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Abstract
The diagnosis of Crohn’s disease (CD) in the small bowel is generally performed by observing a very large number of
images captured by capsule endoscopy (CE). This diagnostic technique entails a heavy workload for the specialists in terms
of time spent reviewing the images. This paper presents a convolutional neural network capable of classifying the CE images
to identify those ones affected by lesions indicative of the disease. The architecture of the proposed network was custom
designed to solve this image classification problem. This allowed different design decisions to be made with the aim of
improving its performance in terms of accuracy and processing speed compared to other state-of-the-art deep-learning-based
reference architectures. The experimentation was carried out on a set of 15,972 images extracted from 31 CE videos of
patients affected by CD, 7,986 of which showed lesions associated with the disease. The training, validation/selection and
evaluation of the network was performed on 70%, 10% and 20% of the total images, respectively. The ROC curve obtained
on the test image set has an area greater than 0.997, with points in a 95-99% sensitivity range associated with specificities
of 99-96%. These figures are higher than those achieved by EfficientNet-B5, VGG-16, Xception or ResNet networks which
also require an average processing time per image significantly higher than the one needed in the proposed architecture.
Therefore, the network outlined in this paper is proving to be sufficiently promising to be considered for integration into
tools used by specialists in their diagnosis of CD. In the sample of images analysed, the network was able to detect 99% of
the images with lesions, filtering out for specialist review 96% of those with no signs of disease.
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1 Introduction

Crohn’s disease (CD) belongs to a group of conditions
known as Inflammatory Bowel Disease, characterised by
chronic inflammatory processes of unknown aetiology.
These processes affect primarily, although not exclusively,
any area of the gastrointestinal tract. Endoscopic examina-
tions play an important role in monitoring these patients.
The majority have lesions in the terminal ileum, an
area accessible by flexible endoscope (colonoscopy with
ileoscopy). However, when the disease affects other areas
of the small bowel (SB), patients may show unexplained
clinical symptomatology and/or non-specific findings in
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endoscopic examinations. In this scenario, an important role
is played by the endoscopy that uses video capsule or wire-
less capsule endoscopy, as it makes it possible to detect
mucosal lesions in the proximal SB, an area inaccessible by
other endoscopic techniques. The framework of this paper
is the diagnosis of SB-localised CD, which can occur in up
to one third of these patients [1].

Capsule endoscopy (CE) has become a frontline diag-
nostic procedure in the study of SB disorders [2]. Since
its approval by the Food and Drugs Association (FDA) in
2001, the use of CE has improved the diagnostic imag-
ing of SB disorders and has been recommended in clini-
cal practice guidelines [3]. It is a non-invasive technique
whereby the patient swallows a device equipped with an
optical image acquisition system and battery that can cap-
ture images while, using peristaltic movements, it moves
along the digestive tract. The image capturing system adapts
to the transit speed of the capsule and can vary from 2 to
6 frames per second. The captured images are transmitted
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by radiofrequency to a belt equipped with an antenna sys-
tem that the patient wears during the procedure. This belt is
connected to a recording system which will store the images
that will be downloaded to a computer once the study is
completed. A video will then be created and viewed using a
specific software provided by the capsule manufacturer.

The most important limitation of CE for the assessment
of CD is that the specialist needs to spend a long time
viewing the captured images, as the procedure can take up
to 8-12 hours, and the capsule, as it passes through the
patient’s gastrointestinal tract, captures over 60,000 digital
images. At present, all these images need to be viewed and
analysed by a specialist to detect inflammatory lesions in
the intestinal wall which would indicate the presence of the
disease.

CE can therefore be considered an effective procedure
for the diagnosis of CD in the SB, but this is very
labour-intensive because of the time spent viewing the
videos generated by the capsules. Hence, the cost-benefit
of this technique ought to be optimised by developing a
technology capable of minimising the time the specialist
spends analysing the images. In this context, it would be
particularly important to develop tools that support the
specialist by automatically analysing and screening the huge
number of images involved, leaving for the specialist’s
review only those images that show signs of lesions
compatible with the disease.

This has been the aim of the research work outlined in
this paper, i.e., a deep learning-based methodology that uses
a convolutional neural network (CNN) to classify the SB
images captured by CE into two categories: images with
and without evidence of CD-indicating lesions. The network
evaluation on a set of 7,986 images (set balanced between
the two classes of our problem) has shown sensitivity and
specificity levels of 99% and 96%, respectively. These
values are very promising in view of integrating the
methodology into specialist support tools, as they meet the
requirements of such applications for their use in clinical
practice: they guarantee very high levels of sensitivity in
the detection of pathological images with specificity values
high enough to significantly reduce the number of images
that will need to be reviewed.

The rest of this paper is organised as follows: first, the
state of the art on the application of CNNs for endoscopic
image analysis is reviewed paying special attention to the
analysis of the images captured by CE for the detection of
CD (Section 2); the following section (Section 3) provides
a description of the image database used in this study.
Next is the description of the proposed CNN architecture
and its configuration in its training and inference stages
(Section 4). Then, the performance results are presented and
compared with the most representative methods available in
literature (Section 5). Finally, the paper ends by discussing

and summarising the main conclusions that can be drawn
from the work (Sections 6 and 7).

2 State of the art

From when the speed and processing power of computers
has made it possible, the digitial processing of medical
images has been widely used in the diagnose and detection
of diseases. In recent years, the widespread use of graphics
cards (GPUs) as computing units has further strengthened
the development of tools based on automatic image analysis.
In this context, deep learning (DL) algorithms [4, 5] are
at present the most relevant technology for the analysis
of different types of medical images, i.e., eye fundus [6],
lung [7], cardiac [8], abdominal [9], neurological [10] and
osteomuscular [11] images.

In gastroenterology, convolutional neural networks
(CNNs) have been successfully employed to detect dif-
ferent tract-located gastrointestinal pathologies in endo-
scopic images, including esophagogastroduodenoscopy,
colonoscopy, and capsule endoscopy images [12]. In esoph-
agogastroduodenoscopy (EGD), CNNs have been employed
for the detection of Helicobacter pylori (HP) infection [13]
and gastric cancer [14]. Shichijo et al. [13] evaluated
the GoogleNet CNN [15], which had been pre-trained on
natural-image features through ImageNet and fine-tuned on
a dataset of 32,208 images with positive or positive HP, on
a test set of 11,481 images from 397 patients (72 HP posi-
tive and 325 negative). The accuracy of CNNs trained using
images classified according to eight anatomical locations
in the stomach can be compared with that of experienced
endoscopists, but with considerable shorter diagnostic time.
Hirasawa et al. [14] used the Single Shot MultiBox Detec-
tor CNN arquitecture [16] to detect gastric cancer in EGD
images. They trained the network on 13,584 images, with
2,639 histologically proven gastric cancer lesions, and eval-
uated the diagnostic accuracy of the constructed network on
an independent test set of 2,296 stomach images collected
from 69 consecutive patients with 77 gastric cancer lesions.
They concluded that their proposed CNN could process
numerous stored endoscopic images in a very short time
with a clinically relevant diagnostic ability for detecting
gastric cancer. For colonoscopy, CNNs have been applied
to detect and classify colorectal polyps [17, 18]. Zhang
et al. [17] used a deep CNN to extract low-level features
and detect and classify hyperplastic and adenomatous col-
orectal polyps in endoscopic images. They concluded that
their proposed method can assist endoscopists to identify
polyp and non-polyp images. Their proposed methodology
reported similar precision as in the visual inspection by
endoscopists (87.3% vs 86.4%) but higher recall and accu-
racy rates (87.6% versus 77.0% and 85.9% versus 74.3%,
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respectively). Billah and Waheed [18] applied a CNN to
transfer low-level features to a Support Vector Machine
(SVM) classifier, reporting accuracy of 98.34% in polyp-
affected images, with a sensitivity of 98.67% and a speci-
ficity of 98.23% on standard public databases.

As for capsule endoscopy (CE), it is mainly suitable
for the localisation of obscure gastrointestinal bleeding
in the small bowel (SB), with a diagnostic capacity of
60-90% depending on the series [19], and the detection
and follow-up of Crohn’s disease (CD) [20]. The digital
processing of CE images has been used successfully to
detect gastrointestinal bleeding in the SB [21–24]. The
problem was initially approached by applying conventional
machine learning (ML) techniques such as the extraction
of vector features based on colour, textures or statistics,
and the application of binary classifier, such as K-
nearest neighbours, SVM or neural network [21, 22].
However, in recent years, DL algorithms have shown
greater potential. Jia et al. [23] proposed the use of an
8-layer convolutional CNN with two fully connected end
layers while Li et al. [24] explored the capabilities of
four classical CNN architectures (LeNet [25], AlexNet [4],
GoogleNet [15], and VGG-Net [26]). These models are
highly accurate and suitable for the detection of bleeding.
In fact, specialist-supporting software for image viewing
provided by the main CE manufacturers incorporates
an artificial vision module that facilitates the work of
the specialist, automatically identifying images showing
bleeding. However, the situation is rather different in CD.
At present, all CE-captured images need to be analysed
by a specialist to detect inflammatory lesions in the
intestinal wall indicative of the disease. The automatic
detection of these lesions is a problem that needs solving
and a real challenge for the scientific community. To
date, only few papers have addressed this issue. A few
years ago, approaches were started using traditional ML
and image analysis techniques [27, 28], and at present
are being performed with CCNs. Aoki et al. [29] used
a Single Shot MultiBox Detector arquitecture to detect
small-bowel mucosal breaks (erosions or ulcerations).
Although the results are promising, given the limited
number of lesions analysed and the small size of the
sample, the authors consider the study as an initial pilot
study. The main limitation preventing an in-depth study
and development of CNN-based algorithms to detect CD
in CE images is the lack of a large set of images
with a representative number of the different pathologies
indicative of the disease. To date, such a database is not
publicly available to the scientific community, although
efforts are being made to achieve this. Thus, Vallée et
al. [30] provided CrohnIPI, a CE database consisting of
3,498 images, of which 60.55% show no evidence of CD
and the remaining 38.85% are pathological images with

different types of CD lesions (erythema, aphtoid, oedema,
ulceration, stenosis). A consensus annotation for each image
was provided, obtained from the independent review of
several experts. The multi-reader annotation process was
described in [31]. This article highlighted the importance of
generating a consensus diagnosis. It studied the influence
of the quality of the annotations on the accuracy of a
recurrent attention neural network, concluding that the
network accuracy increases when a consensus diagnosis is
used as ground-truth. Unfortunately, to date, the number
of CrohnIPI images is very limited, although the authors
stated that the aim was to progressively enrich it in
order to further develop automatic CD lesions recognition
algorithms. However, other studies have been using a private
database to address the problem. Klang et al. [32] and
Barash et al. [33] collected 17,640 CE images from 49
CD patients, 7,391 images with mucosal ulcers and the
rest with mucosa without ulcers. Klang et al. [32] used
the Xception CNN [34] to classify between normal images
and images with mucosal ulcers. They demonstrated the
high capacity of the network to automatically detect CE
images with mucosal ulceration (they reported AUCs of
0.99 and accuracies ranging from 0.954 to 0.967). The
limitation for the possible integration of the algorithms
into real tools to help the specialist detect CD is that the
study is focused exclusively on mucosal ulcerations, without
considering other lesions compatible with the disease. As
an extension of the work by [32], Barash et al. [33]
applied an ordinal CNN to classify the images according
to the ulcer severity, from 1 to 3. They reported overall
agreement of 67% between the consensus reading and the
automatic algorithm. Although they achieved high accuracy
in the discrimination between grade 1 and 3 ulcerations, the
performance substantially decreased when comparing grade
2 and 3 and 1 and 2 ulcerations. In this work, a specific
CNN architecture was designed to address this problem
of endoscopic image classification based on the presence
of CD-associated lesions. In this case, the database that
has been generated for the implementation of the network
includes all the lesions present in the sample of images
extracted from the CE videos of patients affected by the
disease which were recorded for this study. Hence, the
network evaluation is carried out under conditions more
closely similar to those that would occur if it was applied in
clinical practice.

3Materials

This work is part of a project funded under the 2014-
2020 Andalusia ERDF Operational Programme for the
implementation of a system to aid medical specialists at
the Juan Ramón Jiménez hospital in Huelva (Andalusia,
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Spain) in the detection of CD in the SB. The work was
carried out using CE videos acquired at the hospital on 31
patients affected by CD. Images were captured at 3 fps
in RGB at 320x320 resolution using the PILLCAMTM SB
capsule, designed and produced by Given Imaging LTD
(now MEDTRONIC) [35].

Two digestive tract specialists at the hospital jointly
reviewed all the video images and selected those showing
lesions compatible with CD. A total of 7,986 images with
lesions (pathological images) were extracted. In addition,
the specialists selected an equal number of images that
showed no signs of disease (healthy images). A database
was thereby generated with 15,972 CE images of the SB,
half of which showed signs of the disease, with clinical
annotations for each image indicating the possible lesions.
Table 1 shows the list of lesions observed, as well as the
number and percentage of images affected by these lesions.
Figure 1 shows sample images of each of these lesions.

The lesions showing in most of the images and affecting
the largest number of patients were as follows: erosion
(22 out of 31 patients), erythema (18 patients), ulcer (17),

aphtha (16), bleeding (13) and lymphangiectasia (11). In
addition, as shown in Table 1, there are also many images
corresponding to the clinical notation “Multi-pathological”.
These images, which were extracted from the videos of
only 2 patients, presented many different lesions and were
treated as a separate category. The remaining lesions listed
in Table 1 appear in fewer than 10 patients and, although the
number of images is lower and less representative than the
previous ones, they were included in the image set in order
to provide the most realistic scenario possible that take into
account the greatest number of CD-associated lesions.

The set of 15,972 available images was divided into
training, validation, and test sets, as shown in Table 2.
The images were selected at random according to the
percentages indicated in the table. It should be noted that the
pathological images in the different subsets were selected
according to the percentages of occurrence of the different
lesions in the total sample of pathological images, as
indicated in Table 1. As described in Section 4, the training
and validation image sets were used to train and select the
convolutional neural network, respectively; also, the test set

Table 1 CD-compatible lesions, number and percentage of images revealing the presence of such lesions

Lesion Short description Number Percent. of

of images appearance

Ulcers Distribution of 1000 individuals of the overall population. 1773 22.53

Aphthae Small loss of epithelial layers with a whitish centre and a red halo,
surrounded by normal mucosa.

2148 18.60

Multi-pathological Image showing the presence of various severe lesions. 1251 13.12

Lymphangiectasia Small, whitish spots with snowflake appearance along the intestinal wall. 1038 10.89

Bleeding Fresh, brightly coloured traces of blood, such as debris adhering to the
intestinal wall or ulcer-like wounds.

924 9.69

Erythema Reddened areas of the intestinal wall with an irritated appearance, which in
extreme cases may show small erosions.

741 7.77

Nodules Cluster of cells that may appear as bulbous-looking protrusions in the
intestinal walls.

513 5.38

Erosion Small loss of mass in the bowel wall, appearing on the image as small red
dots. In more severe cases they may develop into ulceration, with bleeding
in some cases.

444 4.66

Haemorrhagic Irregularly shaped stains due to small effusions produced outside the
circulatory system and trapped between the tissues of the intestinal wall.

210 2.20

Villus alterations Abnormal appearance and shape of the wall: may look like an alteration of
the natural relief of the intestine showing a “stone-like” appearance; may
also look like an irregular cluster without a defined pattern.

126 1.32

Atrophic mucosa Intestinal mucosa with “dry” and atrophic appearance, without villi and
with abundant mucus.

111 1.16

Whitish villi A condition related to lymphangiectasia showing whitish, mucus-like
depositions on the small bowel villi.

105 1.10

Angiodysplasia Vascular malformation causing dilatation and blood-vessel fragility of the
bowel. It usually has the appearance of an irregularly shaped effusion
surrounded by superficial vascular networks

96 1.01

Vascular lesion Lesion of the vascular system on the gastrointestinal walls, resembling an
irregular, dark-coloured haematoma.

54 0.57
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Fig. 1 Sample images showing
the presence of CD-associated
lesions in the available image
set. First row: ulcers, aphthae,
lymphangiectasia. Second row:
bleeding, erythema, nodules.
Third row: erosion,
haemorrhagic suffusion, altered
villi. Fourth row: atrophic
mucosa, whitish villi,
angiodysplasia. Fifth row:
vascular lesion, multi-pathology
(image with severe signs of
disease; presence of different
lesions in advanced stage)

Table 2 CD-compatible
lesions, number and percentage
of images revealing the
presence of such lesions

Set Percentage of Total number Number of Number of

available images of images healthy images pathological im.

Training 70% 11.180 5.590 5.590

Validation 10% 1.598 799 799

Test 20% 3.194 1.597 1.597
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was used to evaluate the selected network and to generate
results (Section 5).

4 Proposedmethodology

This section outlines the main aspects involved in the imple-
mentation of the convolutional neural network proposed in
this work. The network was custom made for the classi-
fication of SB images into two types, “pathological” and
“healthy”, based on whether or not the images show evi-
dence of CD-compatible lesions. Its architecture is described
in the first part of this section. Information is then provided
on the training of the network, as well as on the criteria used
for the selection of the trained network.

4.1 Network architecture

Threshold Fig. 2 is a drawing of the proposed convolutional
neural network architecture. The network works on RGB
images with a 320x320 resolution and consists of 6 blocks
dedicated to feature extraction. Each block has a similar struc-
ture and performs the following sequence of operations:

• Convolution. A convolution operation is performed on
the input tensor with a kernel measuring 3x3, a stride of
1 and a padding of 1.

• Batch normalisation. Batch normalisation is applied to
accelerate and facilitate training convergence.

• ReLU. The ReLU operation is applied to the batch nor-
malisation output to introduce nonlinearities into the
model.

As shown in Fig. 2, the blocks only differ in the num-
ber of convolution layers included, which progressively
increase from 32 to 96.

The network design includes a pooling layer at the output
of each of the above-mentioned blocks to reduce the size of
the data generated. At the output of the first 5 blocks, a max-
pooling operation with window size of 3x3, stride of 2 and
padding of 1 is applied, whereas, at the output of the last
block, global average pooling is applied.

The architecture ends with a neural network with a layer
of two neurons, which are associated with each of the two
classes of the problem at hand (healthy image and image
affected by lesions). In addition, it should be noted that in
the inference phase, the softmax function is applied to the
network output. In this way, the application of the network
on a given input image generates its own probability of
belonging to each class.

It is worth stressing that this architecture implements an
information processing strategy which is notably different
from that used by the main state-of-the-art CNNs. These
networks aggressively reduce the image resolution in the

first layers and apply a considerably higher number of con-
volutions. This is because they were designed to address
image classification issues of higher complexity, such as
those posed by ImageNet [36], involving many different
classes and images with high variability, where the elements
of interest to be classified are often a relevant part of the
images. These conditions greatly differ from the binary clas-
sification issue posed by this paper. Our study deals with
images that present a stable environment of limited variabil-
ity (internal images of the gastrointestinal tract) where the
regions of interest (lesions indicative of Crohn’s disease)
may be small. Therefore, it is necessary to search for an
architecture tailored to our issue. In this sense, some stud-
ies [37] show that ImageNet architectures are unnecessarily
large for medical imaging tasks and that it is possible to create
much more efficient models in terms of parameters without
a statistically significant drop in performance.

In this line, this paper suggests a network architecture
resulting from an experimenting process adapted to the
particular needs of our classification issue. In order to make
the network sensitive to smaller lesions, a configuration has
been chosen that performs most of the image processing at
or close to its original resolution. However, this approach
involves increasing the number of model parameters
considerably. To mitigate this issue, the design contemplates
using convolution layers of very small (3×3) kernels, whose
number progressively increases as the layers are deeper.
The architecture achieves this approach by sequentially
applying blocks of similar structure (convolution operations
+ batch normalization + RELU) that only differ in the
number of convolutions performed in each new block.
Thus, convolutions are successively applied on the current
resolution without disproportionately increasing the number
of parameters in each block. In order to reduce the size of
the data generated at the output of each block, the max-
pooling operation is used, which provides certain traslation
invariance and facilitates the propagation of the gradient in
the first layers of the model.

4.2 Training setting

The main decisions taken in terms of the configuration
of the network training process are listed below. The
loss function used was cross-entropy and the optimiser
chosen was stochastic gradient descent with momentum and
gradient clipping by norm. The values used for the main
hyperparameters were as follows:

• Number of epochs: 2000
• Batch size: 16
• Learning rate: 0.0001
• Momentum: 0.9
• Gradient clipping by norm: 1.0
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Fig. 2 Architecture of proposed
convolutional neural network.
There are 6 consecutive,
similarly structured blocks, a
pooling layer at the output of
each block and a final fully
connected layer with 2 neurons

Also, the training of the network included images
obtained through the application of different data augmenta-
tion operations. In particular, the following operations were
applied with the probability indicated below:

• Rotation with probability of 0.3. An angle of α ∈ (−180,
180] was selected at random.

• Vertical or horizontal flip with a probability of 0.5.
• Cutout augmentation with a probability of 0.2. Between

one and four regions sized between 1% and 5% of the
image resolution were randomly selected.

• Gamma contrast/gaussian noise/salt and pepper noise
with a probability of 0.2. One of the three operations of
reference was applied randomly.

• Gaussian blur/random hue/random saturation with a prob-
ability of 0.2. One of the three operations was applied
at random.

Figure 3 displays the images resulting from applying
each operation on a sample image. The probability settings
of the operations which modify the input image make
it possible to maintain a significant presence of original
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Fig. 3 Illustration of the data
augmentation operations. An
original sample image is shown
(first row), together with the
images resulting from applying
the subsequent data
augmentation operations.
Second row: rotation, horizontal
flip, and cut-out operations.
Third row: gamma contrast,
gaussian and salt and pepper
noise operations. Fourth row:
gaussian blur, random hue, and
saturation operations

images in the training batches. Moreover, the operations
have been designed in a conservative way so that the resulting
image respects the essential information of the image.

4.3 Training stage and network selection

The model was trained using the training set of images,
while the network selection process was based on the evalua-
tion of the trained network at each epoch on the validation set
(both sets have been referenced in Section 3 “Materials”).

Figure 4 shows the evolution of the loss function at the
end of each epoch of the training process. The figure illus-
trates the loss value calculated by evaluating the trained net-
work at the epoch in question in the training and validation
sets.

The reference metric used to select the network was
the area under the receiver operating characteristic (ROC)
curve (AUC), as it allows to quantify the overall network
performance at its different operating points (range of

thresholds that binarise the network output probability to
decide the class). Figure 5 shows the evolution of the
AUC measured on the set of validation images for the
different networks trained in each epoch. The maximum
AUC value was reached at the 2112 epoch (AUC = 0.9953).
The loss value measured in the validation set at this epoch
was 0.0886 which is very close to its minimum value.
Therefore, the network selected after this training process
was the one using the adjusted weights after the 2112
epoch.

5 Results

The results obtained with the proposed methodology on the
set of test images are presented below. Next, the results are
analysed and contextualised in relation to those generated
by the main state-of-the-art convolutional neural network
architectures.
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Fig. 4 Evolution of the loss value in the training and validation set for
each training epoch. The minimum loss values obtained were 0.1342
(epoch 2024) and 0.0864 (epoch 2048) in training and validation,
respectively

5.1 Proposedmethodology results

The network, trained and selected according to the criteria
described in the previous section, was applied on the images
of this study’s test set. This generated the probability of each
image being pathological (image showing CD-compatible
lesions) or healthy (image with no lesions).

The metric used to quantify the overall network perfor-
mance was the area under the ROC curve, AUC. The ROC
curve was generated by performing a threshold sweep on
the probabilities associated with the positive class which,
in this case, is defined as “pathological image”. For each
threshold, the network classifies the images into positive
class if their probability of belonging to this class exceeds

Fig. 5 Evolution of the AUC value in the validation set for each
training epoch. The diagrammarks the point where the maximumAUC
value is reached

the defined threshold, or negative class (“healthy image”) if
it does not. In this way, each threshold establishes a possi-
ble network operating point that can be evaluated with the
binary classification metrics normally used in this type of
work: accuracy (true positive and negative fraction), sen-
sitivity (true positive fraction) or specificity (true negative
fraction).

Figure 6 shows the resulting ROC curve, i.e., the
representation of the true positive image fraction versus the
false positive image fraction (1-specificity) associated with
each threshold applied. The AUC value was 0.9978, very
close to 1, which shows the network’s ability to distinguish
between the images of the two classes of the problem.
The network operating point with the best relation between
the true and the false positive ratio –the point on the
curve closest to (0, 1)– was reached on a threshold of 0.37
and provides accuracy, sensitivity and specificity rates of
0.9821.

Table 3 also shows the results of these performance
metrics at other representative points of the curve which
were selected based on different levels of target sensitivity:
99%, 98%, 95%, and 90%. Table 4 shows the confusion
matrix associated with each of these 4 selected points in
the ROC curve. The target sensitivity levels were set at
these values because, in this type of study, it is extremely
important for the automatic image classification to have the
highest possible sensitivity or, in other words, to minimise
the number of false negatives, i.e., the number of images
showing lesions that the network classifies as healthy. If
the network was to be integrated into a specialist support
tool that automatically selects images showing lesions
associated with the disease, the images with lesions that
were misclassified by the network would escape the review
by the specialist. As shown in Table 3, the specificity
percentages achieved within the established range of target
sensitivities are very high, above 95% in all cases. These
percentages represent the screening of healthy images
that the network would perform to reduce the specialist’s
workload. Thus, if for instance the proposed network was
to be integrated into a real practical application configured
to work at the operational point given by threshold 0.208
(sensitivity = 0.9898; specificity = 0.9630), by extrapolating
the results extracted from the image sample of this study
to the image set of a given CE video, it would be capable
of filtering the set of images and leave to the specialist the
revision of around 99% of the images with lesions and less
than 4% of the images without any pathologies.

5.2 Comparison with other state-of-art CNN
architectures

The proposed CNN architecture was compared with the
most representative of the state-of-the-art, taking into
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Fig. 6 ROC curve generated by
the proposed network on the test
set. The diagram shows the
point on the curve closest to
(0.1) and those corresponding to
different target sensitivity values

account their proven performance in different types of
medical image classification problems. The models used in
this comparison were EfficientNetB5 [38], VGG-16 [26],
Xception [34] and ResNet-50v2 [39].

The training configuration, as well as the selection crite-
ria of the network to be evaluated in the set of test images,
was similar to the one used for the proposed methodology,
apart from the fact that these models were initialised with
the weights available for the ImageNet competition [36].

Table 5 outlines the overall performance comparison of
the models in the test set. As well as the AUC, the table
includes the accuracy, sensitivity and specificity results at
the ROC curve point where the sensitivity is closest to 0.99.
As previously mentioned, this is particularly interesting
from a clinical point of view, as it covers a very small
number of images with lesions that are not detected by the
network.

It was observed that all the networks displayed high
AUC values, above 0.96 in all cases, with EfficientNetB5
and Xception, together with the CNN proposed in this
work, reporting the highest performance. However, it should

Table 3 Selected operating points with different target sensitivity
values and performance metrics

Target Sensitivity Threshold Accuracy Sensitivity Specificity

(%)

99 0.208 0.9764 0.9898 0.9630

98 0.405 0.9837 0.9802 0.9872

95 0.698 0.9735 0.9528 0.9943

90 0.888 0.9400 0.8832 0.9968

be pointed out that the architectures of the reference models
were designed with the main objective of tackling par-
ticularly complex image classification problems involving
training sets made up of millions of images and thousands
of different classes (such as, for example, those proposed
by ImageNet [36]). These architectures may therefore be
too large to handle specific classification problems like the
one at hand. This may mean that these models cannot be
employed in practical application environments due to their
processing time or computational capacity. Table 6 com-
pares the models according to these issues. The models are
compared in terms of the complexity of their architecture,
quantified according to the number of parameters included,
as well as in terms of processing speed, measured according
to the average time required to process an image.

The analysis of the results provided in Table 5 concludes
that the proposed convolutional neural network architecture

Table 4 Confusion matrix associated with the ROC curve points
shown in Table 3

P’ N’ P’ N’

(a) Target Sensitivity 99% (b) Target Sensitivity 98%

P 1581 16 P 1566 31

N 59 1538 N 20 1577

(c) Target Sensitivity 95% (d) Target Sensitivity 90%

P 1522 75 P 1411 186

N 9 1588 N 5 1592

P and P’: actual and predicted positive class. N and N’: actual and
predicted negative class. Positive class: image showing CD-associated
lesions. Negative class: image without lesions

12641



D. Marin-Santos et al.

Table 5 Performance comparison between state-of-the-art reference
CNNs and this work’s proposal on test images

Model AUC Accuracy Sensitivity Specificity

Se = 99% Se = 99% Se = 99%

EfficientNetB5 0.9963 0.9760 0.9898 0.9534

VGG-16 0.9898 0.8599 0.9898 0.7301

Xception 0.9976 0.9655 0.9891 0.9419

ResNet-50v2 0.9950 0.9486 0.9898 0.9075

Proposed CNN 0.9978 0.9764 0.9898 0.9630

The accuracy, sensitivity, and specificity values shown were calculated
on the ROC curve point closest to the target sensitivity of 99%

(designed ad hoc to binary classify CE images between images
with and without CD-associated lesions) provides better
performance results than those obtained by state-of-the-art
models. Nevertheless, its architecture is significantly less
complex, resulting in much shorter processing times (see
Table 6). This would not be so important if the goal was
to process a small number of images. However, the main
purpose of these networks is their integration into real tools
that analyse videos made by capsule endoscopy. These
videos generally contain a huge number of images, approx-
imately 120,000 of them when the capsule travels 12 hours
along the intestinal tract capturing images at 3fps. There-
fore, as shown in Table 6, using the proposed architecture
could significantly reduce the video analysis time. The most
similar architectures to the one under study in terms of pro-
cessing time is VGG-16 which, however, is the model with
the lowest performance in terms of prediction.

6 Discussion

This paper proposed a CNN for the classification of images
captured by CE to identify those showing CD-indicative
lesions. The main practical application of this type of network
is its integration in artificial vision tools to help specialists
analyse the huge number of images included in a CE video.

Table 6 Comparison of the models in terms of the complexity of their
architecture (number of parameters), and processing speed (average
time required to process a CE image or video)

Model Number of Mean inference Mean inference time

parameters time per image per video (12 h.)

EfficientNetB5 28,517,623 112.97 ms. 4 h. 04 min.

VGG-16 241,223,488 15.26 ms. 0 h. 33 min.

Xception 20,865,576 31.82 ms. 1 h. 09 min.

ResNet-50v2 23,568,896 35.76 ms. 1 h. 17 min.

Proposed CNN 598,160 13.23 ms. 0 h. 28 min.

This is an ongoing problem that poses a major challenge to
the scientific community, basically due to the difficulty in
generating and having access to a large and representative
set of images that includes the different lesions associated
with the disease. In this context, it is important to
recognise the efforts that are being made to have access
to such a database. Vallée et al. in [30] created and
developed CrohnIPI, a database of clinically annotated CE
images. Unfortunately, there are currently only 1380 images
showing the different CD-associated lesions (erythema,
aphtha, oedema, ulceration, stenosis), which is insufficient
to develop classification strategies based on deep learning
(widely recognised as the most suitable way to address
this type of problem). Thus, this line of research work
needs to rely on its own generation of sets of images to
implement these techniques. Hence, Klang in [32] used
his own database comprising of 17,640 CE images (of
which 7391 images showed signs of ulceration) in order
to develop a CNN able to classify images based on the
presence of this type of lesion. However, although ulcers
are a major endoscopic hint for the diagnosis of the disease,
their detection alone is not sufficient to develop real systems
that can be used in clinical practice. The main objective
of this type of support tool is to screen the images of the
video, leaving those that show signs of CD for the specialist
to review. This means that all lesions associated with the
disease need to be taken into consideration. This was the
main goal for the development of this work as there is
a binary image classification problem, where the positive
class corresponds to a “pathological” image affected by any
lesion compatible with the disease. In this study, a total of
15,972 images were extracted from 31 CE videos of patients
affected by CD, 7,986 of which showed lesions associated
with the disease (Table 1 shows the different lesions that
appeared in the sample, according to the clinical notes taken
by two specialists in agreement, as well as their proportion
in the set of images).

The CNN proposed in this work was custom designed
to solve a CE image classification problem. This clearly
sets it apart from the CNN models generally used in the lit-
erature to address medical image classification problems,
models specially designed for the ImageNet competition
(EfficientNet-B5, VGG-16, Xception and ResNet). Creat-
ing a specific network architecture made it possible to have
different design choices that optimised the network perfor-
mance in terms of accuracy and processing speed. The main
differences between the proposed network and the other ref-
erence networks mentioned above lie in its reduced data
and number of convolutions of the different layers. The net-
works designed for ImageNet significantly reduce the size
of the data in the first layers of the network, since the rel-
evant elements usually occupy a considerable size in the
image set; moreover, the number of convolutions increases
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Table 7 Analysis of false negatives associated with the confusion
matrix shown in Table 4a (99% target sensitivity point ROC curve)

Predicted Images

Pathological Healthy

Actual Images Ulcers 359 2

Aphthae 294 3

Multi-pathological 210 0

Lymphangiectasia 173 1

Bleeding 153 2

Erythema 121 1

Nodules 85 1

Erosion 73 1

Haemorrhagic 35 0

Villus alterations 19 2

Atrophic mucosa 18 1

Whitish villi 18 0

Angiodysplasia 16 0

Vascular lesions 7 2

Healty 59 1538

exponentially as the depth of the model expands. In contrast,
the proposed network processes the data with the original
size, which is particularly relevant in this case due to the
small size of many of the characteristic elements of the dif-
ferent pathologies to be detected. Another aspect to be taken
into account is the variability of the data in the images.
In the case of CE images, the information is significantly
more delimited than in the classification problems posed by
ImageNet. Consequently, the proposed network architecture
reduces the number of convolutions of its layers so that the
complexity of the model is proportionate to the problem at
hand. In this case study, the number of network convolu-
tions grows linearly with increasing model depth and not
exponentially as in models designed for ImageNet. Thus,
this paper proposed a CNN architecture for the classifica-
tion of CE images which considerably reduces the number

Table 8 Evaluation of the
proposed network by means of
4 randomly-repeated hold-out
cross-validation with training
(70%), validation (10%), and
test (20%) sets

Iteration AUC Accuracy Sensitivity Specificity

Se = 99% Se = 99% Se = 99%

1 0.9986 0.9805 0.9910 0.9700

2 0.9949 0.9477 0.9898 0.9056

3 0.9973 0.9728 0.9897 0.9559

4 0.9984 0.9837 0.9897 0.9776

Mean/SD 0.9973/0.0017 0.9712/0.0163 0.9901/0.0006 0.9523/0.0324

In each iteration, the different sets were selected in a random and balanced way across the two classes of
the problem. The set of pathological images of each subset was created taking into account the percentage
of images with the different lesions outlined in Table 1. The table shows the results of the evaluation of the
selected network in the test set in each iteration, as well as the mean values and standard deviation obtained

of parameters and processing requirements compared to
other state-of-the-art generic networks, without sacrificing
its prediction accuracy (see Tables 5 and 6).

Regarding the results of the network on the selected set
of test images, the area under the ROC curve is 0.9978.
As shown in the data displayed in Table 3, the network
can perform at a range of operating points that provide
accuracy, sensitivity and specificity values that are adequate
for the purpose for which it was designed. Therefore, the
network has proved to be capable of detecting images with
and without the presence of lesions, and is able to work,
for example, with a sensitivity and specificity of 0.9898
and 0.9630, respectively. These values indicate that, if the
network were integrated into a CD diagnostic support tool,
it would allow the specialist to filter the very high number
of images that make up a CE video (over 96% of the images
showing no signs of lesions), leaving for review almost
all images of interest showing lesions compatible with the
disease (about 99%). In this regard, the analysis of false
negatives (FN) (images that, although showing lesions, are
predicted as “healthy” by the network and would therefore
escape the specialist’s review) becomes particularly relevant
from a clinical safety point of view, in terms of the potential
integration of the network. Table 7 shows the distribution
of the FN obtained from the corresponding operation point
based on the type of lesion they show. It can be observed
that the very small number of FN (only 16 out of 1597
pathological images) is largely distributed over the different
types of lesions. Thus, there is no particular difficulty for the
network to predict an image with a specific type of lesion as
pathological. The most unfavorable case is found in images
showing vascular lesions, for which the network classifies
as pathological 5 out of 7 images showing this type of lesion
in the test set (2 FN). This is undoubtedly related to the
limited number of images available with the presence of
this lesion in the training set (it is the least representative
lesion in our image sample, with only 0.57% percentage of
appearance, see Table 1).
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To demonstrate the consistency of these results on
the available images, the experiment was repeated four
times following the same criteria for training, selection,
and evaluation of the network: sets of training, validation
and test images randomly selected with a ratio of 70,
10, and 20%, respectively (Table 2); set of pathological
images created while maintaining the ratio of appearance
of images with the different lesions indicative of CD
(Table 1). Table 8 shows the results of this trial. The network
evaluation was carried out in terms of AUC and benchmark
metrics (accuracy, sensitivity, and specificity) measured
at a representative point on the curve (the selection fell
on the one closest to the target sensitivity of 99%). The
mean AUC values, as well as the accuracy, sensitivity, and
specificity values measured at the selected operating point,
accompanied by the reduced standard deviation values
obtained, confirm the network’s ability and adequacy to
discriminate between the two types of images under study.

7 Conclusions

The main contributions of this work can be summarized as
follows:

• The presentation of a convolutional neural network
designed to classify endoscopic images showing lesions
associated with Crohn’s disease. The results achieved
on a balanced test set of 3,194 images are promising
enough to propose the integration of the network into
tools that will support specialists in the diagnosis of this
disease. The measured mean AUC was 0.9973 and the
network is capable of functioning at an operation point
able to detect 99% of the images with lesions, filtering
out for specialist review 95% of images with no signs
of the disease.

• In terms of prediction accuracy and processing speed,
the architecture of the proposed network proves to
be more efficient than other state-of-the-art reference
architectures (EfficientNet-B5, VGG-16, Xception or
ResNet) widely used in medical image classification
problems. The closest case is the Xception network
used in Klang [32] for the classification of endoscopic
images depending on whether they show mucosal ulcer-
ations. This network, together with the one proposed
in this work, are the best performers in terms of AUC
(0.9976 vs. 0.9978). However, Xception’s processing
speed is significantly slower, taking more than twice as
long to process an image (18 ms vs. 8 ms), a difference
that becomes even more relevant considering that the
aim is the analysis of a CE video comprising of a vast
number of images. It can therefore be concluded that
it is important to focus on network models specifically

designed and adapted to the problem at hand. This will
guarantee, or even improve, as in this case, the accu-
racy of the main networks available in the literature with
greater computational efficiency.

However, the main limitation of this study is the small
number of image samples used for training and evaluating
the network. Because of this, it was decided to generate
training, validation, and test sets reflecting the real occur-
rence of the different CD-associated injuries (based on our
sample of 15,972 images taken from 31 CE videos). Given
the small number of videos/patients available, not all types
of lesions are sufficiently represented in our sample of
images. Therefore, to generate the training, validation, and
test sets, all available videos had to be used in order to max-
imise the representativeness of all lesions while maintaining
their occurrence proportion. For this reason, more data need
to be added to these sets. Unfortunately, this is a slow and
costly process that, in this study, is taking place in real
time as tests are performed on new patients affected by the
disease. To this effect, the planned line of action for the inte-
gration of the network in real clinical practice at the hospital
where all the tests have been performed, can be summarised
as follows:

1. Collection of new CE videos of Crohn’s disease patients
to enrich the image sets available for network training.

2. Evaluation of the network at video/patient level. This
will allow a more realistic quantification of the network
performance in detecting images with lesions.

3. Development of a second network that classifies, at
lesion level, the pathological images detected by the
proposed network.

4. Implementation of software that will read and process
CE videos and that will integrate the aforementioned
networks and analyse the images so that the specialist
will only review those classified as pathological. Such
software must be fully validated by using it in parallel
with the current programmes used by specialists to
analyse all the images included in a CE video.
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