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Abstract
Domain adaptation is a potential method to train a powerful deep neural network across various datasets. More precisely,
domain adaptation methods train the model on training data and test that model on a completely separate dataset. The
adversarial-based adaptation method became popular among other domain adaptation methods. Relying on the idea of GAN,
the adversarial-based domain adaptation tries to minimize the distribution between the training and testing dataset based on
the adversarial learning process. We observe that the semi-supervised learning approach can combine with the adversarial-
based method to solve the domain adaptation problem. In this paper, we propose an improved adversarial domain adaptation
method called Semi-Supervised Adversarial Discriminative Domain Adaptation (SADDA), which can outperform other
prior domain adaptation methods. We also show that SADDA has a wide range of applications and illustrate the promise of
our method for image classification and sentiment classification problems.

Keywords Domain adaptation · Semi-supervised domain adaptation ·
Semi-supervised adversarial discriminative domain adaptation

1 Introduction

Over the past few years, deep neural networks have achieved
significant achievements in many applications. One of the
major limitations of deep neural networks is the dataset
bias or domain shift problems [1]. These phenomena occur
when the model obtains good results on the training dataset;
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however, showing poor performance on a testing dataset or
a real-world sample.

As shown in Fig. 1, because of numerous reasons
(illumination, image quality, background), there is always
a different distribution between two datasets, which
is the main factor reducing the performance of deep
neural networks. Even though various research has proved
that deep neural networks can learn transferable feature
representation over different datasets [2, 3], Donahue et al.
[4] showed that domain shift still influences the accuracy of
the deep neural network when testing these networks in a
different dataset.

The solution for the aforementioned problems is domain
adaptation techniques [13, 14]. The main idea of domain
adaptation techniques is to learn how a deep neural
network can map the source domain and target domain
into a common feature space, which minimize the negative
influence of domain shift or dataset bias.

The adversarial-based adaptation method [15, 16] has
become a well-known technique among other domain
adaptation methods. Adversarial adaptation includes two
networks - an encoder and a discriminator, trained
simultaneously with conflicting objectives. The encoder is
trained to encode images from the original domain (source
domain) and new domain (target domain) such that it
puzzles the discriminator. In contrast, the discriminator
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Fig. 1 Examples of images from different datasets. (a) Some digit images from MNIST [5], USPS [6], MNIST-M [7], and SVHN [8] datasets. (b)
Some object images from the “bird” category in CALTECH [9], LABELME [10], PASCAL [11], and SUN [12] datasets

tries to distinguish between the source and target domain.
Recently, Adversarial Discriminative Domain Adaptation
(ADDA) by Tzeng et al. [16] has shown that adversarial
adaptation can handle dataset bias and domain shift
problems. From there, we extend the ADDA method
to the semi-supervised learning context by obliging the
discriminator network to predict class labels.

Semi-supervised learning [17] is an approach that builds
a predictive model with a small labeled dataset and a large
unlabeled dataset. The model must learn from the small
labeled dataset and somehow exploit the larger unlabeled
dataset to classify new samples. In the context of unsuper-
vised domain adaptation tasks, the semi-supervised learning
approach needs to take advantage of the labeled source dataset
to map to the unlabeled target dataset, thereby correctly
classifying the labels of the target dataset. The Semi-Super-
vised GAN [18] is designed to handle the semi-supervised
learning tasks and inspired us to develop our model.

In this paper, we present a novel method called Semi-
supervised Adversarial Discriminative Domain Adaptation
(SADDA), where the discriminator is a multi-class classi-
fier. Instead of only distinguishing between source images
and target images (method like ADDA [16]), the discrim-
inator learns to distinguish N + 1 classes, where N is the
number of classes in the classification task, and the last one
uses to distinguish between the source dataset or the target
dataset. The discriminator focuses not only on the domain
label between two datasets but also on the labeled images
from the source dataset, which improves the generalization

ability of the discriminator and the encoder as well as the
classification accuracy.

To validate the effectiveness of our methodology, we
experiment with domain adaptation tasks on digit datasets,
including MNIST [5], USPS [6], MNIST-M [7], and SVHN
[8]. In addition, we also prove the robustness ability of the
SADDA method by using t-SNE visualization of the digit
datasets, the SADDA method keeps the t-SNE clusters as
tight as possible and maximizes the separation between two
clusters. We also test its potential with a more sophisticated
dataset, by object recognition task with CALTECH [9],
LABELME [10], PASCAL [11], and SUN [12] datasets. In
addition, we evaluate our method for the natural language
processing task, with three text datasets including Women’s
E-Commerce Clothing Reviews [19], Coronavirus tweets
NLP - Text Classification [20], and Trip Advisor Hotel
Reviews [21]. The Python code of the SADDA method for
object recognition tasks can be downloaded at https://github.
com/NguyenThaiVu/SADDA.

Our contributions can be summarized as follows:

– We propose a new Semi-supervised Adversarial Dis-
criminative Domain Adaptation method (SADDA) for
addressing the unsupervised domain adaptation task.

– We illustrate that SADDA improves digit classification
tasks and achieves competitive performance with other
adversarial adaptation methods.

– We also demonstrate that the SADDAmethod can apply
to multiple applications, including object recognition
and natural language processing tasks.
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2 Related work

Domain adaptation is an active research field, which
can handle numerous problems such as imbalanced data
[22], dataset bias [23], and domain shift [24]. Recent
research has focused on domain adaptation from a
labeled source dataset to an unlabeled target dataset, also
known as unsupervised domain adaptation [25, 26]. The
principle technique is minimizing the distinction between
the source and target distribution [27]. Some popular
approaches are Maximum Mean Discrepancy (MMD) [1],
deep reconstruction classification network (DRCN) [28] or
Autoencoder-based domain adaptation [29].

Adversarial-based domain adaptation With the rise of
generative adversarial networks [15], the adversarial-
based made huge advancements in the domain adaptation
task [30–32]. Adversarial-based techniques try to achieve
domain adaptation by using domain discriminators, which
increases domain confusion through an adversarial process.
A popular adversarial-based domain adaptation method
is the Adversarial Discriminative Domain Adaptation
(ADDA) by Tzeng et al. [16]. ADDA approach aims to
diminish the distance between the source encoder and
target encoder distributions through the domain-adversarial
process. However, this method only distinguishes between
the source and target domain. Instead, our SADDA method
not only predicts whether the source domain or the target
domain, but also classifies the label of the source dataset.
More concretely, we force the adversarial-based method to
the semi-supervised context. We will show that this creation
can produce a more efficient classification model.

Combining adversarial-based domain adaptation with
other auxiliary tasks Recently, some works have focused on
combining auxiliary tasks for adversarial-based adaptation
to exploit more information [33, 34]. Xavier and Bengio

introduce Stacked Denoising Autoencoders [35, 36], recon-
structing the merging data from numerous domains with
the same network, such that the representations can be
symbolized by both the source and target domain. Deep
reconstruction classification network (DRCN) [28] attempts
to solve two sub-problem at the same time: classification of
the source data, and reconstruction of the unlabeled target
data. However, these auxiliary tasks are not towards the
same goal. We observe that during the adversarial process,
we can classify the source or target dataset and predict the
label of the source dataset simultaneously. That allows us
to re-use the same output layers in the discriminator model
as well as forces two discriminator models towards the
same goal (Section 3.2 for more details). In addition, we
also demonstrate that our SADDA method not only applies
to computer vision tasks but also the natural language
processing task.

3 Proposedmethod

3.1 Semi-supervised adversarial discriminative
domain adaptation

In this section, we describe in detail our Semi-supervised
Adversarial Discriminative Domain Adaptation (SADDA)
method. An overview of our method can be found in Fig. 2.

In the unsupervised domain adaptation task, we already
have source images Xs and source labels Ys come from
the source domain distribution ps(x, y). Besides that, a
target dataset Xt comes from a target distribution pt (x, y),
where the label of the target dataset is non-exist. We desire
to learn a target encoder Mt and classifier Ct , which can
accurately predict the target image’s label. In an adversarial-
based adaptation approach, we aim to diminish the distance
between the source mapping distribution (Ms(Xs)) and
target mapping distributions (Mt(Xt )). As a result, we can

Fig. 2 An overview of the SADDA. Firstly, training the source encoder
(Ms ) and the classification (Cs ) using the source labeled images (Xs ,
Ys ). Secondly, training a target encoder (Mt ) through the domain

adversarial process. Finally, in the testing phase, concatenate the target
encoder (Mt ) and the classification (Cs ) to create the complete model,
which will predict the label of the target dataset precisely
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straightly apply the source classifier Cs to classify the target
images, in other words, C = Ct = Cs . The summary process
of SADDA includes three steps: pre-training, training target
encoder, and testing.

Pre-training In the pre-training phase, training source
encoder (Ms) and source classifier (Cs), by using the source
labeled images (Xs ,Ys). This step is a standard supervised
classification task, a common form can be denoted as:

arg min
Ms,Cs

Lcls (Xs ,Ys ) = −E(x,y)∼(Xs ,Ys )

N∑

n=1

yn logCs(Ms(xn )) (1)

where Lcls is a supervised classification loss (categorical
crossentropy loss), and N is the number of classes.

Training target encoder In the training target encoder
phase, we first present a training discriminator process and
then present a procedure for training the target encoder.

Firstly, training the discriminator (D) in two modes,
each giving a corresponding output. (1) Supervised mode,
where the supervised discriminator (Dsup) predicts N labels
from the original classification task. (2) Unsupervised
mode, where the unsupervised discriminator (Dunsup)
classifies between Xs and Xt . Discriminator correlates with
unconstrained optimization:

argmin
Dsup

Lcls (Xs ,Ys ) = −E(x,y)∼(Xs ,Ys )

N∑

n=1

yn logDsup(Ms(xn )) (2)

argmin
Dunsup

LadvD
(Xs ,Xt , Ms, Mt ) = −Exs∼Xs logDunsup(Ms(xs))

−Ext ∼Xt log(1 − Dunsup(Mt (xt ))) (3)

In (2), Lcls is a supervised classification loss correspond-
ing to predicting N labels from the original classification
task in the source dataset (Xs), which will update the
parameter in Dsup. In (3), LadvD

is an adversarial loss for
unsupervised discriminator Dunsup, which trains (Dunsup)
to maximize the probability of predicting the correct label
from the source dataset or target dataset. One thing to notice
is that the unsupervised discriminator uses a custom activa-
tion function (5), which returns a probability to determine
whether a source image or target image (Section 3.2 for
more details).

Secondly, training the target encoder Mt with the
standard loss function and inverted labels [15]. This implies
that the unsupervised discriminator Dunsup is fooled by
the target encoder Mt , in other words, Dunsup is unable
to determine between Xs and Xt . The feedback from the
unsupervised discriminator Dunsup allows the Mt to learn
how to produce a more authentic encoder. The loss for
LadvM

can be denoted:

argmin
Mt

LadvM
(Xs ,Xt , D) = −Ext∼Xt logDunsup(Mt (xt )) (4)

Testing In the testing phase, we concatenate the target
encoder Mt and the source classifier Cs to predict the label
of target images Xt .

3.2 The discriminator model

In this section, we describe the detail of the discriminator
model and provide some arguments to prove the effective-
ness of the discriminator model in the SADDA method.

In the training target encoder step, the discriminator
model is trained to predict N+1 classes, where N is
the number of classes in the original classification task
(supervised mode) and the final class label predicts whether
the sample comes from the source dataset or target
dataset (unsupervised mode). The supervised discriminator
and the unsupervised discriminator have different output
layers but have the same feature extraction layers - via
backpropagation when we train the network, updating the
weights in one model will impact the other model as well.

The supervised discriminator model produces N output
classes (with a softmax activation function). The unsuper-
vised discriminator is defined such that it grabs the output
layer of the supervised mode prior softmax activation and
computes a normalized sum of the exponential outputs
(custom activation). When training the unsupervised dis-
criminator, the source sample will have a class label of 1.0,
while the target sample will be labeled as 0.0. The explicit
formula of custom activation [37] is:

D(x) = Z(x)

Z(x) + 1
(5)

where

Z(x) =
N∑

n=1

exp[ln(x)] (6)

The experiment of (5) is described in Table 1, and the
outputs are between 0.0 and 1.0. If the probability of output
value prior softmax activation is a large number (meaning:
low entropy) then the custom activation output value is
close to 1.0. In contrast, if the output probability is a small
value (meaning: high entropy), then the custom activation
output value is close to 0.0. Implied that the discriminator is
encouraged to output a confidence class prediction for the
source sample, while it predicts a small probability for the
target sample. That is an elegant method allowing re-use of
the same feature extraction layers for both the supervised
discriminator and the unsupervised discriminator.

It is reasonable that learning the well supervised
discriminator will improve the unsupervised discriminator.
Moreover, training the discriminator in unsupervised mode
allows the model to learn useful feature extraction
capabilities from huge unlabeled datasets. As a sequence,
improving the supervised discriminator will improve the
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Table 1 Experimental compute
on custom activation - the
output of unsupervised
discriminator model

Output probabilities (prior softmax) Custom activation Entropy

[9.0, 1.0, 1.0] 0.9999 Low

[5.0, 1.0, 1.0] 0.9935 Low

[-5.0, -5.0, -5.0] 0.0198 High

unsupervised discriminator and vice versa. Improving the
discriminator will enhance the target encoder [18]. In total,
this is one kind of advantage circle, in which three elements
(unsupervised discriminator, supervised discriminator, and
target encoder) iteratively make each other better.

3.3 Guideline for stable SADDA

In general, training SADDA is an extremely hard process,
there are two losses we need to optimize: the loss for
the discriminator and the loss for the target encoder. For
that reason, the loss landscape of SADDA is fluctuating
and dynamic (detail in Section 4.4). When implementing
and training the SADDA, we find that is a tough process.
To overcome the limitation of the adversarial process,
we present a full architecture of SADDA. This designed
architecture increases training stability and prevents non-
convergence. In this section, we present the key ideas
in designing the model for the image classification and
the sentiment classification task. Readers can see section
Appendix for more details about our designed architecture.

Image classification The design of SADDA is inspired
by Deep Convolutional GAN (DCGAN) architecture [38].
The summary architecture of the SADDA method for
digit recognition is shown in Fig. 5. On the one hand,
the encoder is used to capture the content in the image,
increasing the number of filters while decreasing the
spatial dimension by the convolutional layer. On the
other hand, the discriminator is symmetric expansion
with the encoder by using fractionally-strided convolutions
(transpose convolution).

Moreover, our recommendation for efficient training
SADDA in the image classification task:

• Replace any pooling layers with convolution layers (or
transposed convolution) with strides larger than 1.

• Remove fully connected layers in both encoder and
discriminator (except the last fully connected layers,
which are used for prediction).

• Use ReLU activation [39] in the encoder and LeakyReLU
activation [39] (with alpha=0.2) in the discriminator.

Sentiment classification The design of the SADDA method
for sentiment classification is inspired by the architecture
called Autoencoders LSTM [40, 41]. The summary archi-
tecture of the SADDA method for sentiment classification

is demonstrated in Fig. 7. In general, the architecture of
the model used in the sentiment classification task has
many similarities with the architecture used in image clas-
sification. Firstly, we remove fully connected layers in
both the encoder and the discriminator. Instead, we use
the Long Short Term Memory [42] (LSTM) to handle
sequences of text data. Secondly, the network is organized
into an architecture called the Encoder-Decoder LSTM,
with the Encoder LSTM being the encoder block and
the Decoder LSTM being the discriminator block respec-
tively. The Encoder-Decoder LSTM was built for the NLP
task where it illustrated state-of-the-art performance, such
as machine translation [43]. From the empirical, we find
that the Encoder-Decoder is suitable for the unsupervised
domain adaptation task.

4 Experiments

In this section, we evaluate our SADDA method for unsu-
pervised domain adaptation tasks in three scenarios: digit
recognition, object recognition, and sentiment classifica-
tion.

In the experiments, we focus on probing how the SADDA
method improves the unsupervised domain adaptation task.
For this purpose, we only choose shallow architecture rather
than a deep network. We leave the sophisticated design for
a future job.

4.1 Digit recognition

4.1.1 Datasets and domain adaptation scenarios

We evaluate SADDA on various unsupervised domain
adaptation experiments, examining the following popular
used digits datasets and settings (the visualization is in
Fig. 1):

MNIST ←→ USPS: MNIST [5] includes 28x28 pixels,
which are grayscale images of digit numbers. USPS [6]
is a digit dataset, which contains 9298 grayscale images.
The image is 16x16 pixels. In this experiment, we follow
the evaluation protocol of [44].
MNIST → MNIST-M: MNIST-M [7] is made by
merging MNIST digits with the patches arbitrarily
extracted from color images of BSDS500 [45]. In this

15913Semi-supervised adversarial discriminative domain adaptation



Table 2 Experimental results
on unsupervised domain
adaptation on digit datasets

Method mnist→usps usps→mnist mnist→mnist-m svhn→mnist

Source only 78.9 57.1 ± 1.7 63.6 60.1 ± 1.1

DANN [7] 85.1 73.0 ± 2.0 77.4 73.9

DRCN [28] 91.8 ± 0.1 73.7 ± 0.1 - 82.0 ± 0.2

ADDA [16] 89.4 ± 0.2 90.1 ± 0.8 - 76.0 ± 1.8

SBADA-GAN [47] 97.6 95.0 99.4 76.1

SHOT [48] 98.0 98.4 - 98.9

DFA-MCD [49] 98.6 96.6 - 98.9

SADDA (our) 98.1 97.8 78.2 86.5

The results are not re-implement, instead, we select based on the available result in the previous publication
(some experimental results have the standard deviation because that publication has the standard deviation
while others do not.)

experiment, we set the input size is 28x28x3 pixels, and
we follow the evaluation protocol of [44]
SVHN → MNIST: The Street View House Number
(SVHN) [8] is a digit dataset, which contains 600000
32×32 RGB images. In this experiment, we convert
the SVHN dataset to grayscale images and resize the
MNIST images into 32x32 grayscale images. We use the
evaluation protocol of [28].

4.1.2 Implementation details

The SADDA model is trained with different learning rates
in different phases. In the pre-training phases, this is a
standard classification task, we use a learning rate is 0.001

in our experiment. In the training target encoder phases, we
suggested a learning rate of 0.0002 as well as an Adam
optimizer [46] and setting the β1 equal to 0.5 to help
stabilize training. In the LeakyReLU activation, we set α =
0.2 in the whole model.

In this experiment, the encoder consists of four
convolutional layers with 4 x 4 kernel size, 2 x 2 strides,
same padding, and ReLU activation. The number of filters
for four convolution layers are 32, 64, 128, and 256,
respectively. The target encoder has the same architecture
as the source encoder, and the source encoder is used as an
initialization for the target encoder.

The classifier takes the outputs of the encoder as input.
Next, a fully connected layer with 100 feature channels,

Fig. 3 t-SNE embedding of digit classification, using (2 x 2 x 256) dimensional representation, with Source only (on the left) and SADDA (on
the right) on the target dataset. Note that SADDA minimizes intra-class distance and maximizes inter-class distance
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followed by ReLU activation. Finally, the fully connected
layer with ten feature channels and the softmax activation.

In the training target encoder phases, the outputs of
the encoder serve as the input of the discriminator. The
discriminator consists of four Transpose Convolutional
layers with 4 x 4 kernels size, 2 x 2 strides, the same
padding, and the Leaky ReLU activation (alpha = 0.2).
The number of kernels for four Transpose Convolutional is
256, 128, 64, and 32, respectively. We illustrate the overall
architecture in Fig. 5.

4.1.3 Results on digit datasets

In this experiment, we compare our SADDAmethod against
multiple state-of-the-art unsupervised domain adaptation
methods.

Experimental results are shown in Table 2. In the
real-world dataset SVHN → MNIST, the SADDA model
showed approximately 26% improvement over the Source
only model, 10% more than the ADDA method [16]. In
addition, in the first two experiments (MNIST → USPS
and USPS → MNIST), the SADDA method achieves
extremely high accuracy, which results in 98.1% and 97.8%
respectively. However, SADDA has a little lower accuracy
than other methods like SBADA-GAN [47], SHOT [48],
and DFA-MCD [49] in some experiments.

Although, our method did not achieve the highest
accuracy in any of the experiments. Our method still has
competitive accuracy when compared with the state-of-the-
art methods in the last two years (SHOT [48], DFA-MCD

[49]). For example, our SADDA method compared with the
DFA-MCD method, in the MNIST → USPS experiment,
we have lower accuracy (98.1% versus 98.6%); however,
in the USPS → MNIST experiment, we achieved a higher
accuracy (SADDA achieved 97.8% compared to 96.6%).

For further insight into the SADDA model effect on the
digit classification tasks, we use t-SNE [50] to visualize the
2D point of the last encoder layer of SADDA (as described
in Fig. 3). Ten labels are from 0 to 9 corresponding, and
100 samples per label. The domain invariance is determined
by the degree of overlap between features. Regarding the
Source only model, the distribution and the density are
messy. In contrast, the SADDAmethod splits different labels
into different regions, and the overlap is more prominent.

4.2 Object recognition

4.2.1 Datasets and preprocessing

In this subsection, we present the experiments for evaluating
the SADDA method. The experiment is performed on the
VLCS [23] dataset, including PASCAL VOC2007 (V) [11],
LABELME (L) [10], CALTECH (C) [9], and SUN (S) [12]
datasets. Each dataset contains five categories: bird, car,
chair, dog, and person. Since the number of images per
class is not equal, we use data augmentation techniques to
balance the number of images. In this experiment, we use
the Albumentations library [51] to increase to 5000 images
per class. We divide the dataset into a training set (60%),
validation set (20%), and test set (20%).

Table 3 The accuracy (%) on
the VLCS dataset LABELME CALTECH SUN

Source only 33.26 45.10 33.78

SADDA 37.73 55.30 36.21

Train on target 86.52 99.27 88.26

(a)Source domain: PASCAL

PASCAL CALTECH SUN

Source only 28.73 32.75 27.71

SADDA 32.71 39.36 31.01

Train on target 75.28 99.27 88.26

(b)Source domain: LABELME

PASCAL LABELME SUN

Source only 26.71 28.27 31.62

SADDA 31.82 31.39 37.67

Train on target 75.28 86.52 88.26

(c)Source domain: CALTECH

PASCAL LABELME CALTECH

Source only 29.72 25.87 39.66

SADDA 33.04 27.35 41.52

Train on target 75.28 86.52 99.27

(d)Source domain: SUN
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The detailed architecture is shown in Fig. 6. The rest of
the other installation (optimization algorithm, learning rate)
is the same as Section 4.1.2.

In the experiments, one dataset is used as the source
domain and the rest is used as the target domain, resulting
in four different cases (Table 3). In addition, we do not
compare our SADDA model with other domain adaptation
methods due to different setups.

4.2.2 Results

The results on the VLCS are shown in Table 3. Source
only is a model that only trains on the source dataset
without using any domain adaptation methods. Overall, the
accuracy when applying the SADDAmethod overcomes the
Source only model in all cases. In some specific cases like
PASCAL → CALTECH, the classification accuracy goes
from 45.10 to 55.30 (improving approximately 10%). In
case LABELME → CALTECH, the accuracy grows from
32.75% to 39.36%.

Examining the results in Table 3, the Source only model
has low accuracy, which reveals that the domain shift is
quite large. In other words, the Source only model does not
learn any knowledge about the source dataset to predict the
target dataset. In contrast, the SADDA model learns a more
useful feature representation, leading to higher accuracy
when performing a prediction on the target dataset.

Although the SADDA method has certain improvements
compared to the Source only method, the accuracy of the
SADDA method is still low and not ideal. For further
comparison, we also test the hypothesis situation where the
target labels are present (the train on target model). There is
still a big gap between the accuracy of the SADDA method
and the train on target method.

4.3 Sentiment classification

4.3.1 Datasets and preprocessing

In this subsection, we evaluate the SADDA method for
the sentiment classification task. We use three sentimen-
tal datasets, including Women’s E-Commerce Clothing
Reviews [19], Coronavirus tweets NLP - Text Classification
[20], and Trip Advisor Hotel Reviews [21]:

Women’s E-Commerce Clothing Reviews [19] This is real
commercial data, where the reviews are written by
customers. In this task, we only use two features called
Review Text (the raw text review) and Rating (the positive
integer for the product, provided by the customer from 1
Worst to 5 Best). Regarding the Rating, we relabel into the
sets {positive, neutral, negative} with the following rule:
if a review is greater than 3, it is considered a positive

comment; if a review is equal to 3, it is considered a neutral
comment; if a review is less than 3, it is considered a
negative comment.

Coronavirus tweets NLP - Text Classification [20] The
tweets were downloaded from Twitter and tagged manually.
Although there are four columns in total, we only use the
Original Tweet feature and Label in our experiment. In
the case of Label, the original label includes Extremely
Negative, Negative, Neutral, Positive, and Extremely
Positive. However, we convert to the sets {positive, neutral,
negative} respectively.

Trip Advisor Hotel Reviews [21] This contains reviews
crawled from the travel company called Tripadvisor. The
dataset contains two features, including Review Text and
Rating (the positive integer from 1 Worst to 5 Best).
Regarding Rating, we process the same as the caseWomen’s
E-Commerce Clothing Reviews above.

In all three datasets, we perform the following text
preprocessing steps: removing the punctuation, URL,
hashtags, mentions, and stop words (with the support of
the NLTK [52] library). We limit the input sentence to a
max length equal to 50. The GloVe [53] word embedding
is applied to map the word in the text review to the vector
space.

Because the number of samples per class is not balanced,
we use the data augmentation techniques to balance the
number of samples - with the support of the TextAugment
[54] library. Particularly, we perform data augmentation
such that each class has up to 20 000 samples. The dataset is
divided into a training set (60%), validation set (20%), and
test set (20%).

4.3.2 Experiments and results

For this experiment, our architecture is illustrated in Fig. 5.
Elements in that architecture such as the LSTM layer and
the Repeat Vector layer are implemented by the TensorFlow
library with default settings. The optimization algorithms
and learning rates are set up as in Section 4.1.2. In addition,
we do not attempt to fine-tune the architecture and leave it
for future work.

The results of our experiment are provided in Table 4.
Compared with the Source only model, the SADDAmethod
shows a little improvement in the accuracy of this sentiment
analysis task. For a certain experiment, like T → W,
the classification accuracy goes from 41.07% to 49.28%.
However, not all experiments improve, such as experiment
T→ C, the accuracy even dropped a bit (from 38.46% down
to 38.05%). Additionally, a comparison with the “Train on
target” model exposes that the SADDA model is far from
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Table 4 The accuracy (%) of unsupervised domain adaptation on the sentiment classification task

W → C W → T C → W C → T T → W T → C

Source only 37.97 50.11 45.91 49.93 41.07 38.46

SADDA 43.88 55.54 48.02 56.10 49.28 38.05

Train on target 79.01 96.10 93.02 96.10 93.02 79.01

In the table, there are three datasets: Women’s E-Commerce Clothing Reviews (W) [19], Coronavirus tweets (C) [20], Trip Advisor Hotel Reviews
(T) [21]

the ideal model. We hope that is the motivation for future
development.

4.4 Challenge and convergence analysis

In this subsection, we will discuss the challenge of training a
stable SADDA model and how to trigger the early stopping
of the training progress to achieve the convergent state.

In the SADDA model, we have three stages: Pre-
training, Training target encoder, and Testing. The difficulty
comes from the Training target encoder process. The
reason is that both the discriminator and target encoder are
trained simultaneously in that procedure, which can lead
to updating the parameter of one model will reduce the
performance of the other model. More concretely, there are
two loss functions we need to optimize: the discriminator
loss and the adversarial loss. The discriminator loss (3) is
the loss when the unsupervised discriminator predicts the

source or target samples. The adversarial loss (4) is the loss
of the target encoder when training with the inverted labels.

When training the target encoder, we do not try to find a
minimum value for either discriminator loss or adversarial
loss. Instead, we are looking for a Nash equilibrium state for
both losses [37]. In practice, we observe the discriminator
loss and adversarial loss after each epoch, when both loss
values no longer change, we trigger an early stopping. Early
stopping is the technique to stop the training process at a
certain point before the model overfits the training dataset
and has poor performance on the test set. In that case, we
consider that our model has converged. Keep in mind that
the loss of 0.0 in the discriminator loss or the adversarial
loss during the training process is a failure mode.

Regarding Fig. 4, the convergence point is in the epoch
20. At that point, we will stop the training process because
the discriminator loss and the adversarial loss are saturated
at around 0.33 and 2.30 respectively. In that experiment (and

Fig. 4 The discriminator loss and adversarial loss in the LABEL → CALTECH experiment
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other object recognition tasks), it took around 1 hour on a
single Tesla T4 GPU to complete the training procedure.

5 Conclusion

We proposed a more stable and high-accuracy architecture
for training adversarial-based domain adaptation methods.
The key idea of this approach is to train discriminators
in two modes: supervised mode and unsupervised mode.
Moreover, utilize this to create a more efficient target
encoder, which will help improve the classification accu-
racy.

While the SADDA method has demonstrated an
improvement in many tasks like image classification or sen-
timent classification, there are still open challenges. Particu-
larly, the SADDAmodel in object recognition and sentiment
classification is far from the desired accuracy model. We
hope that the intuition of this research will facilitate further
advances in domain adaptation tasks.

Appendix

In this appendix section, we present in detail the design
architecture of our SADDA method in three experiments,

Fig. 5 The overview of the SADDA method for the digit recognition task. We found that Global Average Pooling (GAP) [55] increased model
stability and reduce the number of parameter
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Fig. 6 The overview of the SADDA method for the object recognition task on the VLCS [23] dataset. With the input image’s shape is 64 x 64 x 3
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Fig. 7 The overview of the
SADDA method for the
sentiment classification task.
The input sentence has a max
length equal to 50. In the design
above, to prevent overfitting, the
LSTM layer is always followed
by the dropout layer with 0.2
rates. The numbers under the
particular layer are the output
shape of that layer
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including digit recognition, object recognition, and senti-
ment classification.
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