images, leading the way to real-time
hyperspectral image analysis using GPUs and ML.

2Materials andmethods

2.1 Imaging system

Hyperspectral images were acquired using a custom-
built integrated multimodal imaging system combining a
hyperspectral and an optical profilometry module presented
by Rogelj et al. [24] and shown in Fig. 1. The former is
a push-broom (line-scanning) hyperspectral imaging (HSI)
device consisting of a 17 mm lens (Xenoplan, 1.4/47-0903,
Schneider-Kreuznach, Germany), an imaging spectrograph
(ImSpector V10E, Specim, Finland), a monochrome camera
(Blackfly S, BFS-U3-51S5M-C, FLIR, Canada), two
translation stages (8MT195, Standa, Lithuania), cross
polarisers to minimise specular reflection, and a custom
LED illumination panel spanning the spectral range of 400–
1,000 nm. The LED light source consists of two pairs of two
LED panels arranged symmetrically along the recording

Fig. 1 A schematic of the multimodal imaging system combining HSI
and OP [24]

line to ensure uniform illumination of the sample. On the
first pair of panels, white LEDs are interlaced with 780
nm LEDs; on the second pair of panels, 850 nm LEDs
are interlaced with 940 nm LEDs. In total, 80 high-power
LEDs are used for sample illumination. The spatial and
spectral resolution of the HSI module is 200 μm and <1 nm,
respectively. A three-dimensional (3D) optical profilometry
(OP) module was also included combining a laser projector
(FLEXPOINT, 30 mW, 405 nm, LASER COMPONENTS,
Germany) and a monochrome camera (Flea3, FL3-U3-
13Y3M-C, FLIR, Canada) with a 16 mm lens and a notch
filter. 3D OP was utilised to obtain the 3D surface shape
of the imaged samples and compensate for the signal loss
in hyperspectral images due to sample curvature [24]. It is
based on the triangulation method, where a laser projector
projects a 405 nm laser line on the sample surface, and
the laser line distorted due to sample surface curvature is
captured by the camera from a different viewpoint. From
a known relation between the camera and projector, the
surface shape profile is calculated. The HSI and OP modules
were calibrated using a custom-built reference object of
known geometry to achieve an image misalignment of less
than 0.1 mm. The accuracy of a captured 3D surface in the
X, Y, and Z directions after calibration was 0.1, 0.1, and 0.05
mm, respectively.

2.2 Experimental procedure

Six healthy volunteers aged 23 to 24 years (three males
and three females), all of whom had Caucasian skin types
(Fitzpatrick types II – III), participated in this study. Each
subject sat in a quiet environment and underwent a vascular
occlusion test (VOT) adapted from Strömberg et al. [25].
In the experimental procedure, a blood pressure cuff was
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placed around the subject’s right upper arm, the hand was
placed in a fixed position, and a baseline hyperspectral
image of a hand was acquired along with an image of a
white reflectance standard. The blood pressure cuff was then
inflated to 200 mmHg and held at this level to induce arterial
occlusion and prevent blood flow to the forearm and hand.
After 90 seconds, when the blood oxygen level decreased
dramatically, another hyperspectral image was acquired.
Finally, the blood pressure cuff was removed to allow the
return of oxygenated blood to the hand, and after 10 seconds
a third image was acquired. For all measurements, subjects
were seated in an upright position. Their hands were fixed
so that the palms faced away from the camera.

In this study, 600 spectral bands were captured for each
hyperspectral image in the range of 400–1,000 nm with a
spectral resolution of 1 nm. Integration time was set to 200
ms and 1,000 lines were scanned for each hyperspectral
image. The size of raw hypercubes was 2, 048 × 1, 000 ×
600, resulting in more than 10 GB of data per hypercube.
The total acquisition time for a single hypercube was 200 s.

The experimental protocol conforms to the principles
expressed in the Declaration of Helsinki and was approved
by the Slovenian National Medical Ethics Committee
(0120-629/2016-3; KME 66/01/17). Informed consent was
obtained from all subjects included in the study.

2.3 Image preprocessing

First, the acquired images were normalised to convert
the raw hyperspectral radiance to reflectance using the
following equation [1]:

Iref = Iraw − Idark

Iwhite − Idark
, (1)

where Iraw is the raw hyperspectral intensity, Iwhite is
the white standard reference intensity, and Idark is the
dark current measured with the camera shutter closed. In
addition, image distortions due to the varying distance
between the imaged object and the camera, as well as
signal losses due to the changing slope of the object
surface, were accounted for by using 3D data from OP and
applying height and curvature corrections to hyperspectral
images [24]. These corrections result in flat intensity
profiles of curved objects and thus significantly reduce the
effect of object curvature. In addition, hyperspectral images
were spectrally reduced from the interval 400–1,000 nm to
430–750 nm with a step of 1 nm, resulting in 321 spectral
bands, and spatially reduced by a factor of 10 in both X and
Y directions. The wavelength range was reduced to 430–
750 nm to improve the extraction of tissue parameters in
the visible spectral range considered in the tissue model
described in Section 2.4. Finally, image segmentation was
performed to obtain a hand mask using 3D OP data and

spectral angle mapper (SAM) [26]. The latter measures the
spectral similarity between the spectra in each pixel of the
hyperspectral image and the specified reference spectrum
to distinguish the hand from the background. In our case,
the reference spectrum for each image was calculated as the
mean spectrum within a 20 × 20 px region of interest (ROI)
in the proximal phalanx of the middle finger. As a result,
the background was masked from the image, meaning only
pixels inside the mask were considered in the analysis.

2.4 Image analysis

An IAD algorithm, first introduced in the field of
biomedical optics by Prahl et al. [9], was developed
and implemented for graphics processing units (GPUs) in
MATLAB R2020b (Mathworks, MA) to enable fast and
accurate simulation of light propagation in tissues. It is
an iterative numerical technique for solving the radiative
transport equation (RTE) in turbid media of a slab geometry.
In particular, it applies to homogeneous slabs with arbitrary
optical properties such as refractive index, anisotropy factor,
optical thickness, albedo or phase function, taking into
account the light reflection and transmission at the interface
of the different layers [5, 9]. Prahl et al. [9] showed that the
accuracy of the IAD is within 2–3 % of IMC if layered tissue
is simulated. In our IAD algorithm, a two-layer skin model
consisting of epidermis and dermis is used, and incident and
outgoing light is divided into 20 fluxes to ensure reasonable
accuracy so that the agreement between IAD and IMC was
absolute down to the fourth decimal place.

The absorption coefficient of the epidermis used in IAD
is calculated as [3, 27]:

μa, epi = fmμa, m + μa, base, (2)

where fm is the volume fraction of melanin,

μa, m = 6.6 · 1011 cm−1
( λ

nm

)−3.33
(3)

is the melanin absorption coefficient, and

μa, base = 0.244 cm−1 + 85.3 cm−1 · e− λ−154 nm
66.2 nm (4)

is the baseline absorption of bloodless skin. The absorption
coefficient of the dermis is adopted from [3]:

μa, der = fHbμa, Hb + fHbO2μa, HbO2 + fbrubμa, brub

+fCOμa, CO + fCOO2μa, COO2 + μa, base, (5)

where fHb and fHbO2 are volume fractions of deoxy-
and oxyhaemoglobin, μa, Hb and μa, HbO2 are corresponding
absorption coefficients, fbrub and μa, brub are millimolar
concentration and absorption coefficient of bilirubin, whereas
fCO and fCOO2 are respective millimolar concentrations of
reduced and oxidised cytochrome C oxidase and μa, CO and
μa, COO2 associated absorption coefficients. Both μa, CO and

16522



Rapid extraction of skin physiological parameters from hyperspectral images using machine learning

μa, COO2 were added to the model to improve the fitting
in region above 650 nm. Moreover, the reduced scattering
coefficient is determined from Jacques [3] by taking into
account both Mie and Rayleigh scattering:

μ′
s = a

[
fRay

( λ

500 nm

)−4 + (
1−fRay

)( λ

500 nm

)−b
]

. (6)

Here, a represents the scattering coefficient at 500 nm,
fRay the fraction of Rayleigh scattered light and b Mie
scattering power. The refractive index of both layers was
calculated as [5, 28]:

n = 1.309 − 4.346 · 102λ−2 + 1.6065 · 109λ−4

−1.2811 · 1014λ−6. (7)

Finally, the angular distribution of scattered light
intensity was given by the Henyey-Greenstein phase
function [29]:

pHG(θ) = 1

2

1 − g2

(
1 + g2 − 2g cos θ

) 3
2

(8)

where θ is the scattering angle, and the anisotropy factor, g,
was determined from Van Gemert et al. [30]:

g = 0.62 + 29 nm−1 · 10−5λ. (9)

The total number of model parameters in a two-layer
skin model shown in Fig. 2 was 11, of which fm was fitted
in the epidermis, fHb, fHbO2 , fbrub, fCO and fCOO2 were
fitted in the dermis, and a was fitted in both layers at once.
The values of fixed parameters (b, fRay, depi, and dder)
are presented in Table 1, together with the accompanying
references.

The calculated reflectance spectra are iteratively fitted
using the Levenberg-Marquardt (LM) algorithm adopted to
GPU until they match the measured values – the maximum
number of iterations was set to 200.

2.5 Spectra simulation

To train the ML models, 105 spectra were simulated using
the AD algorithm. Such a large number of simulated
spectra provided us with enough training data and sufficient
statistical accuracy to estimate the performance of different
ML models. Initially, uniform sampling of the simulated

Table 1 The values of the fixed model parameters

Parameter b [-] fRay [-] depi [cm] dder [cm]

Value 1.2 [3, 4] 1e-7 [3] 0.01 [5, 31, 32] 1 [5, 31]

parameters from the physiological ranges presented in
Table 2 was implemented, where parameters b, fRay, de, and
dd were fixed to values presented in Table 1.

However, this approach resulted in low ANN perfor-
mance on the simulated dataset, possibly due to the combi-
nation of sampled parameters not being realistic, resulting in
simulated spectra not matching the measured skin spectra.
Thus, the sampling strategy was changed by assuming that
the values for each parameter were sampled from a mixture
of multivariate Gaussians. To fit the Gaussians, we ran-
domly took one hyperspectral image for each phase of VOT
that was later excluded from the performance evaluation and
used the parameters to fit the Gaussian mixtures. Since the
range of each parameter is different from the others, we
first rescaled all parameters to the range of [0, 1]. Then, we
fitted several Gaussian mixture models (GMMs) to obtain
the optimal number of clusters. All models were validated
using the Silhouette score (SS) [33]. It is an internal eval-
uation method that determines how well the data points
are clustered, considering cluster tightness and the separa-
tion between clusters. SS is calculated using the following
expression:

s(i) = b(i) − a(i)

max{a(i), b(i)} , (10)

where a(i) is the mean distance between the i-th instance
and all other instances falling into the same cluster, and b(i)

is the smallest mean distance from the i-th instance to all
the instances not falling into the same cluster:

a(i) = 1

| Ci | −1

∑
j∈Ci,i �=j

d(i, j), (11)

b(i) = min
k �=i

1

| Ck |
∑
j∈Ck

d(i, j), (12)

where d(i, j) is the distance between the instances i and j ,
and | Ci | is the number of instances falling into cluster
i. SS takes on a value in the interval [−1, 1], where a

Fig. 2 A two-layer skin model
consisting of epidermis and
dermis with a total of 11
parameters used in our study
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Table 2 The boundary values of simulated model parameters

Parameters Minimum Maximum

fm [–] 0.001 0.05

fHb [–] 0.001 0.1

fHbO2 [–] 0.001 0.1

fbrub [mM] 1e-7 0.1

fCO [mM] 1e-7 2

fCOO2 [mM] 1e-7 2

a [ 1
cm

] 20 80

higher value means that the clusters are tighter and well-
separated, 0 indicates that the clusters are overlapping and a
negative value indicates that the samples could be assigned
to the wrong clusters. The clustering results shown in Fig. 3
indicate that the optimal parameter number of clusters for
all cases is 2, yielding the highest SS value in all phases
of the arterial occlusion test. From the spatial distribution
of the parameter clusters shown in Fig. 3b, we see that the
first cluster contains the parameters from the central part
of the finger, which are of interest in this study, and the
second cluster describes parameters from the peripheral part
of the fingers considered unrepresentative of the real-world
samples and treated as outliers. In these image regions, the
height and curvature correction was ineffective due to the
high surface inclination angle. Since the outliers deteriorate
the model performance [34], we sampled the simulated
points only from the first cluster (dark blue regions in
Fig. 3b).

The sampled parameter set was used as input to the IAD
algorithm for simulating light propagation in the two-layer
skin model to obtain simulated reflectance spectra before,

during, and after a VOT. These spectra were eventually
used to train our ML models: RF, ANN and CNN. These
models were chosen due to their popularity in solving
similar problems [11]. 80% of the simulated dataset was
used to train the models, while the remaining 20% was
used to evaluate it. Since the values for most parameters
are very close to zero, using the mean absolute percentage
error (MAPE) would result in large errors or even undefined
results. Secondly, root mean squared error (RMSE) was not
used being less robust to outliers. Therefore, we used mean
absolute error (MAE), calculated by (13):

MAE = 1

n

n∑
i=1

| yi − xi | . (13)

Here n represents the total number of testing instances,
whereas yi and xi represent the predicted and true value of
the i-th parameter, respectively.

2.6 Machine learningmodels

In this paper, we compared two different neural network
architectures – a classical ANN with one hidden layer and
a 1D CNN – and an RF model. We chose to use ANN
and RF models because they are widely used in problems
dealing with determining optical tissue properties [10–12].
Also, we use a 1D CNN model to inspect if a more complex
model architecture can be more accurate compared to the
simpler ones. Since the problem of determining optical
tissue properties is complex, and the relation between the
spectra and parameters is not linear, simple models such
as linear regression were not considered in this study. All

Fig. 3 a) Silhouette score of the
parameters for each phase of the
arterial occlusion test (before,
during, after) with respect to the
number of clusters. b) The
spatial distribution of the
clusters is displayed on a
selected hand of participant 1
recorded during VOT. The
outlying parameters are shown
in bright yellow, whereas the
parameters of interest are shown
in dark blue
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Fig. 4 Architecture of the 1D CNN used to predict the parameters. Conv1D layers have kernels of size 3. MaxPool1D has size 2, and the size of
the FC layer is 1,024

mentioned models receive single spectra as an input rather
than the patches or whole hyperspectral image. Finally, we
combined the predictions from all three models (ANN, 1D
CNN and RF) and proposed the stacked dynamic weighting
(SDW) model by training an additional ANN on a small
number of in vivo measured spectra and compared it to the

model that averages the predictions from all three models
(AVG).

The ANN architecture used consists of three fully-
connected (FC) layers. The input layer has 321 neurons,
which corresponds to the dimensionality of the input
spectra. The hidden layer consists of 512 neurons, using

Fig. 5 Proposed model that
learns the weighting with
respect to the inclination angle
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Fig. 6 Diagram of the proposed system

rectified linear activation units (ReLU) [35]. Different sizes
of the hidden layer were examined, and the results were
similar for all sizes. Finally, the output layer consists of
7 linear neurons, corresponding to the number of skin
parameters.

The 1D CNN architecture shown in Fig. 4 consists of
three convolutional layers followed by the max-pooling
layers. All convolutional layers consist of 64 kernels of
size 3 and max-pooling layers of 2. The output of the last
max-pooling layer is connected to a FC layer of size 1,024,
which in turn is connected to the output layer consisting of
7 neurons. Similar to the previously described ANN model,

all activation functions except the output layers are ReLU,
while the last layer has a linear activation function. In our
experiments, we tried different sizes of FC layers and did
not find any significant differences in the results.

In both neural network architectures, Adam opti-
miser [36] was used with a learning rate of 0.001 since a
larger learning rate, such as 0.01, leads to a higher prob-
ability of deviating from the optimal solution. The size of
the training batch was set to 50. Both the optimiser and the
batch size were chosen empirically. The mean squared error
(MSE) was used as the loss function. Input signals were
scaled to [0, 1], while all output parameters were normalised
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Fig. 7 Three selected simulated skin spectra and their corresponding
spectra predicted by the ML models for sampled parameters a) before,
b) during, and c) after the vascular occlusion test. Original skin spectra

simulated with the IAD method are shown in blue, whereas predicted
spectra for ANN, CNN and RF are shown in orange, yellow and purple,
respectively

to a mean of 0 and a standard deviation of 1. We per-
formed the output normalisation to ensure that the error rate
for all parameters equally contributes toward the cost func-
tion. Since the measured signals usually contain noise, we
augmented our simulated signals during training by adding
Gaussian noise with a mean of 0 and a standard deviation
of 0.007. This value of Gaussian noise was selected using
the trial and error approach to maximise the performance of
the models. Adding the noise also serves as a regularisation
factor during training.

RF algorithm belongs to the family of ensemble learning
algorithms, which are based on the idea that a single
classifier/regressor is sometimes insufficient to estimate a
given target class or perform a regression correctly and
that multiple classifiers/regressors can be used together to
improve model results [37]. Individual classifiers/regressors
are highly expressive, meaning they have low bias and
high variance. Because they are learned from decorrelated
subsets of the training data, their joint inference equals a
model having low variance while retaining low bias. In this
work, we trained our RF regressor consisting of 100 trees
without explicitly defining the maximum depth of each tree,
inspired by the configuration used in [38]. Increasing the
number of trees did not improve the results.

Finally, we built an ensemble model by combining
predictions from already described models to improve the
performance even more. Generally, multiple predictions can

Table 3 Average spectra MAE values of simulated spectra for the three
ML models, where IAD simulated spectra were used as ground truth

ANN CNN RF

MAE 0.0087 0.0068 0.0030

be combined using the weighted average scheme described
in (14):

f̂(x) =
n∑

i=1

ωifi(x), (14)

where fi(x) is the prediction from model i based on
input spectra x, and ωi is the weight assigned to model
i. Here, each ωi is constrained to range [0, 1], and∑n

1ωi = 1. The weights can be set as static values,
where the simplest approach is to weigh every model
equally (AVG). However, in this study, we also explore the
possibility of weighting the predictions dynamically using
the architecture shown in Fig. 5 (SDW). The weighting
network is a neural network consisting of one hidden layer
with a ReLU activation function, receiving the predicted
parameters from all three already described models together
with cos φ (which represents the spatial information),
and outputs the model weights. The predicted parameters
(inputs) are rescaled to interval [0, 1] to balance out their
influence. Additionally, because different physiological
parameters are not necessarily correlated, it is reasonable
to assume that the weights for each output parameter could
differ. Therefore we train one weighting network for each
parameter separately. Finally, we optimised L1 loss between
the weighted predictions and the original parameters to train
the weighting network. The reason for choosing L1 loss
is that it is more robust to outliers that can appear in in
vivo data, especially in the regions where cos φ is small.
The number of neurons in the hidden layer is set to 512.
Experimenting with a larger hidden layer did not show
any improvement. Like the already defined NN models, we
used the Adam optimiser with the learning rate of 0.001,
batch size set to 50, and the number of epochs set to 50.
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Fig. 8 Box plots of the parameters predicted from the simulated skin spectra are presented separately for each phase of the VOT
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Table 4 MAE values of predicted parameters for the three ML models from simulated skin spectra

fm fHb fHbO2 fbrub fCO fCOO2 a

MAE (train) ANN 0.00061 0.00146 0.0019 0.00869 0.05942 0.16421 1.11004

CNN 0.00038 0.00155 0.00259 0.01426 0.02105 0.05872 1.26281

RF 0.0010 0.0015 0.0038 0.0323 0.02455 0.1470 2.469

MAE (test) ANN 0.0007 0.0012 0.0016 0.0073 0.0616 0.1585 1.0529

CNN 0.0008 0.0029 0.0035 0.0344 0.0275 0.0747 1.3983

RF 0.0014 0.0020 0.0041 0.0336 0.0265 0.1580 2.9691

We trained weighting networks by randomly selecting three
images from a single participant, one for each VOT phase.
The images on which we trained our weighting network
were not used in the evaluation phase.

Finally, in Fig. 6, we show the architecture of the
proposed system. As can be seen, model training consists
of two steps. In the first step, we generate simulated signals
using the AD algorithm, which are then used to train the
RF, ANN and CNN models. In the second step we perform
the test of weighting networks using the single training HSI
image per each VOT phase. A single weighting network is
trained to predict the weights for a single parameter. After
the training is done, we perform the prediction of parameters

for a single spectrum using the three previously trained
ML models. Then we input their predictions together with
the surface inclination angle information to a weighting
network. Finally, we produce the final parameter estimation
using the results from the weighting network and the
previously acquired predictions.

All experiments were performed on a computer consist-
ing of two Intel® Xeon® Processors E5-2620 v4 CPUs, 128
GB RAM, and three GeForce RTX 2080 Ti graphics cards.
Training a single ANN on one graphics card took 1.5 hours
while training a CNN model took 2 hours. RF model was
trained on all available CPU cores, taking 15 minutes for
each parameter. Finally, the weighting networks are trained

Fig. 9 a–c) Selected spectral bands of the hyperspectral image of subject 2. d–f) Measured reflectance spectra of different parts of a human hand
extracted from the measured hyperspectral image
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Fig. 10 An example of the hand image showing the spatial distribution
of surface inclination. The outline (contour) shows the areas where
cos φ = 0.7

in 5 minutes per parameter since the number of real spec-
tra is considerably smaller than the number of simulated
spectra.

3 Results

3.1 Simulated data

In this section, all ML models were examined on the sim-
ulated data to demonstrate their pure performance without
experimental uncertainties introduced with measured hyper-
spectral images. Specifically, the performance of all ML
models was assessed using 10-fold cross-validation.

To begin with, Fig. 7 shows three randomly selected
simulated skin spectra (IAD) and the associated skin spectra
simulated from a test set of sampled parameters predicted
by the three ML models. Original and predicted spectra
are shown for each phase of the vascular occlusion test,
namely a) before, b) during, and c) after. Visually, the
predicted spectra coincide well with the simulated spectra
on the entire wavelength interval. Table 3 provides the
average MAE values for spectra simulated from parameters
predicted by the ML models. Interestingly, the highest
average spectra MAE is found for the classical ANN and
the lowest for the RF model, suggesting the RF-predicted
spectra match better with the IAD-simulated skin spectra
than skin spectra predicted by the CNN and ANN models.

Shown in Fig. 8 are the values of IAD absorption (e.g.,
fm, fHb, and fHbO2) and scattering (a) model parameters

and their predictions by the three ML models. The values
are predicted from the test set of the simulated skin spectra
and are presented for each phase of the VOT individually. It
can be seen that for the majority of parameters, the median
values of predicted parameters are in good agreement with
the ground truth (IAD). However, the best agreement is
found for the parameters predicted by the ANN, and the
worst for the parameters predicted by the RF model. The
values predicted by both neural network models are less
scattered than those predicted by the RF model.

Furthermore, Table 4 presents overall MAE values for
all predicted parameters and vascular occlusion phases,
where IAD parameters were used as ground truth for
calculation. Notably, the ANN model performed best for all
parameters except fCO and fCOO2, whereas the CNN model
outperformed the RF model in three out of four most critical
parameters (fm, fHbO2 and a but not fHb). Train and test
results in Table 4 suggest that our models do not overfit.

3.2 Experimental data

In this section, we present the results of our models on the
measured data. Figure 9 shows selected spectral bands (a–c)
and measured reflectance skin spectra (d–f) extracted from
a hyperspectral image of the human hand of participant 2.
Before the analysis, all nails were manually segmented from
the hand images and omitted from the validation since the
models were not trained for the nail spectra. As the surface
inclination angle, φ, strongly affects the results, only the
spectra satisfying cos φ > 0.7 (φ < 45◦) were considered.
Shown in Fig. 10 is the inclination angle of the selected
hand, where solid black lines outline areas satisfying the
condition.

Figure 11 shows three randomly selected measured
spectra (solid blue line) recorded a) before, b) during, and c)
after VOT. Measured spectra are plotted with corresponding
spectra fitted by the IAD algorithm (solid orange line) or
predicted by ML models. Notably, spectra fitted by IAD
are generally in excellent agreement with measured spectra,
with slight deviations present for wavelengths above 650 nm
due to higher noise levels in the measured spectra because
of the LED light source properties used for imaging. The
illumination intensity in that spectral region is low, and the
noise is amplified. On the other hand, spectra simulated
from parameters predicted by different ML models deviate
more than those fitted by the IAD. Visually, the best match is
found for both neural network models and the worst for the
RF model, as opposed to the mean absolute error of fitted or
predicted spectra with respect to measured spectra presented
in Table 5.

Shown in Fig. 12 are box plots of predicted parameters
for three ML models, where IAD estimations are considered
the ground truth. As can be seen, the mean parameter
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Fig. 11 Measured spectra (blue lines) of participant 2 recorded a)
before, b) during, and c) after VOT, alongside IAD-fitted spectra
(orange lines) and spectra predicted by the ANN (yellow lines), CNN

(purple lines), RF (green lines), AVG (light blue lines), and SDW
(dark red lines) model, respectively. Sampled spectra belong to the skin
surface satisfying the condition cos φ > 0.7

values of ANN and CNN are much closer to IAD than
RF, yielding higher predictive accuracy. Nevertheless, the
predicted values are more scattered for CNN than ANN
or RF. Overall, the SDW model provides the highest
prediction accuracy and precision. It is also clear that
the models perform worst for fCO and fCOO2 because
longer wavelengths that contain more noise than shorter
wavelengths strongly affect these parameters. However, a
higher noise at longer wavelengths is a system-specific
problem and not a drawback of the technique itself.

To further investigate the spatial distribution of errors,
the performance of all considered ML models was analysed
with respect to the surface inclination angle φ. Specifically,
the MAE of the predicted parameters was calculated, where
parameters estimated by the IAD algorithm were used as
the ground truth. Since the images from a single test subject
were used to train the Gaussian mixture model, which was

Table 5 A comparison of MAE of fitted (IAD) or predicted (ANN,
CNN and RF) spectra with respect to measured spectra

IAD ANN CNN RF AVG SDW

MAE 0.009 0.0604 0.0699 0.0593 0.0221 0.0113

then used to generate simulated spectra, they were left out
of the evaluation. The evaluation process was repeated 5
times. Each time the images from a different participant
were used to train the SDW while the rest of the images
were used to test the performance. The average results are
shown in Fig. 13. For most parameters, the mean error of
the estimated parameters decreases as the value of cos φ

increases. However, this is not true for fCOO2 due to the
reason explained earlier in this section. Based on the data
presented in Fig. 13, we can conclude that ANN and CNN
are superior to RF for most parameters and VOT phases.
This can also be confirmed by examining the RF box plots
in Fig. 12 where especially for fbrub RF model performs
much worse than the ANN and CNN models. Also, although
averaging all three models does not guarantee improvement
in predictive accuracy, using SDW improves the overall
result. However, none of the models provided satisfactory
predictions for fCO and fCOO2.

Moreover, we tested if there is a statistically significant
difference in the performance of the gold standard
and different ML models. Specifically, we grouped the
predictions of individual parameters for all subjects and
vascular occlusion phases and compared the mean values
of individual parameters predicted by different methods by
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Fig. 12 Box plots of the predicted parameters for each VOT phase (before, during and after) taken from one randomly selected student hand
image. The performance of all models was assessed on measured skin spectra with surface inclination angle satisfying cos φ > 0.7
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Fig. 13 Comparison of model performance with respect to surface inclination angle for each parameter predicted in different VOT phases. For
each model, MAE was calculated, with parameters estimated by IAD serving as ground truth

performing the one-way analysis of variance (ANOVA).
Then, we utilised a post hoc test to determine which groups
differed from each other. Generally, the results showed
that predictions of individual parameters were statistically
different for all models (p < 0.001). However, the post
hoc test found that there was no significant difference in

the mean values of fm for predictions by ANN and AVG
(p = 0.624) and fHb for predictions by CNN and RF
(p = 0.887) and RF and SDW (p = 0.082). There
was also no difference for parameters fHbO2 predicted by
CNN and AVG (p = 0.246), fCO predicted by ANN
and RF (p = 0.223), and fCOO2 predicted by CNN and
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Table 6 A comparison of the time in microseconds required to
estimate parameters of the single spectrum for IAD, ANN, CNN, RF,
AVG and SDW

IAD ANN CNN RF AVG SDW

Time [μs] 3.6 · 105 93.05 96.20 240 240 242

SDW (p = 0.149). We can conclude that the differences
in predictions of different methods used in this study are
statistically significant. Nevertheless, we could not assess
the performance of ML models compared to IAD based on
the p-values because all values were < 0.001.

To test the time needed to estimate parameters for
each algorithm, we measured the time required to estimate
parameters from 105 spectra and divided the measured
time with the total number of spectra to obtain the time
required to estimate a single spectrum. In this test, we
utilised all CPU cores for the RF and a single GPU for
ANN and CNN. As seen from Table 6, ANN has the
shortest estimation time because the model is the simplest
and requires the least amount of arithmetic operations.
On the other hand, the SDW model has the longest
estimation time because it combines predictions from all
three individual models, which are additionally weighted
using the weighting network. AVG model takes the average
prediction from all three models and is as slow as the
slowest model. Also, it is crucial to notice that the RF is
the slowest individual model since the individual models
are used to predict each parameter. In our case, the number
of pixels in the region of interest was approximately
4,500. Therefore, both weighted and individual models can
estimate parameters from a hyperspectral image in less than
1.5 seconds, compared to the 27 minutes required by the
IAD algorithm.

Finally, the 2D distributions of the three most crucial
physiological parameters (fm, fHb and fHbO2) for partic-
ipant 1 are shown in Fig. 14 for the IAD algorithm and
all three ML models. The distribution of each parameter
is visualised for three phases of the VOT. We observe that
all parameter maps predicted by ML models are consistent
with those extracted by the IAD method and generally fea-
ture overlapping regions of low or high parameter volume
fraction.

4 Discussion

In this work, ANN, CNN, and RF models were used to
estimate various physiological parameters from simulated
and in vivo measured diffuse reflectance spectra. Moreover,
we introduced a stacking technique, SDW, which uses
an additional neural network trained on only a handful

of real-world data; the network receives the predictions
coupled with the spatial information and produces weights
for each prediction. The models were trained with simulated
spectra generated by the forward AD algorithm, and their
performance was analysed on a test set of simulated spectra
and measured spectra from six healthy volunteers in three
phases of the vascular occlusion test (before, during, and
after). Each pixel of the measured hyperspectral images was
treated separately.

Initially, the performance of the three standalone ML
models was tested on a subset of skin spectra simulated
by the AD algorithm. These spectra served as an input to
the models, whereas their output was the predicted values
of seven variable optical parameters. From the predicted
parameters, ML spectra were simulated using the IAD
algorithm to compare their shape to the original ones.

A visual comparison of the three selected simulated skin
spectra shown in Fig. 7 demonstrates a good match between
the originally simulated spectra and the spectra simulated
from the parameters predicted by the ML models. However,
the comparison of the average MAE of spectra in Table 3
indicates that spectra simulated from values predicted by the
RF model yield a lower MAE than spectra simulated from
ANN and CNN predictions. This means that RF spectra
match better with IAD spectra than ANN and CNN, but
the average MAE is low for all models (< 0.009). We
have found that MAE values are generally two to three
times higher for wavelengths above 650 nm than for shorter
wavelengths, primarily due to the higher noise levels in the
longer wavelength region.

Moreover, box plots in Fig. 8 comparing the predicted
values of parameters to the original ones (IAD) show that
ANN and CNN models are superior to RF. Specifically, the
median values of the former coincide with original values
better than RF, and the standard deviation of predicted
parameters is generally 2 to 4% lower for ANN and CNN
than for RF. This is supported by the MAE values calculated
for individual parameters presented in Table 4. It can be
seen from this table that ANN generates a lower MAE
than CNN and RF for five out of seven parameters, and
CNN is superior to RF for three out of four essential
parameters, as already described in Section 3.1. As a result,
both neural networks can predict optical parameters from
simulated spectra with higher accuracy and precision than
the RF model, ANN proving slightly improved predictions
compared to CNN.

Additionally, we experimented with combining the
predictions from the ANN, CNN, and RF models by
proposing the stacked dynamic weighting model (SDW)
and comparing it against the averaged (AVG) predictions
from all three models. In almost all cases, the SDW
model outperforms the AVG model and all other individual
models. We argue that there are two main reasons for
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(a) (b)

(c)

Fig. 14 2D distribution maps of the three most important parameters for the IAD algorithm and all ML models: a) fm, b) fHb, and c) fHbO2

this. First, the SDW model considers spectral inclination
angle as a form of spatial information which cannot
be directly simulated using AD. Second, our weighting
network learned to assign smaller weights to individual
models giving unreasonable or outlier predictions. This
can be seen in Fig. 13 for parameter fCOO2 where the
CNN clearly outperforms other individual models. In this
case, our weighting network learned to prefer the CNN
predictions – contrary to the AVG model, which will
take the average of all individual models no matter how
erroneous their predictions are.

The analysis of the results on experimental spectra
provides ample insightful information. Specifically, the
lowest average MAE of spectra generated from predicted
model parameters was for the SDW model and the highest

for the CNN, with some minor differences between all three
ML models. These results are in stark contrast with the
results on simulated spectra presented in Table 3, where
the MAE values are generally ten times lower. Another
thing to note is that the IAD algorithm, our gold standard,
outperforms all ML models considerably. We hypothesise
that there are two main reasons for these results. Chiefly,
equivalent skin spectra can be generated using an infinite
number of parameter combinations [39]. Another reason
for the performance degradation of the ML algorithms is
that the measurements are susceptible to noise. Although
the performance of the ANN model is improved by adding
Gaussian noise, the results are far from perfect. IAD seems
to be less sensitive to noise due to the regularisation
implemented in the ML algorithm. However, we see a
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significant improvement in prediction accuracy by the
proposed SDW model because of the dynamic weighting of
the predictions based on spatial information.

Figure 12 shows that parameter values predicted by all
ML models generally agree with the ground truth (IAD).
However, predictions by ANN and CNN models yield
higher accuracy and are less scattered than RF model
predictions. Generally, the parameters predicted by the
proposed SDW model agree very well with the ground truth.
We can also observe that all models perform worst for
fCO and fCOO2 because experimental noise in the measured
skin spectra for wavelengths larger than 650 nm strongly
affects these two parameters. This could also be attributed to
the high inaccuracy of the gold standard (IAD) predictions
for these two parameters. We noted that high variations of
fCO and fCOO2 resulted in minor changes of reflectance
skin spectra, leading to non-robust predictions by the IAD
algorithm, which are then also reflected in predictions by
ML models. In Fig. 12, boxplots of predicted values of fCO

(before, during) and fCOO2 (after) are essentially 0 due to
initial parameters being set close to 0. Because the spectra
shapes are not sensitive to changes in both parameters,
the optimisation algorithm probably converges to a local
minimum with values of fCO and fCOO2 close to zero.

We performed a one-way ANOVA test to find if the
differences in the mean values of parameters predicted by
different methods are statistically significant and a post
hoc test to find which specific groups differed from each
other. We found a statistically significant difference in
parameters predicted by different methods, except in some
cases presented earlier. However, we could not assess the
performance of ML models compared to the gold standard
based on the calculated p-values. To examine the model
performance even further, in Fig. 13 we analysed how
the estimation error changed with respect to the surface
inclination angle φ and concluded that the error is highest
for the surface regions where φ > 45◦. By observing the
2D parameter distribution maps shown in Fig. 14 for fm,
fHb, and fHbO2 , and comparing the maps of ML models
against the IAD, it is clear that all algorithms provide similar
parameter values for specific regions of human hands.

Finally, we have shown that all ML models can
provide a nearly real-time estimation speed. There are two
main explanations behind this achievement. Firstly, ML
models perform the parameter estimation directly on the
measured hyperspectral images with the constant number of
arithmetic operations per spectrum. Secondly, all models are
easy to parallelise, which enables better hardware utilisation
during the computation. A similar study by Nguyen
et al. [11], where the estimation time of ANN and RF
models was measured on CPU only, achieved the fastest
time of 0.00065 s for neural networks and the slowest time
of 0.67 s by querying the lookup-table. The fastest time

achieved by Nguyen et al. is still up to 7 times longer than
ours, suggesting that GPU additionally boosts the model
performance.

As mentioned in the introduction, our work is novel in
applying different ML models to estimate physiological and
morphological tissue parameters directly from hyperspec-
tral images. We demonstrated that the overall predictive
performance can be improved by stacking individual ML
models. Most recent research uses ML models for tissue
classification or segmentation problems [20, 21]. However,
the task of tissue classification and/or segmentation is sim-
pler than regression – used in our work – and can be
done satisfactorily using straightforward approaches such as
spectral angle mapper SAM [2]. To their disadvantage, other
research dealing with regression problems uses individual
reflectance spectra, single spectral bands, or multispectral
images with a much smaller number of spectral bands [10,
11, 13, 16], providing limited information about the tis-
sue. Additionally, no other research mentioned above could
estimate such a large number (7) of relevant tissue param-
eters as the proposed research, and hindering the disease
diagnosis.

Moreover, this study uses a large spectra dataset
simulated using the forward AD algorithm. As opposed
to other studies that generally use the Monte Carlo (MC)
technique [10, 11, 13, 16, 23], we were able to substantially
increase the dataset due to a substantially shortened
simulation time, improving the training of the ML models.
Finally, our work demonstrated that tissue parameters could
be extracted from the whole hyperspectral images in less
than a second, leading the way to real-time analysis of
hyperspectral images and reducing the time to establish a
diagnosis.

The main limitation of our study is a small and relatively
homogeneous cohort comprising six healthy volunteers
aged 23 to 24 with Fitzpatrick skin types II–III. As
described in Section 2.5, the seed parameters for the
IAD algorithm are based on sampling the spectra from
Gaussian mixture model which is learned from an in
vivo measurement rather than from uniform distribution of
parameters due to the poor performance of ML models. This
could suggest that ML models are not robust to abnormal
physical states of skin tissue, which could potentially occur
in the presence of certain diseases. Therefore, considering
the homogeneity of the subject pool, the IAD simulations
do not represent many variations for robust testing of
ML models. However, we chose to use Gaussian mixture
model sampling to make the synthetic data samples used
for ML model training more similar to the underlying
distribution of the real-world sample. We do not believe this
assumption made our experiment biased since the images
used to learn the Gaussian mixture model were not taken
into consideration in the test phase. On the other hand, if
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we used uniformly distributed sampling instead, our ML
model would differ significantly from the expected real-
world model, making the evaluation unrealistic because our
ML model would be fitted to a different distribution than the
real-world data. This study limitation could be eliminated
by expanding the study cohort to include healthy subjects
with various skin types and unhealthy subjects diagnosed
with different skin diseases such as skin cancer, dermatitis
and burns.

Several main research directions can be carried out to
improve the results further. To begin with, it is possible
to optimise the IAD algorithm to reduce the ill-posedness
by fixing specific sets of parameters, especially those that
are not interesting for skin physiology or disease diagnosis.
If the fixed parameters cause too large simulation errors
for the IAD algorithm, it is possible to discretise the
parameters into discrete bins, converting the problem into a
classification problem, which could make the method more
flexible. Moreover, it is possible to analyse the variance of
the IAD by estimating specific sets of parameters several
times and obtaining some statistical indicators, such as the
variance for each parameter. Another option is to reduce the
number of spectral bands, consequently reducing the size of
spectral images. Our ML models could easily be modified
to input any number of spectral bands. By reducing the
number of bands, models could be more robust and have
better prediction accuracy and the estimation speed at the
expense of spectral resolution.

From the perspective of ML, numerous possibilities
can be investigated to improve the results. One potential
direction would be to investigate whether the existing
architectures can be improved by adding more layers or
changing the cost function. To reduce the gap between the
simulated and the in vivo measured spectra, one can also
experiment with different autoencoder architectures or even
use the state-of-the-art approach with generative adversarial
networks (GANs) [40]. Finally, it would be interesting to
investigate incorporating spatial information in the learning
process by considering neighbouring spectra.

This paper compares different approaches to extracting
tissue parameters from hyperspectral images obtained by
a broad beam illumination imaging system. The approach
is different from methods like SFDI, where the spatial
modulation information is recorded. On the other hand,
many more spectral bands (a few 100) are recorded in
HSI than SFDI (a few 10). Having the additional spatial
modulation information reduces ill-posedness in the case
of SFDI, and thus the ML approaches are much easier to
implement.

One could disregard ML models from the analysis of
hyperspectral images for being too inaccurate and thus not
worth the tradeoff in model development and hardware
required to implement. However, with more advanced,

accurate and robust ML models, ML methods will play an
increasingly important role in hyperspectral image analysis,
mainly due to their near real-time performance.

5 Conclusion

In this study, several ML models were used to estimate
multiple physiological parameters from the simulated and
in vivo measured skin reflectance spectra. The models were
trained on skin spectra simulated by the IAD algorithm,
which served as the ground truth, and their parameter
estimation performance was analysed on a test set of
simulated spectra and experimental skin spectra from
hyperspectral images of hands.

The results on the simulated skin spectra show that our
proposed SDW model outperforms other individual ML
models in terms of yielding the lowest mean absolute error
for the majority of estimated parameters. The performance
of all ML models on the experimental skin spectra
substantially deteriorates compared to simulated spectra.
Specifically, the mean absolute error of experimental
spectra is ten times higher than for simulated spectra. We
also showed that the performance of all ML models is highly
affected by the surface inclination angle φ, exhibiting that
the error of estimated parameters decreases as the value
of φ increases. Finally, we demonstrated that it is possible
to predict parameters from processed hyperspectral images
with ANN and CNN models in almost real-time by utilising
GPUs – a hyperspectral image with approximately 4,500
pixels each can be predicted in 0.5 s.

This work proves that various ML models, such as
ANN and CNN, could be trained to estimate parameters
from hyperspectral images in real-time. Therefore, it is
a significant step toward automating hyperspectral image
analysis with the potential to use hyperspectral imaging as a
real-time diagnostic tool in the clinical environment.
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U, Milanic M (2019) Curvature and height corrections of
hyperspectral images using built-in 3d laser profilometry. Appl
Opt 58:9002. https://doi.org/10.1364/AO.58.009002
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