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Abstract
This paper proposes new improved binary versions of the Sine Cosine Algorithm (SCA) for the Feature Selection (FS)
problem. FS is an essential machine learning and data mining task of choosing a subset of highly discriminating features
from noisy, irrelevant, high-dimensional, and redundant features to best represent a dataset. SCA is a recent metaheuristic
algorithm established to emulate a model based on sine and cosine trigonometric functions. It was initially proposed to
tackle problems in the continuous domain. The SCA has been modified to Binary SCA (BSCA) to deal with the binary
domain of the FS problem. To improve the performance of BSCA, three accumulative improved variations are proposed
(i.e., IBSCA1, IBSCA2, and IBSCA3) where the last version has the best performance. IBSCA1 employs Opposition Based
Learning (OBL) to help ensure a diverse population of candidate solutions. IBSCA2 improves IBSCA1 by adding Variable
Neighborhood Search (VNS) and Laplace distribution to support several mutation methods. IBSCA3 improves IBSCA2 by
optimizing the best candidate solution using Refraction Learning (RL), a novel OBL approach based on light refraction.
For performance evaluation, 19 real-wold datasets, including a COVID-19 dataset, were selected with different numbers of
features, classes, and instances. Three performance measurements have been used to test the IBSCA versions: classification
accuracy, number of features, and fitness values. Furthermore, the performance of the last variation of IBSCA3 is compared
against 28 existing popular algorithms. Interestingly, IBCSA3 outperformed almost all comparative methods in terms of
classification accuracy and fitness values. At the same time, it was ranked 15 out of 19 in terms of number of features. The
overall simulation and statistical results indicate that IBSCA3 performs better than the other algorithms.

Keywords Sine cosine algorithm · Refraction learning · Opposition-based learning · Mutation methods ·
Laplace distribution · Feature selection

1 Introduction

Back in 2003, the amount of generated data was around five
exabytes. Nowadays, the same amount of data, and even
more, is produced within two days [1]. This rapid increase
in the volume, velocity and variety of data raises challenges
and, at the same time, opportunities. Dealing with such data
is a challenge, but there are opportunities to utilize the data
for beneficial applications [2].

In order to perform data mining, data are first pre-
processed [3], which involves cleaning and preparing the
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data to best meet the requirements of input for later stages.
One possible pre-processing step is Feature Selection (FS)
[3], which is a method of choosing a subset of features
of a dataset that can best represent the data accurately
without redundancy, noise, or repetition. FS is used in a
wide number of applications, including data classification
[4–6], data clustering [7–9], image processing [10–13], and
text categorization [14, 15].

Generally speaking, FS techniques are either based on
an evaluation criterion or on a search strategy. Evaluation
criterion-based methods can be further classified as either
filters or wrappers. The main difference between these two
is the absence or existence (respectively) of a learning
algorithm in the process to evaluate feature subsets. Chi-
Square [16], Gain Ratio [17], Information Gain [18],
support vector machines [19], ReliefF [20, 21], and hybrid
ReliefF [22, 23] are filter methods. They depend upon
correlations between features and classes in the dataset.
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Wrapper FS methods [24], on the other hand, utilize
learning algorithms. A disadvantage of wrapper FS methods
is the high computational cost, however they often give
precise results.

Due to the huge search space, the FS problem has
been shown to be NP-Hard [25, 26]. Thus, it is costly
and time-consuming to employ exact methods to find
a solution. However, when searching for approximate
solutions, randomization searching strategies, such as
sequential forward, sequential backward, random, and
heuristic [27], often enhance results. Further, metaheuristic
algorithms often lead to efficient implementations of
various FS methods.

Metaheuristic algorithms use heuristic strategies or
guidelines in optimization algorithms to solve complex
optimization problems (e.g., FS problem) in real time.
Unlike single-purpose algorithms, metaheuristic algorithms
can be used for many different optimization problems
[27–33]. One major category of metaheuristic algorithms
is Swarm Intelligence (SI), where creature swarms are
the main inspiration (e.g., ants, flocks, bees) [34]. SI
algorithms have been tested with various optimization
problems, including FS. For instance, the authors of [35]
utilize the powerful SI algorithm Grey Wolf Optimizer
(GWO) with an FS problem, and the results reported a
respectable performance. Similarly, the Antlion Optimizer
(ALO) [36] has been successfully used as a wrapper for a
FS strategy, and the Whale Optimization Algorithm (WOA)
has been utilised in several different implementations of
FS algorithms [37–40], as has Particle Swarm Optimization
(PSO) [41], Artificial Bee Colony (ABC) [42], Ant
Colony Optimization (ACO) [43, 44], Gravitational Search
Algorithm [45], and the Salp Swarm Algorithm (SSA)
[46–48].

Indeed, the hardness of tackling the FS problem is
considerably increased with an increase of the original
problem’s dimensions. For instance, when the FS data has
n features, its search space has 2n different solutions. Thus,
any metaheuristic algorithm used to tackle such an FS
problem often requires modification to work well given
the complex nature of the FS search space. This is also
mentioned in the No Free Lunch (NFL) theorem [49],
which states that no superior algorithm can achieve the
best performance for all optimization problems or even for
the same optimization problem with different instances.
Therefore, research opportunities are still available to
introduce new/modified metaheuristic algorithms for FS
problems.

Besides the previously mentioned SI algorithms, meta-
heuristics algorithms can imitate a physical rule, evolution-
ary phenomena, or human-based technique [50]. To this
end, Seyedali Mirjalili proposed a metaheuristic algorithm
called the Sine Cosine Algorithm (SCA) [50] in 2016. SCA

is a population-based algorithm inspired by the sine and
cosine trigonometric functions. The simplicity, robustness
and efficiency of the algorithm are SCA’s main advantages.
Those characteristics have motivated others to implement
SCA for different optimization problems. For example, truss
structure optimization is an architecture-based optimization
problem [51] where SCA has been applied. SCA has also
been adapted to support the travelling salesperson prob-
lem [52], text categorization [53], image segmentation [54],
object tracking [55], unit commitment [56], optimal design
of a shell and tube evaporator [57], abrupt motion track-
ing [58], and parameter optimization for support vector
regression [59].

Because real-world problems are complex and have
constraints, researchers have attempted to enhance SCA
in a number of different ways. Firstly, SCA operators
have been modified to deal with particular problems
[60–63]. Alternatively, SCA has been hybridized with i)
local-based algorithms [52, 64, 65], ii) population-based
algorithms [66, 67], iii) operators from other optimization
algorithms [65, 68]. For instance, in [62] the SCA
exploration and exploitation phases were managed by a
nonlinear conversion parameter. In addition, to help avoid
local optima, the position update equation was modified.
Another example of SCA hybridization is improving
exploitation utilizing the Nelder-Mead simplex concept and
the Opposition-based learning (OBL) searching strategy
[64]. Further, the diversification of SCA has been enhanced
by integrating SCA with a random mutation and gaussian
local search technique [65]. Quite recently, Al-betar et al.
[69] introduced a memetic version of SCA to solve the
economic load dispatch problem. In this approach, adaptive
β-hill climbing [70] was hybridized with the optimization
framework of SCA to better balance exploration and
exploitation.

SCA was initially proposed for continuous decision
variables. However, with a mapping function (transforming
a continuous search space to binary), a binary SCA (BSCA)
version was introduced in [71], where it was implemented
for an FS optimization problem, and verified to be an
efficient technique. The performance, accuracy, capability,
and variety of decision variables’ types are the factors that
motivated us to conduct the research described in this paper.
We propose three versions of the Improved Binary Sine
Cosine Algorithm (i.e., IBSCA1, IBSCA2, and IBSCA3)
for the FS problem, in which different approaches of
exploration and exploitation are conducted. Consequently,
this leads to the following contributions:

– We apply Opposition Based Learning (OBL) in
IBSCA1 to ensure a diverse population of solutions.
The use of OBL is expected to expand the search region
and improve the solution’s approximation.
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– IBSCA2 builds on IBSCA1 and includes Variable
Neighborhood Search (VNS) and Laplace distribution
to explore the search space using several mutation
methods (swap, insert, inverse, or random mutation).
One of the advantages of VNS is that the mutated
solution may break out of a local optimum.

– IBSCA3 builds on IBSCA2 and enhances the best
candidate solution using Refraction Learning (RL). RL
is a novel opposition learning approach that is based
on the principle of light refraction. It is expected to
improve the ability of IBSCA3 to jump out of local
optima.

– The three exploration techniques are applied in an
incremental manner, where IBSCA3 implements all
of the three exploration techniques. Our purpose
here is to show that the incremental integration
of each exploration method gradually improves the
performance of IBSCA and eventually leads to a strong
optimization algorithm (IBSCA3).

– The candidate solutions produced by the optimization
process of SCA and RL are continuous. Therefore, we
used the V3 transfer function to convert the values of
continuous decision variables into binary ones. V3 was
selected based on extensive simulations on eight binary
transfer functions (4 S-shaped and 4 V-shaped transfer
functions). The experimental results indicated that V3
is the most viable transfer function.

– We evaluate the variations of IBSCA utilizing 19 well-
known datasets (18 FS datasets from UCI repository
and a COVID-19 dataset). IBSCA3 is found to be the
most efficient version of IBSCA (Section 5.2).

– The performance of IBSCA3 was evaluated and
compared to 10 popular binary algorithms (Section 5.3).
The overall simulation results indicate that IBSCA3
outperformed all the compared algorithms in terms of
accuracy and number of features selected over most of
the datasets.

– We compared IBSCA3 to 10 state-of-the-art algorithms
that adopt OBL-enhanced methods, VNS and Laplace
distribution (Section 5.4). We found that IBSCA3
produces the best results among the results of the
compared algorithms.

– We compared IBSCA3 to seven popular variations of
SCA (Section 5.5). The experimental results indicate
that IBSCA3 is the most accurate algorithm.

The accumulative advantages proposed for IBSCA
are included in IBSCA3 where the method has the
ability to diversify the search through Opposition Based
Learning (OBL) and intensify the search through Variable
Neighborhood Search (VNS) while also having the ability
to escape local optima through Refraction Learning (RL).

By means of these improvements, a superior method (i.e.,
IBSCA3) is introduced for the FS problem.

In general, the overall simulation results indicate that
IBSCA3 outperforms the compared algorithms, based on
accuracy and number of features selected, over almost all
tested datasets. Note that there are two main differences
between IBSCA3 and the other hybrid optimization
algorithms that attempt to solve the FS problem. First,
IBSCA3 is the only hybrid algorithm that combines OBL,
RL, VNS and Laplace distribution in a single algorithm.
Second, IBSCA3 is the first such algorithm to include
Laplace distribution inside VNS.

The rest of the paper is organized as follows: SCA
optimization problem implementations and versions are
highlighted in Section 2. Section 3 then reviews the
binary Sine Cosine algorithm and the objective function
used. The newly proposed Improved Binary SCA with
multiple exploration and exploitation approaches (IBSCA)
for solving the FS problem is presented in Section 4. For
the purpose of evaluation, the algorithms’ performances
over different experiments are compared and discussed
in Section 5. Lastly, Section 6 summarises the work and
presents potential future research avenues.

2 Related work

Several discrete variations of SCA have been developed
to solve the FS problem [48, 61, 72–78]. This section
examines recently proposed variations of the SCA for global
optimization and solving the FS problem.

El-kenawy and Ibrahim [72] introduced a binary hybrid
optimization algorithm (Binary SC-MWOA) that includes
the SCA algorithm and a modified Whale Optimization
algorithm. Binary SC-MWOA converts the continuous
candidate solutions generated by the optimization operators
of the SC and whale optimization algorithms into binary
discrete solutions that can be used for the FS problem using
the sigmoid function. Binary SC-MWOA was evaluated
over 10 UCI repository datasets and compared to a number
of popular optimization algorithms including the Grey Wolf
Optimizer (GWO) [79], Whale Optimization Algorithms
(WOA) [80] and memetic firefly algorithm. The Binary SC-
MWOA was able to find an optimum subset of features with
the best category error.

Neggaz et al. [48] presented a new hybrid optimization
algorithm for FS called ISSAFD that combines the
optimization operators of the SC algorithm and the Disrupt
Operator of the Salp Swarm Optimizer (SSA). ISSAFD
optimizes followers’ positions in the SSA algorithm using
sinusoidal mathematical functions similar to those in SCA
operators. The disrupt operator diversifies the population
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of candidate solutions in the algorithm. The performance
of ISSAFD was compared to many optimization algorithms
including SSA, SCA, binary GWO (bGWO), PSO, ALO,
and Genetic Algorithm (GA) over four well-known datasets.
The simulation results suggested that ISSAFD was more
accurate, had higher sensitivity, and chose fewer features
than the other tested FS algorithms.

Hussain et al. [73] suggested an algorithm to solve
continuous optimization problems and the FS problem
called SCHHO that integrates the SCA algorithm in the
Harris Hawks Optimization (HHO) algorithm. The goal of
SCHHO is to use SCA as an exploration method in HHO.
In addition, the exploitation ability of HHO is improved in
SCHHO by having candidate solutions adjust dynamically
to help avoid staying in local optima. As reported
in [73], SCHHO performs much better than popular
optimization algorithms, including Dragonfly algorithm
(DA), grasshopper optimization algorithm (GOA), GWO,
WOA, and SSA.

The wrapper-based Improved SCA (ISCA) [61] adds
an Elitism strategy to SCA as well as a mechanism
to update the best solution. The experimental results in
[61] suggest that ISCA provides more accurate results
and fewer features than GA, PSO and the original SCA
algorithm.

Abd Elaziz et al., [74] proposed SCADE, an algorithm
that combines the differential evolution (DE) algorithm
with the SCA algorithm. DE’s optimization operators are
used at each iteration of SCA to improve its population
of solutions. This helps the SCA algorithm avoid local
optima. SCADE’s performance was assessed over eight
UCI datasets with comparison to three popular algorithms
(social spider optimization (SSO), ABC and ACO [74]),
with SCADE obtaining the best results.

Abualigah and Dulaimi [75] introduced the hybrid SCA
and GA algorithm (SCAGA) for solving the FS problem. In
SCAGA, the genetic optimization operators (crossover and
mutation) are used to improve the optimization process of
SCA and balance between its exploration and exploitation
of candidate solutions. SCAGA was compared to SCA,
PSO, and ALO using 16 UCI datasets. SCAGA was found
to be a better feature-selection method than the other tested
algorithms in terms of the maximum obtained accuracy and
minimal obtained features.

Sindhu et al., [77] proposed an algorithm named
Improved Biogeography Based Optimization (IBBO) for
solving the FS problem. IBBO attempts to improve the
optimization process of Biogeography Based Optimization
(BBO) by employing the optimization operators of SCA
after the migration operator of BBO. The performance
of IBBO was compared to the performance of popular
optimization algorithms such as BBO, SCA, GA, PSO, and
ABC using four popular datasets. The simulation results

suggest that IBBO is more accurate and selects fewer
features compared to the other FS algorithms.

SCA may get stuck in sub-optimal regions during
its optimization process. This is because its exploration
operators (i.e., the two trigonometric functions of SCA) are
unable to efficiently explore the search space. Abd Elaziz
et al., [76] proposed Opposition-based SCA (OBSCA),
which is a variation of SCA that uses the OBL technique
to improve the performance of SCA. In OBSCA, OBL
selects the best candidate solutions and generates their
opposite solutions in an attempt to lead to more accurate
solutions. OBSCA was compared in [76] to several
optimization algorithms including SCA, Harmony Search
(HS), GA, and PSO using standard optimization test
functions and real-world engineering problems. OBSCA
performed competitively compared to the other algorithms.

Kumar and Bharti [78] proposed the Hybrid Binary PSO
and SCA algorithm (HBPSOSCA). In this algorithm, a
V-shaped transfer function converts continuous candidate
solutions into binary solutions. The effectiveness of
HBPSOSCA was compared in [78] to binary PSO, modified
BPSO with chaotic inertia weight, binary moth flame
optimization algorithm, binary DA, binary WOA, binary
SCA, and binary ABC using 10 standard benchmark
functions and seven real-world datasets. The conducted
experiments showed that HBPSOSCA exhibited better
performance in most of the tested cases.

ASOSCA [81] is a hybrid optimization algorithm based
on the Atom Search Optimization (ASO) algorithm and
the SCA algorithm. It is basically used for automatic
clustering. In ASOSCA, SCA is used to improve the
quality of candidate solutions (i.e., reduce the number of
features and improve accuracy of the solutions) in ASO.
The performance of ASOSCA was compared in [81] to
other optimization methods (e.g., SCA, ASO, PSO) using
16 clustering datasets and different cluster validity indexes.
ASOSCA performed better than the other tested algorithms.

The Artificial Algae Algorithm (AAA) is a metaheuristic
for solving continuous optimization problems [82]. It was
originally inspired by the living behaviors of microalgae,
photosynthetic specie. Turkoglu et al. [83] proposed eight
binary versions of the AAA algorithm for solving the FS
problem. Each binary version of AAA uses a different
transfer function (four V-shaped and four S-shaped transfer
functions). The performance of the binary versions of AAA
was compared to the performance of seven well-known
optimization algorithms (BBA, binary CS, binary Firefly
algorithm, binary GWO, binary Moth flame algorithm,
binary PSO, binary WOA [83]) using the UCI datasets.
The experimental results indicate that the binary versions of
AAA outperform the other tested algorithms.

The Horse herd Optimization Algorithm (HOA) is a
metaheuristic that simulates the survival behaviour of a
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pack of horses in solving NP-hard optimization problems
[84]. Awadallah et al. [85] proposed fifteen binary versions
of HOA (BHOA) for solving the FS problems. The
fifteen variations of BHOA were created by combining
three popular crossover operators (one-point, two-point and
uniform operators) with three transfer-functions categories
(S-shaped, V-shaped and U-shaped transfer functions). The
versions of BHOA were tested and evaluated against each
other using 24 real-world datasets and the experimental
findings suggest that the best version of BHOA is the one
with S-shape and one-point crossover.

The Black Widow Optimization (BWO) algorithm
is a new population-based optimization algorithm that
mimics the mating process of black-widow spiders to
solve the continuous optimization problems [86]. However,
the BWO algorithm converges slowly to solutions when
attempting to solve hard optimization problems. Therefore,
the enhanced version of BWO (SDABWO) was proposed
in [87] to improve the convergence behaviour of BWO and
solve the FS problem. Three techniques were integrated
in SDABWO. First, the spouses of male spiders are
chosen based on a computational procedure that takes
into consideration the weight of female spiders and the
distance between spiders. Second, the mutation operators of
differential evolution are used in SDABWO at its mutation
phase in order to escape from local optima. Lastly, the three
key parameters of SDABWO (procreating rate, cannibalism
rate, and mutation rate) are adjusted dynamically over the
course of the simulation process of SDABWO. SDABWO
was compared to the performance of five well-established
optimization algorithms (GWO, PSO, DE, BOA, HHO)
using 12 datasets from the UCI repository. The experimental
results indicate that SDABWO outperforms the other
compared algorithms.

The chimp optimization algorithm (ChOA) is an opti-
mization algorithm that is inspired by the behaviour of
individual chimps in their group hunting for prey [88].
This algorithm was originally proposed for solving continu-
ous optimization problems. The binary chimp optimization
algorithm (BChOA) for solving the FS problem was intro-
duced in [89]. BChOA has two variations, which are a result
of combining the chOA with the one-point crossover oper-
ator and two transfer-functions categories (S-shaped and
V-shaped transfer functions). The two versions of BChOA
were compared to six popular metaheuristics (GA, PSO,
BA, ACO, firefly algorithm, and flower pollination) and the
results revealed that the two versions of BChOA perform
better than the other tested algorithms.

The Hunger Games Search Optimization (HGSO)
algorithm is an optimization algorithm for continuous
mathematical problems. It was inspired by the prey anxiety
from being eaten by their predators [90]. Devi et al. [91]
presented two binary versions of the HGSO algorithm for

the FS problem. It uses V-shaped and S-shaped transfer
functions to transfer continuous solutions to binary ones.
Binary HGSO was compared to well-known optimization
algorithms (e.g., binary GWO and BSCA) using 16
datasets from the UCI repository. The simulation results
demonstrated that the binary HGSO are more accurate with
less selected features than the other tested algorithms.

In summary, many of the hybrid SCA variations
in this section, including Binary SC-MWOA, ISSAFD,
SCHHO, SCADE, HBPSOSCA and SCAGA, have internal
parameters that require fine tuning and use iterative-
based optimization operators inside their optimization loops
(e.g., the crossover and mutation operators in SCAGA).
In general, when compared to traditional optimization
algorithms, hybrid methods use more computations (e.g.,
ASOSCA, HBPSOSCA, SCHHO). We are encouraged to
use SCA in this new work because the candidate solutions
in SCA can easily be converted to binary solutions using the
transfer function described in Section 4.3.

3 Binary version of sine cosine algorithm
for FS

The Sine Cosine Algorithm (SCA) [50], summarized in
code in Algorithm 3 and pictorially in Fig. 1, iteratively
optimizes a population of candidate solutions using basic
trigonometric functions. A candidate solution is usually
made of m decision variables X =< x1, x2, ..., xm >,
each initially generated randomly between the lower (LB)
and upper (UB) bound for the variable. Once an initial
population of candidate solutions has been randomly
generated, SCA uses the problem’s fitness function to
calculate a fitness value of each candidate solution. The
iterative optimization process of SCA then begins, and the
decision variables of each candidate solution Xt

i are updated
as follows:

xt+1
i =

{
xt
i + r1 × sin(r2) × |r3P

t
i − xt

i |, r4 < 0.5
xt
i + r1 × cos(r2) × |r3P

t
i − xt

i |, r4 ≥ 0.5

(1)

where r1, r2, r3 and r4 are random numbers and P t
i is the

position of the destination point in xt
i at iteration t . In detail,

r1 is used to balance between exploration and exploitation
of the range of the trigonometric functions in (1). The value
of r1 is selected at each iteration of SCA as follows:

r1 = a − t
a

T
(2)

where a is a constant, t is the iteration number and T is
the maximum number of iterations. r2 ∈ [0, 2π ] specifies
the distance and direction of the movement related to the
destination. r3 ∈ [0, 2] determines the weight of the
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Algorithm 1 SCA pseudo-code.

destination point P t
i . The fourth parameter r4 ∈ [0, 1] is a

number used to randomly choose one of the two options in
(1).

The FS problem is a binary optimization problem. A
hypercube represents its search space, and a bit flip in
the candidate vector changes the candidate position in the
search space (X = {x1, x2, ..., xm}). However, given that
SCA is originally for continuous optimization problems,
there is a need for a mapping function. The transfer function
(TF) proposed by [92] is utilized to map a candidate
continuous value to its corresponding binary value. In this
paper, the use of the TF is based on literature work described
in [93].

In more detail, the use of the TF is conducted as follows.
First, the probability of flipping a bit is calculated using
(3). Where vd

i (t) refers to the velocity of the dth dimension
in the ith step vector (velocity) for the current iteration
(t). Next, the decision value is updated based on (4), in
which a random number r ∈ [0, 1] is generated and, if the
probability of flipping T (vd

i (t)) is greater than r , then a bit
flip takes place on the i-th element of the position vector

(Xi(t + 1)). This TF is called V-shaped and is visualized in
Fig. 2.

T (vi
d(t)) = |(vi

d(t))/

√
1 + (vi

d(t))2| (3)

X(t + 1) =
{ ¬Xt r < T (vi

k(t))

Xt r ≥ T (vi
k(t))

(4)

3.1 Objective function

In every optimization problem, there must be an objective
function, which is an evaluation function that is used to
measure a solution’s effectiveness. In the case of the FS
optimization problem, a wrapper (optimizer) aims to i)
minimize the number of the selected feature, and ii) increase
the algorithm accuracy. Therefore, the developed objective
function is as illustrated in (5). The focus is to minimize
the classification error rate and the selection ratio, where
the classification error rate is denoted as ERR(D) and the
selection ratio is calculated by dividing the selected number
of features (|R|) over the total number of features (|N |).
α ∈ [0, 1] is the weight assigned to the classification error
rate, and β = 1 − α is the weight assigned to the selection
ratio [94].

Fitness = α × ERR(D) + β × |R|
|N | (5)

4 Proposed algorithm: an improved binary
sine cosine algorithmwithmultiple
exploration and exploitation approaches
for feature selection

We present three versions of our binary optimization
algorithm called Improved Binary SCA with multiple
exploration and exploitation approaches (IBSCA) which
can be used to solve FS problems. Algorithm 2 and the
flowchart in Fig. 3 present the details of this approach.
Three exploration techniques are applied in an accumulative
manner to the three versions of IBSCA (IBSCA1, IBSCA2,
IBSCA3), where IBSCA3 uses all of the three exploration
techniques. The three versions of IBSCA are as follows:

– IBSCA1: OBL is used as the exploration method.
– IBSCA2: Builds on IBSCA1 by additionally using the

VNS method combined with the Laplace distribution
to explore the search space using several mutation
methods.

– IBSCA3: Builds on IBSCA2 by additionally using
Refraction Learning to improve the current best
candidate solution at each iteration of the optimization
loop of SCA.
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Fig. 1 The flowchart of SCA
algorithm

4.1 Representation of candidate solutions

A candidate solution for a FS problem with m features is
a vector of m binary decision variables. Given a candidate

solution X, xi = 1 means that the ith feature is included
in X, whereas xi = 0 means that it is not. Table 1 shows
an example candidate solution consisting of 10 decision
variables X =< x1 = 0, x2 = 1, x3 = 1, ..., x10 = 1 >.

Fig. 2 V-shaped Transfer
function
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Algorithm 2 Improved Binary SCA with multiple exploration and exploitation approaches (IBSCA).

4.2 Population initialization

The performance of optimization algorithms can be
improved by a diversified initial population of solutions
[95–97]. One possible way to create a diverse initial
population is by using the opposition-based learning (OBL)
approach. OBL is an intelligent method developed from the
observation that considering opposite candidate solutions
can lead to improved search times [98]. It can be be applied
to the decision variables in machine learning, optimization
and search algorithms. For example, if X = 〈x1, x2..., xm〉 is
a candidate solution with m decision variables, the opposite
candidate solution Xo is as follows:

Xo = 〈xo
1 , xo

2 ..., xo
m〉, where xo

i = LBi + UBi − xi (7)

where LBi is the lower bound for variable i and UBi is its
upper bound.

The initialization stage is similar in all versions of
IBSCA. In this stage, the first half of the population is
generated randomly. The remainder of the population is
generated by applying OBL to the first half (Line 1 in
Algorithm 2). The use of OBL is expected to expand the
search region and improve the solution’s approximation.

While OBL can also be applied in the initialization

stage of other optimization algorithms (e.g., Cuckoo Search
[96, 99], Grey Wolf Optimizer [100], Whale Optimization
[101]), as can be seen in Section 5.2, the performance
of IBSCA using only OBL is slightly better than the
performance of BSCA. This leads to it being a good base to
later combine VNS, Laplace distribution, and RL to strongly
improve IBSCA’s performance.

4.3 Discretization strategy

Candidate solutions produced by the optimization process
of SCA and RL are continuous. Therefore, we use two-
step transfer functions to convert the continuous decision
variables into binary ones (lines 8 and 10).

Table 2 shows eight binary transfer functions (4 S-
shaped and 4 V-shaped transfer functions). We conducted
extensive simulations to verify the efficiency of these
transfer functions and found that V3 was the most viable
transfer function. The experimental results in [93, 102]
confirm our conclusion about V3. Thus, V3 is adopted in
our experiments.

In V3, each decision variable x
j
i in candidate solution

Xi =< x1
i , x2

i , ..., xm
i > at iteration t is used to calculate

the probability of altering x
j
i to 0 or 1. The probability is
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Fig. 3 The flowchart of IBSCA
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Table 1 A sample binary
candidate solution Dimension 1 2 3 4 5 6 7 8 9 10

xi 0 1 1 0 1 0 1 1 0 1

calculated as follows:

T (x
j
i (t)) = |xj

i (t)/

√
1 + (x

j
i (t))2| (8)

Then, x
j
i (t) is set to 0 or 1 as follows:

x
j
i (t + 1) =

{
1 − x

j
i (t), r < T (x

j
i (t))

x
j
i (t), r ≥ T (x

j
i (t))

(9)

where r ∈ [0, 1] is generated randomly. The chance of
flipping the new value x

j
i (t + 1) increases as the value

T (x
j
i (t)) increases.

4.4 Fitness function

In wrapper FS methods, we seek to minimize the number of
selected features while maximizing classification accuracy.
These two conflicting goals should be taken into account
in the fitness function. We adopted the following fitness
function to be used in our proposed algorithm:

F(X) = α × ERR(D) + β × |R|
|N | (10)

where F(X) is the fitness function of candidate solution X,
ERR is the error rate obtained by a k-Nearest Neighbor
classifier using X, |R| is the number of features in X, |N |
is the total number of features in the dataset, α is the weight
for ERR and β = 1 − α is the weight for the selection ratio
(|R|/|N |).

4.5 Optimization loop

The optimization loop of IBSCA starts at Line 3 in
Algorithm 2, and ends at line 15. The first step is to
evaluate each candidate solution using the fitness function
(Section 4.4). Then, the random parameters of the algorithm
are initialized (r1, r2, r3 and r4) and the best solution
is determined (P = X∗). Afterwards, all the candidate
solutions are updated using (1) and the two-step transfer
function (Section 4.3) is applied to the updated solutions to

generate binary equivalences. In line 9, RL is applied to the
best solution X∗ as described in Section 4.5.1 and then the
result is converted to a binary solution using the two-step
transfer function. Finally, a combination of the variables
neighborhood search with Laplace distribution (lines 11-14)
is applied to a randomly selected solution from the current
population, as described in Section 4.5.2.

4.5.1 Refraction learning

IBSCA3 applies RL to the current best solution to improve
it. In this section, we describe RL and then show how it can
be used in IBSCA3.

The refraction of light is caused by a light ray hitting
an interface between two different mediums (e.g., air and
water). The ray bends as its velocity changes when it moves
toward the boundary between the two mediums. RL is an
OBL method based on the principle of light refraction. The
one-dimensional spatial refraction-learning process for the
global optima X∗ at iteration t is illustrated in Fig. 4 [95,
103].

The inverse of X∗ can be calculated using refraction
learning as follows:

X′∗ = (LB + UB)/2 + (LB + UB)/(2kη) − X∗/(kη), (11)

where η is the refraction index, given by:

η = sin θ1

sin θ2
, (12)

where sin θ1 = ((LB + UB)/2 − X∗)/h and sin θ2 =
(X′∗ − (LB + UB)/2)/h′

In the above equations, X represents the incidence point
(original candidate solution) while X′ is the refraction point
(opposite candidate solution). O denotes the center point of
the search interval [LB, UB], h denotes the distance between
x and O and h′ denotes the distance between X′ and O.

Table 2 S-shaped and
V-shaped transfer functions S-Shaped V-Shaped

Name Function Name Function

S1 1
1+e−2x V1

∣∣∣erf (√
π

2 x
)∣∣∣

S2 1
1+e−x V2 |tan(x)|

S3 1

1+e
−x
2

V3

∣∣∣∣ x√
1+x2

∣∣∣∣
S4 1

1+e
−x
3

V4
∣∣∣ 2
π

arctan
(

π
2 x

)∣∣∣
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In general, (11) can handle n decision variables as follows:

x′∗
j = (LBj + UBj )/2 + (LBj + UBj )/(2kη) − x∗

j /(kη),

(13)

where x∗
j and x′∗

j are the jth decision variable of X∗ and
X′∗, respectively, and LBj and UBj are the lower and upper
bounds of the jth decision variable, respectively.

In IBSCA3, (11) is applied to the best solution yet
discovered (Line 9 in Algorithm 2).

4.5.2 Variables neighborhood search with laplace
distribution

Two versions of IBSCA (IBSCA2 and IBSCA3) employ a
combination of the Laplace distribution and VNS method.
In this section, we first explain the Laplace distribution and
VNS method and then show how they are applied in these
algorithms.

Variable Neighborhood Search (VNS) is a powerful
metaheuristic for solving combinatorial optimization prob-
lems. The primary goal when using VNS is to enhance
a candidate solution by performing a series of operations
(e.g., mutation) on a solution. This nearby solution may
break out of a local optimum. The optimization process of
VNS is iterative and moves between adjacent solutions in an
attempt to identify a better candidate [97, 104].

The Laplace distribution is suitable for stochastic
modeling because it is stable under geometric, rather than
ordinary, summation [105, 106]. The Laplace distribution’s
density function is given by:

f (x) = 1

2b
e− |x−a|

b , (14)

where −∞ < x < ∞. The Laplace distribution is then
defined as follows:

xt+1
i =

{
1
2e

|x−a|
b , x ≤ a

1 − 1
2e− |x−a|

b , x > a

(15)

where a ∈ R is the location parameter and b > 0 is the scale
parameter.

IBSCA2 and IBSCA3 employ a combination of the
Laplace distribution and VNS method (lines 11 to 14 in
Algorithm 2). In detail, these algorithms randomly pick
a candidate solution xt

i at iteration t from the current
population of solutions. They then generate a random
number r ∈ [0, 1] using the Laplace distribution. r is then
used as a probability to select one of four operations on the

selected candidate solution (swap, insert, inverse, or random
mutation), as follows:

xt+1
i =

⎧⎪⎨
⎪⎩

0 ≤ r < 0.25 Apply swap operator to xt
i

0.25 ≤ r < 0.5 Apply insert operator to xt
i

0.5 ≤ r < 0.75 Apply inverse operator to xt
i

0.75 ≤ r < 1.0 Apply random operator to xt
i

(16)

The swap operator randomly selects two decision
variables in the candidate solution (say xi and xj ) and then
exchanges the values of xi and xj , as illustrated in Fig. 5.

The insert operator randomly selects two decision
variables (say xi and xj ) in the candidate solution and then
shifts the values between xi+1 and xj−1 down one position,
inserting xi into xj−1, as illustrated in Fig. 6.

The inverse operator, shown in Fig. 7, randomly selects
two decision variables (xi and xj ) in the candidate solution
and then inverses the order of values from xi to xj .

The random operator, shown in Fig. 8, randomly selects
a number of decision variables (say p) in the candidate
solution and then flips the binary value of each selected
decision variable.

4.6 Computational complexity of IBSCA

The purpose of this section is to show the detailed
computational complexity of IBSCA. We assume that the
cost of any basic vector operation is O(1) and we denoted
MaxItr as M .

The computational complexity of IBSCA (Algorithm 2)
can be calculated as follows:

– In Line 1(a), the generation of n/2 candidate solutions
using a random generation function requires O(n/2)
operations.

– In Line 1(b), the generation of n/2 opposite candidate
solutions using OBL (7) requires O(n/2) operations.

– Line 2 requires O(1) operations.
– The internal operations inside the while loop (lines 3 to

15) are as follows:

– The number of operations required to evaluate
the fitness of the candidate solutions is O(n)
operations (Line 4).

– Updating the best candidate solution so far
(P = X∗) requires O(n) operations (Line 5).

– Generating four random numbers requires
O(1) operations (Line 6).

– Updating the candidate solutions using (1)
requires O(n) operations (Line 7).

– Applying the two-step transfer function
(Section 4.3) to the updated candidate
solutions requires O(n) operations (Line 8).
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Fig. 4 Refraction Learning for
the Global Optimal x∗

Fig. 5 Swap operator between
x3 and x6

Fig. 6 Insert operator between
x2 and x9

Fig. 7 Inverse operator between
x3 and x6
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Fig. 8 Random operator for x3,
x6 and x9

– Applying RL to the best solution X∗ requires
O(1) operations (Line 9).

– Applying the two-step transfer function
(Section 4.3) to the updated solution using RL
requires O(1) operations (Line 10).

– Selecting a random solution from the current
population of solutions (say Xt

i ) requires O(1)
operations (Line 11).

– Generating a random number r ∈ [0, 1]
based on the Laplace distribution requires O(1)
operations (Line 12).

– Selecting one of four moves based on the value
of r requires O(1) operations (Line 13).

– Line 14 requires O(1) operations.

– Overall, the cost of the operations in the while loop
(lines 3 to 15) is O(M(n + n + 1 + n + n + 1 + 1 +
1 + 1 + 1 + 1)), where M is the maximum number of
iterations. This can be reduced to O(M .n).

– The total number of operations in IBSCA (lines 1 to 16)
is O(n/2 + n/2 + 1 + M .n + 1). This can be reduced to
O(M .n) because M .n is greater than n + 2.

In summary, the computational complexity of IBSCA is
O(M .n).

Table 3 Parameters Settings

Parameter Value

Population size (Search agents)10

Number of iterations 100

Dimension Number of features

Number of runs 30

α in fitness function 0.99

a 2

r1 decreases linearly from a to 0

r2 a random number in the range [0 , 2π ]

r3 a random number in the range [0 , 2]

r4 a random number in the range [0 , 1]

rLaplace a random number in the range [0 , 1]

5 Experiments

In this section, we first demonstrate the performance
of the three variations of IBSCA when solving the FS
problem. The detailed characteristics of the used datasets
are presented in Section 5.1. Section 5.2 provides a
comparison of the convergence behavior of the original
Binary Sine Cosine Algorithm (BSCA) [107] to the
convergence behaviors of the three variations of IBSCA
over the UCI datasets. Section 5.3 shows the performance of
IBSCA3 in comparison to other well known FS algorithms.

Table 3 illustrates the parameter settings of our proposed
approach. The values of the parameters of all of the
algorithms have been finely tuned based on several
experiments. Thus, the algorithms in this section were
compared to each other based on their best parameter
settings. Since the general feature of the optimization

Table 4 Datasets description

Dataset No. of Attributes No. of Objects No. of Classes

Breastcancer 9 699 2

BreastEW 30 569 2

Exactly 13 1000 2

Exactly2 13 1000 2

HeartEW 13 270 2

Lymphography 18 148 4

M-of-n 13 1000 2

PenglungEW 325 73 7

SonarEW 60 208 2

SpectEW 22 267 2

CongressEW 16 435 2

IonosphereEW 34 351 2

KrvskpEW 36 3196 2

Tic tac-toe 9 958 2

Vote 16 300 2

WaveformEW 40 5000 3

WineEW 13 178 3

Zoo 16 101 7

COVID-19 dataset 15 1085 2
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Fig. 9 Convergence behavior of BSCA, IBSCA1, IBSCA2 and IBSCA3 over the datasets: Breastcancer, BreastEW, CongressEW, Exactly,
Exactly2 and HeartEW

algorithms is random in nature, we executed the algorithms
for 30 independent runs. We executed our experiments on a
Windows 7 computer with an Intel Core i7-3517U CPU @
1.90GHz 2.40GHz and 8.0 GB memory.

5.1 Datasets properties

The performance of IBSCA was evaluated using nineteen
datasets (18 from UCI repository [108] and a real-world

COVID-19 dataset1. Table 4 provides a description of these
datasets in terms of their dimensions, number of instances,
and number of classes. All datasets were split randomly
into 80 training instances and 20 testing instances [38]
where the k-nearest neighbors classifier (KNN) is used. The

1https://github.com/Atharva-Peshkar/
Covid-19-Patient-Health-Analytics
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Fig. 10 Convergence behavior of BSCA, IBSCA1, IBSCA2 and IBSCA3 over the datasets: IonosphereEW, KrvskpEW, Lymphography, M-of-n,
penglungEW and SonarEW

KNN technique is a supervised machine learning method
for solving classification and regression problems [102].

5.2 Convergence behavior of BSCA vs three
variations of IBSCA

Figures 9, 10 and 11 show the convergence behavior of
BSCA, IBSCA1, IBSCA2 and IBSCA3 over the UCI
datasets. In each chart of these figures, the x-axis represents

the iteration number, and the y-axis represents the fitness
value. The convergence charts show that IBSCA3 converges
faster to good solutions than all of the other algorithms
for all of the datasets. The superiority of IBSCA3 is
mainly because it uses three exploration techniques. First,
it uses OBL when initializing the population to improve
quality and diversity. Second, it integrates the VNS and
Laplace distribution to explore the search space using
multiple mutation methods. Third, it uses RL to search
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Fig. 11 Convergence behavior of BSCA, IBSCA1, IBSCA2 and IBSCA3 over the datasets: SpectEW, Tic-tac-toe, Vote, WaveformEW, WineEW
and Zoo

the neighborhood of best candidate solutions for better
solutions.

The second best performing algorithm was IBSCA2. It
uses two exploration techniques compared to IBSCA3 that
uses three techniques. IBSCA1 was the third best perform-
ing algorithm. It uses only one exploration technique. BSCA
exhibits the worst convergence behavior compared to the
other algorithms. This may be because it does not use any

additional exploration techniques compared to the other
algorithms.

5.3 Performance analysis of IBSCA3 compared
to baseline algorithms

In this section, we present a comparison between IBSCA3
and other binary versions of the baseline algorithms: BSCA,

13239



B. H. Abed-alguni et al.

Table 5 Parameter settings of the baseline algorithms

Algorithm Parameter settings

RBDA Population size = 10, Number of iterations = 100, α = 0.99, and β = 0.01

LBDA Population size = 10, Number of iterations = 100, α = 0.99, and β = 0.01

QBDA Population size = 10, Number of iterations = 100, α = 0.99, and β = 0.01

SBDA Population size = 10, Number of iterations = 100, α = 0.99, and β = 0.01

BGWO Population size = 10, Number of iterations = 100, and a=[2, 0]

BGSA Population size = 10, Number of iterations = 100, Gø= 100, and α = 20

BBA Population size = 10, Number of iterations = 100, Frequency minimum Qmin = 0,

Frequency maximum Qmax = 2, Loudness A = 0.5, and Pulse rate r = 0.5

CHIO HIS = 30, Max Age = 100, BRr = 0.01, Max I tr = 100 , LB = 0 , UB = 1

CHIO-GC HIS = 30, Max Age = 100, BRr = 0.01, Max I tr = 100 , LB = 0 , UB = 1

Random based Binary Dragonfly Algorithm (RBDA) [102],
Linear based Binary Dragonfly Algorithm (LBDA) [102],
Quadratic based Binary Dragonfly Algorithm (QBDA)
[102], Sinusoidal based Binary Dragonfly Algorithm
(SBDA) [102], Binary Gray Wolf Optimizer (BGWO)
[109], Binary Gravitational Search Algorithm (BGSA)
[109], and Binary Bat Algorithm (BBA) [109]. These
algorithms were compared according to their classification
accuracy, number of selected features, and their best fitness
values. We also compared IBSCA to Coronavirus Herd
Immunity Optimizer (CHIO) [110] and Coronavirus Herd
Immunity Optimizer-Greedy Crossover (CHIO-GC) [110].
Table 5 shows the parameter settings of these algorithms, as
in [102, 110].

Table 6 shows the average value and standard deviation
of the results obtained by the proposed IBSCA3 algorithm,
and the other compared algorithms, in terms of average
classification accuracy. IBSCA3 outperforms the other
algorithms and obtains the best classification accuracy on
all the UCI and COVID-19 datasets.

Table 7 presents the average number of selected features
for the tested algorithms. IBSCA3 outperforms the other
tested algorithms on 14 out of 18 datasets. This is better
than the second best algorithm (SBDA algorithm) which
outperforms the remaining compared algorithms on 11 out
of 18 datasets.

Table 8 illustrates the best fitness values obtained by
the tested algorithms. We can observe that IBSCA3 shows
superior performance over the other algorithms. It obtains
the best fitness values on all datasets.

In summary, the enhanced version of the Binary Sine
Cosine algorithm outperformed the other algorithms for all
of the tested datasets, with IBSCA3 providing the highest
classification accuracy and the lowest fitness function for all
datasets with different dimensions, and the lowest average
number of selected features in most cases. The overall
results indicate that IBSCA3 converges faster than the other

algorithms to the most accurate solutions with the least
number of features.

The original SCA employs a random update method to
update the solutions in the algorithm. This negatively affects
the ability of SCA to balance between the exploration
and exploitation of the search space. In contrast, IBSCA3
improves exploration and exploitation in the original SCA
by employing several techniques. First, it employs an OBL
approach to improve the diversity of initial population.
Second, it integrates the VNS and Laplace distribution to
explore the search space using multiple mutation methods.
Third, it uses RL to search the neighborhood of the best can-
didate solutions for better ones. The overall results indicate
that IBSCA3 improves the performance and convergence
behavior of the original SCA in solving the FS problem.

5.4 Performance analysis of IBSCA3 compared
to state-of-the-art algorithms that adopt
OBL-enhancedmethods, VNS and laplace
distribution

In this section, we demonstrate a comparison between
IBSCA3 and other new algorithms that incorporate OBL
into their basic structure. These algorithms are: Improved
Salp Swarm Algorithm based on opposition based learn-
ing and novel local search algorithm for feature selection
(ISSA) [111], Improved Harris Hawks Optimization using
elite opposition-based learning and novel search mecha-
nism for feature selection (IHHO) [112], and New fea-
ture selection methods based on opposition-based learn-
ing and self-adaptive cohort intelligence for predicting
patient no-shows (OSACI) [113]. We also compare IBSCA3
with other new algorithms that employ similar methods
(VNS and Laplace distribution): A variable neighborhood
search algorithm for human resource selection and opti-
mization problem in the home appliance manufacturing
industry (VNS-HRS) [114], Improving feature selection
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Table 6 Average and standard deviation of classification accuracy for the proposed IBSCA3 algorithm in comparison to existing algorithms

Dataset Metric IBSCA3 BSCA RBDA LBDA QBDA SBDA BGWO BGSA BBA CHIO CHIO-GC

Breastcancer Avg 0.997 0.965 0.983 0.978 0.993 0.993 0.978 0.948 0.932 N/A N/A

StDev 0.000 0.002 0.004 0.002 0.001 0.000 0.01 0.02 0.051 N/A N/A

BreastEW Avg 1.000 0.979 1.000 0.987 0.980 0.975 0.923 0.928 0.913 0.899 0.94

StDev 0.000 0.005 0.008 0.008 0.006 0.006 0.015 0.014 0.035 0.021 0.019

Exactly Avg 1.000 0.985 1.000 1.000 0.994 1.000 0.835 0.732 0.602 N/A N/A

StDev 0.000 0.037 0.003 0.000 0.020 0.000 0.077 0.124 0.055 N/A N/A

Exactly2 Avg 0.823 0.783 0.797 0.780 0.785 0.757 0.674 0.644 0.683 N/A N/A

StDev 0.009 0.038 0.015 0.002 0.000 0.014 0.041 0.041 0.04 N/A N/A

HeartEW Avg 0.926 0.798 0.839 0.901 0.880 0.867 0.788 0.77 0.728 0.854 0.912

StDev 0.041 0.047 0.011 0.034 0.019 0.009 0.039 0.066 0.061 0.027 0.018

Lymphography Avg 0.967 0.814 0.930 0.913 0.924 0.954 0.842 0.864 0.689 0.761 0.834

StDev 0.021 0.035 0.021 0.019 0.023 0.016 0.057 0.081 0.103 0.035 0.027

M-of-n Avg 1.000 0.984 1.000 1.000 0.999 1.000 0.913 0.827 0.716 N/A N/A

StDev 0.000 0.005 0.000 0.000 0.004 0.000 0.052 0.061 0.083 N/A N/A

PenglungEW Avg 1.000 0.977 0.959 1.000 1.000 1.000 0.869 0.949 0.816 N/A N/A

StDev 0.068 0.000 0.039 0.000 0.000 0.000 0.012 0.054 0.054 N/A N/A

SonarEW Avg 0.995 0.952 0.964 0.944 0.948 0.993 0.887 0.865 0.814 N/A N/A

StDev 0.008 0.015 0.017 0.019 0.012 0.011 0.04 0.047 0.059 N/A N/A

SpectEW Avg 0.941 0.862 0.894 0.923 0.890 0.925 0.818 0.785 0.756 N/A N/A

StDev 0.017 0.007 0.010 0.010 0.013 0.011 0.029 0.034 0.039 N/A N/A

CongressEW Avg 1.000 0.961 0.976 0.999 0.993 0.975 0.95 0.943 0.869 N/A N/A

StDev 0.000 0.014 0.003 0.004 0.006 0.005 0.047 0.026 0.08 N/A N/A

IonosphereEW Avg 0.993 0.975 0.970 0.970 0.923 0.984 0.891 0.869 0.866 N/A N/A

StDev 0.004 0.013 0.013 0.009 0.012 0.011 0.025 0.026 0.027 N/A N/A

KrvskpEW Avg 0.984 0.962 0.975 0.981 0.968 0.966 0.935 0.898 0.79 N/A N/A

StDev 0.007 0.005 0.004 0.006 0.004 0.004 0.019 0.053 0.09 N/A N/A

Tic-tac-toe Avg 0.869 0.811 0.820 0.839 0.847 0.832 0.806 0.761 0.658 N/A N/A

StDev 0.000 0.049 0.005 0.000 0.005 0.005 0.029 0.038 0.081 N/A N/A

Vote Avg 0.998 0.984 0.996 0.971 0.959 0.972 0.939 0.943 0.856 N/A N/A

StDev 0.004 0.038 0.007 0.010 0.008 0.008 0.021 0.025 0.102 N/A N/A

WaveformEW Avg 0.791 0.724 0.766 0.760 0.738 0.776 0.705 0.697 0.659 N/A N/A

StDev 0.013 0.018 0.009 0.010 0.008 0.011 0.015 0.021 0.046 N/A N/A

WineEW Avg 1.000 0.947 0.991 1.000 1.000 1.000 0.938 0.976 0.838 N/A N/A

StDev 0.000 0.049 0.013 0.000 0.000 0.000 0.036 0.035 0.131 N/A N/A

Zoo Avg 1.000 0.994 1.000 1.000 1.000 1.000 0.993 0.995 0.867 N/A N/A

StDev 0.000 0.028 0.000 0.000 0.000 0.000 0.023 0.015 0.114 N/A N/A

COVID-19 Avg 0.952 0.894 N/A N/A N/A N/A N/A N/A N/A 0.914 0.937

StDev 0.008 0.028 N/A N/A N/A N/A N/A N/A N/A 0.025 0.019

The results in bold point shows the best results in the table
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Table 7 Average and standard deviation of average selected features for the proposed IBSCA3 algorithm in comparison to existing algorithms

Dataset Metric IBSCA3 BSCA RBDA LBDA QBDA SBDA BGWO BGSA BBA

Breastcancer Avg 2.71 5.01 5.07 4.93 3.03 5 6.4 4.47 4.1

StDev 0.12 0.67 1.31 0.25 0.18 0 1.75 1.01 1.27

BreastEW Avg 7.86 8.39 9.07 11.7 13.33 12.2 21.57 14.93 11.77

StDev 1.69 1.78 1.74 1.97 2.51 2.54 4.8 2 3.94

Exactly Avg 5.92 8.04 6.07 6.13 7.03 6.13 10.7 7.67 5.23

StDev 1.83 0.09 0.25 0.35 0.85 0.35 2.02 1.49 2.25

Exactly2 Avg 1.01 6.38 2.83 1.3 1.03 5.03 6.97 6.13 5.77

StDev 0.14 2.18 3.11 1.64 0.18 3.76 2.74 2.08 1.57

HeartEW Avg 5.64 7.03 6.13 6.4 6.33 6.03 9.7 6.63 5.07

StDev 1.82 1.47 1.25 1.28 1.06 0.96 1.99 1.94 1.7

Lymphography Avg 5.91 6.04 9.43 8.07 7.67 6.83 10.6 9 6.87

StDev 0.77 2.03 1.81 1.51 1.84 0.91 2.63 2.18 1.96

M-of-n Avg 5.27 6.88 6.07 6.07 6.97 6.07 10.43 8.2 5.73

StDev 1.94 0.54 0.25 0.25 0.67 0.25 1.45 1.16 1.82

PenglungEW Avg 84.62 106.38 110.2 99.9 132.47 117.53 152.33 145.1 126.47

StDev 9.33 10.39 11.35 8.45 3.82 9.7 7 4.88 15.62

SonarEW Avg 22.14 25.91 23.1 26.53 28.3 24.33 34.87 27.07 23.53

StDev 2.69 3.57 3.06 4.03 3.62 2.52 7.81 3.64 5.15

SpectEW Avg 4.78 10.13 9.57 5.2 9.4 8.57 13.77 9.77 8.73

StDev 2.16 2.56 2.37 2.31 1.94 1.63 2.93 2.3 2.29

StDev 1.72 1.42 1.23 0.86 1.22 1.5 1.88 1.91 2.18

IonosphereEW Avg 10.65 15.73 11 13.63 12.93 12.67 16.17 14.9 12.3

StDev 1.83 2.81 2.3 3.15 2.99 2.17 2.35 2.89 3.4

KrvskpEW Avg 13.07 21.45 18.93 18.97 20.6 19.57 30.9 19.73 14.97

StDev 2.71 2.56 2.12 2.83 2.09 2.43 2.93 2.36 2.88

Tic-tac-toe Avg 4.1 5.9 6.7 7 6.93 6.93 8.3 5.6 4.3

StDev 0.65 1.06 0.47 0 0.37 0.37 1.24 0.97 1.7

Vote Avg 4.21 7.96 4.3 4.63 6.23 4 8.63 7.37 6.1

StDev 0.87 1.82 0.53 1.45 1.77 0.98 2.63 1.67 2.14

WaveformEW Avg 18.54 35.94 21.4 21.4 21.77 21.83 34.07 21.6 16.23

StDev 3.49 4.93 3.54 2.3 2.71 2.65 4.48 3.69 4.08

WineEW Avg 3.02 5.94 7.13 3.43 4.07 4.4 7.37 6.57 4.87

StDev 0.43 1.53 1.43 0.68 0.69 1.07 1.67 1.36 1.87

Zoo Avg 1.6 5.63 3.4 4.2 4.5 1.97 7.37 6.97 6.43

StDev 0.83 0.92 0.56 0.41 0.73 0.96 1.63 1.25 1.83

COVID-19 dataset Avg 2.95 3.05 N/A N/A N/A N/A N/A N/A N/A

StDev 0.74 0.183 N/A N/A N/A N/A N/A N/A N/A

The results in bold point shows the best results in the table

performance for classification of gene expression data using
Harris Hawks Optimizer with variable neighborhood learn-

ing (VNLHHO) [115], Improved equilibrium optimization
algorithm using elite opposition-based learning and new
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Table 8 Average and standard deviation of the best fitness value for the proposed IBSCA3 algorithm in comparison to existing algorithms

Dataset Metric IBSCA3 BSCA RBDA LBDA QBDA SBDA BGWO BGSA BBA

Breastcancer Avg 0.010 0.029 0.023 0.028 0.011 0.013 0.016 0.027 0.036

StDev 0.001 0.002 0.002 0.001 0.002 0 0.002 0.007 0.005

BreastEW Avg 0.002 0.022 0.003 0.017 0.025 0.029 0.043 0.039 0.036

StDev 0.001 0.001 0.001 0.008 0.005 0.006 0.007 0.01 0.009

Exactly Avg 0.003 0.024 0.006 0.005 0.012 0.005 0.185 0.253 0.303

StDev 0 0.002 0.003 0 0.02 0 0.051 0.094 0.108

Exactly2 Avg 0.201 0.29 0.204 0.219 0.214 0.245 0.249 0.288 0.25

StDev 0.009 0.12 0.18 0 0 0.011 0.014 0.014 0.015

HeartEW Avg 0.103 0.196 0.165 0.104 0.124 0.137 0.128 0.137 0.161

StDev 0.029 0.025 0.011 0.032 0.019 0.008 0.026 0.03 0.023

Lymphography Avg 0.037 0.11 0.075 0.091 0.079 0.049 0.083 0.081 0.162

StDev 0.012 0.019 0.02 0.018 0.022 0.016 0.035 0.033 0.053

M-of-n Avg 0.005 0.009 0.005 0.005 0.007 0.005 0.087 0.165 0.165

StDev 0 0 0.027 0 0.004 0 0.039 0.041 0.044

PenglungEW Avg 0.002 0.048 0.044 0.003 0.004 0.004 0.126 0.004 0.132

StDev 0 0.019 0.038 0 0 0 0.025 0 0.038

SonarEW Avg 0.009 0.054 0.039 0.059 0.057 0.011 0.104 0.082 0.11

StDev 0.007 0.025 0.017 0.019 0.011 0.011 0.02 0.023 0.03

SpectEW Avg 0.063 0.136 0.11 0.079 0.113 0.079 0.143 0.153 0.143

StDev 0.007 0.016 0.009 0.009 0.012 0.01 0.016 0.018 0.021

CongressEW Avg 0.003 0.034 0.028 0.005 0.011 0.029 0.028 0.032 0.032

StDev 0.001 0.004 0.003 0.003 0.005 0.004 0.01 0.013 0.015

IonosphereEW Avg 0.018 0.091 0.033 0.033 0.081 0.020 0.099 0.127 0.124

StDev 0.006 0.012 0.013 0.009 0.012 0.01 0.013 0.011 0.019

KrvskpEW Avg 0.021 0.043 0.03 0.024 0.038 0.039 0.051 0.099 0.093

StDev 0.007 0.005 0.003 0.006 0.004 0.004 0.009 0.049 0.039

Tic-tac-toe Avg 0.157 0.214 0.187 0.169 0.160 0.175 0.177 0.232 0.232

StDev 0.003 0.005 0.004 0 0.005 0.004 0.008 0.024 0.022

Vote Avg 0.004 0.034 0.007 0.032 0.044 0.030 0.048 0.038 0.063

StDev 0.003 0.008 0.007 0.01 0.007 0.008 0.009 0.009 0.017

WaveformEW Avg 0.209 0.276 0.237 0.243 0.264 0.227 0.237 0.251 0.251

StDev 0.009 0.012 0.008 0.009 0.008 0.011 0.008 0.013 0.016

WineEW Avg 0.003 0.008 0.015 0.003 0.003 0.004 0.045 0.009 0.025

StDev 0.000 0.009 0.013 0.001 0.001 0.001 0.017 0.012 0.017

Zoo Avg 0.001 0.007 0.002 0.003 0.003 0.001 0.007 0.005 0.052

StDev 0.001 0.002 0 0 0 0.001 0.01 0.001 0.032

COVID-19 dataset Avg 0.002 0.013 N/A N/A N/A N/A N/A N/A N/A

StDev 0.034 0.072 N/A N/A N/A N/A N/A N/A N/A

The results in bold point shows the best results in the table
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Table 9 Parameter settings of ISSA, IHHO, OSACI, VNS-HRS, VNLHHO, IEOA, DSSA, SFS-LARLRM and BGWOPSO

Algorithm Parameter settings

ISSA Population size = 10, Number of iterations = 40

IHHO Population size = 10, Number of iterations = 50, α = 0.99, and β = 0.01

OSACI Population size = 100, Number of iterations = 50

VNS-MCI Population size = 10, Number of iterations = 40

VNLHHO Population size = 30, Number of iterations = 100

IEOA Population size = 10, Number of iterations = 50, α = 0.99, and β = 0.01

DSSA Population size = 10, Number of iterations = 100, c2 = rand(), c3 = rand()

SFS-LARLRM Population size = 10, Number of iterations = 100, k =5,

σ = {10−7, 10−5, 10−3, 10−1, 100, 101, 103, 105, 107}, p = {0.25, 0.5, 0.75, 1}
BGWOPSO Population size = 10, Number of iterations = 100, c1 = 0.5, c2 = 0.5, c3 = 0.5,

w = 0.5 + rand ()/2, l∈[0, 1]

Table 10 Average and standard deviation of classification accuracy for the proposed IBSCA3 algorithm in comparison to BSCA and the other
algorithms that incorporate OBL, VNS and Laplace distribution

Dataset Metric IBSCA3 BSCA ISSA IHHO OSACI VNS-HRS VNLHHO IEOA DSSA SFS-LARLRM BGWOPSO

Breastcancer Avg 0.997 0.965 0.952 0.986 0.991 0.994 0.935 0.964 0.931 0.995 0.978

StDev 0.000 0.002 0.007 0.003 0.005 0.013 0.027 0.039 0.022 0.068 0.009

BreastEW Avg 1.000 0.979 0.962 1.000 1.000 0.983 0.955 0.914 0.913 0.977 0.986

StDev 0.000 0.005 0.012 0.000 0.000 0.019 0.057 0.041 0.097 0.088 0.062

Exactly Avg 1.000 0.911 0.907 1.000 0.903 1.000 1.000 0.892 1.000 1.000

StDev 0.000 0.037 0.014 0.002 0.004 0.000 0.001 0.051 0.023 0.000 0.000

Exactly2 Avg 0.823 0.783 0.724 0.687 0.719 0.753 0.796 0.616 0.698 0.781 0.765

StDev 0.009 0.038 0.019 0.025 0.042 0.028 0.009 0.077 0.093 0.013 0.005

HeartEW Avg 0.926 0.798 0.887 0.758 0.849 0.803 0.861 0.912 0.829 0.905 0.873

StDev 0.041 0.047 0.052 0.078 0.066 0.017 0.048 0.034 0.056 0.016 0.037

Lymphography Avg 0.967 0.814 0.930 0.913 0.921 0.954 0.842 0.864 0.689 0.761 0.838

StDev 0.021 0.035 0.021 0.019 0.023 0.016 0.057 0.081 0.103 0.035 0.027

M-of-n Avg 1.000 0.984 1.000 1.000 0.999 1.000 0.913 0.827 0.716 0.792 0.891

StDev 0.000 0.005 0.000 0.000 0.004 0.000 0.052 0.061 0.083 0.010 0.007

PenglungEW Avg 1.000 0.977 0.959 1.000 1.000 1.000 0.869 0.949 0.816 0.758 0.896

StDev 0.068 0.000 0.039 0.000 0.000 0.000 0.012 0.054 0.054 0.025 0.007

SonarEW Avg 0.995 0.952 0.962 0.944 0.948 0.993 0.887 0.865 0.814 0.836 0.923

StDev 0.008 0.015 0.017 0.019 0.012 0.011 0.04 0.047 0.059 0.016 0.004

SpectEW Avg 0.941 0.862 0.894 0.923 0.890 0.925 0.818 0.785 0.756 0.869 0.927

StDev 0.017 0.007 0.010 0.010 0.013 0.011 0.029 0.034 0.039 0.062 0.004

CongressEW Avg 1.000 0.961 0.976 0.999 0.993 1.000 0.952 0.943 0.869 0.954 0.981

StDev 0.000 0.014 0.003 0.004 0.006 0.005 0.047 0.026 0.008 0.061 0.017

IonosphereEW Avg 0.993 0.978 0.934 0.978 0.916 0.951 0.984 0.871 0.906 0.982 0.972

StDev 0.004 0.013 0.006 0.018 0.023 0.007 0.036 0.044 0.012 0.072 0.004

KrvskpEW Avg 0.984 0.962 0.918 0.932 0.946 0.901 0.979 0.813 0.969 0.972 0.955

StDev 0.007 0.005 0.003 0.010 0.052 0.037 0.026 0.062 0.008 0.017 0.003

Tic-tac-toe Avg 0.869 0.811 0.820 0.839 0.845 0.832 0.806 0.761 0.658 0.728 0.813
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Table 10 (continued)

Dataset Metric IBSCA3 BSCA ISSA IHHO OSACI VNS-HRS VNLHHO IEOA DSSA SFS-LARLRM BGWOPSO

StDev 0.000 0.049 0.005 0.000 0.005 0.005 0.029 0.038 0.081 0.061 0.006

Vote Avg 0.998 0.984 0.963 0.971 0.969 0.988 0.922 0.929 0.905 0.891 0.993

StDev 0.004 0.038 0.009 0.018 0.047 0.014 0.053 0.082 0.005 0.067 0.003

WaveformEW Avg 0.791 0.724 0.783 0.854 0.758 0.772 0.763 0.709 0.684 0.691 0.782

StDev 0.013 0.018 0.015 0.012 0.009 0.038 0.026 0.047 0.013 0.023 0.019

WineEW Avg 1.000 0.947 0.991 1.000 0.985 1.000 0.923 1.000 0.908 0.862 1.000

StDev 0.000 0.049 0.016 0.000 0.009 0.000 0.027 0.000 0.083 0.099 0.000

Zoo Avg 1.000 0.994 0.991 1.000 0.986 1.000 0.982 0.919 1.000 0.971 1.000

StDev 0.000 0.028 0.007 0.000 0.005 0.000 0.019 0.007 0.000 0.005 0.000

COVID-19 Avg 0.952 0.894 0.915 0.949 0.927 0.916 0.893 0.918 0.939 0.872 0.945

StDev 0.008 0.028 0.006 0.007 0.019 0.048 0.061 0.052 0.013 0.031 0.009

The results in bold point shows the best results in the table

local search strategy for feature selection in medical datasets
(IEOA) [116], Dynamic salp swarm algorithm for feature
selection (DSSA) [117], Semi-supervised feature selection
with minimal redundancy based on local adaptive (SFS-
LARLRM) [118] and Binary optimization using hybrid grey
wolf optimization for feature selection (BGWOPSO) [119].
Table 9 shows the parameter settings of these algorithms, as
in [111–119].

Table 10 shows a comparison of the average classifica-
tion accuracy achieved by the proposed IBSCA3 algorithm,
BSCA and the other algorithms that incorporate OBL, VNS
and Laplace distribution. In Table 10, we report the aver-
age value and standard deviation of the results. Among all
the datasets from UCI and COVID-19 functions (except
one, where it is second best), IBSCA3 delivers the best
classification accuracy.

5.5 Performance analysis of IBSCA3 compared
to state-of-the-art SCA algorithms

A comparison of IBSCA3 with other SCA variants is
presented in this section. These variants include: An

efficient hybrid sine-cosine Harris Hawks Optimization for
low and high-dimensional feature selection (SCHHO) [73],
A novel feature selection method for data mining tasks
using hybrid Sine Cosine Algorithm and Genetic Algorithm
(SCAGA) [75], A Hybrid Feature Selection Framework
Using Improved Sine Cosine Algorithm with Metaheuristic
Techniques (MetaSCA) [120], A novel hybrid BPSO–SCA
approach for feature selection (BPSO–SCA) [78], Boosting
Salp Swarm Algorithm by Sine Cosine algorithm and
Disrupt Operator for Feature Selection (ISSAFD), and An
improved sine cosine algorithm to select features for text
categorization (ISCA) [121]. Table 11 shows the parameter
settings of these algorithms, as in [72, 73, 75, 78, 120,
121].

Table 12 displays the average classification accuracy
of the proposed IBSCA3 algorithm, BSCA and the other
state-of-the-art SCA algorithms. In Table 12, we report the
average value and standard deviation of the results. IBSCA3
consistently outperforms other algorithms when applied to
UCI and COVID-19 datasets. Based on the classification
accuracy of IBSCA3 and these algorithms, we determined
that it had the best performance.

Table 11 Parameter settings of SCHHO, SCAGA, MetaSCA, BPSO–SCA, ISSAFD and ISCA

Algorithm Parameter settings

SCHHO Population size = 10, Number of iterations = 100 , α = 2

SCAGA Population size = 5, Number of iterations = 80, pm = 0.02 α = 0.01, and β = 0.99,

MetaSCA Population size = 30, Number of iterations = 300

BPSO–SCA Population size = 50, Number of iterations = 150, e1 = 1.5, e2 =1.5

ISSAFD Population size = 10, Number of iterations = 100, γ = 0.99, μ = 0.01, c1 = 2, c2 = 2,

ps = 0.7 , pm = 0.2, Rate = 0.8

ISCA Population size = 30, Number of iterations = 0, a = 1, b = 8
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Table 12 Average and standard deviation of classification accuracy for the proposed IBSCA3 algorithm in comparison to BSCA and the other
SCA variants algorithms

Dataset Metric IBSCA3 BSCA SCHHO SCAGA MetaSCA BPSO–SCA ISSAFD ISCA

Breastcancer Avg 0.997 0.965 0.936 0.957 0.921 0.906 0.983 0.891

StDev 0.000 0.002 0.004 0.007 0.012 0.003 0.001 0.028

BreastEW Avg 1.000 0.979 0.946 0.956 0.961 0.929 1.000 0.983

StDev 0.000 0.005 0.011 0.016 0.007 0.009 0.000 0.031

Exactly Avg 1.000 0.985 0.988 1.000 0.961 0.973 1.000 0.934

StDev 0.000 0.037 0.005 0.000 0.003 0.001 0.000 0.014

Exactly2 Avg 0.823 0.783 0.751 0.701 0.687 0.723 0.816 0.656

StDev 0.009 0.038 0.014 0.038 0.015 0.022 0.006 0.043

HeartEW Avg 0.926 0.798 0.812 0.803 0.825 0.813 0.852 0.739

StDev 0.041 0.047 0.078 0.067 0.082 0.079 0.052 0.066

Lymphography Avg 0.967 0.814 0.918 0.857 0.912 0.931 0.953 0.836

StDev 0.021 0.035 0.015 0.023 0.036 0.031 0.045 0.025

M-of-n Avg 1.000 0.984 1.000 0.932 0.908 0.951 1.000 0.881

StDev 0.000 0.005 0.000 0.011 0.008 0.016 0.000 0.037

PenglungEW Avg 1.000 0.977 0.946 0.981 0.915 0.966 1.000 0.904

StDev 0.068 0.000 0.019 0.023 0.035 0.017 0.006 0.052

SonarEW Avg 0.995 0.952 0.931 0.926 0.951 0.961 0.988 0.917

StDev 0.008 0.015 0.036 0.022 0.017 0.028 0.013 0.042

SpectEW Avg 0.941 0.862 0.853 0.819 0.779 0.825 0.858 0.841

StDev 0.017 0.007 0.015 0.027 0.019 0.064 0.019 0.032

CongressEW Avg 1.000 0.961 0.959 0.912 0.942 0.938 0.955 0.917

StDev 0.000 0.014 0.026 0.039 0.052 0.061 0.017 0.062

IonosphereEW Avg 0.993 0.975 0.963 0.958 0.916 0.937 0.972 0.856

StDev 0.004 0.013 0.021 0.035 0.042 0.051 0.019 0.063

KrvskpEW Avg 0.984 0.962 0.954 0.936 0.947 0.925 0.961 0.899

StDev 0.007 0.005 0.007 0.012 0.007 0.005 0.003 0.018

Tic-tac-toe Avg 0.869 0.811 0.831 0.806 0.826 0.802 0.842 0.783

StDev 0.000 0.049 0.031 0.027 0.016 0.024 0.002 0.053

Vote Avg 0.998 0.984 0.975 0.943 0.922 0.941 0.987 0.916

StDev 0.004 0.038 0.017 0.023 0.015 0.037 0.013 0.041

WaveformEW Avg 0.791 0.724 0.739 0.718 0.725 0.776 0.748 0.616

StDev 0.013 0.018 0.015 0.023 0.031 0.026 0.013 0.039

WineEW Avg 1.000 0.947 1.000 0.959 0.936 0.920 1.000 0.886

StDev 0.000 0.049 0.000 0.019 0.021 0.028 0.000 0.035

Zoo Avg 1.000 0.994 1.000 0.986 0.974 0.938 1.000 0.926

StDev 0.000 0.028 0.000 0.005 0.009 0.016 0.000 0.014

COVID-19 Avg 0.952 0.894 0.918 0.872 0.904 0.918 0.932 0.897

StDev 0.008 0.028 0.016 0.033 0.024 0.018 0.011 0.007

The results in bold point shows the best results in the table
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Table 13 Parameter settings of BFFAG, AVOA and GTO

Algorithm Parameter settings

BFFAG Population size = 10, Number of iterations = 50 , W = 1, Q = .7, R = 0.9

AVOA Population size = 30, Number of iterations = 500, L1 = 0.8, L2 = 0.2, w = 2.5,

p1 = 0.6, p2 = 0.4, p3 = 0.6

GTO Population size = 30, Number of iterations = 500, β = 3, W = 0.8, p = 0.03

Table 14 Average and standard deviation of classification accuracy for the proposed IBSCA3 algorithm in comparison to BSCA and the other the
other new nature-inspired metaheuristic algorithms

Dataset Metric IBSCA3 BSCA BFFAG AVOA GTO

Breastcancer Avg 0.997 0.965 0.972 0.985 0.994

StDev 0.000 0.002 0.005 0.003 0.001

BreastEW Avg 1.000 0.979 0.981 0.995 1.000

StDev 0.000 0.005 0.009 0.006 0.005

Exactly Avg 1.000 0.985 0.991 1.000 1.000

StDev 0.000 0.037 0.006 0.000 0.000

Exactly2 Avg 0.823 0.783 0.809 0.815 0.822

StDev 0.009 0.038 0.009 0.001 0.000

HeartEW Avg 0.926 0.798 0.813 0.857 0.913

StDev 0.041 0.047 0.027 0.018 0.007

Lymphography Avg 0.967 0.814 0.933 0.951 0.959

StDev 0.021 0.035 0.028 0.015 0.013

M-of-n Avg 1.000 0.984 0.988 1.000 1.000

StDev 0.000 0.005 0.005 0.000 0.000

penglungEW Avg 1.000 0.977 0.962 1.000 1.000

StDev 0.068 0.000 0.026 0.000 0.000

SonarEW Avg 0.995 0.952 0.971 0.978 0.986

StDev 0.008 0.015 0.013 0.011 0.009

SpectEW Avg 0.941 0.862 0.885 0.919 0.937

StDev 0.017 0.007 0.025 0.016 0.007

CongressEW Avg 1.000 0.961 0.974 0.986 0.992

StDev 0.000 0.014 0.010 0.005 0.002

IonosphereEW Avg 0.993 0.975 0.979 0.988 0.991

StDev 0.004 0.013 0.011 0.007 0.003

KrvskpEW Avg 0.984 0.962 0.975 0.978 0.981

StDev 0.007 0.005 0.010 0.008 0.005

Tic-tac-toe Avg 0.869 0.811 0.836 0.852 0.861

StDev 0.000 0.049 0.0041 0.003 0.001

Vote Avg 0.998 0.984 0.987 0.991 0.997

StDev 0.004 0.038 0.009 0.007 0.005

WaveformEW Avg 0.791 0.724 0.753 0.779 0.788

StDev 0.013 0.018 0.015 0.014 0.012

WineEW Avg 1.000 0.947 0.995 1.000 1.000

StDev 0.000 0.049 0.009 0.000 0.000
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Table 14 (continued)

Dataset Metric IBSCA3 BSCA BFFAG AVOA GTO

Zoo Avg 1.000 0.992 0.996 1.000 1.000

StDev 0.000 0.028 0.013 0.000 0.000

COVID-19 Avg 0.952 0.894 0.931 0.945 0.948

StDev 0.008 0.028 0.007 0.005 0.004

The results in bold point shows the best results in the table

5.6 Performance analysis of IBSCA3 compared
to other new nature-inspiredmetaheuristic
algorithms

This section shows a comparison between IBSCA3 and
other new nature-inspired metaheuristic algorithms, includ-
ing: A novel Binary Farmland Fertility Algorithm (BFFAG)
[122], African vultures optimization algorithm (AVOA)
[123] and Artificial gorilla troops optimizer (GTO) [124].

Table 13 shows the parameter settings of these algorithms,
as in [122–124].

A comparison of the average classification accuracy
achieved by the proposed IBSCA3 algorithm, BSCA and
the other new nature-inspired metaheuristic algorithms is
shown in Table 14, where we report the average value and
standard deviation of the results. In all datasets from UCI
and COVID-19, IBSCA3 delivers the best classification
accuracy.

Table 15 Runtime Performance Comparison for the proposed IBSCA3 algorithm in comparison to existing algorithms

Dataset IBSCA3 BSCA RBDA LBDA QBDA SBDA BGWO BGSA BBA

Breastcancer 9.18E+03 1.12E+04 1.08E+04 1.03E+04 1.59E+04 1.09E+04 1.21E+04 1.48E+04 1.28E+04

BreastEW 1.61E+03 2.74E+03 1.89E+03 1.93E+03 1.86E+03 1.97E+03 2.95E+03 2.34E+03 2.91E+03

Exactly 1.29E+04 1.41E+04 1.34E+04 1.37E+04 1.36E+04 1.32E+04 1.49E+04 1.54E+04 1.58E+04

Exactly2 1.15E+04 1.46E+04 1.25E+04 1.28E+04 1.23E+03 1.21E+04 1.53E+04 1.62E+04 1.57E+04

HeartEW 5.13E+03 6.19E+03 5.68E+03 5.08E+03 5.72E+03 6.02E+03 7.01E+03 8.72E+03 8.31E+03

Lymphography 3.19E+03 3.84E+03 3.57E+03 3.40E+03 3.91E+03 3.55E+03 4.16E+03 5.83E+03 4.07E+03

M-of-n 9.12E+03 1.29E+04 9.38E+03 8.49E+03 9.54E+03 9.78E+03 1.14E+04 1.09E+04 1.28E+04

PenglungEW 3.47E+03 3.98E+03 4.06E+03 4.15E+03 3.83E+03 3.65E+03 4.32E+03 5.79E+03 3.84E+03

SonarEW 3.56E+03 4.39E+03 3.83E+03 3.90E+03 4.01E+03 3.16E+03 4.72E+03 5.09E+03 4.87E+03

SpectEW 4.61E+03 5.82E+03 4.89E+03 4.93E+03 4.75E+03 4.87E+03 6.08E+03 5.74E+03 5.18E+03

CongressEW 1.14E+04 1.31E+04 1.19E+04 1.17E+04 1.18E+04 1.21E+04 1.53E+04 1.74E+04 1.43E+04

IonosphereEW 4.36E+03 5.98E+03 5.32E+03 5.74E+03 5.17E+03 5.06E+03 6.04E+03 7.01E+03 6.81E+03

KrvskpEW 5.73E+04 6.69E+04 6.06E+04 6.21E+04 5.92E+04 6.17E+04 8.14E+04 7.69E+04 7.83E+04

Tic-tac-toe 1.26E+04 1.66E+04 1.49E+04 1.37E+04 1.26E+04 1.39E+04 1.77E+04 1.53E+04 1.68E+04

Vote 5.96E+03 6.58E+03 6.97E+03 6.01E+03 6.86E+03 6.38E+03 8.34E+03 7.44E+03 7.81E+03

WaveformEW 1.48E+04 1.72E+04 1.51E+04 1.67E+04 1.56E+04 1.53E+04 1.87E+04 1.79E+04 1.78E+04

WineEW 1.09E+03 1.57E+03 1.28E+03 1.20E+03 1.14E+03 1.16E+03 2.51E+03 1.86E+03 2.01E+03

Zoo 4.52E+03 5.68E+03 4.79E+03 5.02E+03 4.97E+03 5.08E+03 6.42E+03 5.69E+03 6.83E+03

The results in bold point shows the best results in the table
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Table 16 Runtime Performance Comparison for the proposed IBSCA3 algorithm in comparison to the other algorithms that incorporate OBL,
VNS and Laplace distribution

Dataset IBSCA3 ISSA IHHO OSACI VNS-HRS VNLHHO IEOA DSSA SFS-LARLRM BGWOPSO

Breastcancer 9.18E+03 1.03E+04 1.14E+04 1.22E+04 1.31E+04 1.10E+04 1.37E+04 1.61E+04 1.19E+04 1.26E+04

BreastEW 1.61E+03 2.48E+03 3.11E+03 3.64E+03 3.92E+03 3.07+03 3.98E+03 3.87E+03 3.25E+03 3.47E+03

Exactly 1.29E+04 1.53E+04 1.76E+04 1.88E+04 2.01E+04 1.74E+04 2.16E+04 1.99E+04 1.74E+04 1.82E+04

Exactly2 1.15E+04 1.57E+04 1.78E+04 1.91E+04 2.13E+03 1.38E+04 2.36E+04 2.08E+04 1.84E+04 1.93E+04

HeartEW 5.13E+03 6.38E+03 6.77+03 7.12E+03 7.49E+03 6.15E+03 7.36E+03 7.23E+03 6.55E+03 6.08E+03

Lymphography 3.19E+03 3.51E+03 3.66E+03 3.91E+03 4.02E+03 3.24E+03 3.86E+03 3.41E+03 3.51E+03 3.27E+03

M-of-n 9.12E+03 1.35E+04 1.42E+04 1.58E+04 1.71E+04 9.918E+03 1.16E+04 1.02E+04 1.11E+04 1.09E+04

PenglungEW 3.47E+03 3.63E+03 4.12E+03 4.27E+03 4.61E+03 3.51E+03 3.62E+03 3.76E+03 3.83E+03 3.57E+03

SonarEW 3.56E+03 3.74E+03 3.95E+03 4.28E+03 4.71E+03 3.68E+03 3.71E+03 3.73E+03 3.85E+03 3.79E+03

SpectEW 4.61E+03 4.75E+03 4.91E+03 4.95E+03 5.01E+04 4.69E+03 4.70E+03 4.82E+03 4.68E+03 4.65E+03

CongressEW 1.14E+04 1.35+04 1.62E+04 1.77E+04 1.91E+04 1.54E+04 1.62E+04 1.67E+04 1.79E+04 1.29E+04

IonosphereEW 4.36E+03 4.76E+03 4.91E+03 5.03E+03 5.12E+03 4.88E+03 4.97E+03 5.02E+03 5.11E+03 4.52E+03

KrvskpEW 5.73E+04 6.04E+04 6.18E+04 6.44E+04 6.01E+04 5.81E+04 5.96E+04 6.03E+04 6.12E+04 5.98E+04

Tic-tac-toe 1.26E+04 1.72E+04 1.89E+04 1.97E+04 1.85E+04 1.91E+04 1.98E+04 2.02E+04 1.94E+04 1.79E+04

Vote 5.96E+03 6.06E+03 6.28E+03 6.74E+03 6.91E+03 6.33E+03 6.85E+03 6.91E+03 6.18E+03 6.03E+03

WaveformEW 1.48E+04 1.57E+04 1.68E+04 1.79E+04 1.72E+04 1.81E+04 1.66E+04 1.71E+04 1.61E+04 1.59E+04

WineEW 1.09E+03 1.27E+03 1.35E+03 1.49E+03 1.58E+03 1.41E+03 1.53E+03 1.62E+03 1.58E+03 1.32E+03

Zoo 4.52E+03 5.07E+03 5.18E+03 5.29E+03 5.12E+03 5.02E+03 5.09E+03 5.12E+03 5.07E+03 4.98E+03

COVID-19 1.06E+03 1.48E+03 1.59E+03 1.67E+03 1.52E+03 1.64E+03 1.72E+03 1.63E+03 1.56E+03 1.50E+03

The results in bold point shows the best results in the table

Table 17 Runtime Performance Comparison for the proposed IBSCA3 algorithm in comparison to the other SCA variants algorithms

Dataset IBSCA3 SCHHO SCAGA MetaSCA BPSO-SCA ISSAFD ISCA

Breastcancer 9.18E+03 1.15E+04 1.36E+04 1.89E+04 1.53E+04 1.94E+04 1.97E+04

BreastEW 1.61E+03 1.78E+03 1.95E+03 2.04E+03 1.98E+03 2.14E+03 2.35E+03

Exactly 1.29E+04 1.42E+04 1.49E+04 1.45E+04 1.53E+04 1.62E+04 1.73E+04

Exactly2 1.15E+04 1.23E+04 1.35E+04 1.41E+04 1.29E+03 1.39E+04 1.72E+04

HeartEW 5.13E+03 5.92E+03 6.01E+03 6.15E+03 6.12E+03 6.29E+03 6.43E+03

Lymphography 3.19E+03 3.97E+03 4.05E+03 4.16E+03 4.07E+03 4.15E+03 4.38E+03

M-of-n 9.12E+03 1.14E+04 1.20E+03 1.32E+03 1.25E+03 1.46E+03 1.76E+04

PenglungEW 3.47E+03 3.52E+03 3.75E+03 4.01E+03 3.87E+03 3.99E+03 4.26E+03

SonarEW 3.56E+03 4.16E+03 4.52E+03 4.91E+03 5.12E+03 5.16E+03 4.37E+03

SpectEW 4.61E+03 5.01E+03 5.13E+03 5.29E+03 5.22E+03 5.36E+03 5.44E+03

CongressEW 1.14E+04 1.27E+04 1.38E+04 1.31E+04 1.41E+04 1.59E+04 1.71E+04
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Table 17 (continued)

Dataset IBSCA3 SCHHO SCAGA MetaSCA BPSO-SCA ISSAFD ISCA

IonosphereEW 4.36E+03 5.02E+03 5.19E+03 5.12E+03 5.35E+03 5.42E+03 5.91E+03

KrvskpEW 5.73E+04 5.79E+04 6.16E+04 6.27E+04 6.21E+04 6.39E+04 6.45E+04

Tic-tac-toe 1.26E+04 1.39E+04 1.45E+04 1.41E+04 1.47E+04 1.67E+04 1.95E+04

Vote 5.96E+03 6.18E+03 6.34E+03 6.27E+03 6.56E+03 6.67E+03 8.78E+03

WaveformEW 1.48E+04 1.59E+04 1.68E+04 1.61E+04 1.76E+04 1.83E+04 2.03E+04

WineEW 1.09E+03 1.15E+03 1.31E+03 1.46E+03 1.36E+03 1.56E+03 1.96E+03

Zoo 4.52E+03 4.70E+03 4.83E+03 4.74E+03 5.03E+03 5.16E+03 5.65E+03

COVID-19 1.06E+03 1.32E+03 1.46E+03 1.61E+03 2.01E+03 2.15E+03 2.05E+03

The results in bold point shows the best results in the table

Table 18 Runtime Performance Comparison for the proposed IBSCA3 algorithm in comparison to the other new nature-inspired metaheuristic
algorithms

Dataset IBSCA3 BFFAG AVOA GTO

Breastcancer 9.18E+03 2.28E+04 1.86E+04 1.12E+04

BreastEW 1.61E+03 2.91E+03 1.75E+03 1.67E+03

Exactly 1.29E+04 1.92E+04 1.85E+04 1.61E+04

Exactly2 1.15E+04 1.81E+04 1.72E+04 1.41E+04

HeartEW 5.13E+03 6.25E+03 6.15E+03 5.92E+03

Lymphography 3.19E+03 4.59E+03 4.39E+03 3.97E+03

M-of-n 9.12E+03 1.96E+04 1.64E+04 1.32E+04

PenglungEW 3.47E+03 4.01E+03 3.98E+03 3.62E+03

SonarEW 3.56E+03 4.16E+03 4.02E+03 3.77E+03

SpectEW 4.61E+03 5.29E+03 5.13E+03 4.84E+03

CongressEW 1.14E+04 1.64E+04 1.51E+04 1.37E+04

IonosphereEW 4.36E+03 5.06E+03 5.01E+03 4.91E+03

KrvskpEW 5.73E+04 6.37E+04 6.24E+04 6.05E+04

Tic-tac-toe 1.26E+04 1.72E+04 1.61E+04 1.59E+04

Vote 5.96E+03 6.37E+03 6.26E+03 5.99E+03

WaveformEW 1.48E+04 1.75E+04 1.71E+04 1.58E+04

WineEW 1.09E+03 1.93E+03 1.76E+03 1.41E+03

Zoo 4.52E+03 5.23E+03 5.14E+03 4.92E+03

COVID-19 1.06E+03 1.48E+03 1.57E+03 1.62E+04

The results in bold point shows the best results in the table
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Table 19 Friedman’s test when comparing IBSCA3 with existing algorithms based on classification accuracy (Table 6)

Ranks of the algorithms

Dataset BSCA RBDA LBDA QBDA SBDA BGWO BGSA BBA IBSCA3

Breastcancer 7 4 5.5 2.5 2.5 5.5 8 9 1

BreastEW 5 1.5 3 4 6 8 7 9 1.5

Exactly 6 2.5 2.5 5 2.5 7 8 9 2.5

Exactly2 4 2 5 3 6 8 9 7 1

HeartEW 6 5 2 3 4 7 8 9 1

Lymphography 8 3 5 4 2 7 6 9 1

M-of-n 6 2.5 2.5 5 2.5 7 8 9 2.5

PenglungEW 5 6 2.5 2.5 2.5 8 7 9 2.5

SonarEW 4 3 6 5 2 7 8 9 1

SpectEW 6 4 3 5 2 7 8 9 1

CongressEW 6 4 2 3 5 7 8 9 1

IonosphereEW 3 4.5 4.5 6 2 7 8 9 1

KrvskpEW 6 3 2 4 5 7 8 9 1

Tic-tac-toe 6 5 3 2 4 7 8 9 1

Vote 3 2 5 6 4 8 7 9 1

WaveformEW 6 3 4 5 2 7 8 9 1

WineEW 7 5 2.5 2.5 2.5 8 6 9 2.5

Zoo 7 3 3 3 3 8 6 9 3

Sum of ranks 101 63 63 70.5 59.5 130.5 136 160 26.5

Sum of ranks squared 10201 3969 3969 4970.25 3540.25 17030.25 18496 25600 702.25

Average of ranks 5.61 3.5 3.5 3.92 3.31 7.25 7.56 8.89 1.47

The results in bold point shows the best results in the table

Consequently, the overall results summarized in all
different sets of experiments indicate the strength of the
IBSCA3 algorithm in improving the performance and
convergence behavior of the original SCA when solving the
FS problem.

5.7 Runtime performance comparison of IBSCA3
to existing algorithms

Tables 15, 16, 17, 18 provide the running time comparison
of IBSCA3, BSCA, and the other algorithms described in
Tables 6, 10, 12, and 14, respectively. The results are given
in milliseconds, representing an average of 30 independent
runs. For each algorithm in the tables, the values in the
tables represent the run time to obtain the results after 100
iterations. As shown in the tables, IBSCA3 is faster than the
other algorithms when applied to all datasets.

The experiments were conducted using an Intel Core
i7-3517U, 1.90 GHz CPU with 16 GB RAM running 64-
bit Windows. All the algorithms were implemented using
Python programming language.

5.8 Statistical test results

An investigation of the significance of the results in
Tables 6, 10, 12, and 14 has been conducted. We applied
both Friedman’s test and Wilcoxon’s test [125] to the
classification accuracy in the tables with α = 0.05.
Tables 19, 20, 21 and 22 present the results of the
Friedman’s test. The best ranks in each row are highlighted
in bold. The average ranks of the algorithms were as
follows (best to worst): In Table 19: IBSCA3, SBDA,
LBDA, RBDA, QBDA, BSCA. BGWO, BGSA, and BBA.
In Table 20: IBSCA3, VNS-HRS, IHHO, BGWOPSO,
OSACI, ISSA, VNLHHO, SFS-LARLRM, IEOA, and
DSSA. In Table 21: IBSCA3, ISSAFD, SCHHO, BPSO-
SCA, SCAGA, MetaSCA, and ISCA. In Table 22: IBSCA3,
GTO, AVOA, and BFFAG.

It is clear from the results that IBSCA3 achieves the
best rank over 12 datasets, and competitive results for
the other datasets. Therefore, IBSCA3 is the best in
terms of the average of ranks among the other compared
algorithms.
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Table 20 Friedman’s test when comparing IBSCA3 with the other algorithms that incorporate OBL, VNS and Laplace distribution based on
classification accuracy (Table 10)

Ranks of the algorithms

Dataset ISSA IHHO OSACI VNS-HRS VNLHHO IEOA DSSA SFS-LARLRM BGWOPSO IBSCA3

Breastcancer 8 5 4 3 9 7 10 2 6 1

BreastEW 7 2 2 5 8 9 10 6 4 2

Exactly 8 4 9 4 4 10 4 4 4 4

Exactly2 6 9 7 5 2 10 8 3 4 1

HeartEW 4 10 7 9 6 2 8 3 5 1

Lymphography 3 5 4 2 7 6 10 9 8 1

M-of-n 2.5 2.5 5 2.5 6 8 10 9 7 2.5

PenglungEW 5 2.5 2.5 2.5 8 6 9 10 7 2.5

SonarEW 3 5 4 2 7 8 10 9 6 1

SpectEW 5 4 6 3 8 9 10 7 2 1

CongressEW 6 3 4 1.5 8 9 10 7 5 1.5

IonosphereEW 7 4 8 6 2 10 9 3 5 1

KrvskpEW 8 7 6 9 2 10 4 3 5 1

Tic-tac-toe 5 3 2 4 7 8 10 9 6 1

Vote 6 4 5 3 8 7 9 10 2 1

WaveformEW 3 1 7 5 6 8 10 9 4 2

WineEW 6 3 7 3 8 3 9 10 3 3

Zoo 6 3 7 3 8 10 3 9 3 3

COVID-19 8 2 5 7 9 6 4 10 3 1

Sum of ranks 31.5 106.5 79 101.5 79.5 123 146 157 132 89

Sum of ranks squared 11342.25 6241 10302.25 6320.25 15129 21316 24649 17424 7921 992.25

Average of ranks 5.47 4.28 5.36 4.03 6.33 7.28 8.5 6.78 4.78 1.69

The results in bold point shows the best results in the table

Table 21 Friedman’s test when comparing IBSCA3 with the other SCA variants algorithms based on classification accuracy (Table 12)

Ranks of the algorithms

Dataset SCHHO SCAGA MetaSCA BPSO-SCA ISSAFD ISCA IBSCA3

Breastcancer 4 3 5 6 2 7 1

BreastEW 6 5 4 7 1.5 3 1.5

Exactly 4 2 6 5 2 7 2

Exactly2 3 5 6 4 2 7 1

HeartEW 5 6 3 4 2 7 1

Lymphography 4 6 5 3 2 7 1

M-of-n 2 5 6 4 2 7 2

PenglungEW 5 3 6 4 1.5 7 1.5

SonarEW 5 6 4 3 2 7 1

SpectEW 3 6 7 5 2 4 1

CongressEW 2 7 4 5 3 6 1

IonosphereEW 3 4 6 5 2 7 1

KrvskpEW 3 5 4 6 2 7 1

Tic-tac-toe 3 5 4 6 2 7 1

Vote 3 4 6 5 2 7 1
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Table 21 (continued)

Ranks of the algorithms

Dataset SCHHO SCAGA MetaSCA BPSO-SCA ISSAFD ISCA IBSCA3

WaveformEW 4 6 5 2 3 7 1

WineEW 2 4 5 6 2 7 2

Zoo 2 4 5 6 2 7 2

COVID-19 3.5 7 5 6 2 7 2

Sum of ranks 66.5 93 96 89.5 39 124 24

Sum of ranks squared 4422.25 8649 9216 8010.25 1521 15376 576

Average of ranks 3.5 4.89 5.05 4.71 2.05 6.53 1.69

The results in bold point shows the best results in the table

Table 22 Friedman’s test when comparing IBSCA3 with the other new nature-inspired metaheuristic algorithms based on classification accuracy
(Table 14)

Ranks of the algorithms

Dataset BFFAG AVOA GTO IBSCA3

Breastcancer 4 3 2 1

BreastEW 4 3 1.5 1.5

Exactly 4 2 2 2

Exactly2 4 3 2 1

HeartEW 4 3 2 1

Lymphography 4 3 2 1

M-of-n 4 2 2 2

PenglungEW 4 2 2 2

SonarEW 4 3 2 1

SpectEW 4 3 2 1

CongressEW 4 3 2 1

IonosphereEW 4 3 2 1

KrvskpEW 4 3 2 1

Tic-tac-toe 4 3 2 1

Vote 4 3 2 1

WaveformEW 4 3 2 1

WineEW 4 2 2 2

Zoo 4 2 2 2

COVID-19 4 3 2 1

Sum of ranks 76 52 37.5 24.5

Sum of ranks squared 5776 2704 1406.25 600.25

Average of ranks 4 2.74 1.97 1.29

The results in bold point shows the best results in the table

Table 23 Wilcoxon’s test results when comparing IBSCA3 with existing algorithms based on classification accuracy (Table 6)

Algorithm BSCA RBDA LBDA QBDA SBDA BGWO BGSA BBA

p-values 0.00328 0.00096 0.00148 0.00064 0.00148 0.00020 0.00020 0.00020
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Table 24 Wilcoxon’s test results when comparing IBSCA3 with the other algorithms that incorporate OBL, VNS and Laplace distribution based
on classification accuracy (Table 10)

Algorithm ISSA IHHO OSACI VNS-HRS VNLHHO IEOA DSSA SFS-LARLRM BGWOPSO

p-values 0.00020 0.01596 0.00030 0.00148 0.00020 0.00020 0.00030 0.00020 0.00044

We also conducted the Wilcoxon’s test with α = 0.05 as
summarized in Tables 23, 24, 25 and 26 to evaluate the data
in Tables 6, 10, 12, and 14, respectively. Our purpose here is
to evaluate the significance of the values of the classification
accuracy of IBSCA3 compared to the other algorithms in
the tables. The reported p-values indicate that the values
of the classification accuracy of IBSCA3 are statistically
significant compared to the values of the other algorithms.

In addition, we used Mann-Whitney U test to compare
IBSCA3 against all other algorithms. Based on the results,
IBSCA3 produces significant results compared to the
other algorithms except for IHHO (0.28014), VNS-HRS
(0.35758), BGWOPSO (0.0536), AVOA (0.39532), and
GTO (0.65272).

Accordingly, the statistical analysis gives evidence that
the included modifications of IBSCA3 improve its search
strategy, as compared to the original SCA algorithm, and
thus achieves the highest accuracy for most of the datasets.

6 Conclusion and future work

This paper introduced three versions of a binary opti-
mization algorithm by the name of Improved Binary Sine
Cosine Algorithm with multiple exploration and exploita-
tion approaches (IBSCA) for solving the Feature Selec-
tion problem. All versions of IBSCA (IBSCA1, IBSCA2,
IBSCA3) employ an opposition-based learning approach in
their initialization stage to generate a diverse population
of candidate solutions. IBSCA2 and IBSCA3 use a com-
bination of the variable neighborhood search and Laplace
distribution to explore the search space using several muta-
tion methods. Further, IBSCA3 improves the best candidate
solution using Refraction Learning, which is a novel oppo-
sition learning approach that is based on the principle of

light refraction. All versions of IBSCA use two-step trans-
fer functions to convert continuous decision variables into
binary ones.

The three versions of IBSCA were compared with each
other using 18 FS datasets from UCI repository and one
COVID-19 dataset. These datasets are suitable for compar-
ison because the numbers of features, objects and classes
in these datasets vary significantly. IBSCA3 was found to
be the most efficient version of IBSCA. Furthermore, the
performance of IBSCA3 was evaluated and compared to
several popular binary algorithms (RBDA, LBDA, QBDA,
SBDA, BGWO, BGSA, BBA, CHIO, CHIO-GC, ISSA,
IHHO, OSACI, VNS-HRS, VNLHHO, IEOA, DSSA,
SFS-LARLRM, BGWOPSO, SCHHO, SCAGA, MetaSCA,
BPSO–SCA, ISSAFD, ISCA, BFFAG, AVOA, GTO) using
the 18 FS datasets from UCI repository and a COVID-19
dataset. The overall simulation results indicate that IBSCA3
outperformed all comparative algorithms in terms of accu-
racy and number of features selected over most datasets.

It is worth mentioning that the performance of IBSCA is
affected by the limitations of its methods. To begin, OBL
and RL tend to generate good solutions at the beginning
of the optimization process, but the generated solutions
may converge to sub-optimality as the optimization process
progresses [98]. Besides, every optimization problem
requires a special OBL strategy that is suitable for the
problem structure. In other words, there are no clear
guidelines for designing OBL strategies for different
optimization problems [126, 127]. Secondly, if the VNS
method is implemented too frequently, the population of
solutions could be spread over a larger area than necessary
[128].

In the future, we are interested in conducting two
research studies based on IBSCA3. We are going to apply
IBSCA3 to multi-agent cooperative reinforcement learning

Table 25 Wilcoxon’s test results when comparing IBSCA3 with the other SCA variants algorithms based on classification accuracy (Table 12)

Algorithm SCHHO SCAGA MetaSCA BPSO-SCA ISSAFD ISCA

p-values 0.00044 0.00020 0.00014 0.00014 0.00148 0.00014
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Table 26 Wilcoxon’s test results when comparing IBSCA3 with the other new nature-inspired optimization algorithms based on classification
accuracy (Table 14)

Algorithm BFFAG AVOA GTO

p-values 0.00014 0.00096 0.00148

[129, 130] based on the models described in [131, 132].
We also plan to incorporate the island model [96, 133–137]
with IBSCA3 to further improve its performance over the
FS problem. Applying the proposed methods on other FS
applications can also be addressed in future work.
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