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Abstract
Solving Math Word Problems (MWPs) automatically is a challenging task for AI-tutoring in online education. Most of the
existing State-Of-The-Art (SOTA) neural models for solving MWPs use Goal-driven Tree-structured Solver (GTS) as their
decoders. However, owing to the defects of the tree-structured recurrent neural networks, GTS can not obtain the information
of all generated nodes in each decoding time step. Therefore, the performance for long math expressions is not satisfactory
enough. To address such limitations, we propose a Goal Selection and Feedback (GSF) decoding module. In each time step
of GSF, we firstly feed the latest result back to all goal vectors through goal feedback operation, and then the goal selection
operation based on attention mechanism is designed for generate the new goal vector. Not only can the decoder collect the
historical information from all generated nodes through goal selection operation, but also these generated nodes are always
updated timely by goal feedback operation. In addition, a Multilayer Fusion Network (MFN) is proposed to provide a better
representation of each hidden state during decoding. Combining the ELECTRA language model with our novel decoder,
experiments on the Math23k, Ape-clean, and MAWPS datasets show that our model outperforms the SOTA baselines,
especially on the MWPs of complex samples with long math expressions. The ablation study and case study further verify
that our model can better solve the samples with long expressions, and the proposed components are indeed able to help
enhance the performance of the model.
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1 Introduction

In recent years, the development of online educational
applications has been greatly accelerated, especially after
the covid-19 outbreak. Automatically scoring the students’
answers in online education applications can ease the
burden on teachers of marking a large number of repetitive
assignments. However, in Math Word Problems (MWPs),
the performance of automatically solving is far from
perfect and cannot yet be applied in practice. MWPs is a
mathematical problem described in natural language. At the
end of the MWPs’ text, the answer to the mathematical
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problem is required. MWP solving is very helpful to
cultivate students’ mathematical ability of problem analysis
and calculation. Table 1 is an example of a typical
MWP where the reader is required to answer the number
of motorcycles in the parking lot. In automatic MWPs
solving task, a machine must deduce an answer to a given
mathematical problem by acquiring the implied numeric
information in the problem.

In the 1960s, some researchers began to adopt Artificial
Intelligence (AI) methods to solve MWPs. Recently, Wang
et al. used a modified Seq2Seq model to build the MWPs
Solver [1] and more and more researchers proposed a vari-
ety of approaches based on deep learning for solving MWPs
[2–6]. Deep learning-based methods turn MWP solving
into a natural language generation task, where the generated
text is not “Natural”, but consists of mathematical symbols.
The crucial advantage of the Deep Learning-based models
is that they eliminate the need for hand-crafted features.

Nowadays, most SOTA models use the decoder of Goal-
Driven Tree-structured MWPs Solver (GTS) proposed by
Xie and Sun [4] for model decoding and token prediction
[5–7]. The goal-driven mechanism in human problem

/ Published online: 2 November 2022

Applied Intelligence (2023) 53:14744–14758

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04253-1&domain=pdf
http://orcid.org/0000-0002-5242-7909
mailto: xiaojing@scnu.edu.cn
mailto: 2020022959@m.scnu.edu.cn


Goal selection and feedback for solving math word...

Table 1 A math word problem

Problem: In a parking lot, there are 48 cars and motorcycles. If threre
is a total of 172 wheels altogether, where each car has 4 wheels and
each motorcycle has 3 wheels, what is the number of motorcycles?

Expression: (48 × 4 − 172) ÷ (4 − 3) Solution: 20

solving is proposed by GTS. When humans read the text
of a math word problem, they first figure out which target
quantity is to be derived as the goal, and then pay attention
to the relevant information of the problem which can help to
realize the goal [4]. The decoding process of GTS’ decoder
follows the generation process of the binary tree and each
node corresponds to one goal to be solved.

Figure 1 shows a typical example of a mistake made by
the GTS when solving the math problem in Table 1. The
token “3” predicted by goal vector q7 shows that root goal
vector q1 wants to solve the problem by template “[Total
number of motorcycles’ wheels] ÷ [Number of wheels
each motorcycle has]”. Then, goal vector q2 uses another
approach to solve this problem, rather than following
q1 to calculate [Total number of motorcycles’ wheels].
However, goal vector q7 only obtains two kinds of historical
information through two recurrent neural networks (RNNs):

information of each ancestor node’s goal vector (e.g.
q1) through top-down goal decomposition (blue arrow);
information of embeddings of all generated tokens through
bottom-up subtree embedding (green arrows). That is to say,
q7 can not get the information about the goal vectors of all
generated nodes (i.e. q2, q3, q4, q5, q6) except the ancestor
node q1. In the meantime, the embeddings of generated
tokens can not reflect the changes in the solution strategy.
Therefore, goal vector q7 is not notified of solution strategy
changes, and still follows q1 to find [Number of wheels each
motorcycle has]. This defect makes it difficult for GTS to
handle the samples with complex math expressions.

To address this issue, we design a new goal-driven
decoding approach which is called Goal Selection and
Feedback (GSF). Figure 2 shows the process of generating

Fig. 1 The process of GTS’ node generation

Fig. 2 The process of Goal Selection and Feedback

the 4th node through GSF. Firstly, the Goal Feedback
Operation updates the information of the 3th node to
each goal vector (green arrows), allowing them to adjust
themselves at each time step to provide more accurate
information for the current decoding step. Then, the
Goal Selection Operation selects the information from the
updated previous goal vectors directly and generates the
new goal vector q4 by attention mechanism (blue dotted
arrow). Finally, token “48” is predicted according to q4

and context from encoded problem text (gray arrow). This
approach allows the decoder to capture the most related
information from all generated nodes in each time step.
Because all generated nodes would be updated by the goal
feedback operation according to the latest result and be
provided to the goal selection operation. Moreover, we
design Multilayer Fusion Network (MFN) to enhance the
information fusion capacity instead of using a multilayer
perceptron, which leads to a better representation for each
hidden state. At last, we use ELECTRA language model
[8] as the encoder. The proposed model is evaluated on the
Math23k dataset, Ape-clean dataset, and MAWPS dataset.
Experimental results show that our model can achieve better
performance against strong baselines.

The contributions of this paper are summarized here:

• We propose the Goal Selection and Feedback (GSF)
decoding approach, in which the goal feedback
operation feds the latest result back to each generated
goal, and the goal selection operation selects the
updated past goals for decoding.

• We design the Multilayer Fusion Network (MFN) to
model the hidden states instead of using a multilayer
perceptron.

• The experimental results show our model outperforms
several SOTA systems on the dataset Math23k.

2 Related work

In the first stage of the MWPs solving, from 1960 to
2010, systems such as STUDENT [9], DEDUCOM [10],
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WORDPRO [11] and ROBUST [12], manually designed
rules and schemas for pattern matchings. Yun et al. also
use schema for multi-step math problem solving, but the
implementation details are not explicitly revealed [13].
These methods are complicated and difficult to reproduce.

After 2010, some researchers started to employ machine
learning methods in solving MWPs. The MWPs solvers
designed by them predicted and filled the predefined
expression templates through traditional machine learning
methods [14, 15]. Meanwhile, another way to solve MWPs
is to use semantic parsing, which mapped the problem
text to structured logic forms and inferred the answer
through the predefined logic rules [16, 17]. Obviously, all
approaches above required tremendous human efforts in
feature engineering and annotation, which result in poor
generality.

In recent years, deep learning has made great progress
in various domains, such as machine translation [18–20],
object detection [21–23], text classification [24–26], and
dialogue system [27–29]. It is not surprising to notice that
MWPs can be better solved with DL-based methods. The
first DL-based MWP solver was an improved Seq2Seq
model, which has been widely applied to translation
tasks and question-answer tasks [1]. In order to improve
the generality of DL-based models for solving MWPs,
researchers proposed Significant Number Identification
(SNI) and Equation Normalization (EN) [1, 2]. Due to the
fact that mathematical expressions can be converted into
binary trees, some researchers discarded the linear decoder
in Seq2Seq and instead designed several brand new tree-
structured recursive neural networks for model decoding,
such as abstract syntax tree decoder (AST-Dec) [30] and
GTS [4].

With the prevailing application of GTS, some researchers
focused on improving the model’s understanding of the
problem text and used GTS as the decoder of their models.
Zhang et al. proposed a novel graph-based encoder to
learn the quantity-related features for enhancing problem
understanding [5]. Imitating human reading habits, Lin
et al. proposed a hierarchical word-clause-problem encoder
and applied a hierarchical attention mechanism to enhance
the problem semantics with context from different levels,
and a pointer-generator network to guide the model to
copy existing information and infer extra knowledge in
decoding [6].

In addition to designing DL-based MWPs solvers, some
researchers look for other ways to enhance the accuracy of
the model. Shen et al. devise a new ranking task for MWP
and proposed Generate & Rank, a multi-task framework
based on a generative pre-trained language model, the
model learns from its own mistakes and is able to distinguish
between correct and incorrect expressions [31]. Instead of
using GTS, Lee et al. proposed a TM-generation model

that uses the decoder of Transformer to predict the math
expression templates, and then fills the missing operators in
the predicted templates by the operator identification layer
that they designed [32].

3 Problem definition and data processing

The formal definition of a Math Word Problem sample is
(P, E) and the data processing is shown in Fig. 3, where:

• The problem text P is a sequence of n word tokens or
numeric values: P = {p1, p2, ..., pn}, where pi is either
a word token or a numeric value. According to SNI [1],
the ith numeric value pk appearing in P is denoted as
Ni . We replace pk with the token “NUM” in the original
sequence P . At the end, the start token “SOS” and the
ending token “EOS” are added to the beginning and
the end of the sequence respectively. Finally we get a
sequence P ′ of m = n + 2 tokens.

• The math expression E derived from problem text P

is used to calculate the unknown quantity required by
MWP. Expression E is defined as a sequence containing
math operators from Vop, numeric constants from Vcon,
and denoted numeric values in nP from the problem text
P . Therefore, the output vocabulary of the our MWP
solver is Vdec = Vop ∪ Vcon ∪ nP . We replace all
numeric values from the original expression with the
corresponding number token Ni ∈ nP and convert the
expression into the corresponding prefix form. In the
end, the start token “SOS” and the ending token “EOS”
are added to the beginning and the end of the expression
respectively.

Given the problem text P , our model computes the output
sequence Ê according to P .

4Model description

4.1 Overview

To address the shortcomings of GTS, we propose a Goal-
Driven MWP Solver with Goal Selection and Feedback. We
follow the idea of the goal-driven mechanism, which means
that our model would generate a new goal vector at each
time step to guide the model to find the solution. Figure 4
shows the overview structure of our model. First, we input
the processed text into the ELECTRA language model for
encoding. Second, through the main goal initialization, we
get the main goal vector q0, which represents the problem in
the text that we need to solve. At the same time, we assume
that the initial token “SOS” is generated by q0, which is the
starting point of the expression generating process.
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Fig. 3 Data processing

As we can see from the Fig. 4, the computation of our
model has two directions: Goal Feedback Operation in the
vertical direction (green half arrow) and Goal Selection
Operation in the parallel direction (blue half arrow). In
the vertical direction, each generated goal vector adjusts
itself according to the last generated result by the Goal
Feedback Operation (green arrows and orange arrows in
Fig. 4). After that, each new goal vector is generated by
the Goal Selection Operation (black dotted boxes and blue
dotted arrows in Fig. 4). The Goal Selection Operation is

based on the attention mechanism, which means that every
goal vector in the black dot boxes has the opportunity
to affect the generation of the latest goal vector. On the
other hand, we treat the latest output token as the partial
solution to the problem, and each goal would be resolved
to some extent when a solution comes out. Therefore,
we believe that when the latest result is generated, each
goal vector should be adjusted itself to provide more
accurate information for the generation of the next goal
vector.

Fig. 4 Overview of our
proposed model

1 3

14747



D. He and J. Xiao

When the latest goal vector is generated, our model
summarizes relevant information into the context vector
from the encoded text through the attention mechanism
(black arrows in Fig. 4). Using the goal vector and the
context vector, we score every token y ∈ Vdec and the token
with the highest score is selected as the output of decoding
(gray arrows and gray box in Fig. 4). Then the above steps
are repeated until the ending token “EOS” is decoded.

4.2 Electra languagemodel

In order to enhance the model’s understanding of the
problem text, ELECTRA language model [8] is chosen as
the encoder of our model, instead of encoding the problem
text sequence simply through the RNN, such as LSTM and
GRU. The authors of ELECTRA proposed a more sample-
efficient pre-training task called replaced token detection
and trained a discriminative model to predict whether
each token was replaced or not. Experiments show that
the contextual representations learned by the ELECTRA
language model substantially outperform the ones learned
by BERT given the same model settings [8].

After tokenization, the input problem text is converted
to X = {x1, x2, ..., xm}, and each token xk indicates the
position of the corresponding word token pk in the input
vocabulary. Then, the sequence X is input to the ELECTRA
language model.

H = ELECTRA(X) (1)

where ELECTRA(·) denotes the function of ELECTRA
language model. The ELECTRA language model accepts
a token sequence X as input, and outputs the encoded
sequence H = {h′

1, h
′
2, ...,h′

m} through a series of cal-
culations, such as multi-head attention, self-attention, and
position-wise feed-forward networks. Then, we calculate hi

as follows, and treat it as the contextual representation of the
token pi ∈ P ′.

hi = LN(Weh′
i ), i = 1, 2, ..., m (2)

where LN(·) denotes the layer normalization layer [33],
We ∈ R

d×d is a trainable matrix and d is the dimensionality
of the ELECTRA’s output.

4.3 Dynamic token embedding

To make the prediction of the model more accurate, we
use dynamic token embedding like GTS [4]. Diffrent from
operator tokens and constant tokens, token y = Ni ∈
NP treats the contextual representation vector hj as its
embedding, where j is the index position of Ni in the

problem text P ′. Each token y ∈ Vop ∪ Vcon has the same
embedding in all problems.

e(y) =
{
Ms(y) if y ∈ Vop ∪ Vcon

hloc(y,P ′) if y ∈ NP
(3)

where e(·) denotes the embedding mapping function,
Ms ∈ R

d×|Vop∪Vcon| is a trainable embedding matrix, and
loc(y, P ′) is the index position of y in P ′. In this way,
every token from the common part Vop ∪ Vcon of all
problems’ target vocabulary has the same representations in
all problems, while the representations of token y = Ni ∈
NP in each problem are different. Such embedding mapping
is intuitive and the meaning of the same numeric value token
Ni in every problem must be different.

4.4 Multilayer fusion network

To improve the information fusion capacity of our network,
we propose the Multilayer Fusion Network (MFN) to
generate several hidden states. Given the inputs p and g,
the n-layer MFN calculates the result through the following
iterative steps:

o0 = ReLU(W0[p, g])
sk+1 = ReLU(Wsk+1 [p, g])
zk+1 = ReLU (Wzk+1 [p, LN(ok), sk+1])
ok+1 = ok − sk+1 ∗ zk+1, k = 0, 1, 2, ..., n − 1

MFN(p, g) = LN(on) (4)

where W0 ∈ R
d×2d ,Ws1 ∈ R

d×2d , ...,Wsn ∈
R

d×2d ,Wz1 ∈ R
d×3d , ...,Wzn ∈ R

d×3d are trainable
matrices, [·, ·, ..., ·] denotes concatenation, * denotes the
hadamard product and ReLU(·) denotes the ReLU function.
o0 is the initial vector of combining the information of p
and g. sk is the kth infromation supply vector, and zk is the
kth scale gate of sk . The kth scaled supply vector sk ∗ zk

decides what information should be added to ok . Through
subtraction, ok receives the information provided by sk ∗ zk .
The iterative multilayer structure is designed to allow MFN
to provide deeper information fusion.

4.5 Goal selection and feedback

Main goal initialization To start the decoding process, we
use token y0 =“SOS” as the start token of decoding,
and the corresponding initial goal vector q0 and the initial
prediction vector u0 are calculated as follows:

q0 = h1

u0 = LN(ReLU(Wmq0)) (5)

where h1 is the contextual representations of the token
“SOS” ∈ P ′, and Wm ∈ R

d×d is a trainable matrix. The
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initial goal vector q0 represents the main goal to be solved,
which is posed by the problem text directly. With the initial
token and the corresponding goal vector q0 and prediction
vector u0, the decoder performs each step of decoding
through the following iterative steps.

Goal feedback operation Given a main goal vector q0, the
kth prediction vector uk and the kth output token yk , the
decoder merges them through a single layer perceptron to
get rk as the kth solution vector. Then, the update gate gk

i of
the ith goal vector is calculated as follows:

rk = LN(ReLU(Wr [q0, uk, e(yk)]))
gk

i = σ(v�
g ReLU(Wg[rk, qi])) (6)

where vg ∈ R
d , Wr ∈ R

d×3d and Wg ∈ R
d×2d are

trainable parameters, and σ(·) denotes the sigmoid function.
Then, each goal vector adjust themselves according to the
update gate gk

i and the feedback vector f k
i calculated by the

trainable network MFNf as follows (green arrows in Fig. 5)

f k
i = MFNf (qi , rk)

qi := (1 − gk
i ) · qi + gk

i · f k
i , i = 0, 1, 2, ..., k (7)

Goal selection operation After the goal feedback operation,
we calculates the selection weight ak

i by kth solution vector
rk and each goal vector q0, q1, ...,qk (blue arrows and blue
dotted arrows in Fig. 5):

Sg(rk, qi ) = v�
s ReLU(Ws[rk, qi])

ak
i = exp(Sg(rk, qi ))∑

s exp(Sg(rk, qs))
(8)

where vs ∈ R
d and Ws ∈ R

d×2d are trainable parameters.
Then the (k+1)th goal vector qk+1 is calculated as follows:

q̃k
i = MFNs(rk, qi )

qk+1 =
k+1∑
i=0

ak
i q̃

k
i (9)

where MFNs is a trainable network, q̃k
i is the sub-goal

vector derived by the solution vector rk according to the
ith goal vector qi , and weighted summation is performed to
obtain the new goal vector qk+1.

Token prediction Given the goal vector qk+1, in order
to accurately predict the output token, we compute
the context vector ck+1 as follows to summerize the
relevant information of the problem through the attention
mechanism (black dotted arrow in Fig. 5):

Sc(qk+1, hi ) = v�
c ReLU(Wc[qk+1, hi])

wi = exp(Sc(qk+1, hi ))∑
s exp(Sc(qk+1, hs))

ck+1 =
m∑

i=1

wihi (10)

where vc ∈ R
d and Wc ∈ R

d×2d are trainable parameters.
Next, the prediction vector uk+1 is computed by combining
the goal vector qk+1 with context vector ck+1, and then
probability prob(yi |uk+1) of each token yi ∈ Vdec is
calculated as (black arrows in Fig. 5):

uk+1 = MFNc(qk+1, ck+1) (11)

Fig. 5 Process of goal selection
and feedback decoding approach
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s(yi, uk+1) = v�
p ReLU(Wp[uk+1, e(yi)])

prob(yi |uk+1) = exp(s(yi, uk+1))∑
s exp(s(ys, uk+1))

(12)

where MFNc is a trainable network, e(yi) is the token
embedding of yi calculated by (3), vp ∈ R

d is a trainable
vector, and Wp ∈ R

d×2d is a trainable matrix. Finally, token
ŷk+1 with the highest probability is selected as the output
token of the current decoding step (gray arrows in Fig. 5):

ŷk+1 = arg max
y∈Vdec

prob(y|uk+1) (13)

when the token ŷk+1 is “EOS”, the decoder completes the
decoding of the problem, otherwise, it continues with the
next decoding step.

4.6 Model training

Formally, for each (P i, Ei) in the training dataset D =
{(P i, Ei)|1 ≤ i ≤ N}, P i is the problem text sequence, and
Ei is the math expression sequence corresponding to the
problem P i . The loss function Lossi is defined as the sum
of the negative log-likelihood of probabilities for predicting
t th token yt ∈ Ei . The total loss function is calculated as
follows:

Lossi = −
T∑

t=1

logprob(yt |ut )

Losstotal =
N∑

i=1

Lossi (14)

where ut is the prediction vector of the t-th node; T is the
number of tokens in Ei , and prob(·|·) is computed by (12).
The training goal of the model is to minimize Losstotal.

5 Experiment

In this section, we compare our model with several SOTA
baselines, then perform ablation experiments on each
module, and finally end up with analyzing the experimental
results.

5.1 Dataset and baselines

Dataset We conduct the experiments on the following
datasets:

• Math23k1: The dataset Math23k [1] is a commonly-
used large-scale Chinese MWPs dataset, containing
22,161 training problems and 1,000 testing problems

1https://github.com/SCNU203/Math23k

with solution expressions and answers. Each math word
problem can be solved by one linear algebra expression.

• Ape-clean2: The dataset Ape-clean [34] is the cleaned
version of the Chinese MWPs dataset Ape210k [35].
After cleaning, Ape-clean contains 102,596 training
problems and 2,422 testing problems. Each math word
problem can be solved by one linear algebra expression.

• MAWPS3: The dataset MAWPS [36] contains English
math word problems with one or more unknown vari-
ables. We select 2,353 problems with only one unknown
variable and perform five-fold cross validation on it.

Baselines We compare the following methods on datasets
Math23k and Ape-clean:

• MathEN [2]: The ensemble model selects the result
according to the models’ generation probability among
BiLSTM, ConvS2S, and Transformer with equation
normalization (EN).

• GroupAtt [37]: The Seq2Seq model with the
group attention mechanism to extract global features,
quantity-related features, quantity-pair features, and
question-related features in MWPs respectively.

• AST-Dec [30]: This MWP solver uses LSTM for
encoding and generates the abstract syntax tree of the
equation in a top-down manner when decoding.

• GTS [4]: The Goal-Driven Tree-structured MWP
Solver, using GRU for encoding.

• Graph2Tree [5]: The MWP Solver with graph-based
encoder and GTS decoder.

• SAUSolver [38]: The semantically-aligned universal
tree-structured solver based on an encoder-decoder
framework.

• Generate & Rank [31]: The pre-trained-model-based
MWP solver with equation re-ranking mechanism.

• HMS [6]: The MWP solver with a dependency-based
module for encoding and an improved GTS decoder.

• TM-generation [32]: The MWP solver uses the
decoder of Transformer to predict math expression
templates, and then fills the missing operators in the
predicted templates by the operator identification layer
they designed.

• ELECTRA-GTS [4]: To compare in the same under-
standing level of the problem text, we replace the GTS’s
encoder with the ELECTRA language model.

• ELECTRA-GRU-xL [39]: Similarly, we construct
an MWP solver combining the ELECTRA language
model, GRU decoder, and cross-attention module for
comparing. “xL” denotes that the decoder has x GRU
layers.

2https://github.com/derderking/Ape-clean
3https://github.com/sroy9/mawps
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• ELECTRA-TFM-xL [40]: Similarly, we construct an
MWP solver combining the ELECTRA language model
and transformer decoder. “xL” denotes that the decoder
has x transformer decoder layers.

• GSGSF-xL: The Goal-Driven MWP Solver with Goal
Selection and Feedback proposed in this paper. “xL”
denotes that all MFNs in the decoder are set to x layers.

5.2 Implementation details

Our model is implemented on the Ubuntu system using
PyTorch and trained on RTX3090. All math expressions of
the MWP samples are converted to the corresponding prefix
expressions. For the Chinese ELECTRA language model,
we use the version pre-trained on an 180G Chinese large
corpus [41]. The dimensionalities of all hidden states of
the decoder are set to 768. Our model is trained for 80
epochs, and the mini-batch size is set to 32. In terms of the
optimizer, we use AdamW [42] with the value of learning
rate set to 2 × 10−5 and 1 × 10−3 in the encoder and
decoder respectively. The learning rate will be halved when
the loss reduction is less than 0.1 times the current loss.
For initialization, all the learnable parameters are sampled

on the normal distribution N

(
0,

(
0.5√

d

)2
)

, where d = 768

is the dimensionalities of all hidden states. The results are
computed through the greedy search.

Finally, we use answer accuracy and equation accuracy
as the metrics to evaluate the model. When using answer
accuracy, the prediction is considered correct when the
calculated value of the predicted expression is equal to
the answer. When using equation accuracy, the prediction
is considered correct when the predicted expression is the
same as the labeled expression. The answer accuracy rate
can demonstrate the MWP solving ability of the models.
The equation accuracy in the training set can demonstrate
the fitting ability of the models.

5.3 Result analysis

Overall result Table 2 reports the answer accuracy of
various baseline models and our proposed model on the
Math23k, Ape-clean, and MAWPS datasets. As shown in
Table 2, firstly, the models containing pre-trained language
model (Generate & Rank, TM-generation, ELECTRA-
GTS, ELECTRA-GRU, ELECTRA-TFM, and GSFSF) can
better solve the MWPs, which confirms that the strong
encoding ability of the pre-trained language model brings
a big improvement to the model’s performance. Next, our
model outperforms all baseline models on the Math23k
and Ape-clean datasets, which demonstrates that our model
is better than other decoders in Chinese MWP solving.
In the small English dataset MAWPS, the performance

of GSFSF is the same as that of TM-generation and
ELECTRA-TFM.

Performance over four decoder In order to verify our
point, we train four different decoders with the same
encoder (ELECTRA language model). Here is the detailed
difference in how these decoders feed the latest result back
to the next decoding process:

• GTS: As the decoder of ELECTRA-GTS, GTS feeds
the hidden vectors (goal vectors) of the parent node and
sibling subtree to the next decoding process. It cannot
obtain the information of all generated nodes.

• GRU: As the decoder of ELECTRA-GRU, GRU
adjusts the hidden vector according to the latest result
for the next decoding process. It can keep the historical
information in the hidden vector, but it is possible to
forget the information of the earlier nodes.

• Transformer: As the decoder of ELECTRA-TFM,
Transformer treats the embedding of the latest result
as the new hidden vector and performs self-attention
to capture the related history information for decoding
the new token. But in the self-attention of each time
step, the hidden vector of the same node is unchanged.
So it requires multi-layer stacking, that is, utilizing
self-attention and feed-forward network (FFN) multiple
times to extract information related to the current
decoding process.

• GSF: As the decoder of GSFSF, GSF has the goal
selection operation which is similar to the self-attention
for decoding. But the goal selection operation can
capture the most related information directly from all
generated nodes in each time step. Because all these
generated nodes have been always updated by the goal
feedback operation according to the latest result in real-
time and be provided to the goal selection operation.

First, when GRU is utilized as the decoder, it outperforms
GTS on three datasets. This indicates that a linear-structured
decoder is not bad for the MWP task. It may be due to the
fact that the length of mathematical expressions is not long
enough to cause gradient diffusion in RNN. Then, we can
find that our model and the transformer decoder perform
similarly on the Ape-clean dataset, but there is a gap in the
Math23k dataset. This is due to the large number of samples
in the Ape-clean dataset, providing more abundant samples
for model training. And the difference in performance on the
Math23k dataset shows that GSF has better generalization
than the Transformer, namely, it requires fewer samples to
learn the mathematical relationship in MWP. In the English
dataset MAWPS, the Transformer and GSF achieve the
same answer accuracy.

1 3

14751



D. He and J. Xiao

Table 2 Answer accuracy of our model and baseline models

Models Math23k Ape-clean MAWPS

MathEN 0.667 0.734 0.692

GroupAtt 0.695 0.753 0.761

AST-Dec 0.690 0.732 0.756

GTS 0.756 0.798 0.778

Graph2Tree 0.774 − 0.837

SAUSolver 0.751 0.799 0.780

Generate & Rank 0.854 − 0.840

HMS 0.761 0.801 0.803

TM-generation 0.853 − 0.852

ELECTRA-GTS 0.835 0.850 0.789

ELECTRA-GRU-2L 0.859 0.861 0.851

ELECTRA-GRU-4L 0.850 0.855 0.843

ELECTRA-GRU-6L 0.844 0.853 0.843

ELECTRA-TFM-2L 0.855 0.863 0.847

ELECTRA-TFM-4L 0.858 0.863 0.848

ELECTRA-TFM-6L 0.863 0.865 0.852

GSGSF-2L 0.874 0.866 0.852

GSGSF-4L 0.869 0.869 0.845

GSGSF-6L 0.871 0.865 0.845

Performance over number of layers The number of layers is
a tunable hyperparameter in ELECTRA-GRU, ELECTRA-
TFM, and our model. It should be noted that the layer
stacking of our model only exists in the MFN module, not
in the entire decoder. We vary the number of layers from 2,
4, and 6 for investigating the effect of the number of layers
on the model’s performance.

The number of layers of the model can reflect the
complexity of the model to a certain extent. When the
number of layers increases, the fitting ability of the model
tends to be stronger. According to the principle of Occam’s
Razor, the optimal complexity of the neural network model
is the minimum complexity that can fit the training set. At
this time, the model has the best generalization. When the
complexity of the model exceeds the optimal complexity,
over-fitting often occurs, resulting in the decline of the
models’ performance on the test set.

The results of the study are shown in Table 2 and Fig. 6.
First, whether on Math23k or Ape-clean, the increase in the
number of layers in ELECTRA-GRU gradually degrades
the performance of the model. It may be due to the fact that
2-layer is already the optimal complexity of ELECTRA-
GRU. Second, the answer accuracy of ELECTRA-TFM
rises slowly when the number of layers increases, which
indicates that the Transformer decoder will approach its
optimal complexity only when its complexity is high
enough. However, when the number of layers is 2,4,6,
the number of parameters of the Transformer decoder is

19M, 38M, and 57M respectively, and the enhancement
of accuracy brought by the increase of a large number
of parameters is weak. Finally, the layer stacking of the
GSFSF decoder exists only in MFN, and the model achieves
the highest accuracy on Math23k and Ape-clean when the
number of layers is 2 and 4, respectively. When the number
of layers is 2 and 4, the number of parameters of the GSFSF
decoder is 27M and 44M respectively. At this time, GSFSF
not only has fewer parameters than the 6-layer Transformer
decoder but also achieves higher accuracy.

Ablation study The Goal Selection and Feedback and MFN
are central to our decoder structure. To investigate their
effectiveness, we conduct several ablation experiments on
GSFSF-2L. Table 3 shows the results of the experiment,
where “w/o Goal Feedback” denotes that the goal feedback
operation is removed. “w/o Goal Selection” denotes that
the kth solution vector rk is treated as the (k + 1)th goal
vector qk+1, and then use it to perform the (k + 1)th step
token prediction. “w/o MFN” denotes that MFN is replaced
with the Feed-Forward Network (FFN) from Transformer,
which is the 2-layer perceptron containing ReLU activation
function and layer normalization layer.

From Table 3 we can see that the lack of goal selection
operation implies that our decoder degenerates to linear-
structured RNN, but still achieves an answer accuracy
of 0.855 and exceeds the ELECTRA-GTS on Math23k.
Second, the lack of goal feedback operation implies that
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Fig. 6 Performance over
number of layers in dataset
Math23k

the decoder only uses goal selection operation for decoding,
achieving better performance than the linear-structured
decoder. Then, the original configuration of the decoder has
the highest accuracy, which suggests that the goal feedback
operation is helpful and complementary to the goal selection
operation. Finally, it can be observed that there is a drop in
accuracy when MFN is replaced with the FFN, which shows
that MFN does help to generate better hidden state.

Performance on expression length In order to compare
the decoding ability of each decoder in more detail,
we compute their answer accuracy on each expression

Table 3 Answer accuracy of various decoder configurations

Math23k Ape-clean MAWPS

Configuration GSFSF-2L GSFSF-4L GSFSF-2L

Original 0.874 0.869 0.852

w/o Goal Selction 0.855 0.860 0.847

w/o Goal Feedback 0.863 0.866 0.849

w/o MFN 0.865 0.866 0.845

length interval (prefix form) separately. The accuracy of
models for each math expression interval on the Math23k
test set, the Ape-clean test set and the MAWPS dataset
are given in Tables 4, 5 and 6 respectively. Five-fold
cross-validation is used on the MAWPS dataset, so each
sample will act as a test sample once during validation.
Therefore, Table 6 shows the answer accuracy on all
samples in the MAWPS dataset when they act as the test
samples.

In the test set, We can see that the answer accuracy
decreases as the length of expression increases. It is in line
with the intuition that a longer math expression usually
implies a higher complexity of the problem, and the
proportion of the training samples in these intervals (over
7) is small. Second, GSF and Transformer outperform the
GTS in all situations of different expression length sizes,
which indicates that we can better model the mathematical
relationship of MWP without a tree-structured neural
network. Next, we can see that Transformer performs
slightly better than GSF on samples with expression lengths
between 3 and 9, and GSF achieves the highest answer
accuracy on samples with expression lengths over 9.
This indicates that the Transformer is more suitable for
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Table 4 Answer accuracy over expression length on Math23k test set

Expr. len Ins. num Prop% GTS GRU Transformer GSF

0 - 3 174 17.4% 0.925 0.925 0.925 0.925

3 - 5 522 52.2% 0.898 0.914 0.914 0.929

5 - 7 191 19.1% 0.759 0.817 0.832 0.817

7 - 9 66 6.6% 0.545 0.576 0.576 0.621

9 - 11 34 3.4% 0.500 0.529 0.559 0.558

11+ 13 1.3% 0.538 0.692 0.692 0.846

Table 5 Answer accuracy over expression length on Ape-clean test set

Expr. len Ins. num Prop% GTS GRU Transformer GSF

0 - 3 564 23.3% 0.874 0.888 0.881 0.883

3 - 5 1073 44.3% 0.911 0.929 0.936 0.928

5 - 7 449 18.5% 0.833 0.833 0.837 0.860

7 - 9 182 7.5% 0.753 0.736 0.764 0.747

9 - 11 98 4.0% 0.571 0.592 0.561 0.622

11+ 56 2.3% 0.357 0.393 0.446 0.500

Table 6 Answer accuracy over expression length on MAWPS dataset

Expr. len Ins. num Prop% GTS GRU Transformer GSF

0 - 3 1305 55.5% 0.889 0.924 0.926 0.926

3 - 5 863 36.7% 0.778 0.869 0.866 0.874

5 - 7 107 4.5% 0.140 0.271 0.299 0.234

7 - 9 34 1.4% 0.206 0.324 0.324 0.353

9 - 11 30 1.3% 0.067 0.133 0.200 0.233

11+ 14 0.6% 0.071 0.143 0.071 0.071

Table 7 Equation accuracy over expression length on Math23k training set

Expr. len Ins. num Prop% GTS GRU Transformer GSF

0 - 3 4462 20.1% 0.993 0.995 0.995 0.995

3 - 5 11001 49.6% 0.989 0.993 0.994 0.994

5 - 7 4407 19.9% 0.988 0.990 0.992 0.992

7 - 9 1349 6.1% 0.987 0.996 0.996 0.998

9 - 11 574 2.6% 0.974 0.997 1.000 0.998

11+ 369 1.7% 0.908 0.927 0.962 0.995
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Table 8 Typical cases translated into english. The expressions between brackets are the corresponding midfix expressions of the models’ output

Case 1: Mr. Wang bought n0 shares of a certain stock at n1 yuan per share and sold them at n2 yuan per share. He was required to pay a
commission of n3 of the transaction amount (both purchase and sale), how much did Mr. Wang actually earn from buying and selling stocks
this time?

ELECTRA-GTS: − × ×n2n0 − 1n3 × n2n0 [(n2 × n0) × (1 − n3) − n2 × n0]

GSGSF: − × ×n2n0 − 1n3 × ×n1n0 + 1n3 [(n2 × n0) × (1 − n3) − (n1 × n0) × (1 + n3)]

Case 2: The ticket price of a handball game is n0 yuan. The ticket price of a swimming game is n1 yuan less than the n2 times the ticket price
of a handball game. How much more expensive is the ticket price for a swimming game than that of a handball game?

ELECTRA-GTS: − × n0n2n1 [n0 × n2 − n1]

GSGSF: − − ×n0n2n1n0 [(n0 × n2 − n1) − n0]

Case 3: In a parking lot, there are n0 cars and motorcycles. If there is a total of n1 wheels altogether, where each car has n2 wheels and each
motorcycle has n3 wheels, what is the number of motorcycles?

ELECTRA-GTS: ÷ − ×n0n2n1n3 [(n0 × n2 − n1) ÷ n3]

GSGSF: ÷ − ×n0n2n1 − n2n3 [(n0 × n2 − n1) ÷ (n2 − n3)]

samples with medium expression lengths and our decoder
has a greater advantage in handling difficult samples.
Surprisingly, on the Math23k test set, GSF performs better
on samples with expression lengths over 11 than that on
samples with expression lengths between 7 and 11. This
may be due to the consistency of the MWP types in
the training samples and testing samples with expression
lengths over 11. In the MAWPS dataset, the number
of samples with expression lengths over 5 is only 185,
accounting for only 7.2% of the total. In addition, due to
the use of five-fold cross validation, the number of training
samples must be multiplied by 4/5, resulting in fewer
training samples. All of these make each model perform
poorly on these samples.

In deep learning, a prerequisite for the model to be
able to solve a certain kind of sample is that it can fit
such kind of sample. Fitting samples means that the model
generalizes the training samples into a variety of templates,
and then the model can solve the problems by recalling
those templates. Table 7 reports the fit of the model on
the Math23k training set, where the equation accuracy in
the training set can demonstrate the fitting ability of the
models. In our model, the decoder is designed with long-
range information acquisition (goal selection operation)
and timely information updating (goal feedback operation)
mechanisms. When the mechanism of model computation
is sufficiently complex, flexible, and not redundant, it
is possible to solve more problems by summarizing and
memorizing more templates in training. From this point of
view, an essential reason why GTS, GRU, and Transformer
do not perform as well as GSF on samples with long
expressions is that these three models are inferior to GSF
in fitting long-expression samples. Namely, GTS, GRU
(both with limited historical information acquisition), and
Transformer (with only long-range information acquisition

mechanism) remembered fewer templates than GSF during
training.

5.4 Case study and visualization analysis

Further, we conduct case studies on expressions generated
by our model and ELECTRA-GTS and visualization of
model decoding in these cases. Three cases are provided in
Table 8. Our analyses are summarized as follows:

• From Case 1, it can be seen that ELECTRA-GTS
generates the correct left subtree “× × n2n0 − 1n3”
at the beginning, but generates the wrong right subtree
“×n2n0”, which demonstrates that the structure of GTS
prevents it from getting sufficient information about the
previous nodes. Instead, our model is able to obtain
sufficient information from previous nodes and finally
generates the correct solution for this MWP.

• From Case 2, it can be seen that the first goal generated
by ELECTRA-GTS is to find the ticket price of a
swimming game, while the first goal generated by our
model accurately answers the main question posed by
the MWP to find the difference of two ticket price, and
our model subsequently solves this MWP correctly. The
difference between these two first goals indicates that
MFN in our model can generate goal vectors with better
representations than the two-layer gated-feedforward
network of GTS.

• Case 3 is the sample presented in the section
Introduction on which GTS made mistake. We can
find that our model solves this problem correctly, which
shows that the Goal Selection and Feedback does
ameliorate the shortage of GTS.

Figures 7, 8 and 9 are the visualization heatmaps of our
model’s decoding process in Case 1, Case 2 and Case 3
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Fig. 7 Visualization of model
decoding in case 1

respectively. In the heatmap of Goal Feedback Operation,
the shade of the box color indicates the value of the update
gate gk

i , that is, how much information of the last generated
node yk is fed back to the ith goal. In the heatmap of Goal
Selection Operation, the shade of the box color indicates
the value of the selection weight ak

i , that is, how much
information is selected from the ith goal by the new goal
qk+1.

Firstly, it can be seen that the first few goal vectors are
updated frequently in Goal Feedback Operation. Because
the first few goals are the parent goals of subsequent new
sub-goals. When a sub-goal is solved, its parent goal is
also solved partially and updated to inform the subsequent
decoding process. An interesting point is that after the last
math token is generated (the last row in each heatmap of

Goal Feedback Operation), all parent goals are completely
updated (gk

i ≈ 1), and then the ending token “EOS”
is generated. Next, in the Goal Selection Operation, the
selection range of the new goal often includes its nearby
operator, which is its parent node in the binary tree
corresponding to the math expression. This shows that the
neural model can still learn the tree structure in the math
expression without the explicit tree structure.

6 Conclusion

In this paper, we propose a novel decoder that is more
suitable for MWP tasks than GTS, especially for long
math expressions. Our model uses Goal Selection and

Fig. 8 Visualization of model
decoding in case 2
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Fig. 9 Visualization of model
decoding in case 3

Feedback and Multilayer Fusion Network for each decoding
step, allowing sufficient history information for decoding
and better representation for each hidden state. Combining
the ELECTRA language model with our decoder, the
experimental results demonstrate that our model indeed
overcomes the shortcomings of GTS very well and
outperforms the previous SOTA systems. For future work,
we will focus on improving the generalization of the model
to make it perform better on complex samples with small
sample sizes.
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