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Abstract
The Tsetlin Machine is a recent supervised learning algorithm that has obtained competitive accuracy- and resource usage
results across several benchmarks. It has been used for convolution, classification, and regression, producing interpretable
rules in propositional logic. In this paper, we introduce the first framework for reinforcement learning based on the Tsetlin
Machine. Our framework integrates the value iteration algorithm with the regression Tsetlin Machine as the value function
approximator. To obtain accurate off-policy state-value estimation, we propose a modified Tsetlin Machine feedback
mechanism that adapts to the dynamic nature of value iteration. In particular, we show that the Tsetlin Machine is able
to unlearn and recover from the misleading experiences that often occur at the beginning of training. A key challenge
that we address is mapping the intrinsically continuous nature of state-value learning to the propositional Tsetlin Machine
architecture, leveraging probabilistic updates. While accurate off-policy, this mechanism learns significantly slower than
neural networks on-policy. However, by introducing multi-step temporal-difference learning in combination with high-
frequency propositional logic patterns, we are able to close the performance gap. Several gridworld instances document
that our framework can outperform comparable neural network models, despite being based on simple one-level AND-
rules in propositional logic. Finally, we propose how the class of models learnt by our Tsetlin Machine for the gridworld
problem can be translated into a more understandable graph structure. The graph structure captures the state-value function
approximation and the corresponding policy found by the Tsetlin Machine.

Keywords Tsetlin machine · Explainable machine learning · Learning automata · Reinforcement learning ·
Temporal difference learning · SARSA

1 Introduction

The Tsetlin Machine (TM) is a novel supervised learning
algorithm that combines learning automata and proposi-
tional logic to describe frequent data patterns [10]. A TM
takes a feature vector of propositional values as input,
which it maps to a target output using conjunctive clauses.
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This representation allows for capturing non-linear patterns,
leveraging Disjunctive Normal Form (DNF).

The relation to DNF makes the TM suited for interpre-
tation. As articulated by Valiant [25]: “Such expressions
appear particularly easy for humans to comprehend. Hence
we expect that any practical learning system would have
to allow for them”. A TM model differs from a DNF for-
mula, however, in that the disjunction operator is replaced
by a summation operator. Thus, a TM produces an ensemble
of clauses, which provides a multi-valued measure of out-
put confidence. The resulting fine-grained output guides the
learning process more robustly than simply employing the
propositional output of a DNF formula. Yet, interpretability
is maintained because one can interpret the clauses indi-
vidually due to the linear decomposition of a TM model.
Indeed, a TM produces a formula in plain DNF for certain
hyper-parameter settings.

Several researchers have lately explored various TM-
based natural language processing models, including text
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classification [4, 21], novelty detection [5], semantic rela-
tion analysis [22], and aspect-based sentiment analysis [27],
using conjunctive clauses to capture textual patterns. Other
application areas are network attack detection [11], keyword
spotting [12], biomedical systems design [16], and game
playing [9]. Further, the vanilla TM has been significantly
extended by weighted clauses [13], regression architectures
[2], and the elimination of hyperparameters [15]. Scalable
general-purpose architectures have been proposed for CPU1

[14] and GPU2 [1], while special-purpose energy-efficient
hardware supports learning automata-based computations
[23, 26]. Moreover, theoretical work on convergence has
recently appeared [28].

Presently, neural network-based models provide state-
of-the-art accuracy for many pattern recognition tasks.
However, their black-box nature raises concerns, making
methods for explaining black-box models a main focus
of contemporary research [17, 29]. Such explanations
are approximations by nature and can be arbitrarily
inaccurate [19]. As an alternative to explaining black-box
models, pattern recognition approaches that are inherently
interpretable attract an increasing number of researchers.
The TM is one such approach, distinguished by combining
interpretability with competitive accuracy [3, 9, 27]. Yet,
work on interpretable approaches to reinforcement learning
is scarce, with the TM being fundamentally supervised.
This paper proposes an approach to turning the TM
into an effective reinforcement learning algorithm. Using
supervised learning in the context of reinforcement learning
has a long history [6–8, 18]. The authors of the latter papers
tried to remedy slow or lacking reinforcement learning
convergence due to incremental and online learning,
leveraging supervised learning. For instance, [7] proposed
a reinforcement learning algorithm where a training set is
prepared in each iteration to enable supervised learning.
They report faster and more reliable convergence when
utilizing supervision in reinforcement learning.

Today, batch-learning methods, such as experience
replay, are often used to train reinforcement learning agents.
Our off-policy approach presented in this paper is similar to
batch-learning in the sense that we collected training data
by interacting with the environment over several episodes.
After data collection, a regression TM is trained using
reinforcement learning principles. In addition, we propose
an on-policy approach which evolves its training data as the
learning progresses. This focused learning supports solving
more complicated and larger scale problems.

Paper contributions This paper proposes and explores
approaches to using the TM in reinforcement learning,

1https://github.com/cair/pyTsetlinMachine
2https://github.com/cair/PyTsetlinMachineCUDA

both off-policy and on-policy. We demonstrate the viability
of using bootstrapping for TM learning, lacking a pre-
labelled training set. In particular, we show that the
TM is able to unlearn and recover from the misleading
and inaccurate experiences that inherently occur at the
beginning of bootstrap-based learning before accurate state-
value estimates start to propagate throughout the state-
space. A key challenge that we address is mapping the
intrinsically continuous nature of reinforcement learning
state-value learning to the propositional nature of the TM,
leveraging probabilistic updates. On-policy, this mechanism
learns significantly slower than neural networks. However,
we show that multi-step temporal-difference (TD) learning
closes the performance gap when combined with high-
frequency propositional logic patterns. Finally, we propose
how the class of models learnt by our TM for the gridworld
problem can be translated into an interpretable graph
structure. The graph structure captures the state value
function approximation and the corresponding policy found
by the TM.

The rest of the paper is organized as follows. Section 2
describes the TM, its learning process, and the regression
variant that we use in this paper. Section 3.1 defines the off-
policy reinforcement learning problem and the details of our
proposed approach. Then we introduce on-policy learning
with TM in Section 3.2, covering multi-step approaches in
Section 3.3. Finally, the empirical results and their analysis
are presented in Section 4, while Section 5 concludes the
paper.

2 Tsetlin machine

In this section, we first describe how the TM classifies
input. Then we describe how TMs learn a classification
model from data [10]. After that, we explain how the
TM can be modified to solve regression problems [2] and
suggest how the learning speed of TMs can be controlled by
manipulating the number of automata states.

2.1 Classification

A TM obtains a vector X = (x1, . . . , xo) of propositional
features as input, to be categorized into one of two classes,
y = 0 or y = 1. Together with their negated counterparts,
x̄k = ¬xk = 1 − xk , the features form a literal set L =
{x1, . . . , xo, x̄1, . . . , x̄o}.

A TM pattern is expressed as a conjunctive clause Cj (1),
built by ANDing a subset Lj ⊆ L of the literal set:

Cj (X) =
∧

l∈Lj

l =
∏

l∈Lj

l. (1)
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E.g., the clause Cj (X) = x1 ∧ x̄2 = x1x̄2 consists of the
literals Lj = {x1, x̄2} and outputs 1 iff x1 = 1 and x2 = 0.

The number of clauses is controlled by a parameter n, set
by the user. The first half of the clauses are given positive
polarity. The second half is given negative polarity. The
clause outputs are combined into a categorization decision
through summation and thresholding using the unit step
function u(v) = 1 if v ≥ 0 else 0:

ŷ = u

(∑n/2

j=1
C+

j (X) −
∑n/2

j=1
C−

j (X)

)
. (2)

In other words, categorization is performed based on a
majority vote where the positive clauses vote for y =
1 and the negative for y = 0. The classifier ŷ =
u (x1x̄2 + x̄1x2 − x1x2 − x̄1x̄2), for instance, captures the
XOR-relation (illustrated in Fig. 1).

2.2 Learning procedure

Each clause j is compiled by a dedicated team of Tsetlin
Automata (TA), one TA per literal lk in L. The TA for literal
lk has a state aj,k , which decides whether lk is included in
clause j . Learning which literals to include is based on two
types of reinforcement: Type I and Type II. Type I feedback

distils frequent patterns, while Type II feedback makes the
patterns more discriminative.

TMs learn on-line by handling one training example
(X, y) at a time. In all brevity, after the forward pass through
the layers shown in Fig. 1 and specified in Section 2.1, each
clause is updated according to Algorithm 1. The first step
is to decide whether the clause is to be updated (Lines 1-3).
Here, a resource allocation mechanism stimulates to create
a balanced representation of the frequent patterns. This is
achieved by gradually dropping the probability of updating
clauses as the voting sum v approaches a user-set target T

for y = 1 (and −T for y = 0) for any input X.
As seen, if a clause is not reinforced, it does not give

feedback to its TAs. These are then left unmodified. In
the extreme, when the voting sum v equals or exceeds the
target T (the TM has successfully recognized the input
X), no clauses are updated. They are then free to learn
new patterns, naturally balancing the pattern representation
resources [10].

If a clause is going to be updated, the updating is either
of Type I or Type II:

Type I feedback is given to clauses with positive polarity
when y = 1 and to clauses with negative polarity when

Fig. 1 The TM architecture. Each clause is constructed using Tsetlin Automata (TA) for each literal. The different TAs learn to include or exclude
the different literals. The number of clauses is chosen beforehand. Here, only one positive and one negative clause are shown
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Algorithm 1 UpdateClause(X, v, cj , pj , T , s).

y = 0 (Line 7). Each TA of the clause is then reinforced
based on: (i) the clause output cj ; (ii) the action of the TA
– include or exclude; and (iii) the value of the literal lk
assigned to the TA. Two rules govern Type I feedback:

– Include is rewarded and exclude is penalized with
probability s−1

s
whenever cj = 1 and lk = 1.

This reinforcement is strong (triggered with high
probability) and makes the clause remember and refine
the pattern it recognizes in X.3

– Include is penalized and exclude is rewarded with
probability 1

s
whenever cj = 0 or lk = 0.

This reinforcement is weak (triggered with low
probability) and coarsens infrequent patterns, making
them frequent.

Above, hyper-parameter s controls pattern frequency.

Type II feedback is given to clauses with positive polarity
when y = 0 and to clauses with negative polarity when
y = 1 (Line 5). It penalizes exclude with probability 1
if cj = 1 and lk = 0. If this happens, the corresponding TA
state aj,k is increased by 1. Thus, this feedback introduces
literals for discriminating between y = 0 and y = 1.

2.3 Regression

The regression TM (RTM) predicts a continuous output
value based on propositional logic expressions [2]. Just
like for the TM, the input to an RTM is a vector X of o

propositional features xk , X ∈ {0, 1}o. Again, the features
are expanded with their negations x̄k = 1 − xk producing a

3Note that the probability s−1
s

is replaced by 1 when boosting true
positives.

literal vector: L = (x1, . . . , xo, x̄1, . . . , x̄o) = (l1, . . . , l2o).
As opposed to a plain TM, RTM outputs a continuous value,
normalized to the domain y ∈ [0, 1].

Prediction The regression function of an RTM is a linear
summation of products, where the products are built from
the literals:

y = 1

T

n∑

j=1

∏

l∈Lj

l. (3)

In (3) above, the index j refers to one particular product
of literals, defined by the subset Lj of literal indexes. If
we e.g. have two propositional variables x1 and x2, the
literal index sets L1 = {1, 4} and L2 = {2, 3} define the
function: y = 1

T
(x1x̄2 + x̄1x2). The user set parameter T

decides the resolution of the regression function. Notice that
each product in the summation either evaluates to 0 or 1.
This means that a larger T requires more literal products
to reach a particular value y. Thus, increasing T makes the
regression function increasingly fine-grained. Finally, note
that the number of conjunctive clauses n in the regression
function also is a user set parameter, which decides the
expression power of the RTM.

Learning The RTM employs two kinds of feedback, Type
I and Type II, further defined below. Type I feedback
triggers TA state changes that eventually make a clause
output 1 for the given training example X. Conversely,
Type II feedback triggers state changes that eventually make
the clause output 0. Thus, overall, regression error can be
systematically reduced by carefully distributing Type I and
Type II feedback:

Feedback =
{

Type I, if y < ŷi,

Type II, if y > ŷi .
(4)

In effect, the number of clauses that evaluates to 1 is
increased when the predicted output is less than the target
output (y < ŷi) by providing Type I feedback. Type II
feedback, on the other hand, is applied to decrease the
number of clauses that evaluates to 1 when the predicted
output is higher than the target output (y > ŷi).

2.4 Controlling adaptation by the number of Tsetlin
automata states

The vanilla TM uses 8 bits of memory per automaton
(depth of 128 states for each of the two actions), and
it needs many training examples to learn or unlearn a
pattern, which is appropriate in supervised learning with
the goal of finding deep patterns in the data. In the context
of reinforcement learning, however, the unlearning ability
proves crucial because the algorithm must gain experience
and forget previous misleading information. Indeed, the TD
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method relies on learning an approximation of the value
function in order to find the optimal policy. Since the
value function is initialized arbitrarily, the initial values
do not provide any meaningful information except at the
terminal states, which correspond to the value zero. As
the learning progresses, however, the information about the
value function gradually propagates throughout the state
space, which improves the quality of the training examples.
In other words, TD learning produces numerous small
updates corresponding to their current value estimates as the
only available source of information. As the value estimates
improve, so does the quality of the updates. As such,
potentially inaccurate or misleading updates are an inherent
part of the learning process in the search for a solution
that cannot be avoided. Thus, higher state-bits values such
as 7 or 8 bits result in poor performance and delayed
convergence by several orders of magnitude. Therefore, we
addressed this issue by configuring shallower memories (3,
4, and 5 bits). Lower state-bits values correspond to faster
learning and unlearning abilities at the potential expense
of lower stability due to higher degrees of exploration. We
investigated the aforementioned trade-off, using multiple
state-bits values in our experiments. In the following, we
will refer to these TMs with a different number of state-bits
as TM3, TM4 and TM5, corresponding to state-bits values
of 3, 4 and 5, respectively.

3 Reinforcement learning with the Tsetlin
machine

In this section, we introduce novel TM-based approaches
to reinforcement learning, going beyond the supervised TM
learning paradigm. By proposing a scheme for learning
from reinforcement, we address several challenges.

Challenge 1 - bootstrap-based off-policy TM learning We
first explore the feasibility of using the TM as the function
approximator in an off-policy RL algorithm, by employing
bootstrap-based training. Our goal is to establish TM as an
approach to learning an accurate representation of the state-
value function for the whole state space of an RL problem.
To that end, we use the value iteration algorithm in an
off-policy manner.

Challenge 2 - adapting SARSA and multi-step TD for on-
policy TM learning We next improve and scale up our
approach. This includes adapting the SARSA temporal
difference algorithm for TM learning, which is a superior
on-policy algorithm compared to the above value iteration
approach. Moreover, we further improve the algorithm by
means of multi-step TD. As explored in Section 5, adopting
these mechanisms boosts performance by several folds.

Furthermore, we compare the performance and stability
against a two-layer neural network as a benchmark.

Off-policy vs. on-policy TM learning The key difference
between the above two approaches is that in the first one
(off-policy learning), we focus on learning an accurate
estimation of the value function as the primary objective,
which results in learning the optimal policy as a byproduct.
In the second approach (on-policy learning), on the other
hand, the algorithm simply searches for the optimal policy,
and the value function only plays an instrumental role.
In other words, the TM learns the value function locally,
on a per-need basis. As the policy evolves over time, it
unlearns the irrelevant values and learns values associated
with the currently relevant states. Thus, the second approach
has more potential for scalability and handling large-scale
problems.

Challenge 3 - booleanizing the target function A final
consideration in using the RTM outside the realm of
supervised learning relates to the range of values that it can
learn. An RTM needs to know the smallest (Ymin) and largest
(Ymax) output values for its learning interval [Ymin, Ymax],
which is discretized uniformly into T + 1 bins (where T

stands for the threshold value 1). Each bin is associated
with the mean of its values, and together the bins form
the set of all the output values that the algorithm could
possibly learn. Thus, the theoretical accuracy of learning
a value is within the order of magnitude of the bin size
(Ymax − Ymin)/T , which we refer to as the discretization
gap. In supervised learning, the RTM uses the training
set to infer the aforementioned bounds. For reinforcement
learning, however, in the absence of an explicit training set,
the RTM does not have access to any explicit upper or lower
bounds beforehand. Ideally, these bounds should be learnt as
a part of the learning process, but tackling such a challenge
is beyond the scope of this work. Instead, we manually
select effective values by analysing each problem instance.

3.1 Off-policy learning with the Tsetlin machine

To establish a foundation for further research, we first
propose a solution for the supervised TM algorithm to learn
a state-value function and solve simple gridworld problems.
To that end, we employ the RTM, which reportedly can
learn an accurate function approximation in a supervised
learning manner [2]. The challenge, however, comes from
the lack of a training set in an RL setting. That is,
we need to train the RTM through bootstrapping based
on its own experiences. These are partially learned and,
therefore, potentially inaccurate state-values. Furthermore,
we propose a method to cope with the exploration-
exploitation dilemma of reinforcement learning.
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Our approach combines the RTM and a standard
reinforcement learning algorithm (value iteration) to solve
deterministic instances of the gridworld problem. The
approach employs a model to infer the next state given (1)
the current state and (2) an action (e.g., up, down, left, right).
We train the RTM to learn the state-value function for the
whole state space by interacting with the environment. As a
result, the optimal path is found as a byproduct. Although
in general, learning a value function is just a means to an
end in solving an RL problem, here we focus primarily
on learning the value function accurately by exploring and
addressing potential issues related to training the RTM
through bootstrapping.

In the design of our reinforcement learning algorithm
with the RTM, we utilize supervised RTM learning as the
building block. Nonetheless, in the absence of a training
set, we generate training examples through interaction with
the environment and bootstrapping on the RTM’s own
predictions. More specifically, each iteration consists of the
following steps:

1. Generating an episode (a path from the starting point
to the terminal), using the ε-greedy policy with ε = 1
(taking random actions at each state) as the behaviour
policy.

2. Generating training examples along the episode for
each state visited. The corresponding target values are
calculated based on the updating formula shown in (5),
which assumes taking the best action and bootstraps on
the next state.

3. Training the RTM on the resulting training examples
from the previous step (cf. Algorithm 2 and Algorithm 3)

Algorithm 2 MODIFIED VALUE ITERATION (OFF-POLICY).

Algorithm 3 RTM TRAINING THROUGH BOOTSTRAPPING.

Equation (5) shows the updating formula for the value
iteration algorithm. Here, α, s and s′, stand for the learning
rate, the current state, and the next state after taking action a,
respectively. Moreover, Rs,a represents the reward received,
resulting from taking action a in state s, which is equal to
−1 for all states and actions.

V (s) = V (s) + α · max
a

(Rs,a + V (s′
s,a) − V (s)) (5)

Algorithm 2 shows a modified value iteration algorithm
[24] where the updates take place asynchronously along
an episode. As a consequence of random elements in the
behavior policy here, the value function for all the states
has a non-zero probability of being updated during each
iteration. Thus, the RTM has the potential of learning the
state value function for the whole state space. Ultimately,
upon the convergence of the value function approximation
V (.), the target policy is learned implicitly by considering
the best action at each state which corresponds to the
maximum value approximation.

Algorithm 3 shows how the value function updates from
Algorithm 2 are applied to the RTM for a state S with
the corresponding feature vector XS . The slight difference
between the two algorithms relates to the discrete nature
of the RTM in learning values. More specifically, when
the target value for a state S (target variable at Line 2 in
Algorithm 3) is far from the current value estimation V (S),
the discretization gap, denoted by the gap variable, does
not affect the update and RTM will be updated normally
(line 4 in Algorithm 3). When the target value is too close
to the current value estimation, however, the new value
falls into the (discretization) gap, and a normal update
does not train the RTM. To counter this issue, we consider
a minimum viable-sized update to take place with the
probability proportional to the size of the actual update that
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was supposed to be applied, but was too small to have any
effect (Lines 6 and 7 in Algorithm 3). Consequently, the
expected change in the corresponding value of a given state
over multiple iterations and updates tends to the size of the
actual updates suggested by Algorithm 2.

3.2 On-policy learning with the Tsetlin machine

Building upon the off-policy foundation from the previous
section, here we propose an on-policy temporal difference
approach in learning the optimal policy. More precisely,
we implemented the SARSA algorithm [20] alongside the
RTM as the function approximator to learn the action-value
function and the corresponding optimal policy. The SARSA
algorithm is an on-policy TD control method that in its
simplest form has an updating formula shown in (6):

Q(St , At ) ← Q(St , At )+α ·[Rt+1 +Q(St+1, At+1)−Q(St , At )] (6)

Above, t is the time step during the current episode,
and St , At and Rt+1 are the state, the chosen action
and the associated reward at time t , respectively. Frequent
application of this updating formula results in a better
approximation of the true action-value function, which in
turn improves the current policy. Thus, in each epoch, first
the algorithm generates an episode following the ε-greedy
policy as the behavior policy. Next, it prepares a training set
according to the generated episode by bootstrapping on the
state-action pairs visited along the episode, and finally, it
trains the RTM on the resulting training set (Algorithm 4).

Algorithm 4 SARSA (ON-POLICY TEMPORAL DIFFERENCE).

.3.3 Multi-step temporal difference learning

In the previous section, we described our RTM-based
on-policy temporal difference algorithm. As we will see

in Section 4.3, its empirical results suggest eventual
convergence to the optimal path. Nevertheless, as the
grid size increases, the convergence slows down, and the
algorithm becomes inefficient. Thus, in this section we
address the scalability issue by using a more general
variation of TD learning, namely multi-step TD or n-step
bootstrapping ((7) and (8) and Algorithm 5). The multi-
step TD algorithm (Algorithm 5) differs from the TD
learning we used so far (also known as 1-step TD) in
that in each iteration, instead of taking one action at a
time and updating the value function accordingly, it takes
several consecutive actions. Processing consecutive actions
yields more useful and informative updates by speeding
up the flow of information in the grid. More importantly,
in the multi-step updating of (7) and (8), each iteration
accumulates the rewards of multiple consecutive actions.
The bootstrapping is based on the resulting accumulation,
replacing multiple iterations of 1-step TD algorithm.

Gt :t+n =
{ ∑t+n

i=t+1Ri + Q(St+n, At+n), if t + n < T∑T
i=t+1Ri, otherwise

(7)

Q(St , At ) ← Q(St , At ) + α · [Gt :t+n − Q(St , At )] (8)

Similar to (6) for the 1-step case, St , At and Rt+1 denote
the state, the chosen action and the associated reward, for the
time step t , respectively. Moreover, Gt :t+n indicates the new
estimation of Q(St , At ) which sums up the accumulated
reward from taking n consecutive actions and the value
function approximation at the resulting next state.

Algorithm 5 MULTI-STEP SARSA (ON-POLICY TEMPORAL

DIFFERENCE).

From a computational point of view, a comparison
between the 1-step and the n-step (or multi-step) Sarsa
algorithms reveals an extra loop related to estimating the
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accumulated future rewards (denoted by G in line 5 of
Algorithm 5). Hence, compared to 1-step Sarsa, the n-
step version takes at most n − 1 extra addition operations
to find the G value. In other words, the computational
complexity of the multi-step algorithm increases linearly
with the number of steps. Moreover, as we will see in
Section 4.4, since a multi-step algorithm converges much
faster than its 1-step counterpart, the overall computational
cost of convergence is lower for the multi-step approach
despite the added complexity.

4 Empirical results and analysis

4.1 The gridworld problem

We evaluated and compared the algorithms on instances of
the gridworld problem. Gridworld is a classic reinforcement
learning environment, representing a finite MDP in the
shape of a rectangular grid where the cells correspond to
the states of the environment (Fig. 2). At each cell or state,
four actions are available, namely north, south, east, and
west. These deterministically move the agent one cell in
the respective direction on the grid, given the availability of
the destination cell. If the destination cell is not available,
however, the agent’s location remains unchanged. In each
episode, the agent starts from the initial state (indicated
by ©) and continues its journey by taking actions in the
grid until it reaches the terminal state (indicated by +).
Taking each action results in a reward of −1, and the goal

Fig. 2 The 10×10 grid with internal walls (darker tiles) for evaluating
on-policy approaches

Fig. 3 The 3 × 6 grid (off-policy)

is to maximize the cumulative reward acquired during an
episode. Accordingly, the goal is to find the shortest path
to the terminal. Moreover, to increase the complexity of the
corresponding MDP, some cells in the grid have a darker
color representing walls. These cells block movement and
are unavailable to the agent.

The RTM only accepts Boolean vectors as input, thus
the first step is to encode the problem in the Boolean
form. In an m × n instance of the gridworld, each
state can be uniquely identified by its row and column
numbers. Therefore, we encode these coordinates to an
(m + n)-bit vector using one-hot encoding as the binary
representation of a state. Moreover, we encode the chosen
action in each state by using four bits corresponding
to the four available actions in a similar way (one-hot
encoding), which results in an (m+n+4)-bit feature vector
representation of each state-action pair. As an example, the
state-action pair ((row = 3, column = 2), action =
north) in Fig. 2, corresponds to the feature vector
resulting from concatenation of (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0) and (1, 0, 0, 0) (numbering rows
from top to bottom, columns from left to right and actions
in a clockwise order starting with the north). In the rest

Fig. 4 The 5 × 7 grid (off-policy)
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Table 1 Experiment configurations for off-policy learning

Grid size Epochs (episodes) Clauses Threshold Ymin Ymax Discretization gap

3 × 6 500 45 30 − 10 + 5 0.5

90 60 0.25

225 150 0.1

5 × 7 500 60 40 0.5

120 80 − 15 + 5 0.25

300 200 0.1

Fig. 5 Mean Absolute Error (MAE) for the 3 × 6 grid (off-policy)

Fig. 6 Mean Absolute Error (MAE) for the 5 × 7 grid (off-policy)
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Fig. 7 Grid graph for the 3×6 grid illustrating the number of satisfied
clauses at each state (off-policy)

of the paper, we use the terms “cell”, “tile” and “state”
interchangeably to refer to each tile in the grid.

4.2 Off-policy learning

We used two gridworld instances of sizes 3×6 and 5×7 (see
Figs. 3 and 4) to measure the performance of our approach.
The two grids contain internal walls to introduce more of a
challenge to the problem.

For each grid, we ran three sets of experiments with three
different threshold values corresponding to discretization
gaps of 0.5, 0.25 and 0.1 (Table 1). Furthermore, we
used 1.5 × threshold as the number of clauses to have
similar-sized TMs in terms of clause-to-threshold ratio for
comparison purposes among different configurations. For
each configuration, we plotted the average results over
10 independent runs. Figures 5 and 6 compare the Mean
Absolute Error (MAE) of learning the state-value function
for the TMs with different configurations.

After training, the RTM represents the value function
approximator as a set of conjunctive clauses. We can
summarize the relationship between the output clauses and

Fig. 8 Grid graph for the 5×7 grid illustrating the number of satisfied
clauses at each state (off-policy)

the states of the gridworld in the form of a grid graph
structure which does a better job of depicting the learned
policy. In such a graph, vertices represent the states, and
each vertex is labeled with the number of satisfied clauses
at its corresponding state. Moreover, for each pair of
neighboring states, we add a directed edge between the
corresponding vertices in the direction of increasing clause
satisfaction. And finally, by only considering the best action
at each vertex, we obtain the RTM’s policy which consists
of actions maximizing the value function approximation. As
a demonstration, Figs. 7 and 8 depict the grid graphs for the
cases of gap = 0.25, where the RTM correctly identified
the best action at all states, which comprise the optimal
policy (in bold edges).

4.3 On-policy learning

For each epoch, we generated one episode following the
ε-greedy strategy. Then we built the next training set
using bootstrapping examples along that episode. And
finally, we trained the RTM for one pass on the training
set. We continued training in this manner for 50000
epochs to investigate the convergence and robustness of the
algorithms. Moreover, the results reported are the average of
five independent runs to provide a more reliable view of the
algorithms. In addition, considering the relatively small size
of each epoch, which only included a handful of training
examples, we used moving average values in the plots to
clarify trends in the results.

For the RTM, we used two different thresholds, namely
200 and 400, which correspond to learning real values with
the accuracy of 0.2 and 0.1, respectively. Moreover, we used
three different numbers of clauses to explore the effect of
increasing the size of the RTM on its performance (Table 2).
Furthermore, we considered three different values for the
state-bits parameter which is responsible for the amount of
memory used by each Tsetlin automaton. On a micro level,
this parameter merely controls how hard it would be for
the Tsetlin automata to change their actions during training
in the face of negative feedback by limiting the maximum
depth of their memory. With a shallower memory, i.e.
smaller state-bits, it would take far less negative feedback
for a Tsetlin automaton to unlearn its current action and to
switch to the other one. On a macro level, on the other hand,
the state-bits parameter affects the process of unlearning
a clause, which in the context of the action-value function
translates into unlearning previous values and learning new
ones, potentially due to finding better routes in the grid.

We compared our results with a similar approach based
on multilayer perceptron (MLP) as a benchmark with a 5×5
configuration for two fully connected hidden layers and
different learning rate values (α) ranging from 0.0001 up to
0.02.
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Table 2 Experiment configurations for on-policy learning

Grid Epochs (episodes) State bits Threshold Clauses/Threshold Ymin Ymax

10 × 10 50000 3 200 5 − 30 + 10

4 400 10

5 20

Fig. 9 1-step TD performance for MLP (on-policy)

Fig. 10 1-step TD performance for TM4 with different number of clauses (on-policy)

Fig. 11 1-step TD performance
for TM3, TM4 and TM5 with
T = 400 and C = 8000
(on-policy)
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Fig. 12 Deterministic path for MLP (1-step TD) (on-policy)

Fig. 13 Deterministic path for TM4 (1-step TD) (on-policy)

Fig. 14 Deterministic path for TM3, TM4 and TM5 with T = 400 and C = 8000 (on-policy)
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Fig. 15 2-step TD performance for MLP (on-policy)

We present two sets of empirical results, comparing
the performance and the stability/convergence of the
algorithms. The performance measures the average number
of iterations (or episodes) needed for each algorithm to
find the shortest path. The stability/convergence measure,
on the other hand, is concerned with the way each
algorithm behaves after finding the shortest path. Ideally,
we prefer algorithms which find the shortest path in fewer
episodes while being relatively stable and showing signs of
converging to the shortest path as the training continues.

The first set of results (Figs. 9, 10 and 11) compares the
performance or how fast the algorithms can find the shortest
path. Figure 9 demonstrates that our MLP, with its relatively
small size, solves the problem with ease. By increasing the
learning rate (α), we observe a boost in performance and at
the extreme (α = 0.02), the MLP finds the shortest path in
less than 200 epochs (episodes). But, at the same time, the
overall stability decreases, as we will discuss later.

The RTM, however, falls behind in this regard, and it
needs more epochs to learn the action values and, conse-
quently, the shortest path. In Fig. 10, as expected, using a
bigger RTM, i.e. more clauses, while other aspects being
equal, boosts the performance. Furthermore, Fig. 11 com-
pares the effect of different state-bits values on the RTM’s

performance. The results imply that given a sufficiently
shallow memory, i.e. state-bits value of less than 6, the
performance is the most affected by the size of the RTM.

The second set of results (Figs. 12, 13 and 14) compares
the stability and convergence of the algorithms. Figure 12
indicates the instability of our benchmark MLP at extremely
high learning rates, e.g. α = 0.02, which prevents proper
convergence. Thus, despite their superior performance
(Fig. 9), such values are inapplicable.

For the RTM, Figs. 13 and 14 illustrate stability and
convergence results. Figure 13 confirms faster convergence
and improved stability for larger RTMs, which is expected
because having more clauses means higher learning
capacity as well as smoother transitions. Moreover, Fig. 14
suggests that given a sufficiently large RTM (T = 400; C =
8000), using a shallow memory improves stability as well
as the speed of convergence. That is because unlike in
supervised learning, where a shallow memory decreases
stability due to frequent action changes of the Tsetlin
automata, in reinforcement learning a shallow memory
helps with rapid adaptation to new experiences which
accelerates learning.

These results conclude that, even though the RTM can
solve small-scale gridworld problems and it shows signs of

Fig. 16 5-step TD performance for MLP (on-policy)
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Fig. 17 Performance comparison of 1, 2 and 5-step TD for TM4 with T = 400 and C = 8000 (on-policy)

convergence and stability during learning, our benchmark
MLP has a superior performance and more potential for
scalability. As such, in the next section, we explore ways
to improve our algorithm in terms of performance, stability
and scalability.

4.4 On-policy multi-step learning

For multi-step TD, we repeated the same experiments as
before. Figures 15 and 16 demonstrate the performance of 2-
step and 5-step TD for the benchmark MLP. We omitted the
cases with very small learning rates, namely α < 0.001, due
to their inferior performance. A comparison of these multi-
step results with 1-step ones from Fig. 9 reveals a lack of
improvement in performance for the multi-step variations.

Moreover, comparing results for different learning rates
suggests that the learning rate itself acts as the only limiting
factor on performance and that one could potentially
increase it to boost the performance until the algorithm
gets unstable. Subsequently, considering the fact that for
α = 0.02 or even α = 0.01, the algorithm is unstable to
some degree (as we will see later on), and that for this reason
these cases should be omitted as well, one could argue that
in reality the multi-step cases performs worse than the 1-step
case!

In contrast, the multi-step case works really well with
the RTM as it is shown in Fig. 17, and the performance
improves rapidly as the number of steps increases. We see a
similar effect with smaller TMs as well when using a multi-
step algorithm as depicted in Figs. 18 and 19. These plots
correspond to the case of a state bits value of 4 (TM4 or
equivalently 4-bit TA memory). We excluded the results for
TM3 and TM5 (state bits values of 3 and 5) due to similarity.

Concerning computational complexity, as we mentioned
in Section 3.3, using the multi-step variation results in a
linear increase in the computational cost of the algorithm.
Furthermore, increasing the number 89of steps speeds up
convergence to the optimal path significantly and, for
instance, it takes about 4000, 1400 and 250 episodes to
converge for 1-, 2- and 5-step algorithms, respectively
(Fig. 17). Consequently, when put together, our empirical
results indicate a reduction in the total computational cost
of finding the solution by increasing the number of steps in
our algorithm.

Regarding stability for multi-step variations, as we
mentioned before about the MLP’s performance in multi-
step, when the learning rate is too low, the convergence is
slow and undesirable. Similarly, for too high αs, the results
get unstable and diverge, as shown in Figs. 20 and 21.
Hence, these plots indicate suitable ranges of 0.0005 < α <

Fig. 18 2-step TD performance for TM4 with different thresholds and number of clauses (on-policy)
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Fig. 19 5-step TD performance for TM4 with different thresholds and number of clauses (on-policy)

Fig. 20 Deterministic path for MLP (2-step) (on-policy)

Fig. 21 Deterministic path for MLP (5-step) (on-policy)
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Fig. 22 Deterministic path comparison of 1, 2 and 5-step TD for TM4 with T = 400 and C = 8000 (on-policy)

Fig. 23 Deterministic path for TM4 (2-step) (on-policy)

Fig. 24 Deterministic path for TM4 (5-step) (on-policy)
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0.01 and 0.0005 < α < 0.02 for 2-step and 5-step TD
algorithms, respectively.

Interestingly, the RTM seems as stable in multi-step
learning as it was in 1-step TD, and in some cases the
stability even increases, especially for bigger TMs with
higher thresholds and more clauses (Fig. 22). Figures 23
and 24 illustrate multi-step results for several TMs with 4-
bit memories. We omitted similar results for TM3 and TM5
(state bits values of 3 and 5).

To summarize, using the multi-step TD algorithm
significantly improved the performance as well as stability
of the RTM, whereas its effect on our benchmark MLP
was negligible. Therefore, the RTM displayed comparable
performance to our benchmark MLP in the 5-step TD
results. Moreover, since increasing the number of steps
in the TD algorithm could potentially improve the RTM’s
performance further, it could surpass such an MLP
benchmark in larger instances of the problem.

It is worth emphasizing that our benchmark was a simple,
small two-layered feedforward neural network, and one
could argue that a more advanced architecture with more
hidden layers and/or more nodes within layers configured
with more suitable choices of settings will perform much
better. Thus, these findings by no means paint a complete
picture of neural networks’ capabilities; they merely show
the progress made in the direction of our research.

5 Conclusion and future work

In this paper, we introduced the TM as an RL approach,
both for off- and on-policy learning. To that end, we
addressed several challenges. To obtain accurate off-
policy state-value estimation, we proposed a modified TM
feedback mechanism that adapts to the dynamic nature
of value iteration. In particular, we showed that the
TM is able to unlearn and recover from the misleading
experiences that often occur at the beginning of training.
A key challenge that we addressed is how to map the
intrinsically continuous nature of state-value learning to the
propositional architecture of the Tsetlin machine, leveraging
probabilistic updates. It turned out that for accurate off-
policy, our mechanism learns significantly slower than
neural networks on-policy. However, by introducing multi-
step temporal difference learning in combination with high-
frequency propositional logic patterns, we were able to
close the performance gap. Our empirical results showed
that using the multi-step version had a huge impact on the
TM’s performance, but to our surprise, the MLP did not
benefit much from the multi-step approach. Consequently,
although far behind in 1-step results, the TM caught
up to the MLP’s performance by utilizing the multi-step
approach.

Our work thus forms the basis for reinforcement learning
with TMs. In our further, we intend to explore how our
scheme can scale up large-scale RL problems and how
different classes of problems can be explained by means of
the propositional TM expressions.
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