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Abstract
In recent years, convolutional neural networks (CNNs) have been used in many fields. Nowadays, CNNs have a high
learning capability, and this learning capability is accompanied by a more complex model architecture. Complex model
architectures allow CNNs to learn more data features, but such a learning process tends to reduce the training model’s ability
to generalize to unknown data, and may be associated with problems of overfitting. Although many regularization methods
have been proposed, such as data augmentation, batch normalization, and Dropout, research on improving generalization
performance is still a common concern in the training process of robust CNNs. In this paper, we propose a dynamically
controllable adjustment method, which we call LossDA, that embeds a disturbance variable in the fully-connected layer.
The trend of this variable is kept consistent with the training loss, while the magnitude of the variable can be preset to
adapt to the training process of different models. Through this dynamic adjustment, the training process of CNNs can be
adaptively adjusted. The whole regularization process can improve the generalization performance of CNNs while helping
to suppress overfitting. To evaluate this method, this paper conducts comparative experiments on MNIST, FashionMNIST,
CIFAR-10, Cats vs Dogs, and miniImagenet datasets. The experimental results show that the method can improve the model
performance of Light CNNs and Transfer CNNs (InceptionResNet, VGG19, ResNet50, and InceptionV3). The average
maximum improvement in accuracy of Light CNNs is 4.62%, F1 is 3.99%, and Recall is 4.69%. The average maximum
improvement accuracy of Transfer CNNs is 4.17%, F1 is 5.64%, and Recall is 4.05%.

Keywords Convolutional neural networks · Fully-connected layer · Dynamic adjustment · Generalization performance ·
Overfitting

1 Introduction

In recent years, convolutional neural networks (CNNs)
have been applied in many areas of image processing,
such as image classification, object recognition, and object
detection [1–3]. Nowadays, CNNs have a high learning
capability, and this learning capability is accompanied by a
more complex model architecture. Although complex model
architectures allow CNNs to learn more data features, such
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learning tends to reduce the model’s ability to generalize
to unknown data and may be associated with overfitting
problems.

Numerous regularization methods have been proposed to
improve generalization performance. However, almost all
of these methods are applied at the input and intermediate
layers of the model architecture, and each of them has
some drawbacks. For example, data augmentation [4]
is a regularization method applied to the input layer
preprocessing and based on various feature-preserving
transformations (e.g., image scaling, rotation, and random
cropping) to generate additional training samples to enrich
the training data. However, once the new training data
is generated, it cannot be added or subtracted based on
the training condition. A commonly used regularization
method for convolutional layers is batch normalization(BN)
[5], which optimizes the landscape based on normalizing
the mean and variance of each small batch of features to
make it smoother. This regularization method is usually
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fixed during the construction of the model architecture
in terms of the position and number of features used,
and the BN is hardly ever adjusted during the training
process. Another commonly used regularization method is
Dropout [6], where a subset of units is randomly dropped
during each training iteration while the corresponding layer
is regularized. Although this adaptation causes dynamic
adjustment during training, the adjustment is done in a
random manner, which means the effect of the adaptation
may be subject to corresponding uncertainty. Similar to
Dropout is the DropFilterR [7] regularization method.
Unlike Dropout, DropFilterR introduces greater uncertainty
by omitting various elements. These methods are almost
never adjusted during the training of CNNs, and the
intensity of the adjustment is not dynamic and controllable.

To counteract the drawbacks of the above methods, a
dynamic and controllable regularization method based on
fully-connected layers, called LossDA. is proposed in this
paper. The dynamic adjustment changes with the training
process and can be set in advance to produce the desired
regularization. This regularization is not static and random,
but a dynamic and controllable adjustment process. The
regularization in this paper has two characteristics. First,
the method is based on the fully-connected layer of CNNs,
which does not colide with other methods in the input
and intermediate layers, such as data augmentation and
batch normalization. This can help the method work with
other methods to further improve the performance of the
model. Second, the method is regularized by embedding
a disturbance variable in the fully-connected layer. The
trend of this variable is consistent with the training loss.
The magnitude of this variable can be adjusted in advance
to match the training process of different models. This

controlled adjustment process adaptively adjusts the fit of
the CNNs to the training process.

The concrete implementation of the method is shown in
Fig. 1. It consists of three parts, namely the LM module, the
transfer operator, and the DA module. During the training
process, the LM module automatically records the training
loss generated for each new iteration and generates the
disturbance variable values for the next iteration of training
by the control parameter R in the module. The newly
generated disturbance variables are entered into the DA
module embedded in the fully-connected layer through the
transfer operator to participate in the adjustment of the next
training process. Throughout the process, the values of the
disturbance variable change as the training loss changes.
Moreover, the parameter R can be adjusted according to
different models to achieve the best regularization effect
from the training process. To evaluate this approach, we
conducted tests comparing different CNNs on MNIST [8],
FashionMNIST [9], CIFAR-10 [10], Cats vs Dogs [11],
and miniImagenet [12] datasets, and used accuracy, F1,
recall, and precision metrics data to evaluate the results.
The experimental results show that the method can improve
the model performance of commonly used Light CNNs and
currently popular Transfer CNNs (InceptionResNet [13],
VGG19 [14], ResNet50 [15], and InceptionV3 [16]). The
adjustment strength of this method adaptively adjusts the
training process, which improves the generalization of the
model and helps to suppress overfitting.

The remainder of this paper is organized as follows:
Section 2 begins with a look at the works associated
with this method. Section 3 mainly presents the proposed
method, LossDA. Section 4 describes the dataset and
relevant details of the experiments. Section 5 contains the

Fig. 1 The framework diagram of LossDA based on the fully-
connected layer of the convolutional neural network (CNN). X is the
input data of CNN. Conv 1 and Conv i denote the first convolutional
layer and the i-th convolutional layer of the volume neural network,
respectively, with a total of i convolutional layers, which also contain
various operational layers, such as pooling layers. Flatten, Full con-
nection, and Softmax denote the flat layer [18], the fully-connected
layer, and the softmax function [45] of the CNN, respectively. In the

fully-connected layer, �Xi denotes the data input in the i-th iteration of
the activation function of the fully-connected layer, and the activation
function in the figure is taken as the Relu function [46]. In the trans-
fer operator, the LM module and the DA module are included. The
red solid line indicates that the training loss is passed through the LM
module to generate the disturbance variables, which are then input to
the DA module through the transfer operator to augment the training
data in the fully-connected layer
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results and discussions. Finally, Section 6 concludes with a
summary of the paper.

2 Related works

This chapter deals with related work. It consists of three
parts, namely applications and challenges of CNNs, fully-
connected layers of CNNs, and common regularization
methods.

2.1 Applications and challenges of CNNs

Convolutional neural networks (CNNs) have achieved
brilliant success [17] and have become one of the most
representative neural networks in the field of Deep
Learning. In the era of Big Data, CNNs are able to achieve
promising results using large amounts of data. As a result,
many applications of CNNs have emerged. First, CNN
applications for 1D scenarios usually use 1D convolutional
kernels to process 1D data. CNNs are very effective in
extracting features from a fixed-length segment of the entire
dataset, e.g., time series prediction [18, 19] and signal
recognition [20]. Second, CNNs are used in 2D image
processing for four main types of tasks, namely image
classification, object detection, image segmentation, and
face recognition. Image classification [21, 22] involves
classifying an image into a particular class, and CNNs
represent a breakthrough in this area. Object detection [23]
is an image classification based task where the system must
not only recognize which class the input image belongs to,
but also provide it with a bounding box. Image segmentation
[24] involves segmenting an image into different regions,
where the boundaries of the different semantic units in the
image must be labeled. Face recognition is a biometric
recognition technique based on facial features that is
widely used in various domains [25, 26]. Finally, for
multidimensional scenes, CNNs can be used for almost all
multidimensional data. For example, in 3D scenes, CNNs
are commonly used for human behavior recognition [27–
29] or object recognition/detection [30]. In addition, 3D
detection is widely used in medical imaging, e.g., X-ray
images and CT [31–33].

In recent years, CNNs have received much attention due
to their properties such as local connectivity, weight sharing,
and downsampling for dimensionality reduction [17]. Local
connectivity of CNNs is manifested in the fact that each
neuron is no longer connected to all neurons of the previous
layer, but only to a few neurons, which effectively reduces
parameters and accelerates convergence. The sharing of
weight is reflected in the fact that a group of connections
can share the same weights, further reducing the parameters
and decreasing the computational complexity of the

network. In addition, the pooling layer uses the principle
of local relevance of images to reduce the amount
of data by downsampling for dimensionality reduction,
while preserving useful information and improving the
generalization capabiliity of the network model. When
sample data are fed directly into the network, CNNs
can learn implicitly from training, and the whole process
is automatic without human intervention. Although the
advantages of the three characteristics have led to the
widespread use of CNNs in various domains, existing
networks still have shortcomings. In particular, how to
effectively train deep network models is a problem that
still needs to be investigated. Many regularization strategies
and methods have been proposed, but the generalization
performance of CNN networks still needs continuous
improvement.

2.2 Fully-connected layers

Our approach is based on the fully-connected(FC) layer of
CNNs, so we will introduce the applications related to the
fully-connected layer.

A CNN architecture almost always has a fully-
connected(FC) layer [2]. Typically, the FC layer is located
at the end of each CNN architecture. Within this layer, each
neuron is connected to all neurons in the previous layer,
the so-called fully-connected approach. It is often used as a
CNN classifier. It follows the basic approach of multilayer
perceptual neural networks in that it is a type of feed-
forward ANN. The input to the FC layer comes from the last
pooling or convolutional layer. This input is in the form of
a vector formed from the feature map after flattening [34].
The output of the FC layer represents the final output of
the CNN. Many classical architectures based on CNNs have
been developed, almost all of which use FC layers, e.g.,
use cases based on the GoogLeNet architecture [35, 36]. To
achieve better model performance, many models built on
CNNs even use multiple FC layers, e.g., [37, 38]. Moreover,
other studies [39, 40] have shown the importance of fully-
connected layers for CNNs. If a better regularization method
for the FC layer is developed, then this method will help to
be used in various CNN-based application domains.

2.3 Regularizationmethods

Here, the related methods focus on several common
regularization techniques such as data augmentation [4],
batch normalization [5], and Dropout [6].

A common regularization technique for the input layer of
CNNs is data augmentation [4]. Data augmentation is often
used as an effective regularization method to augment the
training data of a convolutional neural network. Examples
include horizontal flipping, color space augmentation, and
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random pruning. Later developments in data augmentation
techniques also include: geometric transformations, color
space transformations, kernel filters, mixed images, random
deletion, feature space augmentation, adversarial training,
GAN-based augmentation, neural style transfer, and meta-
learning, among other augmentation techniques. In short,
data augmentation is a regularization technique that enriches
the training data.

A common regularization technique used in the middle
layer of CNNs is batch normalization(BN) [5]. BN is a
power guaranteed output activation that follows a Gaussian
unit distribution. It is used to normalize the output of
each layer by subtracting the mean and dividing by the
standard deviation. BN is useful in two ways [2]. First, it
prevents the emergence of gradient disappearance problems
and controls the problem of poor initializations of weights.
Second, it shortens the time required for the network to
converge, especially for large-scale datasets. However, since
the weights are continuously updated during training, it also
introduces more internal covariance bias defined by changes
in the activation distribution. This leads to a model that
requires more time for convergence and for training. To
solve this problem, layers representing batch normalization
operations are used in the CNN architecture. This allows
BN to be used not only as a preprocessor of the layers,
but also as an integration and differentiation tool for the
network.

Another regularization technique commonly used for
intermediate layers of CNNs is Dropout [6]. The process
of its implementation can be simply described as randomly
removing neurons in each training epoch. Such random
operations distribute the feature selection power evenly
across the entire set of neurons while forcing the model to
learn different independent features. Dropout is determined
differently for the training process and the testing process
[2]. Neurons that are dropped in the training process do not
become part of the backpropagation or forwardpropagation.
In the testing process, on the other hand, predictions are
made based on the entire network. Similar approaches
to Dropout include DropFilterR [7], Droppath [41], and
Dropblock [42], as well as several variants based on
the Dropout formulation, e.g., SpatialDropout [43] and
Dropconnect [44].

In this paper, we propose a method for dynamical
adjustment of the training process of CNNs. The method can
be used not only in combination with other regularization
methods, but also for optimal adjustments of the training
process of CNNs. The regularization process of the method
is dynamic and controllable. The main components of the
method are described in the next sections.

3 The proposedmethod

In this section, we present our proposed dynamic adjustment
method, whose general framework is shown in Fig. 1.
It consists of three main parts, namely the loss memory
module (the LM module), the transfer operator, and the
dynamic adjustment module (the DA module). During the
training process, the LM module automatically records
the training loss generated for each new iteration and
generates the disturbance variables for the next iteration of
the training by the control parameter R in the module. The
newly generated disturbance variables are input to the DA
module embedded in the fully-connected layer through the
transfer operator to participate in the adjustment of the next
training process. Throughout the process, the disturbance
variables change as the training loss changes. In addition,
the parameter R can be adjusted based on different models
to obtain the best training process setting. The individual
components of the method are described in detail below.

3.1 The LMmodule

As mentioned above, the dynamic adjustment intensity
of this method is consistent with the changing trend of
training loss. To obtain this variation trend, the LM module
that automatically records the loss generated in each new
iteration is constructed in this method, and the adjustment
intensity of the next iteration training is also generated.
We assume that the convolutional neural network has
trained epochs I in total (I >= 1), and I represents
the i-th iteration of epochs I training. Accordingly, this
paper assumes that the training loss of convolutional neural
network training is L ∈ R

+, then the training loss of the i-
th iteration training can be expressed as li . In addition, we
represent l0 as training loss for initial training, and l0 = 0.

After the first iteration of the convolutional neural
network is trained, the corresponding training loss is
calculated by the loss function and will be input to the LM
module by the pass operator, e.g., the first epoch training
loss value is l1.

We use the function M(.) to represent the calculation
process of the LM module for the training loss, and use
Xloss

i to represent the LM module in the i-th iteration of
training to generate a disturbance variable, the value of
which is the adjusted intensity value, to obtain the following
functional representation as follows:

XLoss
i = M(li−1) (1)

where, XLoss
i is the adjusted intensity value produced by the

(i-1)-th iteration of training loss li−1. Equation (1) describes
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the current training loss memory process, which reflects
the dynamic and adaptive nature of LossDA and is also a
mathematical description of the LM module.

3.2 The R parameter

In practical use, the training process is different for each
model, and in order to obtain the best disturbance variables,
we need to adjust the output size in the LM module. In
this paper, we use the R parameter to adjust the optimal
value of the output disturbance variable in the LM module.
In addition, the setting of the parameter R allows the
disturbance variables to be adjusted only in the training
phase of the CNNs, but not in the testing phase. Here, the
parameter R is set so that the dynamic adjustment can be
divided into two states.

The first one is a non-zero state, which is generally used
in the training phase. As shown in Fig. 2a, when R �= 0, the
LM module output XLoss

i is calculated as described before
as follows:

XLoss
i = M(li−1, R) (2)

where li−1 is the training loss of the (i-1)-th itera-
tion, XLoss

i denotes the disturbance variable of the i-th
iteration training, and the range of R values is set to
[0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]. When the CNNs start
training, the disturbance variables are generated after the
loss of each iteration of training by the LM module. And
the individual process of disturbance by passing the operator
into the DA module of the fully-connected layer is shown
in Fig. 3. Equation (2) is the training loss the adjustment
process according to the hyperparameter R. It shows the
adjustability of LossDA and is a mathematical description of
the LM module with the addition of the hyperparameter R.

The second one is the zero state, R = 0, which is
generally used in the testing phase of CNNs, as shown in
Fig. 2b. when the LM module outputs XLoss

i = 0.

3.3 The DAmodule

From Fig. 3, we can see that the process by which
the LM module generates new disturbance variables at
each iteration of training and inputs them to DA module
by passing the operator is only the first step of our
task. Next, we need to integrate the disturbance variables
into the training data. In this section, we describe how
the DA module embedded in the fully-connected layer
is dynamically adjusted. Once the disturbance variables
generated by the LM module are integrated into the training
data, the new training data can contain two different kinds of
data, namely the data of the training data itself and the data
of the disturbance variables. If we use the function F(.) to
represent all of the convolutional neural network operations
before the activation function in the fully-connected layer,
then the training data on the fully-connected layer can be
represented as follows:

�Xi = F(X) (3)

where X denotes the input data of the image, and �Xi

denotes the input data of the activation function of the fully-
connected layer at the i-th iteration, which is equivalent to
the training data of the fully-connected layer.

In particular, we set the function A(.) to represent the
operation process of the DA module, and the training data �X
here can be expressed after the adjustment of the DA module
as follows:

�XA
i = A( �Xi, X

Loss
i ) (4)

where �XA
i denotes the training data at the i-th iteration,

after adjustment by the DA module. XLoss
i , as described

in the previous content above, is the disturbance variable
generated by the LM module for the i-th iteration of
training, which is input to the DA module through the
transfer operator.

(a) Non-zero state, R ≠ 0 (b) Zero state, R ≠ 0

Fig. 2 The state of the LM module with different R parameters set during the training phase and the test phase

13856



Improved generalization performance of convolutional neural networks with LossDA

Fig. 3 The dynamic adjustment process of LossDA with 10 iterations of training. The transfer operator will iterate to generate the disturbance
variables

As can be seen from (4), the function A(.) contains two
variables, �Xi and XLoss

i , representing the two inputs to
the DA module, i.e., the training data and the disturbance

variables, respectively. The new training data �XA
i is

generated after calculation and input to the activation
function for operation. Equation (4) is a description of the
adjustment process of DA module to the internal structure
of CNNs, i.e., a description of the adjustment process of DA
module to the fully connected layer of CNNs.

Considering that the disturbance variables generated
by the LM module are computed from the training loss
of the previous iteration, the input data of the final
activation function on the fully-connected layer is obtained
by substituting (2) and (3) into (4) as follows:

�XA
i = A(F(X), M(li−1, R)) (5)

Equation (5) shows that the �XA
i integrated by the i-th

iteration of the DA module training is determined primarily
by X, F(.), R, and li−1. By setting it up in this way, the
training loss of the (i-1)-th iteration is associated with the
data training of the i-th iteration accordingly. Equation (5)
is a description of the adjustment process of the DA module
with respect to the external structure of the CNNs, i.e., the
mathematical description of the image X subjected to the
adjustment of the DA module during the training process.

In the calculation of the DA module, this paper uses the
addition operation as the integration rule of the DA module,

and the corresponding �XA
i can be expressed as follows:

�XA
i = F(X) + M(li−1, R) (6)

As shown in (6), the disturbance variables specific to
the input of the transfer operator become the new training
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data with the training data set in the fully-connected layer
through the DA module. The disturbance variables change
as the training loss changes and adaptively and dynamically
adjust the input values of the activation function in the fully-
connected layer. The transfer operator is run a total of I − 1
times in the entire convolutional neural network model.

When the new training data is subjected to the activation
function operation, here, let the output be Zi , which can be
expressed as:

Zi = Relu(F (X) + M(li−1, R)) (7)

where the activation function at this point is the Relu
function [46].

To better demonstrate the role of the DA module in
convolutional neural networks, the new training loss, li , with
softmax function [45] and loss function calculation, can be
expressed as:

li = Loss(sof tmax(relu(F (X) + M(li−1, R)))) (8)

From (8), it can be seen that li is influenced by the image
data X and li−1, and if (2) and (3) are substituted into (8),
we get the following:

li = Loss(sof tmax(relu( �Xi + XLoss
i ))) (9)

From (8) and (9), it can be seen that when the image
data X is trained for the i-th iteration, the training data
�Xi generated in the fully-connected layer is adjusted by

the disturbance variables generated by the LM module for
the i − 1 iteration, and then the new training loss li is
generated after the activation function, softmax function,
and loss function are calculated. In the above training
process, the training data of all iterations is adjusted in the
DA module, except for the training data of the first iteration,
which is not adjusted by the DA module. This is the whole
dynamic adjustment process of the method in this paper
and its corresponding programming content, as shown in
Algorithm 1.

Algorithm 1 Training process of LossDA.

The content of the pseudo-code describes the entire
process of dynamic adjustment of LossDA. The entire
content of the pseudo-code consists mainly two parts. The
first part is the definition of the inputs and outputs and
the initializations of the relevant parameters. This part
corresponds to lines 1-3 of the pseudo-code. The second part
is the For loop, which describes the arithmetic process of
the code from the previous loss value li−1 to the current loss
value li , where each line of code specifies the corresponding
mathematical formula. This paper focuses on the For loop,
i.e., lines 5–9 of the pseudo-code. Line 5 of the pseudo-
code is used to determined the loss value of the previous
epoch li−1. Line 6 of the pseudo-code is based on the
disturbance variable XLoss

i generated by (2), where the input
to (2) is li−1. Line-7 of the pseudo-code is based on (3)
to generate the i-th iteration data �Xi in the fully-connected
layer, which is also the training data to be dynamically
adjusted by the DA module. Line-8 of pseudo-code is based

on (6) to calculate the new data �XA
i , which is the data to

be dynamically perturbed by the DA module. Line-9 of
the pseudo-code is based on (9) to calculate the new loss
value li for the current iteration. Line-10 of the pseudo-code
represents the end of training, while in line 11 the pseudo-
code assigns the value 0 to the hyperparameter R, i.e., the
zero state of the hyperparameter R in the test phase. The
arithmetic process of the above pseudo-code can be useful
for understanding the dynamic adjustment process of the
method proposed in this paper.

4 Experiments

This section presents the datasets and experimental details.

4.1 Datasets

To evaluate the method in this paper, the datasets were
used for the experiments: MNIST [8], FashionMNIST [9],
CIFAR10 [10], Cats vs Dogs [11], and miniImagenet [12].
MNIST is a 0–9 digital image dataset consisting of 60,000
training samples and 10,000 test samples, each of which is a
handwritten 28×28 grayscale digital image. FashionMNIST
is an image dataset provided by Zalando’s research
department, comprising a total of 70,000 frontal images of
different items in 10 categories, with 60,000/10,000 training
and test data and 28 × 28 grayscale images. CIFAR10 is
a small universal objects recognizing dataset that includes
60,000 images in 10 categories, 50,000/10,000 training and
test data, and 32 × 32 colour images. Cats vs Dogs is a
dataset of images containing dogs and cats. It includes
25,000 images of cats and dogs, 17500/7500 training and
test data, and 84 × 84 colour images. The miniImagenet
dataset is selected from the ImageNet dataset [47] and

13858



Improved generalization performance of convolutional neural networks with LossDA

Table 1 The statistics of the datasets

Datasets Type Size

MNIST Image 28 × 28 Gray

FashionMNIST Image 28 × 28 Gray

CIFAR10 Image 32 × 32 Color

Cats vs Dogs Image 84 × 84 Color

miniImagenet Image 84 × 84 Color

contains 100 classes with 60,000 colour images, each class
including 600 samples, 42,000/18,000 training and test data,
and 84 × 84 color images (Table 1).

4.2 Experiments details

The experimental details mainly present the hyperparameter
settings of the experiments, the CNN architectures of the
training datasets, and the evaluation metrics of the test
results.

A. Hyperparameters Settings
For all CNN architectures of the five datasets, three

experiments with different numbers of epochs (5, 10, and
15) were performed, and each experiment was repeated
15 times. In these experiments, the initial value of the
learning rate was set to 10−4, the batch size of each
input was set to 64, and the activation functions were
all used with the Relu function [46]. For the CNNs
with LossDA, the values of the parameter R ranged
from [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5] during the training
phase to R = 0 at the end of training. In addition, for
the CNNs with the transfer learning model, the weight
parameters are also set to the untrained mode [48] using
ImageNet [49].

B. CNN Architectures
The experiments were conducted on five datasets with

different CNNs, respectively, and the specific information is
shown in Table 2.

Table 2 CNNs of the datasets
Datasets CNNs Model Architectures

MNIST CNN-1 3Conv+2MaxPool+1FC

FashionMNIST CNN-2 3Conv+1BN+1MaxPool+1BN+1FC

CIFAR10 CNN-3 6Conv+1BN+4MaxPool+1BN+1FC

Cats vs Dogs CNN-InceptionResNet InceptionResNetV2+1FC

Cats vs Dogs CNN-VGG19 VGG19+1FC

Cats vs Dogs CNN-ResNet50 ResNet50+1FC

miniImagenet CNN-InceptionResNet InceptionResNetV2+1FC

miniImagenet CNN-VGG19 VGG19+1FC

miniImagenet CNN-InceptionV3 InceptionV3+1FC

For the MNIST, FashionMNIST, and CIFAR10 datasets,
three Light CNNs were used, named CNN-1, CNN-2,
and CNN-3, respectively. CNN-1 uses three convolutional
layers (output dimensions 32,64,128), two pooling layers
(pooling size of from top[2, 2]), and one fully-connected
layer. CNN-2 adds 2 BN to CNN-1, but uses only 1 pooling
layer. CNN-3 is based on CNN-2, increasing the number
of convolutional layers from 3 to 6, while increasing the
number of pooling layers from 1 to 4.

For the Cats vs Dogs and miniImagenet datasets, we
used a total of four Transfer CNNs (InceptionResNetV2
[13], VGG19 [14], ResNet50 [15], and InceptionV3
[16]), referred to as CNN-InceptionResNet, CNN-VGG19,
CNN-ResNet50 and CNN-InceptionV3, respectively. For
the Cats vs Dogs dataset, CNN-InceptionResNet, CNN-
VGG19, and CNN-ResNet50 were used, respectively, with
a fully-connected layer and an output dimension of 512.
In the miniImagenet dataset, CNN-InceptionResNet, CNN-
VGG19, and CNN-InceptionV3 were used respectively,
with the output dimension of their fully-connected layers
being 512. The difference between the architectures used
in the two datasets is that Cats vs Dogs uses CNN-
ResNet50, while miniImagenet uses CNN-InceptionV3.
This is because miniImagenet has a smaller number of
single-class images, and after testing, it was found to be
unsuitable for using CNN-ResNet50, so it was switched
to CNN-InceptionV3. CNN-InceptionV3 was used instead.
The above 4 Transfer CNNs are implemented using
TensorFlow framework [50].

C. Evaluation Metrics
To better evaluate the model performance of CNNs, four

common evaluation metrics are used for all test results
in this paper, which are accuracy (ACC), F1-score (F1),
recall (R), and precision (P). In addition, the values of
the evaluation indices are based on the average of the
results of 15 repeated experiments. Below is the formula for
calculating the four metrics:

accuracy = T P + T N

T P + T N + FP + FN
(10)
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recall = T P

T P + FN
(11)

precision = T P

T P + FP
(12)

F1 = 2 × precision × recall

precision + recall
(13)

where TP and TN are the positive and negative samples that
are correctly predicted, and FP and FN are the positive and
negative samples that are incorrectly predicted, respectively.

5 Results and discussion

In this section, we demonstrate and discuss the effect of
LossDA regularization using various results. These results
include optimal comparison ones for different datasets
on different architectures, comparison ones for different
training epochs, test accuracy for different R parameters,
and the training process for different datasets.

5.1 Comparison of testing results

The statistical results in Table 3 are based on comparative
experiments using the LossDA method on seven CNNs for
each of the five datasets. The seven architectures are divided
into three Light CNNs (CNN-1, 2, and 3) and four Transfer
CNNs (CNN-InceptionResNet, VGG19, ResNet50, and
InceptionV3). CNNs marked with “with LossDA” represent
CNN architectures that use the LossDA method. Test results
were determined using four metrics (ACC, F1, R, and

P). Among the three lightweight architectures, the CNN-
3 architecture using CIFAR10 dataset showed the highest
improvement. The results (%) without LossDA were 71.31,
71.91, 71.31, and 74.14. The results (%) with LossDA were
75.93, 75.9, 76, and 76.08. The metric values (%) improved
by 4.62, 3.99, 4.69, and 1.94, respectively. In addition,
among the four transfer architectures, the CNN-ResNet50
architecture using the Cats vs Dogs dataset showed the
highest improvement. The results (%) without LossDA were
67.39, 65.83, 67.49, and 71.48, respectively. The results
(%) with LossDA were 71.56, 71.47, 71.54, and 71.79,
respectively. The metric values (%) improved by 4.17, 5.64,
4.05, and 0.31, respectively.

The CNN architectures for the five dataset are Light
CNNs and Transfer CNNs. The Light CNNs (CNN-1,2,3)
mainly consist of convolutional layers, pooling layers and
fully-connected layers, with the addition of BN to the
CNN-2,3 models, which are among the most commonly
used light models. The basic models of Transfer CNNs
used for the experiments are InceptionResNet, VGG19,
ResNet50 and InceptionV3, all with ImageNet weights
[47], which are among the better known transfer models.
In addition, Cats vs Dogs and miniImagenet which were
used for Transfer CNNs are both representative datasets.
The former is a dataset with few classifications but many
single-class images (2 classes, 12,500 images/class) and the
latter is a dataset with many classifications but few single-
class images (100 classes, 600 images/class), that have
opposite characteristics. From these analyses, it appears that
the compared experiments are diverse and representative,
which helps to comprehensively evaluate the effectiveness
of LossDA applications.

Table 3 Comparison test results of five datasets on each of the seven CNN architectures using the LossDA method

Datasets CNNs ACC[%] F1[%] R[%] P[%]

MNIST CNN-1 with LossDA 99.36 99.36 99.36 99.36

MNIST CNN-1 97.90 97.88 97.88 97.97

FashionMNIST CNN-1 with LossDA 92.42 92.40 92.39 92.51

FashionMNIST CNN-2 91.09 91.03 91.09 91.19

CIFAR10 CNN-2 with LossDA 75.93 75.90 76.00 76.08

CIFAR10 CNN-2 71.31 71.91 71.31 74.14

Cats vs Dogs InceptionResNet with LossDA 87.04* 87.04* 87.05* 87.06*

Cats vs Dogs InceptionResNet 85.47 85.53 85.56 85.71

Cats vs Dogs VGG19 with LossDA 84.00* 84.04* 84.04* 84.17*

miniImagenet VGG19 83.40 83.38 83.40 83.46

miniImagenet ResNet50 with LossDA 71.56* 71.47* 71.54* 71.79*

miniImagenet ResNet50 67.39 65.83 67.49 71.48

The evaluation metrics for this result include: accuracy, F1, recall, and precision, abbreviated as ACC, F1, R, and P. The higher the metric value,
the better. Bold numbers indicate the best value on the same dataset; asterisks are used to compare multiple models on the same dataset; and
numbers with asterisks indicate the best value among multiple models. The statistical values in the table are the average of the results of 15 tests,
where the number of training epochs for each test was 15
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The comparison of the test results confirms the original
intention of using the LossDA method on multiple CNN
architectures, and LossDA can be used not only on
Light CNNs but also on the currently popular Transfer
CNNs. All the comparison results demonstrate that the
method can improve the model performance of the CNN
architectures used for the experiments. It is believed that
such a regularization method can be used for other CNN
architectures. This is because our method is based on
the application of a fully-connected layer, which most
CNN architectures have. The LossDA method, on the
other hand, does not change the architecture of the model,
and the iterative loss it uses is also generated during the
training process. LossDA is simply embedded in the fully-
connected layer and dynamically adjusts the CNN training
process. This is like adding a regulatory device to the CNN
architecture, that is dynamically adjustable, non-random,
and controllable.

5.2 Comparison of different epochs

To further verify the adjustment effect of LossDA, this paper
compares the trend of the test scores in different epochs,
as shown in Fig. 4. The trend of the curves in the subplots
shows that the red line is higher than the yellow line in
all subplots, and both the red and yellow lines show an
increasing trend in most subplots. The only difference is that
the yellow line in subplot “(a) MNIST” shows a decreasing
trend when the number of training epochs is 15, while the
red line continues to increase at a steady rate.

The trend of the curves shows the regularization effect of
the LossDA method at different epochs. On the whole, the
red line with LossDA is better than the yellow line without
LossDA in terms of model performance. On the other hand,
the red and yellow lines of most subplots show an increasing
trend, indicating that the training process is not overfitting.
Moreover, the trends of the red and yellow lines in each
subplot of (a) MNIST are different. This shows that the
generalization performance of the model with LossDA is
much higher than that of the model without LossDA when
the number of training epochs is 15.

The trend in Fig. 4 again proves the regularization
effect of LossDA. The comparison results show that the
dynamic adjustment method proposed in this paper is an
adaptive adjustment process. This is because the adjustment
of LossDA is based on the number of training epochs, the
number of dynamic adaptations increases with the number
of epochs. Meanwhile, the adjustment intensity changes
with the change in training loss, thus adapting to the overall
training process. Moreover, the anomaly in “(a) MNIST”
is due to the fact that the model with the yellow line has
an overfitting problem, while the model with the red line

has no overfitting due to the use of LossDA, which fully
demonstrates the suppression of overfitting by the method
in this paper.

5.3 Analysis of the R parameter

In this section, experiments related to the parameter R are
presented. The experiments were mainly performed with
the parameters R = [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5],
and the corresponding statistical analysis was performed as
shown in Fig. 5. The test accuracy of R = 0 is set as the
benchmark accuracy, and when the test accuracy is higher
than the benchmark accuracy, the corresponding non-zero R

values are called available R values.
The results in Fig. 5 show that the most available R

values are for the MNIST and FashionMNIST datasets,
with R = [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5], followed by the
CIFAR10 and Cats vs Dogs datasets, with R values of 0.5,
1, 2, and 1.5, 2, 2.5, respectively. The miniImagenet datasets
with R = 0.5 have the least available.

These results show that the larger the range of available
R values, the better the regularization effect of selecting the
best value. In the five datasets, MNIST and FashionMNIST
with R = [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5], almost all values
are available with higher than the baseline value (R =
0), indicateing that a wide range of R values is available
in these two datasets. In contrast, for the CIFAR10 and
Cats vs Dogs datasets, only some of their parameters R

are available (R = [0.5, 1, 2, 1.5, 2, 2.5], respectively), and
the rest are below the corresponding benchmark values,
indicating that there is a limit to the range of available R

values. The lowest is the miniImagenet dataset, where the
available R-value is only 0.5 and all other R-values are
below the benchmark, indicating that the available R-values
in this dataset are concentrated in a smaller range and need
more tests are required to find them.

The presence of available R-values again indicates the
original purpose of this method. In the experiments, avail-
able R values were found for all datasets, which shows
that LossDA can be used to improve the performance met-
rics of the model. Moreover, we can select the ideal value
from these available R values to maximize the improve-
ment of model performance. On the other hand, some
values of the parameter R are not available in the exper-
iments, which may be due to factors such as the image
size or the number of single-class images in different
datasets that make the test accuracy lower than the bench-
mark accuracy, such as the number of single-class images
(600 images/class) in the miniImagenet dataset, which
is relatively less than other datasets. The experimental
results show that the available R values can be found for
different datasets, but only the range of useful values varies.
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Fig. 4 Trends of the tested metrics over different epochs. The com-
parison experiment was performed on five datasets: (a) MNIST, (b)
FashionMNIST, (c) CIFAR10, (d) Cats vs Dogs, and (e) miniIm-
agenet. The horizontal coordinates of each subplot are the num-
ber of training epochs, denoted by 0, 5, 10, and 15, respectively.

The vertical coordinates of the subplots are the four metrics (accu-
racy, F1, recall, and precision). The CNN architectures for the MNIST,
FashionMNIST, and CIFAR10 datasets are CNN-1,2, and 3, respec-
tively, and the CNN architectures for the Cats vs Dogs and miniIma-
genet datasets are CNN-InceptionResNet
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Fig. 5 Test accuracy for
different R parameters. The five
datasets of the experiment are
numbered as (a) MNIST, (b)
FashionMNIST, (c) CIFAR10,
(e) Cats vs Dogs, and (e)
miniImagenet. The horizontal
coordinates of each subplot are
the R parameters. The scale of
the coordinate values is
0,1,2,3,4,5, and the vertical
coordinates are the test accuracy
values, where R = 0 represents
the test accuracy when the
model does not use the LossDA
method and is set as the baseline
accuracy. The CNN models used
for the five data sets are the
same as those used for the
model in Section 5.2

5.4 Comparison of training process

In this section, the regularization effect of LossDA during
training is presented, as shown in Fig. 6. In the figure, the
red line is higher than the yellow line in all subplots. Among
them, (b) FashionMNIST and (c) CIFAR10 subplots have
the most red lines higher than the yellow line, and the red
line shows an upward trend, followed by (d) Cats vs Dogs
and (e) miniImagenet subplots, both of which have red lines
higher than the yellow line, and the least is (a) MNIST
subplot, which has a slightly higher red line than the yellow
line.

The trend of each subplot curve in Fig. 6 shows
that LossDA has the best regularization effect for the
FashionMNIST and CIFAR10 datasets, indicating that the
accuracy of the model with LossDA is much higher than that
of the model without LossDA. First, when the number of
iterations increases, the training accuracy also improve, and
the corresponding test results also improve. This is because
LossDA is an adaptive dynamic adjustment method, and
the results of the FashionMNIST and CIFAR10 datasets in

Section 5.2 at 10 and 15 epochs of testing exactly confirm
this assumption. Second, the red lines of the subplots are
higher than the yellow lines in both the Cats vs Dogs and
miniImagenet datasets, but not as good as the plot of the
previous two datasets, because the two datasets use the
transfer model and the weights are in untrained mode,
which greatly reduces the role of the method in this paper
to adjust the training process. However, as for the overall
training process of the transfer model, the accuracy of
the model with LossDA is still higher than that of the
model without LossDA, indicating that LossDA is still
effective for the training process of the transfer model.
In addition, the training accuracy on the MNIST dataset
improves the least, which may be due to the upper bound
of training accuracy. The later training accuracy has reached
the upper limit of 99-100%. Nevertheless, the red line is still
slightly higher than the yellow line on the MNIST subplot
in (a). The above experimental results show that LossDA
not only improves the accuracy values of the training
process, but also has better adaptability to different training
models.

13863



J. Liu and Y. Zhao

Fig. 6 Adjustment Effect of LossDA in the Training Process. The
figure shows five datasets numbered (a) MNIST, (b) FashionMNIST,
(c) CIFAR10, (e) Cats vs Dogs, and (e) miniImagenet. The horizon-
tal coordinates of each subplot are the number of training iterations
(1–10), and the vertical coordinates are the training accuracy (%). The

plot shows two types of curves. The red line means that the model uses
the LossDA method, while the yellow line means that the model does
not use the LossDA method. The CNN models used here for the five
datasets are consistent with the models in Section 5.2

6 Conclusion

In this paper, we propose a dynamically controllable adjust-
ment method called LossDA. The method is embedded in
the fully-connected layer to adaptively adjust the training
process of the CNN model. Its adjustment intensity can
be varied with the training loss and the magnitude of the
adjustment can be preset to achieve the best adjustment
effect on the training process. The method improves the
generalization performance of the model and can help to
suppress overfitting during training. To evaluate the method,
this paper conducts extensive comparison experiments with
different CNN architectures, including the commonly used
Light CNNs and the currently popular Transfer CNNs
(InceptionResNet, VGG19, ResNet50 and InceptionV3).
The experimental results show that this dynamically con-
trollable approach not only improves the model perfor-
mance of various CNN architectures (highest improvement
in accuracy of 4.62%, F1 of 5.64%, and recall of 4.69%), but

also effectively suppresses the overfitting problem. LossDA
can be applied to almost any CNN architecture with a fully-
connected layer. However, it is also limited in that it needs
to be embedded in a fully connected layer to work. In future
work, we hope to break this limitation so that this dynami-
cally controllable tuning method can be widely applied to a
wider range of network architectures.
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