
https://doi.org/10.1007/s10489-022-04249-x

Modeling opponent learning in multiagent repeated games

Yudong Hu1 · Congying Han1 ·Haoran Li1 · Tiande Guo1

Accepted: 6 October 2022
© The Author(s) 2022

Abstract
Multiagent reinforcement learning (MARL) has been used extensively in the game environment. One of the main challenges
in MARL is that the environment of the agent system is dynamic, and the other agents are also updating their strategies.
Therefore, modeling the opponents’ learning process and adopting specific strategies to shape learning is an effective way to
obtain better training results. Previous studies such as DRON, LOLA and SOS approximated the opponent’s learning process
and gave effective applications. However, these studies modeled only transient changes in opponent strategies and lacked
stability in the improvement of equilibrium efficiency. In this article, we design the MOL (modeling opponent learning)
method based on the Stackelberg game. We use best response theory to approximate the opponents’ preferences for different
actions and explore stable equilibrium with higher rewards. We find that MOL achieves better results in several games with
classical structures (the Prisoner’s Dilemma, Stackelberg Leader game and Stag Hunt with 3 players), and in randomly
generated bimatrix games. MOL performs well in competitive games played against different opponents and converges to
stable points that score above the Nash equilibrium in repeated game environments. The results may provide a reference
for the definition of equilibrium in multiagent reinforcement learning systems, and contribute to the design of learning
objectives in MARL to avoid local disadvantageous equilibrium and improve general efficiency.

Keywords Multiagent reinforcement learning · Repeated game · Opponent modeling

1 Introduction

The interaction and learning process of multiple agents in
game environments has been an important area of research.
However, current learning algorithms for agents in non-
cooperative game environments usually lack generalization
capabilities. Before the proposal of machine learning and
reinforcement learning, this topic was usually discussed as
part of game theory. The Theory of Learning in Games [1]
summarized the early relevant results. It mainly consisted of
the method of updating strategies using fictitious games [2]
and the application of stochastic dynamical systems theory
to explain the learning process [3]. SCE (self-confirming
equilibrium) [4], as an extension of the Nash equilib-
rium, is usually considered the convergence result of this
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learning process [5]. Equilibrium selection theory [6] noted
the core difference between the theory of learning and clas-
sical games: the existence of nonstationary equilibrium sets
can serve as an asymptotic description for the long-term
behavior of a system. Studies of this topic were usually
based on equilibrium as well as convergence, but numeri-
cal experiments were difficult to perform due to technical
limitations.

In recent studies, there have been good applications of
deep reinforcement learning in multiagent systems [7], par-
ticularly in cooperation scenarios [8]. Agent communication
has yielded many achievements in multiagent cooperative
systems [9, 10]. The goal is to achieve the efficient operation
of the system through higher-order communication between
agents [11]. Another important area of multiagent coop-
eration is value function decomposition [12]. QMIX [13]
combined with deep Q-learning has been successful in more
complex tasks. It also inspired many subsequent works on
value function decomposition [14, 15].

However, CTDE (centralized training decentralized
execution) class algorithms [16, 17] can only be applied
to cooperative tasks. For studies of competitive or mixed

/ Published online: 23 December 2022

Applied Intelligence (2023) 53:17194–17210

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04249-x&domain=pdf
http://orcid.org/0000-0002-3445-4620
mailto: hancy@ucas.ac.cn


environments, progress is more concentrated around zero-
sum games. A famous study concerned the AlphaZero
algorithm [18], which beat the top human players in Go. The
algorithm was able to learn the Nash equilibrium strategy in
a complete information game. Texas Hold’em, as a typical
example of an incomplete information game, was also
solved with the introduction of the CFR (Counterfactual
Regret Minimization) [19, 20] algorithm. Recent research
includes the application of DMC (deep Monte Carlo)
algorithms to solve the traditional Chinese game Fight the
Landlord, which involves both cooperation and competition
[21, 22].

Multiagent systems typically train strategies with
repeated games. Unlike the single-agent environment, the
reward received by each agent for taking an action in the
game is influenced by the actions of other agents. There-
fore, the difficulty is in making the learning process adapt to
the non-Markovian environment [23] and avoid poorer local
solutions [24]. Modeling other agents’ strategies is neces-
sary when there are no shared targets or communication.
DRON [25] is a method for estimating opponent strate-
gies using historical samples, but its shortcoming is that it
ignores changes in the opponent’s strategy. LOLA [26] was
the first method to attempt to model and shape the learning
process of opponents, and it had success in classical games
such as the Prisoner’s Dilemma. This inspired subsequent
work on opponent shaping (CGD [27] , COLA [28]). How-
ever, these algorithms focus only on transient changes in the
opponent’s strategy and usually require all agents to adopt
the same learning behavior. The advantages are that they are
easy to implement and have good convergence guarantees
for the Nash equilibrium. The problem is that short-term
modeling may lead to local results such as an inferior Nash
equilibrium. A balance between instantaneous rewards and
opponent shaping is difficult to achieve.

In this paper, we design an algorithm based on MOL
(modeling opponent learning), which uses best response
theory to estimate the stable outcome of the opponent
learning process and adopts specific strategies. MOL is
executed in two phases. The goal of the first phase is to
explore the opponent’s preferences for different actions, and
the goal of the second phase is to learn stable equilibrium
with higher rewards. We find that MOL has good
convergence properties, and achieves good results in some
classical games (the Prisoner’s Dilemma game, Stackelberg
Leader game [29], Pennies matching game and Tandem
game) as well as in randomly generated bimatrix games.
Most of the algorithms that can be applied to two-agent
games will fail in scenarios with more agents. However, in
the multiagent Stag Hunt experiment we found that MOL
can also be effective in scenarios with more than two agents.

MOL also achieved higher average rewards in a competitive
game environment and simultaneously improved the social
welfare of the system. These experiments show that MOL
improves over the original algorithms when dealing with
diverse game environments or opponents.

The main contributions of this article are summarized as
follows.

1) This paper is the first to propose a MARL algorithm
(MOL) from the perspective of modeling the long-
term learning process of the opponent. MOL not
only improves efficiency but also avoids using private
information from other agents in the training process,
which shows that the algorithm is efficient and
generalizable.

2) We provide theoretical support for the convergence
results of the two stages of MOL. The reward of the
stable outcome obtained by MOL will not be lower
than a Nash equilibrium.

3) For the first time, we introduce a competitive
experiment in evaluating the MARL algorithm, where
many algorithms based on opponent information
cannot be applied. Our algorithm achieves good results
in this experiment as well.

The remainder of this article is organized as follows.
Section 2 introduces related works. Section 3 provides
basic concepts about repeated games, learning systems, and
opponent modeling to help explain the design of MOL.
In Section 4, we describe in detail how the two stages
of the MOL algorithm work. The experimental evaluation
and results are discussed in Section 5. Finally, Section 6
concludes this work.

2 Related work

The application of reinforcement learning in decentralized
multiagent systems has become a popular research area
[30–32]. Algorithms applied to adaptive strategy learning
in a noncooperative game environment have achieved
remarkable success. The convergence of these algorithms
in a general game environment were the main early results.
WoLF (Win or Learn Fast) [33] successfully achieved
the convergence of the Nash equilibrium in 2-dimensional
matrix games. The AWESOME (Adapt When Everybody is
Stationary, Otherwise Move to Equilibrium) [34] algorithm
extended this result to the high-dimensional case. In both of
these algorithms, convergence is achieved by starting from
a stochastic initialization and improving the strategy in the
direction of equilibrium. The Nash equilibrium has good
stability and usually corresponds to dominant strategies.
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Therefore, these algorithms can learn the best response of
a static opponent, and converge to the Nash equilibrium in
self-play.

To cope with the diversity of opponent models in prac-
tical applications, theoretical research based on opponent
modeling has made new progress. Unlike WoLF, these algo-
rithms need to build a predictive model of the opponent’s
strategy and select actions based on that model. DRON [25]
based on DQN (deep Q-network) [35] was an early attempt
to estimate the opponent’s strategy using neural networks
[36, 37]. However, DRON has limitations because it cannot
predict changes in the opponent’s strategy. The efficiency
improvement over DQN is minimal, and the algorithm can
only be applied in certain specific environments. Similar
works have predicted the reward functions of other agents
(bottom-up MARL) [38].

A number of subsequent studies attempted to model and
shape the learning process of other agents. LOLA [26] is
one of the works that have made landmark breakthroughs.
By constructing a gradient algorithm based on a first-
order differential approximation of the opponent’s strategy
updates, LOLA achieves cooperation in the Prisoner’s
Dilemma game. The SOS [39] (stable opponent shaping)
algorithm combines LOLA with LookAhead [40] from
the perspective of differential games to obtain better
convergence results. The subsequent work COLA [28]
improved this algorithm, and the core of its effectiveness
is to guarantee the consistency of the agent’s estimation
of the opponent’s learning process. Combining it with the
trust domain algorithm MATRL [41], and the meta-game
algorithm Meta-MAPG [42] has also yielded good results.
This class of methods also includes SOM [43] and PGP
[44]. All of these methods use the propagation of gradients
with approximations to changes in the opponent’s strategy.

Although these algorithms have achieved good results in
many game environments, we point out two aspects that
could be improved. The first is that most of these approaches
are based on a model of instantaneous changes in the

opponent’s strategy, and the convergence result depends
heavily on the consistency of higher-order lookahead. This
makes the efficiency of the algorithm sensitive to the
parameter settings, and the opponent’s strategy update
process. In addition, gradient-based algorithms require the
private information of other agents (the revenue matrix,
strategies and even Hessain matrix). Using this information
makes multiagent systems centralized or cooperative. This
can lead to some restrictions on the environment in which
the algorithm can be applied. Comparisons between prior
algorithms and MOL are listed in Table 1.

3 Repeated game environments and agent
learning systems

In this section, we present definitions of repeated games,
agent learning systems, and optimization objectives. We
also illustrate the design of MOL by comparing it with other
algorithms.

3.1 Repeated games with learning systems

Different definitions of concepts such as a state and action
space in MDP (Markov Decision Process) may lead to
different results for the algorithm. Therefore, we will
introduce the definition of a repeated game based on the
Markov game.

A Markov game is specified by a tuple G =<

S, U, P, R, O, n, γ >, which consists of n agents. In the
current state si ∈ S, each agent chooses its own action
ai ∈ A. The obtained joint action u ∈ U leads to a state
transition P(s′|s, u) : S × U × S → [0, 1] and assigns
different rewards ri to each agent as well as the observation
oi ∈ O. γ ∈ [0, 1) is the discount factor.

A repeated game can be viewed as the game above
repeated as time t → ∞. For round t of the game, the
observation oi

t obtained by agent i is the joint action ut as

Table 1 Comparisons between prior algorithms and MOL

Algorithm Convergence to NE Tandem Without private information Allow different algorithms

DRON [25] × × � �
INRL [26] × × � �
LOLA [26] � × � �
SOS [39] � � × ×
COLA [28] � � × ×
MOL � � � �

INRL is a class of algorithms that is summarized in [26]. Tandem game is an example commonly used in opponent shaping to test the stability of
algorithms. In this paper, we also consider whether the algorithm uses the private information of other agents (reward functions, true strategies)
and whether it allows other agents to adopt arbitrary learning methods
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well as its own reward ri
t (the reward is private information).

The state is si
t = ⋃

k=1,··· ,t
oi
k . To avoid an infinite increase in

the dimension of the state space, we assume that si
t = oi

t−1.
For each agent, the state transition function is determined by
the joint action composed of all agents and its own reward:
si
t+1 = oi

t = (ut , r
i
t ).

The general reinforcement learning algorithm is not
applicable to the above non-Markovian game system
because the state transition function is uncertain. The
iteration process of the RL algorithm is a combination of the
instantaneous reward and the reward expectation at the next
moment:

Q(st , at ) ← Q(st , at ) + α[Rt(st , at ) + γE[Q(st+1,

at+1)] − Q(st , at )], (1)

where st+1 ∼ P(st , at ). However, in a multiagent system
since the reward in each round is influenced by the actions
of other agents (A−

t ), it becomes E
[
Q

(
st+1, at+1, A

−
t+1

)]
.

Even if we know A−
t , A−

t+1 may be unsolvable (because
other agents are updating their strategies). If we consider
a reward-independent repeated game (the reward depends
only on joint actions), the above equation becomes:

Q(at ) =Rt(at , A
−
t ) + γ max

A
E[Qt+1

(A, A−
t+1(at , A

−
t ))],

(2)

which is influenced by subsequent rewards (the strategies of
other agents at the next moment A−

t+1 = A−
t+1(at , A

−
t )).

3.2 Strategies and equilibrium

There are two types of strategies: mixed and pure strategies.
A mixed strategy is actually a distribution built on the set of
actions A = {a1, · · · , an}, denoted as:
f : S → F(A), F (A) = (pa1 , · · · , pan), (3)

where
∑

pai
= 1. A pure strategy can be seen as a special

form of mixed strategy, where only one element in the action
set (ai) has a nonzero positive probability:

pai
= 1 and paj

= 0 , for j �= i. (4)

In this paper, we will train a pure strategy for the
agent instead of a mixed strategy. This is because our
algorithm is based on the exploration of the best response,
which is a pure strategy in most cases. Modeling pure
strategies can significantly reduce the dimension of the
prediction space. Additionally, training mixed strategies
requires gradient propagation in most cases, which uses the
private information of opponents (the reward function or
Hessian matrix) [45]. This article uses the same assumptions
as in the AWESOME [34] algorithm: only the actions of
all agents and their own rewards are observed. We also

perform an analysis of the algorithm performance based
on experiments in which only a mixed strategy equilibrium
exists.

The equilibrium is used to characterize the stabilization
point or convergence result in a game. The most important
definition is the Nash equilibrium (NE), which is also the
training objective of most algorithms. The NE is defined as
a strategy combination such that each agent’s strategy is the
best response to the other agents’ strategies. It is denoted as:

f ∗ = (f ∗
1 , . . . , f ∗

n ), ri(f ∗
i , f ∗−i ) ≥ ri(fi, f

∗−i ) fi �= f ∗
i ,

(5)

where f ∗−i is the joint strategy of the agents other than agent
i. Similarly, when all agents’ strategies are pure strategies
and are the best responses to each other, we have:

a∗ = (a∗
1 , . . . , a

∗
n), ri(a∗

i , a∗−i ) ≥ ri(ai, a
∗−i ) ai �= a∗

i , (6)

and the joint action a∗ is called a PSNE (pure strategy
Nash equilibrium). In 1996, Athey proved that when a game
satisfies the SCC (Single Crossing Condition), it has a
PSNE [46].

Other approaches to strategy selection will lead to
different equilibrium definitions, such as the correlated
equilibrium and Pareto equilibrium. The application of the
correlated equilibrium in meta-games [47] provided a good
solver for multiplayer general-sum games.

In classical game theory, an important example of agent
learning is the Stackelberg Leader game, which provides
the possible convergence results when the agent knows
that other players update their strategies by learning. It
contributes to the promotion of cooperative behavior in
repeated games [48].

According to the theory of the Stackelberg Leader game
(the game structure is given in Table 2), when the row
player knows that its opponent is engaged in a learning
process, it will find that choosing action U will lead the
opponent to an equilibrium (U,R), while choosing action
D will lead to (D,L). Based on this consideration, the row
player will choose U and thus ensure a reward of 3 for itself
at convergence. This means that (U,R) is more reasonable as
an equilibrium of an agent system with learning capability,
although (D,L) is a unique Nash equilibrium point.

Table 2 Stackelberg Leader game

L R

U (1,0) (3,2)

D (2,1) (4,0)
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3.3 Optimization objectives

In this section, we introduce the optimization objectives of
agents for different algorithms and give our motivation for
designing algorithms based on the best responses.

For agent i in a repeated game, the predicted accumulated
reward for action at is a combination of the instantaneous
reward and subsequent reward expectations:

Q̂(at ) = E[Rt(at |Â−
t ) + γ max

A
Rt+1(A|Â−

t+1) + · · · ]. (7)

Since the opponents’ strategy A−
t , A−

t+1 is updated,
the agent needs to approximate the above optimization
objective. A direct approximation is obtained by assuming
that Â−

t+m (m > 0) is independent of at , then we have:

argmax
at

Q̂(at ) = argmax
at

E[Rt(at |Â−
t )]. (8)

The agent is optimized for instantaneous rewards, and
it only needs to estimate the opponent’s current strategy.
Both the INRL and LOLA algorithms are based on this
assumption.

INRL [26] : This is also called a naive learner. The agent
optimizes its own reward by choosing the best response,
assuming that the opponent’s actions remain unchanged:
Â−

t = A−
t−1. We take a 2-player game as an example.

Assuming the joint action of agents 1 and 2 at the current
moment t is (at , bt ), if agent 1 is a naive learner, then its
action at t + 1 is

at+1 = argmax
a∈A

r1(a, bt ). (9)

If we take moment t as a starting point and assume that
the opponent is also undergoing a learning process, then
INRL optimizes the reward at moment t + 0 (when the
opponent has not changed).

LOLA, SOS, COLA : This class of algorithms is based
on the premise that the opponents are also updating their
strategies, so that when the moment shifts from t to t + 1,
the agent needs to estimate the changes in the opponents’
strategies and predict the next joint actions. We assume that
at moment t the strategy f (θ1t ) of agent 1 is controlled by a
parameter θ1t and agent 2’s strategy f (θ2t ) is controlled by
θ2t . Then, at the next moment t + 1, the strategy parameter
of agent 2 will become

θ2t+1 = θ2t + �θ2. (10)

Therefore, if agent 1 wants to optimize its reward at the
next moment, its strategy parameter should become

θ1t+1 = argmax
θ1

R1(θ1, θ2t + �θ2). (11)

LOLA implements this training process by assuming that
the opponent is a naive learner and using the first-order
approximation of �θ2:

�θ2 = ∇θ2R
2(θ1, θ2) · η, (12)

(where η is a constant), which achieves good results in the
Prisoner’s Dilemma game. As we can see from the previous
discussion, the LOLA class algorithm considers the reward
at moment t + 1 as the optimization objective (when the
opponent has changed its strategy according to its learning
process).

The above algorithms consider only instantaneous
rewards and ignore the effects of actions on other agent
strategies. Since estimating the opponent’s strategy at each
subsequent moment is a complex process, we can derive
a stable point of the strategy change process with best
response theory.

Best Response : The best response is an important
reference for agents when making strategic choices. It has
good properties: the best response allows us to obtain the
maximum reward when the agent has a known opponent
strategy. If in a joint action, (a, b) ∈ A × B, both actions
are the best response to the other action, that is:

a = argmax
a′∈A

r1(a′, b) b = argmax
b′∈B

r2(a, b′), (13)

then the PSNE has been reached.
The best response is also connected to the fixed point of

learning. If there exists T1 and A−
t ≡ A−

0 for t > T1, then
the agent’s strategy will converge to its best response.

lim
t→∞[at |(A−

t ≡ A−
0 )] = argmax

A

r1(A, A−
0 ). (14)

When the discount factor γ is not sufficiently small, we
can give an approximation of the accumulated reward:

Q̂(a0) = R(a0|A−
0 ) + γR(a0|A−

0 ) + · · ·
= (1 + γ + γ 2 + · · · )R(a0|A−

0 ),
(15)

where A−
0 is the joint best response (BR) according to a0.

Then we have

argmax
a0

Q̂(a0) = argmax
a0

R(a0|A−
0 ), A−

0 = BR(a0). (16)

Without restricting the learning rate δ, we can define
the best response as the opponent strategy at moment ∞.
Therefore, modeling the best response of the opponent can
be seen as optimizing the reward at moment t + ∞.

4Modeling opponent learning with two
phases in multiagent repeated games

To implement the modeling and shaping of the opponent
learning process, we design an algorithm named MOL
(Modeling Opponent Learning). It can be divided into
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two phases. In the first phase, the agents optimize the
instantaneous reward to explore the game structure as well
as the best response of the opponent. In the second phase,
the agents guide the learning process of the opponent to a
stable point with a higher fixed reward.

4.1 Phase I of MOL

Phase I of MOL (MOL-1) starts from a random initializa-
tion, where the agent does not have any information about
the game structure or the opponent. Thus, the objective of
MOL-1 is to explore the game structure and the opponents’
preferences for different actions. We denote the opponents’
joint action at moment t as a−

t . At the end of each round
of the game, the agents are able to observe the joint action
(at , a

−
t ) and their own rewards ri(at , a

−
t ). In the first phase

we create a Q-table to record the rewards for taking a certain
action when the opponents’ action is fixed (approximating
the structure of the reward matrix for each agent). We denote
the agent’s expected reward as q̂(a|a−) for taking action a

when the opponents are determined to take action a−, and
we denote the actual value by r(a|a−).

Lemma 1 q̂(a|a−) → r(a|a−),∀a ∈ A, a− ∈ A−as t →
∞.

Proof Denote N(a, a−) as the number of times the
trajectory passes s(a, a−), then

∀a ∈ A, a− ∈ A−, N(a, a−) → ∞. (17)

q̂i+1(a|a−)

= q̂i (a|a−) + δ(r(a, a−) − q̂i (a|a−))

= δr + (1 − δ)q̂i(a, a−)

= δr + (1 − δ)(δr + (1 − δ)q̂i−1(a|a−))

= δ(1 + (1 − δ) + · · · )r(a, a−) + (1 − δ)nq̂0

→ r(a, a−) n → ∞

(18)

which implies q̂(a|a−) → r(a|a−), thus Lemma 1
holds.

We implement this process using the following approach:
Before round t , the agent predicts the opponents’ actions
â−
t based on the previously tracked information (taking a

greatest-likelihood approach). Then, the agent chooses the
best response based on q̂ and â−

t . We assume that the
set of joint actions corresponding to the PSNE is U0 ⊂
A1 × · · · × An, then the prediction convergence set is Û0 ⊂
Â1 × · · · × Ân.

Lemma 2 Assuming that random exploration rate γ → 0
as the number of iterative steps increases (γ ≈ 0 when
T > N). The joint action Ut converges to PSNE set U0,

when at moment t (> N) agents’ joint prediction of the
opponent’s action is in Û0.

Proof We assume that (a0, a
−
0 ) is a PSNE. According to

Lemma 1 we know that the Q-table eventually converges to
the true reward matrix q̂t (a|a−) → r(a|a−). Then we have

a0 = argmax
a′∈A

r(a′|a−
0 ) = lim

t→∞ argmax
a′∈A

q̂t (a
′|a−

0 ). (19)

Assuming that the prediction of joint action is the same
for all agents as û0 = (â1, · · · , ân) ∈ Û0 after the t th step.
At this time ∀i = 1, · · · , n,

lim
t→∞ â−i

t = (a−i
0 ) =⇒ lim

t→∞ ai
t = BR(a−i

0 ) = ai
0. (20)

Similarly we have

lim
t→∞ a−i

t = a−i
0 . (21)

Thus we prove that the convergence of the prediction is a
sufficient condition for the convergence of the actual joint
action. Considering that

â−i
t = (a−i

0 ), a−i
t = a−i

0 =⇒ â−i
t+1 = (a−i

0 ), (22)

therefore it is also a necessary condition. At moment t we
assume that exploration rate γ ≈ 0, and every agent’s
prediction is corresponding to a PSNE u0 = (a1, · · · , an).
Then st+1 = ut = u0 and the prediction is unchanged. So
the joint action converges to u0 ∈ U0.

In the MOL-1 period we also want to explore the learned
best response of the opponent when the agent takes different
actions. Therefore, we need to increase the frequency of
corresponding nonequilibrium actions. Our approach is to
use the UCB (upper confidence bound) [49] function and to
focus on exploration at the beginning of the training process.
The UCB was chosen as the sampling function because
of its ability to improve the exploration rate compared
to the EI (expected improvement), and PI (probability of
improvement), and thus allow for more accurate estimations
of the best responses of other agents. The action of an agent
at moment t is selected by:

at = argmax
a∈A

(qt (a|â−
t ) +

√
2 lnN

na

), (23)

where N denotes the total number of rounds and na denotes
the number of rounds in which the agent takes action a.

We give a proof of the algorithm’s convergence only for
games with 2 players, due to a nice property of such games:
when there are both pure and mixed strategy equilibrium in
the game, there must be a linear combination relationship
between them. Most existing algorithms, such as DRON,
LOLA, and SOS, are based on the background of two-
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player games. Additionally, solving the Nash equilibrium
for multiplayer general-sum games is an unsolved problem.

In the proof, we use the definition of the inferior action:
if for two actions a and b, regardless of the opponent action,
the reward for action a is never higher than that of b, then a

is said to be an inferior action.

Lemma 3 When there exists a unique pure strategy Nash
equilibrium (a, b), then for at least one of the agents it can
obtain the action corresponding to the equilibrium (a) by
repeatedly eliminating the inferior action.

Proof First, in a 2-dimensional bimatrix game, we may
assume that the unique pure strategy equilibrium is (L,U),
and that the other optional actions are (R,D). Since (L,U) is
a Nash equilibrium, the game has an equivalent matrix form
as in Table 3, where M ≥ 0 and N ≥ 0.

Since (L,U) is the only pure strategy equilibrium, c ≥
a and d ≥ b cannot be both true (otherwise (R,D) is
also a Nash equilibrium). It may be assumed that c < a,
then, D is an inferior strategy for the row player, and the
action under equilibrium can be obtained by eliminating the
inferior strategy. For the case in which the agent has more
than two possible actions, we can obtain the elimination
method similarly using the dominance relation of the action
combination.

Theorem 1 MOL-1 converges to Nash equilibrium in
games with 2 players.

Proof

1) When there is a unique pure strategy Nash equilibrium
of the game, we may assume that (a, a−) is the PSNE,
and let b = a−. From Lemma 3 we can see that there
must be an agent at this time, remembered as agent
1. When the set of its available actions is A∗ (A∗ is
derived by eliminating the inferior strategy of A), for
each b ∈ B∗, a is the best response of b. From Lemma
1 we have q̂t (a, b) → r(a, b), which indicates

∀b ∈ B∗, q̂t (a, b) ≥ q̂t (a
′, b) (∀a′ ∈ A∗, t → ∞).

(24)

At this point, regardless of the value of b̂, we have
q̂t (a, b̂) = max

a′∈A∗ q̂t (a
′, b̂). Thus, when t → ∞, the

action of agent 1 will converge to a. Then for agent 2,

Table 3 Bimatrix game with a unique PSNE

L R

U (0,0) (a,-M)

D (-N,b) (c,d)

the opponent’s action prediction â will converge to a.
And (a, b) is a PSNE, so

q̂t (b, â) = r(b, a) = max
b′∈B∗ q̂t (b

′, â). (25)

Then the action of agent 2 will converge to b, which
implies MOL-1 converge.

2) When game has more than one PSNE, we want
to prove that it will converge to one PSNE with
probability 1 (as t → ∞). We assume that γ ≈
0 when t > T . The action of agent 1 is selected
by max

a∈A
qt (a, b̂) = max

a∈A
r(a, b̂) from Lemma 1. We

consider the set of pure strategy Nash equilibrium
U0 = {(a0, b0), (a1, b1), · · · } ⊂ A × B. When the
joint prediction pt = (ât , b̂t ) = (ai, bi) ∈ U0, from
Lemma 2 we have ut+1 = (ai, bi), and (ât+1, b̂t+1) =
(ai, bi), which means when (ât , b̂t ) ∈ U0 algorithm
reaches a fixed point. We assume that the unstable
point set is the complementary set U0, and there exists
T0, Q = R when t > T0 for all players. And we
assume that there exists T > T0, pT = (ai, bi) while
pT +1 = (aj , bj ) i �= j . Since pT is solved by using
the previous track sample for the maximum likelihood,
âT �= âT +1 ⇒ NT

ai
= NT

aj
(NT

ai
means total number of

occurrences of ai before moment T ).

pT = (ai, bi) and pT +1 = (aj , bj )

⇒ NT
ai

= NT
aj

and NT
bi

= NT
bj
.

(26)

Due to the presence of random exploration in the
algorithm controlled by the UCB function, we have

lim
t→∞ p(Nt

ai
= Nt

aj
, Nt

bi
= Nt

bj
) = 0. (27)

Thus the joint action will not cycles between
multiple pure strategy equilibrium. Considering that
(ai, bj ) or (aj , bi) are not available as a result of
the convergence of the algorithm, we only need to
exclude the case where the state cycles between non-
stable points. For the case ût = (ai, bj ), there exists
a minimum n satisfying ût+n �= (ai, bj ). Similarly to
equation (29) we have

lim
t→∞ p(ât �= ât+1 , b̂t �= b̂t+1) = 0. (28)

So we can assume that ût+n = (ai, bm). Considering
that random exploration rate γ → 0 and bi is the best
response for ai , we have

ût , · · · , ût+n−1 = (ai, bj ) =⇒ bt , · · · , bt+n−1 = bi,

(29)

which implies bm = bi, ût+n = (ai, bi) ∈ U0.
Thus we prove that the joint prediction converges to
the set corresponding to PSNE. So when t → ∞ the
joint action will reach PSNE set U0 with probability 1,
which implies MOL-1 converge.
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3) In the previous discussion of the strategy section we
mentioned that for each agent in a mixed equilibrium,
its optional actions correspond to an identical reward.
Thus for a game in which there is no pure strategy
equilibrium (the existence of a mixed equilibrium is
proved by the existence of NE), the corresponding set
of joint actions is A′ × B ′. For agent 1, when t →
∞, the reward of actions in A′ must be higher than
those not in A′. So the joint action will be centred on
A′ × B ′. Since only mixed strategy Nash equilibrium
exist, when b ∈ B ′,

∀a ∈ A′, r(a, b) ≡ r0. (30)

So agent 1 will only pick among certain actions with
almost identical Q-values.

Purification theorem of Nash equilibrium
(Harsanyi [50]): for almost all games G, the following
statement is true. Let s = (s1, · · · , sn) be the mixed
equilibrium, and G∗(ε) be a family of games whose
revenue matrix differs from G by only a small pertur-
bation ε with G∗(0) = G. Then there exits a family
{s(ε)} of n-tuples of mixed strategies for any ε, s(ε) is
an pure strategy point in G∗(ε), with limit

ε→0
s(ε) = s.

This shows that the mixed equilibrium can be
viewed as the limit of a sequence of pure strategy
equilibrium. Since the algorithm can converge to
a pure strategy equilibrium, it can also converge
asymptotically to a mixed equilibrium, which implies
MOL-1 converge.

4.2 Phase II of MOL

In the MOL-2 phase, our strategy choice is based on the
model of the opponents’ learning process. To predict the
expected stable reward for each action, we evaluate the
reward after predicting the best response of the opponent
and then build a long-term value model. Our initialization of
the value Va is obtained from the weighted average of the Q-
value q(a0|a−) when the opponent reacts differently. This
process relies on the approximation of the best response for
each action in the first phase. The value function for action
a0 is defined as follows:

Va0 =
∑

a−∈A−
λa−q(a0|a−). (31)

The weight λa− is derived from the approximated
probability of different actions a− being the best response
learned by the opponent when the agent takes action a0.
To set a constraint on the process of value iteration to

ensure its convergence, we set the value of the joint action
corresponding to the Nash equilibrium converged to in the
first phase as fixed. Assuming that u0 = (a1, · · · , an) =
(ai, a−i ) is the Nash equilibrium converged to in the first
phase (for a mixed equilibrium, this is a component of the
equilibrium corresponding to the linear combination). We
define the value of the actions in this equilibrium Vai

as

Vai
= qi(ai, a−i ). (32)

This value is fixed, and when the value of any other
action is lower than it, that action will no longer be
considered among the agent’s optional strategies. The
choice of the agent strategy in each iteration step is based
on a linear combination of the long-term value V and
instantaneous Q-value:

at = argmax
a∈A

[βVa + (1 − β)q(a|â−
t )]. (33)

We use the value of β to control the long and short term
value weights thus ensuring the balance of convergence and
reward. The algorithm switches from the first phase to the
second after k rounds are performed. The initial value of
β is close to 1. When the value of β approaches 0, the
agent’s strategy will change back to greedy. Since we set the
Nash equilibrium to correspond to a constant action-value,
the algorithm will return to the result obtained in the first
phase. Therefore we can set a termination stepN and reduce
the weight of the long-term value β in strategy selection
when the agent finds that it is not converging to a better
result even after exceeding N steps in the second stage.
Eventually, convergence is ensured by returning to the Nash
equilibrium. If we consider the joint reward as the target, we
expect the score of the MOL-2 phase to improve compared
to that in the first phase. Additionally, if there is a significant
global optimum of the game, we expect the joint action to
avoid convergence to a local solution and reach the global
optimum.

Theorem 2 The average reward for the convergence result
of MOL-2 will not be lower than the Nash equilibrium
converged to in the first phase. Furthermore, if there exists
a joint action up that is the unique Pareto equilibrium of the
game, then MOL-2 will converge to up.

Proof If there exists a PSNE in the game, we can assume
that the pure strategy Nash equilibrium converged to in the
first phase is u0 = (a1, · · · , an), and its corresponding
reward is (r1, · · · , rn). At this point for agent 1, the value of
its action a1 is fixed at r1. Thus its preference will transfer
to other actions if the value is higher than r1. Since β1

is monotonically decreasing, when the algorithm converges
and β∞

1 > 0, the stable point converged to (a∞
1 , a∞−1) should
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satisfy that r∞
1 ≥ r1. Or with t → ∞, β1 → 0, at this point,

the convergence result of the algorithm is the same as the
first phase, so the convergence result will not decrease.

For a game with only mixed equilibrium, each optional
action in the equilibrium state corresponds to the same
reward. Therefore, no matter which action value is fixed
at the end of the first phase of MOL, its joint score is the
same as the equilibrium. And the convergence result of the
MOL-2 phase will not be lower than the fixed value.

When the Pareto equilibrium up exists uniquely, we
denote the joint action corresponding to this equilibrium
as up = (ai, a−i ) and the corresponding reward as (ri),
i ∈ {1, · · · , n}. At this point, for any of the joint action
(a′

i , a
′−i ), the reward has r ′

i ≤ ri . This shows that (ai, a−i )

is also a Nash equilibrium.
When the algorithm converges at (ai, a−i ) in the first

phase, it has become a fixed point due to its reward
maximum. When the first phase converges to another
equilibrium (a′

i , a
′−i ), (ai, a−i ) has a reward of r ′

i ≤ ri
as the expected optimal response of each other. Thus the
consensus of agents is (ai, a−i ) for a high-value state,
such that in the second phase they will jointly explore
this state and find that the reward meets expectations.
This indicates that the convergence result is up. Therefore
MOL-2 converges to Pareto optimality.

From Theorem 2 we can see that the convergence result
of the MOL algorithm is always better than some Nash
equilibrium. The global optimal solution can be obtained in
some special game structures. Therefore, the convergence
and efficiency of the MOL algorithm are guaranteed. The
pseudocode of MOL is given above.

The first phase of MOL can be seen as an exploration
step, where agents explore the preferences of other agents
on the basis of maintaining a greedy policy. In the second

Algorithm 1 Modeling opponent learning algorithm.

phase the agent uses the long-term value estimation Vai

obtained from the exploration combined with the Q-table
to form a new objective function. The prediction of â−

t is
obtained by the maximum likelihood method. The initial

Fig. 1 The training results of the
agent systems in the Stackelberg
Leader game using different
algorithms. The line with a joint
reward of 1.5 corresponds to the
unique Nash equilibrium (D,L)
and the line with a joint reward
of 2.5 corresponds to the
optimal result (U,R)
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Table 4 Prisoner’s Dilemma game

L R

U (0,0) (–1,2)

D (2,–1) (1,1)

value of β is close to 1 and will be multiplied by a
decreasing multiplier c = 0.99 in each round when MOL-2
does not converge. Therefore, it gradually decreases to 0 if
MOL-2 does not converge.

5 Experimental results and discussion

Our experimental setup is based on partially observed
repeated games. The agents do not have access to
information other than their own rewards and joint
actions. We conduct experiments from two perspectives:
the convergence efficiency when the agents adopt the same
algorithm and adaptability to other algorithms.

5.1 Classical games

(a) Stackelberg Leader game: We consider this game in
Table 2. In Stackelberg’s theory it is assumed that
the agents of the game are not homogeneous, but
are classified as leaders (who act first) and followers
(who act later). The convergence result (U,R) obtained
is also based on this assumption. In our experiment,
the goal is to converge to this equilibrium without
using the above assumption. This process can be
implemented because for the column player, the
preference of the row player is explored to be U → R
and D → L in the MOL-1 phase. Due to the higher

reward of r1(U,R), the column player will tend to
choose action U in the second phase, which leads to
the (U,R) result.

Figure 1 shows the training results in the Stackelberg
Leader game, where the joint reward represents the average
reward of the agent system in each episode (rollout). From
Fig. 1, we can see that DRON and LOLA do not converge
to a fixed point. MOL-1 and the other opponent shaping
algorithms (SOS, COLA) converge to NE (D,L). MOL-
2 algorithm obtains the expected result of the Stackelberg
game: the joint action converges to (U,R) and obtains an
average reward of 2.5.

(b) Prisoner’s Dilemma game (IPD): This is a classic
game related to social dilemmas (Table 4). There
is a unique Nash equilibrium (U,L) from the static
game perspective, but TFT (Tit for Tat) is a
better equilibrium concept in the repeated game
environment. This equilibrium corresponds to a
strategy of choosing to cooperate in the first round and
repeating the opponent’s previous round action in each
subsequent round. General algorithms converge to the
inferior local solution (U,L), while LOLA was the first
to achieve the TFT equilibrium. Similarly we want to
avoid reaching the local Nash equilibrium and instead
achieve cooperation. We need both agents to find that
cooperation is a strategy with a higher fixed reward
than that of acting greedily.

Figure 2 shows the training results in the Prisoner’s
Dilemma game. From Fig. 2, we can see that our algorithm
obtains the same result as LOLA in achieving cooperation in
the IPD. In contrast, the algorithms aiming to reach the Nash
equilibrium remain in the local inferior equilibrium (U,L).

Fig. 2 The training results of the
agent systems in the Prisoner’s
Dilemma game using different
algorithms. The line with a joint
reward of 0 corresponds to the
confrontation equilibrium (U,L)
and the line with a joint reward
of 1.0 corresponds to the
cooperation result (D,R)
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Table 5 Pennies matching game

L R

U (1,–1) (–1,1)

D (–1,1) (1,–1)

(c) Pennies Matching game: To test the applicability of
our algorithm to games with only mixed-strategy Nash
equilibrium, we perform a test with the classical
Pennies Matching game (Table 5). The only mixed
equilibrium in this game occurs when the agent
chooses two actions at random with equal probability.
We express the probability of an agent’s action in terms
of the frequency before each moment and test whether
it converges to 0.5.

Figure 3 shows the training results in the Pennies
Matching game (since the game is symmetric, we only
need to consider whether the strategy of agent 1 converges).
The result in Fig. 3 is consistent with our conjecture of
asymptotic convergence to the mixed equilibrium. MOL-2
has a loss of stability compared to the short-sighted MOL-
1 as well as the gradient-based algorithms (LOLA, SOS,
COLA), but does not have different convergence results. In
the subsequent randomly generated matrix games, we find
that our algorithm converges to a stable point with a higher
score than the equilibrium in games where only mixed
equilibrium exist. This supports the rationality of training
pure strategies.

(d) Tandem game: The Tandem game is mentioned in
the article on the SOS algorithm and serves as a
counterexample to the nonconvergence of the LOLA
algorithm. This game is characterized by the fact that
when both agents “arrogantly” shape the opponent’s
action, it leads to the worst equilibrium. The two
participants have the following loss function:

L1(x, y) = (x +y)2 −2x, L2(x, y) = (x +y)2 −2y.

(34)

When both x and y are positive integers, increasing
the value of their sum leads to a decrease in the reward.
Thus, x = y = 0 is the optimal solution to the game.
However, acting greedily or “arrogantly” shaping the
action of the opponent can lead to worse results.

We use this game environment to test the robustness of
the algorithm in the opponent shaping process. Figure 4
shows the training results in the Tandem game. The MOL
algorithm does not lead both agents to act “arrogantly”, but
eventually converges to an optimal result. It achieves the
same result as SOS and COLAwithout using the opponent’s
real strategy information.

(e) Stag Hunt game (with multiple agent) [24]: For
multiagent systems, when the number of agents
exceeds two, it leads to a significant increase in the
state space and more complex equilibrium. Therefore,
previous articles rarely include experiments with three
or more agents. We refer to the classic Stag Hunt game
(given in Table 6) and extend it to three agents:

Ri(Stag) =
{
4 if a−i = Stag, ∀a−i

−10 else

Ri(Hare) =
{
1 if a−i = Hare, ∀a−i

3 else

(35)

where i ∈ {1, 2, 3}. The previous algorithms were only
tested in the two-player Stag Hunt, and we applied
MOL to a multiagent scenario for comparison. The
results are shown in Fig. 5. It can be seen that MOL is
also effective in multiagent scenarios.

5.2 Randomly generated games

We examine the learning ability of an agent system with the
MOL algorithm in randomly generated games. We generate
2,000 bimatrix games, with the reward corresponding to
each of their joint actions being chosen from a determined
set of integers. We allow agent systems with different

Fig. 3 The training results of the agent systems in the Pennies Match-
ing game. The strategy probability parameters of actions L and R are
approximated by the frequency. The game has a unique mixed Nash

equilibrium P(A = L) = P(A = R) = 0.5. We can assume that
the system converges to this equilibrium when the strategy parameters
converge to 0.5
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Fig. 4 The training results of
the agent systems in the Tandem
game. The line with a joint
reward of 0 corresponds to the
optimal equilibrium x = y = 0

algorithms to be trained in these environments and record
their convergence results. Agents in this environment
do not have access to information about other agents
or their strategies. Therefore, avoiding a local inferior
Nash equilibrium is the main objective. We use the
Nash equilibrium with the highest average reward as the
theoretical optimal result.

Figure 6 shows the joint score for different algorithms
in randomly generated games. From the figure, we can see
that the joint score of MOL is higher and is close to the
optimal Nash equilibrium. This indicates that as a learning
agent system MOL is more efficient and robust.

We also record the performance of the algorithm in
response to different Nash equilibrium environments in
Table 7. r̄ is the joint score for the algorithm, r(NE) is the
joint reward for the optimal Nash equilibrium and k is a
parameter. Therefore, k = 0.9 in PE means that the joint
score of the algorithm is higher than 0.9 times the score of
the optimal pure strategy equilibrium. We find that MOL
achieves good results in exploring equilibrium that approach
or exceed the optimal Nash equilibrium reward. Training
pure strategies in game environments where only mixed
equilibrium exist does not cause a significant decrease in the
joint scores. Our algorithm achieves training results close to
the optimal Nash equilibrium in the general case.

Table 6 Stag Hunt

Stag Hare

Stag (4,4) (–10,3)

Hare (3,–10) (1,1)

5.3 Competitive environments

Since we cannot require agents to use the same learning
method in a repeated game environment, the ability to
cope with different opponents is also important. We
therefore also conduct an experiment for evaluating the
algorithm performance against different opponents. The
environment used is the same generated bimatrix game, but
random agents are used for training in each game. In this
environment the agents do not have access to the (learning)
strategy that the opponent will adopt and can only observe
joint actions after each round of the game. Algorithms based
on the private information of the opponent or on consistency
(SOS, COLA) cannot be applied in this scenario. There are
20,000 randomly generated games, each with two selected
agents (which may or may not use the same algorithm), that
are added to the training over 100 episodes. We evaluate the
performance of the algorithm from two perspectives. The
first is the average score (the results are shown in Fig. 7)
of the evolution process for agents with different algorithms
over 100 episodes (obtained by training in 20,000 matrix
games). This reflects the ability of the agents to adapt when
faced with a diverse set of opponents. From Fig. 7, we
can see that our algorithm achieves higher scores against
diversified opponents.

We also record the training results of each particular
combination of agents in randomly generated games. Since
the structure of the game is symmetric and randomized,
agents who perform better have stronger applicability
in noncooperative game environments. The experimental
results are presented in Fig. 8. From Fig. 8, we find that
MOL-2 does not receive a higher reward in a competitive
game environment when facing LOLA or MOL-1, two
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Fig. 5 The training results of the
agent systems in the Stag Hunt
game using different algorithms.
The line with a joint reward of 4
corresponds to the cooperation
equilibrium, and the line with a
joint reward of 1.0 corresponds
to the local disadvantage result.
The curve labeled MOL-2(MA)
represents the application of
MOL in multiagent Stag Hunt
(with 3 players)

Fig. 6 Results of agent systems
with different algorithms trained
in 2,000 random game
environments. The line labeled
best ne represents the average
reward for the optimal Nash
equilibrium in these games. The
joint score is obtained by
averaging the rewards for the
last episode

Table 7 The frequency of the convergence result that the algorithm scores above the optimal pure strategy equilibrium (PE) and mixed equilibrium
(ME) in randomly generated games

P(r̄ ≥ k · r(NE)) PE ME

k=0.99 k=0.9 k=0.5 k=0.99 k=0.9 k=0.5

algorithm MOL-2 0.862 0.863 0.943 0.775 0.854 0.946
MOL-1 0.708 0.738 0.897 0.503 0.761 0.999
INRL 0.300 0.364 0.826 0.464 0.736 0.999
DRON 0.299 0.455 0.847 0.450 0.642 0.986
LOLA 0.415 0.510 0.835 0.517 0.603 0.934
SOS 0.710 0.800 0.967 0.735 0.841 0.973
COLA 0.729 0.851 0.981 0.768 0.887 0.986

The probability P is represented by the frequency and k is a multiplier. The bold numbers are the maximum value of each column
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Fig. 7 The training results for
agents with different opponents.
The curves represent the scores
of the strategies learned by
different algorithms within 100
episodes when facing a random
opponent (averaged over 20,000
matrix games)

algorithms that aim for short-term rewards. However, MOL-
2 generally receives higher rewards against a variety
of opponents (and simultaneously makes the opponents’
rewards higher). We can see that MOL performs well in
striking a balance between increasing its own rewards and
maximizing social welfare (the average reward for the agent
system).

From the experiments above, we can see that MOL
achieves good results in terms of improving the agent
reward as well as social welfare. In the cooperative form
of the game, MOL can converge to an equilibrium with
higher joint rewards and effectively face different kinds
of opponents in competitive environments. Since MOL is
based on the best response (a pure strategy in most cases),
the stability of MOL is reduced in game environments

where only mixed equilibrium exists. However, we can
see from the experimental results that this does not affect
the final convergence results. Therefore MOL is more
suitable for application in the repeated game environment of
multiagent learning system, and as a baseline for opponent
modeling due to its prosociality as well as its generalization
capability.

6 Conclusion

This article proposes an MOL method for multiagent
repeated game environments. By modeling the stable points
of the opponent learning process and taking actions to
guide the opponent, MOL can achieve a solution with

Fig. 8 Training results against
different opponents. The row
labels indicate the algorithm
used by the agent, and the
column labels indicate the
algorithm used by the opponent.
The values in the corresponding
cells indicates the score of that
agent against this class of
opponents. A cell with a lighter
color indicates a higher score
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a high reward equilibrium. Since there is no restriction
on the opponent’s model during training and no private
information of the other agents is used, MOL is more
feasible for noncooperative game environments than other
algorithms. We provide a proof of the convergence of MOL
by dividing the algorithm into two looping phases and
using the Nash equilibrium as a boundary constraint. MOL
achieves good results in the classical game structure as
well as in the randomly generated games, and obtains a
higher joint score when dealing with different opponents.
Additionally, we discuss the definition of the equilibrium
concept in repeated games with learning processes. We
argue that there are better convergence results that can
be used as optimization objectives for multiagent systems
and establish the relationship between our algorithm and
Pareto optimality. We hope to provide a reference for the
design of optimization objectives in the learning processes
of agent systems, and to help build a general model for
noncooperative game environments.
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