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Abstract
Pawlak’s classical model of rough set approximations provides an efficient tool for extracting information exactly by
employing available knowledge (i.e., known knowledge) in an information system, since many problems in rough set theory
are NP-hard and their solution process is therefore greedy and approximate. Many extensions of Pawlak’s classical model
have been proposed in recent years. Most of them are considered over one or two sets, that is, one- or two-dimensional
space or one- or two-dimensional data. Aided by relation-based rough set models, a few of these extensions are considered
over three sets. However, the real world is in three-dimensional space. Therefore, it is necessary to solve these problems
with other models, such as covering rough set models. For this purpose, we propose the TP-matroid—a matroidal structure
over three sets. Employing the family of feasible sets of a TP-matroid as the available knowledge, a pair of rough set
approximations—lower and upper approximations—is provided. In addition, for an information system defined over three
sets, assisted by formal concept analysis, we establish a pair of rough set approximations. Furthermore, two TP-matroids
are established based on the above pair of rough set approximations. The integration between the two pairs of rough set
approximations presented here is discussed. The results show that for an information system in three-dimensional space, the
rough set approximations provided here can effectively explore unknown knowledge by using available knowledge based
on the family of feasible sets of a TP-matroid.
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1 Introduction

Rough set theory, proposed by Pawlak [1, 2], addresses
the vagueness and uncertainty of data tables. Its basic
operators are known as lower and upper approximations.
Pawlak’s classical rough set approximations are defined by
a partition of a universe (i.e., a nonempty set) [1, 2], which
restricts the applications of rough sets in real cases. Many
researchers have generalized Pawlak’s classical rough set
model based on more general binary relations [3–8], by
employing coverings [4, 8–12], or by combining the model
with other theories such as matroid theory [13–17] and
others [18–33].

Moreover, Pawlak’s classical model is also restricted by
the number of universes, which is one. Hence, another
interesting type of generalization of Pawlak’s classical
rough set model is to extend the single universe to more
than one universe, which has become a very popular topic
in recent years and has yielded fruitful results [34–40].
Among them, it is worth mentioning that based on relations,
Sun and Ma [36] generalized Pawlak’s classical rough
set model from one universe to not only two but three
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universes and considered further multi-universe cases for
fuzzy rough sets, even infinite universes. For relation-based
fuzzy rough sets, the model in [36] is perfect. However,
now, with respect to covering-based rough sets over multiple
universes, there are few articles with results as good as those
of [36], although some achievements have been made for
two different universes [41, 42]. There are differences and
connections between the two rough set models—relation-
based and covering-based [8]. Therefore, it is necessary to
consider generalizing Pawlak’s classical rough set model
from one to three sets from the perspective of the covering
rough set model.

The achievements of rough sets in application fields
are low-hanging fruit in many domains [23, 36, 43–55].
They show that the demands of practical use in many
real-life fields are one of the driving forces promoting the
development of rough set theory.

Matroid theory, proposed by Whitney [56], is used
to generalize graph theory and linear algebra [57, 58].
Since its inception, many matroidal structures have been
produced by combination with other theories, such as rough
sets [13–17, 59, 60]. Matroid theory can be employed to
solve combinatorial optimization problems due to its good
structure for greedy algorithms [57, 58]. In real life, some
information appears with matroid constraints, so problems
that involve such information need to be solved with the
assistance of matroid theory [61–65].

In what follows, the necessity of studying a covering
rough set model over a matroidal structure in reality is
illustrated through an example of the biological classifica-
tion of insects on the basis of morphology. According to
the common methods of biological classification of insects,
we can see that (1) in research on the classification of
insects from morphology, the researcher first collects the
insect specimens of some group. Next, for a family of spec-
imens from different locations, or even specimens from the
same location, combined with the morphological charac-
teristics that the researcher believes need to be considered,
the properties of the specimens in terms of these morpho-
logical characteristics are taken as the research content;
the researcher will use his or her existing insect morpho-
logical knowledge that is closest to the discussed content
to approximate the discussed content to obtain the results
that the researcher believes are most appropriate. The col-
lected specimens of the insect group are the first factor in
analysis and research, the morphological characteristics that
the researcher believes should be considered are the sec-
ond factor, and the collected locations of the specimens
in this insect group are the third factor. The three factors
belong to three different considered sets. (2) The results of
the research that the researcher believes are most appropri-
ate can be obtained only after step-by-step analysis. This is
actually a ’greedy’ process. Because matroid theory builds a

good platform for greedy algorithms, we can conclude that
the known knowledge structure of the researcher related to
the research content constitutes a matroidal structure. (3)
The approximate inference process of the researcher is also
that of approximate inference to unknown knowledge from
known knowledge; that is, the lower and upper approxi-
mations of the rough set are used to express the unknown
knowledge.

By (1) and (2), it is necessary to establish a matroidal
structure over three sets. Combining (2) and (3), we
conclude that it is necessary to study the lower and upper
approximation operators of rough sets based on a matroidal
structure over three sets.

In [36], to describe the motivation of the study, an
example given in Section 1, of a disease diagnosis decision-
making problem in a clinic, illustrates a relation-based
rough set model over three universes for realistic decision-
making problems. We will look at this problem from the
perspective of covering rough set models over three sets.
Since each disease must show many basic symptoms and
some concrete results of clinical examination, the known
knowledge of the doctor is a set consisting of three parts
for a disease d: BS is the set of basic symptoms of d, CE

is the set of concrete clinical examination results, and D is
{d}. The doctor will compare the basic symptoms and the
results of the clinical examination of the patient to known
diseases and analyze them to finally determine the most
likely disease through the approximate inference method.
The known knowledge of the doctor relative to his or her
known diseases consists of three parts: {BS | BS is relative
to a disease d}, {CE | CE is relative to a disease d}, and
{D | D is a disease d}.

The process of comparative analysis by the doctor
determines the optimal solution from the knowledge base
of the doctor with respect to the diseases that are closest
to that of the patient. This process is greedy. Combined
with matroid theory, which provides a good platform for
greedy algorithms, the structure of the known knowledge of
the doctor is related to a matroidal structure. Approximate
inference is the doctor’s representation of unknown
knowledge with his or her known knowledge relative to
diseases, which is an approximate representation of a rough
set. We should note that if the doctor’s known knowledge
base with respect to diseases does not completely cover
the patient’s symptoms and clinical examination results,
the inference process must be absolutely approximate. For
instance, when COVID-19 first broke out in 2019, no doctor
in the world had known knowledge that covered this new
disease; only approximative knowledge was available to
make inferences regarding this new disease. This type of
inference finds an optimal solution from the doctor’s known
knowledge base with respect to diseases; that is, it is a
greedy inference. Therefore, this new disease was called
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unexplained pneumonia at the time, although doctors now
have knowledge of this disease and some ways to treat it.
Hence, it is necessary to discuss rough sets as well as covering
rough sets based on a matroidal structure over three sets.

As Ytow et al. [66] discussed, biological classification
has an intimate relation to rough set theory. We note that
both biological classification and doctors’ decision-making
are considered in three-dimensional space. Additionally,
mining valuable information from an information system
expressed in three parts is already being explored by many
researchers, such as in [36, 67, 68]. The real world is
in three-dimensional space. The human cognitive process
moves from lower dimensions to higher dimensions, from
one-dimensional to two-dimensional space and then to
three-dimensional space. Rough set theory is one of the
methods by which human beings understand the world.
Constructing a covering rough set model over three
universes, or three-dimensional space, has become an urgent
task. Completing this work is exactly in line with patterns
of human cognition. Additionally, many problems in rough
set theory are NP-hard, so solving these problems is often
greedy; that is, greedy algorithms often need to be used,
equivalently to say, matroid theory often need to be used.
Hence, it is necessary to build up a matroidal structure on
three-dimensional space, i.e., on the Cartesian product of
three sets. Using this new matroidal structure, it is also
necessary to construct approximation operators in rough set
theory that are expressed in ternary form. For this purpose,
we present the following contributions:

• First, we present a matroidal structure over three
sets—TP-matroid—and demonstrate that TP-matroid
is an extension of Whitney’s classical matroid [56–
58] under the idea of isomorphisms. Considering
approximations of rough sets in knowledge spaces [69]
with approximations in covering rough sets [11], we
provide a pair of lower and upper approximations using
the set of feasible sets of a TP-matroid.

• Second, with the help of formal concept analysis, we
explore a pair of lower and upper approximations
expressed in ternary form over three sets. Furthermore, we
construct two TP-matroids by using this pair of lower
and upper approximations. The integration of the two
pairs of approximations in this paper is also discussed.

For every structure and some of the definitions and proper-
ties presented in this paper, corresponding explanations are
given through examples, where the information tables come
from biological information systems.

There are two research goals of this paper: one is to
theoretically study rough sets, aided by matroid theory over
three sets, and the other is for the results provided here to
be used in actual practice; we provide some examples with
practical information systems.

The rest of this paper is organized as follows: In
Section 2, we review some basic definitions and properties
of matroids, formal concept analysis, and rough sets. In
Section 3, we first provide a matroidal structure over three
sets with ternary form, i.e., a TP-matroid, and determine
how to find rough set approximations over three sets with
a precovering TP-matroid. In Section 4, for information
data relative to formal contexts over three sets, we provide
a pair of lower and upper approximations expressed in
ternary form with the help of formal concept analysis. Using
this pair of approximations, two TP-matroids are built.
Concluding remarks are given in the last section.

2 Some notions and properties

Below, we review some basic notions used in this paper. For
more details, matroid theory is referred to in [57, 58], formal
concept analysis is seen in [70], semiconcepts are seen in
[71], poset theory is referred to in [72], and rough sets are
seen in [1, 2]. Since a data table is finite in practice, we
assume that all of the discussions are finite in this paper.

2.1 Some notations

Let U , V and W be three sets. Then we will use the
following notations in this paper for ∀X, X1, X2 ⊆ U ,
∀Y, Y1, Y2 ⊆ V and ∀Z, Z1, Z2 ⊆ W .

(1) |X| stands for the cardinality of X ⊆ U .
(2) (X1, Y1, Z1) ⊆ (X2, Y2, Z2) :⇔ X1 ⊆ X2, Y1 ⊆ Y2

and Z1 ⊆ Z2.
(3) (X1, Y1, Z1) � (X2, Y2, Z2) :⇔ X1 ⊆ X2, Y1 ⊇ Y2

and Z1 ⊆ Z2.
(4) (X1, Y1, Z1) ∪ (X2, Y2, Z2) := (X1 ∪ X2, Y1 ∪

Y2, Z1 ∪ Z2).
(5) (X1, Y1, Z1) ∩ (X2, Y2, Z2) :⇔ (X1 ∩ X2, Y1 ∩

Y2, Z1 ∩ Z2).
(6) (X1, Y1, Z1)\(X2, Y2, Z2) :⇔ (X1\X2, Y1\Y2, Z1\

Z2).
(7) |(X, Y, Z)| := |X|+ |Y |+ |Z|, that is, the cardinality

of (X, Y, Z).
(8) (X1, Y1, Z1) 	 (X2, Y2, Z2) := (X1 ∪ X2, Y1 ∩ Y2,

Z1 ∪ Z2).
(9) 2S represents the power set of a set S.

(10) “E is in unary (binary; ternary) form” means: E :=
X(E := (X, Y );E := (X, Y, Z)), where X ⊆
U((X, Y ) ⊆ (U, V ); (X, Y, Z) ⊆ (U, V, W)).

(11) If there is a bijection f : U → V , then we say U and
V are isomorphic, denoted as U ∼= V .

(12) A ‘universe’ is a nonempty set.
(13) The Cartesian product of one set (two sets; three

sets) U(U, V ; U, V, W) is U(U × V ; U × V ×
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W) and is called one- (two-; three-) dimensional
space.

Remark 1 We sometimes write y for {y} if y is a singleton
set.

2.2 Matroid

Definition 1 (1) [57, p.7][58, p.7] A matroid M is a set S

and a collection I of subsets of S (called independent
sets) such that (i1)-(i3) are satisfied.

(i1) ∅ ∈ I.
(i2) X ∈ I and Y ⊆ X ⇒ Y ∈ I.
(i3) X, Y ∈ I and |X| < |Y | ⇒ X ∪ y ∈ I for some

y ∈ Y \ X.

(2) [57, p.11][58, p.9] Two matroids M1 and M2 on S1 and
S2 respectively are isomorphic if there is a bijection
ϕ : S1 → S2 that preserves independence. We write
M1 ∼= M2 if M1 and M2 are isomorphic.

2.3 Formal concept analysis

Formal concept analysis (or a concept lattice), proposed by
Wille [73], is a useful and successful tool for dealing with
data represented by a kind of information table—a formal
context. It is well known that many data tables are similar
in form to formal contexts. Hence, to study rough sets and
matroids, formal concept analysis is a good tool [18–20, 26,
35, 69].

Next, we review some definitions and lemmas for formal
concept analysis.

Definition 2 (1) [70, pp.17-18] A formal context is a set
structure K := (O, P, I) such that O and P are
nonempty sets and I ⊆ O × P ; the elements of O and
P are called objects and attributes, respectively, and
gIm is (g, m) ∈ I . The derivation operators of K are
defined as follows

(X ⊆ O, Y ⊆ P): X′ = {m ∈ P | gIm

for all g ∈ X} and Y ′ = {g ∈ O | gIm for all
m ∈ Y }.

(2) [71] In a formal context K = (O, P, I), a pair (X, Y )

with X ⊆ O and Y ⊆ P is called a �-semiconcept
if Y = X′. Dually, a pair (C, D) with C ⊆ O and
D ⊆ P is called a 	-semiconcept if C = D′.

Lemma 1 [70, p.19] The two derivation operators in
a formal context K = (O, P, I) satisfy the following
condition for any Aj ⊆ O (or Aj ⊆ P ) where j ∈ J and J

is an index set: (∪j∈J Aj )
′ = ∩j∈J A′

j .

Remark 2 (1) For a formal context K = (O, P, I), if
x ∈ O (or x ∈ P ), then {x}′ is abbreviated as x′.

(2) We can easily find that the family of �-semiconcepts
has the dual property of that of the family of 	-
semiconcepts. Hence, we only consider the family of
	-semiconcepts and simply use semiconcept instead of
	-semiconcept in what follows.

(3) All semiconcepts in a formal context K are denoted as
B(K).

2.4 Posets and equivalence relations

Definition 3 [58, p.45] A poset is a set S together with a
binary relation ≤, i.e., a partial order, such that the following
properties hold for ∀x, y, z ∈ S:

(p1)x ≤ x.

(p2)x ≤ y and y ≤ x ⇒ x = y.

(p3)x ≤ y and y ≤ z ⇒ x ≤ z.

Definition 4 [72, pp.2-3] A binary relation ε on a nonempty
set A is called an equivalence relation if it satisfies the
following three properties for ∀a, b, c ∈ A:

(e1) (a, a) ∈ ε.
(e2) (a, b) ∈ ε ⇒ (b, a) ∈ ε.
(e3) (a, b) ∈ ε and (b, c) ∈ ε ⇒ (a, c) ∈ ε.

2.5 Rough set

Definition 5 [1,2]

(1) Let U be a universe, R ⊆ U × U be an equivalence
relation on U , and [x]R denote the equivalence class
involving the element x. For any X ⊆ U , we call
R(X) = {x ∈ U | [x]R ⊆ X} and R(X) = {x ∈ U |
[x]R ∩ X �= ∅}, the lower and upper approximations
of X about the Pawlak approximation space (U, R),
respectively.

(2) Let U/R = {[x]R | x ∈ U}. Every element in U/R

is called R-basic category. X ⊆ U is called an R-
definable if X is the union of some R-basic categories;
otherwise, X is R-undefinable.

Lemma 2 [1,2] Let (U, R) be a Pawlak approximation
space.

(1) The lower and upper approximations can be described
by the following an equivalent form:

RX = ⋃{Y ∈ U/R | Y ⊆ X}, RX = ⋃{Y ∈
U/R | Y ∩ X �= ∅}.

(2) X ⊆ U is R-definable ⇔ R(X) = R(X).

Definition 6 (1) [11] Let U be a universe, and C be a
family of subsets of U . If no subsets in C are empty
and

⋃
C = U , then C is called a covering of U . (U, C)

is called a covering approximation space.
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(2) [74] Let Q be a universe. A knowledge structure is
denoted by a pair (Q,K), where K ⊆ 2Q. The only
special assumption about K is that it must contain the
empty set and the full set Q.

Considering the definition of a covering approximation
space in Definition 6, we can state that the expression of
Definition 6(1) over three sets is given below, where at least
one of U, V and W is a universe.

Let C be a family of subsets of (U, V, W); i.e., C ∈
C ⇒ C = (X, Y, Z) ⊆ (U, V, W). If none of the subsets
in C is (∅, ∅, ∅) and

⋃
C = (U, V, W), then C is called a

covering of (U, V, W). (U ×V ×W, C) is called a covering
approximation space.

In the coming Example 2 in Section 3, we will see that
J \ (∅, ∅, ∅) is a covering of (U, V, W).

We generalize the definition of a knowledge structure in
Definition 6 from one set to three sets.

Definition 7 Let U, V and W be three sets such that at least
one of U, V and W is a universe. Let K ⊆ {(X, Y, Z) | X ⊆
U, Y ⊆ V, Z ⊆ W } and K �= ∅. Then, (U × V × W,K)

is called a knowledge space and x ∈ K is called basic
knowledge.

Comparing Definition 6(2) with Definition 7, we see that
Definition 7 is a generalization of Definition 6(2) since K
need not satisfy ∅, U × V × W ∈ K in Definition 7,
but the corresponding condition is included in Definition
6(2).

Yao et al. [11] pointed out that when generalizing
Pawlak’s approximations, one task is to specify a subset
of these properties that new approximation operators
are required to preserve. Hence, according to Pawlak’s
approximations, Yao et al. [11] and Yao [74] presented
generalized definitions for lower and upper approximation
operators, respectively. Considering Definitions 5, 6 and 7,
Lemma 2, and the discussion in [11, 74] with the expression
of approximations for knowledge spaces in [69], we can
present the following definition:

Definition 8 Let S be a universe. Suppose that (S,J )

is a knowledge space in which J ⊆ 2S and J �= ∅.
Then, APR and APR, where APR, APR : 2S →
2S , are a pair of lower and upper approximations on
2S if and only if APR and APR satisfy the following
conditions with a partial order ≤ defined on 2S for any
X ⊆ S:

(1) APR(X) ≤ X ≤ APR(X),

(2) X ∈ J ⇔ APR(X) = X = APR(X).

3 Rough set approximations produced
by a newmatroidal structure—TP-matroid

To combine rough sets and matroids, we first need to
generalize the construction of matroids from one set to three
sets, in particular, three universes. Then, we can explore
rough set approximations with the new matroidal structure.

3.1 Relationships between TP-matroids
andmatroids

We generalize the definition of a matroid from one set to
three sets.

Definition 9 (1) Let U , V and W be three sets such
that at least one of U, V and W is not empty. Let
T I ⊆ {(X, Y, Z) | (X, Y, Z) ⊆ (U, V, W)}; i.e,
we have a collection of subsets of U × V × W

(called feasible sets) such that (I1)-(I3) are satisfied
for ∀(Xj , Yj , Zj ) ⊆ (U, V, W)(j = 1, 2).

(I1) T I �= ∅.
(I2) (X1, Y1, Z1) � (X2, Y2, Z2) ∈ T I ⇒ (X1, Y1, Z1) ∈ T I.
(I3) Let (Xj , Yj , Zj ) ∈ T I (j = 1, 2). If at least one

of X2, Y2 and Z2 is not empty, and |(X1, Y1, Z1)| <

|(X2, Y2, Z2)|, then (X1, Y1, Z1) ∪ (x2, y2, z2) ∈
T I holds for some (x2, y2, z2) ∈ (X2, Y2, Z2) \
(X1, Y1, Z1) such that at least one of x2, y2 and z2 is
not empty.

Then, (U × V × W, T I) is called a three-partial
matroid, abbreviated as TP-matroid.

(2) Let (U × V × W, T I) be a TP-matroid. If
T I = {(Xγ , Yγ , Zγ ), γ ∈ ϒ} satisfies

⋃

γ∈ϒ

Xγ =
U,

⋃

γ∈ϒ

Yγ = V and
⋃

γ∈ϒ

Zγ = W , then (U × V ×
W, T I) is called a precovering TP-matroid.

(3) Two TP-matroids (U1 × V1 × W1, T I1) and (U2 ×
V2 × W2, T I2) are isomorphic if there is a bijection
ψ : U1 × V1 × W1 → U2 × V2 × W2 that preserves
feasibility. We write (U1 × V1 × W1, T I1) ∼= (U2 ×
V2 × W2, T I2) if (U1 × V1 × W1, T I1) and (U2 ×
V2 × W2, T I2) are isomorphic.

Remark 3 (1) Let U be a set of collected insect
specimens, V be a set of considered morphological
characteristics, and W be a set of locations of the
collected specimens in U . Let (U × V × W, T I) be
a TP-matroid, and let (X1, Y1, Z1), (X2, Y2, Z2) ⊆
(U, V, W). Suppose X1 ⊆ X2 and Z1 ⊆ Z2.
Biologists will consider the common characteristics
Y of X ⊆ U when they analyze the set X of
specimens during classification. Then, X1 ⊆ X2
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Table 1 Characteristics of stridulatory files

Specimen The number of teeth in the
distal part

The number of teeth in the
proximate part

Source/specimen, origin (scanning
electron microscope, SEM)

Japonica 1 4(9) 61 Kim (2009): Korea, SEM

Japonica 2 6 57-60 CH7421-2: Korea (n = 2)

Japonica 3 6 66 Wu (2010): China

will imply Y1 ⊇ Y2 if Yj is the set of common
characteristics of Xj (j = 1, 2). This follows from
(X1, Y1, Z1) � (X2, Y2, Z2). That is, the order ‘�’
in (I2) is reasonable in some practical cases.

(2) We first explain some terms in Definition 9.
(2.1) A matroid M in Definition 1 is defined on one set.

That is, the background set of Mconsists of one
‘part’. The background set of a TP-matroid (U ×V ×
W, T I) in Definition 9 consists of three ‘parts’—-
U, V and W . In other words, (U ×V ×W, T I) is an
extension of the matroid from one set to three sets.
Hence, (U × V × W, T I) is called a three-partial
matroid or simply a TP-matroid.

(2.2) Definition 6(1) and Example 2 below show that
for a TP-matroid (U × V × W, T I), even if⋃

T I = (U, V, W), T I may not be a covering
of (U, V, W) since (∅, ∅, ∅) ∈ T I holds for some
TP-matroids, such as that in Example 2. However,
T I \ (∅, ∅, ∅) is a covering of (U, V, W) if

⋃
T I =

(U, V, W). Therefore, it is suitable to call this a
‘precovering’ TP-matroid as described in Definition
9(2). Comparing items (1) and (2) in Definition 9, we
assert that the structure of a precovering TP-matroid
is a special case of the structure of the TP-matroid.

(3) We will analyze the existence of (x2, y2, z2) such
that at least one of x2, y2 and z2 is not empty if
|(X1, Y1, Z1)| < |(X2, Y2, Z2)| in (I3).

Let U , V and W be three sets such that
one of U, V and W is a universe. Suppose that
(Xj , Yj , Zj ) ⊆ U × V × W (j = 1, 2) satisfy the
requirement that at least one of X2, Y2 and Z2 is
nonempty. Then, we confirm that:

|(X1, Y1, Z1)| < |(X2, Y2, Z2)| ⇒ ∃(x2, y2, z2) ∈
(X2, Y2, Z2) \ (X1, Y1, Z1), where at least one of
x2, y2 and z2 is not empty.

The reason for this is as follows:

Table 2 Mathematical expression of Table 1

b1 b2

a1 4(9) 61 c1

a2 6 57-60 c1

a3 6 66 c2

We know that |(Xj , Yj , Zj )| = |Xj | + |Yj | + |Zj | (j =
1, 2). Since at least one of X2, Y2 and Z2 is not empty, this
implies |(X2, Y2, Z2)| �= 0. Therefore, |X2| �= 0, |Y2| �= 0
and |Z2| �= 0 hold.

If |(X1, Y1, Z1)| < |(X2, Y2, Z2)|, we assert that one
of |X1| < |X2|, |Y1| < |Y2| and |Z1| < |Z2| holds. If
this assertion is not true, then |X2| ≤ |X1|, |Y2| ≤ |Y1|
and |Z2| ≤ |Z1|. This implies |X2| + |Y2| + |Z2| ≤
|X1| + |Y1| + |Z1|, a contradiction of the known condition
|(X1, Y1, Z1)| < |(X2, Y2, Z2)|.

Suppose |X1| < |X2| �= 0. Then there is an x2 ∈
X2 \ X1 �= ∅ satisfying x2 �= ∅. Therefore, (x2, ∅, ∅) ∈
(X2, Y2, Z2)\(X1, Y1, Z1) holds, and (x2, ∅, ∅) �= (∅, ∅, ∅)

is correct.
Similarly, for |Y1| < |Y2| �= 0 or |Z1| < |Z2| �= 0, the

needed results are correct.
The following example shows the existence of a TP-

matroid.

Example 1 Table 1 is an expression of some biological
information in [75, Table 4].

Let aj := japonica j, (j = 1, 2, 3), b1 :=‘The number
of teeth in the distal part’, b2 :=‘The number of teeth
in the proximate part’, c1 :=‘Korea’, and c2 :=‘China’.
Then, we obtain the mathematical expression of Tables 1 in
Table 2.

Let U ={a1, a2, a3}, V ={b1, b2} and W = {c1, c2}. Let T I =
{({a1, a2}, b1, c1)} ∪{(aj , b1, ∅), (aj , b1, c1), (aj , {b1, b2}, ∅), (aj ,

{b1, b2}, c1), (j = 1, 2)}∪ {(∅, b1, ∅), (∅, b1, c1), (∅, {b1, b2},
∅), (∅, {b1, b2}, c1)}∪{({a1, a2}, b1, ∅), ({a1, a2}, {b1, b2},
∅), ({a1, a2}, {b1, b2}, c1)}. Then, we may easily check that
T I satisfies (I1)-(I3). Therefore, using Definition 9(1), we
find that (U × V × W, T I) is a TP-matroid.

Here, for ∀X ⊆ U, ∀Y ⊆ V and ∀Z ⊆ W , (X, Y, Z) ∈
T I means that in researching the japonica population with
the biological information shown in Table 1, one of the basic
knowledge items of the biologists is that X, the japonica
that comes from location Z, must have characteristics Y . For
example, (X = {a1, a2}, Y = {b1}, Z = {c1}) ∈ T I means
that the biologist believes the japonica collected in c1 must
possess the common characteristic b1.

Simply, we denote T I as {(Xγ , Yγ , Zγ ), γ ∈ ϒ}. We
find that T I satisfies

⋃

γ∈ϒ

Xγ = {a1, a2} ⊂ U,
⋃

γ∈ϒ

Yγ = {b1, b2} =
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V and
⋃

γ∈ϒ

Zγ = {c1} ⊂ W . Considering Definition 6(1)

and Definition 9(2), we may easily confirm that

(1) T I, i.e., T I \ (∅, ∅, ∅), since (∅, ∅, ∅) �∈ T I, is not a
covering of (U, V, W).

(2) (U × V × W, T I) is not a precovering TP-matroid.
(3) We also see that the set of specimens of the insect

group is U = {a1, a2, a3}, the set of morphological
characteristics that the biologist believes need to be
considered is V = {b1, b2}, and the set of locations of
the collected specimens is W = {c1, c2}. The available
knowledge of the biologist in Example 1 is T I.

The next example will show the existence of a precovering
TP-matroid.

Example 2 Let U, V and W be given as in Example 1.
Let J = {(X, Y, Z) ⊆ (U, V, W) | |X| ≤ 1, |Z| ≤
1} = {(ai, bj , ck), i = 1, 2, 3; j = 1, 2; k = 1, 2} ∪
{(ai, {b1, b2}, ck), i = 1, 2, 3; k = 1, 2} ∪ {(∅, bj , ck), j =
1, 2; k = 1, 2}∪
{(∅, {b1, b2}, ck), k = 1, 2} ∪ {(∅, bj , ∅), j = 1, 2} ∪
{(∅, {b1, b2}, ∅)} ∪ {(ai, bj , ∅), i = 1, 2, 3; j = 1, 2} ∪
{(ai, {b1, b2}, ∅), i = 1, 2, 3} ∪ {(ai, ∅, ck), i = 1, 2, 3; k =
1, 2} ∪ {(∅, ∅, ck), k = 1, 2} ∪ {(ai, ∅, ∅), i = 1, 2, 3} ∪
{(∅,∅, ∅)}. Then we may easily find that

(1) (U × V × W,J ) is a TP-matroid by Definition 9(1).
(2) J \ (∅, ∅, ∅) is a covering of (U, V, W) since J \

(∅, ∅, ∅) satisfies
⋃

(J \ (∅, ∅, ∅)) = (U, V, W) using
Definition 6(1).

(3) (U × V × W,J ) is a precovering TP-matroid since
⋃J = ⋃

(J \ (∅,∅, ∅)) = (U, V, W) by Definition 9(2).
(4) The known knowledge of the biologist in Example 2 is

J on U × V × W .

Remark 4 We next compare the definitions of a matroid and
TP-matroid.

I) The comparisons of the structures between the two
definitions are shown in Table 3.

Using Table 3, we find results (1) and (2).

(1) Let S = U × V × W . Then, (S, T I) is not a
matroid if (U × V × W, T I) is a TP-matroid, since
T I ⊆ 2U × 2V × 2W according to Definition 9(1).
If (S, T I) is a matroid, then T I ⊆ 2S = 2U×V ×W .
It is easy to see that 2U×V ×W �= 2U × 2V × 2W

in general. For instance, in Example 1, |2U×V ×W =
2{a1,a2,a3}×{b1,b2}×{c1,c2}| �= |2U × 2V × 2W =
2{a1,a2,a3} × 2{b1,b2} × 2{c1,c2}| implies 2U×V ×W �=
2U × 2V × 2W . That is, the range of the family I of
independent sets of a matroid and that of the family
T I of feasible sets of a TP-matroid are different in
general.

(2) We next compare some relations between the
restricted conditions of the matroid and TP-matroid.

(2.1) (i1) means that ∅ ∈ I. Therefore, it follows that
I �= ∅.

Considering Example 1, we know (∅, ∅, ∅) �∈ T I
for some TP-matroid. This indicates that (I1) cannot
determine T I. It only confirms that T I �= ∅.

Hence, (i1) is a special case of (I1).
(2.2) Conditions (i3) and (I3) have some similarity. The

similarity suggests that there is a close relation
between the matroid and TP-matroid.

(2.3) Let (U × V × W, T I) be defined as in Example 1.
Let I2 = {∅, bj , (j = 1, 2)} ⊆ 2V . We know that
M2 = (V , I2) is a matroid using Definition 1(1).

Let X1 = ∅, X2 = ∅ ⊆ U, Y1 = {b1, b2}, Y2 =
{b1} ⊆ V, Z1 = ∅, and Z2 = ∅ ⊆ W . Then, we
consider the following two cases:

In one case,
(*1) (i2) is correct for I2. If (I2) holds for I2,

then {b1, b2} � b1 ⇒ {b1, b2} ∈ I2 holds, which
contradicts {b1, b2} �∈ I2.

Thus, (*1) implies that (i2) cannot be replaced by
(I2).

In the other case,
(*2) (I2) is correct for T I. If (i2) holds

for T I, then (∅, b2, ∅) ⊆ (∅, {b1, b2}, ∅) ∈
T I ⇒ (∅, b2, ∅) ∈ T I holds, which contradicts
(∅, b2, ∅) �∈ T I.

Hence, (*2) means that (I2) cannot be replaced by
(i2).

The above two cases show that (i2) and (I2) are
independent.

II) To continue the discussion of the definitions of
matroid and TP-matroid, we can obtain more results
for their relations as follows in (3)-(6).

(3) We may easily prove V ∼= ∅ × V × ∅. We can
also easily demonstrate M1 = (∅ × V × ∅, T I2 =
{(∅, X, ∅) | X ∈ I2}) to be a matroid such that
M1 ∼= M2.

Table 3 Compare the structures between a matroid and a TP-matroid

dimension of ground set range of family of independent(feasible) set restricted conditions

(S,I), a matroid one 2S (i1)-(i3)

(U × V × W,T I), a TP-matroid three 2U × 2V × 2W (I1)-(I3)
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Suppose that every matroid is a TP-matroid.
Then, M1 is a TP-matroid. In fact, we know that
M1 is not a TP-matroid since (∅, {b1, b2}, ∅) �
(∅, ∅, ∅) �⇒ (∅, {b1, b2}, ∅) ∈ T I2. Hence, even
under isomorphisms of sets and matroids, M2 is not
a TP-matroid. In other words, a matroid may not be
a TP-matroid even up to isomorphism.

(4) Suppose that every TP-matroid is a matroid. From
Example 1, we know
({a1, a2}, {b1, b2}, c1) ∈ T I, where (U × V ×
W, T I) is defined as in Example 1. By (i2),
we obtain (X, Y, Z) ⊆ ({a1, a2}, {b1, b2}, c1) ⇒
(X, Y, Z) ∈ T I; in particular, ({a1, a2}, b2, c1) ∈
T I which contradicts Example 1. Thus, not every
TP-matroid is a matroid.

(5) The above items (3) and (4) imply that the TP-matroid
is a new structure that is different from the matroid.

(6) Let M21 = (U, I21 = {∅}) and M23 = (W, I23 =
{∅}), where U and W are defined as in Example 1.
Using Definition 1(1), M21 and M23 are matroids.
Let M = (M21, M2, M23), i.e., M = (U × V × W,T =
{X ×∅×∅ | X ∈ I21}∪ {∅×Y ×∅ | Y ∈ I2}∪ {∅×∅×Z |
Z ∈ I23}). Then, we obtain that M is not a TP-
matroid since (∅, {b1, b2}, ∅) � (∅, ∅, ∅) ∈ T �⇒
(∅, {b1, b2}, ∅) ∈ T . This result indicates that the
TP-matroid is not a combination of three matroids. It
is a new matroidal structure over three sets.

Remark 5 If T I is the family of feasible sets of a TP-
matroid (U × V × W, T I), then (U × V × W, T I) can be
seen as a knowledge space by Definition 7 with T I as the
family of basic knowledge. Examples 1 and 2 indicate that
in biology, some known knowledge on U × V × W may be
used to construct the family of feasible sets of a TP-matroid
(U ×V ×W,P), where P = T I in Example 1 and P = J
in Example 2, respectively.

Xu et al. [69] depicted a knowledge space for one
universe as one of two types of knowledge structures is
a knowledge space and closed under set union. Hence, to
extend the rough set model of a knowledge space from one
universe to three universes, the known knowledge should
have a property similar to being closed under set union.
Hence, we give the following definition.

Definition 10 Let U, V and W be three sets such that at
least one of U, V and W is a universe and A ⊆ 2U × 2V ×
2W . If (X1, Y1, Z1), (X2, Y2, Z2) ∈ A satisfy (X1, Y1, Z1)	
(X2, Y2, Z2) ∈ A, then, A is called 	-closed.

Remark 6 (1) Let T I be as in Example 1. Using
Definition 10, we may easily show that T I is 	-

closed, although T I is not a covering of (U, V, W) as
shown in Example 1.

(2) Let (U × V × W,J ) be as in Example 2. Using
Definition 10, we know that J is not 	-closed since
(a1, b1, c1) 	 (a2, b2, c1) = ({a1, a2}, ∅, c1) �∈ J ,
although J is a covering of (U, V, W) as shown in
Example 2.

(3) (1) and (2) above imply that the definition of 	-closed
is independent from that of covering.

We will continue to discuss some relationships between
matroids and TP-matroids.

Lemma 3 Let U be a universe.

(1) If (U × ∅ × ∅, T I) is a TP-matroid, then (U, T I(1))

is a matroid in which T I(1) = {X | (X, ∅, ∅) ∈ T I}.
(2) Let (U, I) be a matroid and U �= ∅. If I(3) =

{(X, Y, Z) ⊆ (U,∅, ∅) | X ∈ I}, then (U × ∅ ×
∅, I(3)) is a TP-matroid.

The first property of Lemma 3 can be easily verified by
Definition 1(1). The second property can be easily proven
by Definition 9. These proofs are omitted.

Here, we stress the fact that T I as given in Example 1
is 	-closed, and J as given in Example 2 is not 	-closed.
This fact implies that the family of feasible sets of a TP-
matroid cannot always have the property of being 	-closed.
Combined with (U×∅×∅, I(3)) in Lemma 3(2), we believe
the family of independent sets of a matroid (U, I) does not
always have the property of being 	-closed; that is, I is not
∪-closed. This result is the same as in the discussion of I in
classical matroid theory [57, 58]. It also hints that there is
an intimate relation between matroids and TP-matroids.

Using Lemma 3, we may easily obtain (U, I(3)(1)) =
(U, I(3)) since I(3)(1) = {X | (X, ∅, ∅) ∈ I(3)}.
Furthermore, we obtain the following lemma.

Lemma 4 Let Uj be a universe (j = 1, 2, 3, 4).

(1) Let (U1 × ∅ × ∅, T I1) and (U2 × ∅ × ∅, T I2) be two
TP-matroids satisfying (U1 ×∅×∅, T I1) ∼= (U2 ×∅×
∅, T I2). Then, (U1, T I1(1)) ∼= (U2, T I2(1)) holds.

(2) Let (U3, I3) and (U4, I4) be two matroids such that
(U3, I3) ∼= (U4, I4). Then, (U3 × ∅ × ∅, I3(3)) ∼=
(U4 × ∅ × ∅, I4(3)) holds.

Lemma 4 can be easily verified with Definitions 1(2) and
9(3) and Lemma 3. The proof is omitted.

Remark 7 Lemma 3 implies that a matroid on a universe
U corresponds to a TP-matroid on U × ∅ × ∅, and
every TP-matroid on U × ∅ × ∅ corresponds to a matroid
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on U . Lemma 4 implies that under isomorphism, the
correspondences are unique.

Combining Lemmas 3 and 4, we may obtain the
following theorem.

Theorem 1 The correspondence between a matroid (U, I)

and a TP-matroid (U × ∅ × ∅, I(3)) is a bijection between
S1 = {(U, I) | U is a nonempty set} and S2 = {(U ×
∅ × ∅, I(3)) | U is a nonempty set} up to isomorphism for
matroids and up to isomorphism for TP-matroids.

Remark 8 Since the structure of a TP-matroid (U × ∅ ×
∅, T I) is only a special kind of TP-matroid, combining
this expression and Theorem 1, we determine that under
isomorphism of matroids and isomorphism of TP-matroids,
the definition of a TP-matroid is a generalization of
the definition of a matroid. Hence, the TP-matroid is a
matroidal structure over three sets.

3.2 Approximations generalized by TP-matroids

Section 3.1 generalizes the definition of a matroid from one
set to three sets. Examples 1 and 2 imply that sometimes,
the basic knowledge of some researchers is constructed
by the feasible sets of a TP-matroid. In addition, some
problems are solved by some matroidal structures [61–65,
76, 77]. Hence, we hope to solve some problems with
the new matroidal structure—the TP-matroid. We note that
utilizing a set of basic knowledge (or known knowledge)
to infer unknown knowledge is a good and natural strategy.
In fact, this inference corresponds to rough set theory.
Using matroidal structures has already yielded many results
on rough sets, and vice versa. Hence, it is necessary to
explore the central content of rough sets——approximation
operations——with the assistance of TP-matroids.

Considering Definitions 5, 6 and 7, Lemma 2 and
Remark 6(1), we provide the following definitions.

Definition 11 Let (U × V × W, T I) be a TP-matroid. Let
(A, B, C) ⊆ (U, V, W).

(1) low(A, B, C) = {(X, Y, Z) ∈ T I | (X, Y, Z) �
(A, B, C)}.

(2) upr(A, B, C) = {(X, Y, Z) ∈ T I | X ∩ A �= ∅ or
Y ∩ B �= ∅ or Z ∩ C �= ∅}.

(3) apr(A, B, C) =
(

⋃

(X,Y,Z)∈low(A,B,C)

X,
⋂

(X,Y,Z)∈low(A,B,C)

Y,
⋃

(X,Y,Z)∈low(A,B,C)

Z);

(4) If one of A, B and C is empty, then define
apr(A, B, C) = (U,∅, W).

If any of A, B and C is not empty, then define
apr(A, B, C) =

(
⋃

(X,Y,Z)∈upr(A,B,C)

(X ∩ A),
⋃

(X,Y,Z)∈upr(A,B,C)

(Y ∩
B),

⋃

(X,Y,Z)∈upr(A,B,C)

(Z ∩ C)).

Remark 9 We now analyze Definition 11. Let (U × V ×
W, T I) be a TP-matroid.

(1) We analyze items (1) and (3) in Definition 11 as
follows.

By Definition 9(1), T I satisfies (I1) and (I2).
From (I1), we can suppose (X0, Y0, Z0) ∈ T I.
Then, (∅, V , ∅) � (X0, Y0, Z0) and (I2) together
imply (∅, V , ∅) ∈ T I. In addition, (∅, V , ∅) �
(A, B, C) holds for any (A, B, C) ⊆ (U, V, W).
This means that (∅, V , ∅) ∈ low(A, B, C). There-
fore, low(A, B, C) �= ∅ holds. This implies that the
definition of apr(A, B, C) is well defined.

(2) We analyze items (2) and (4) in Definition 11 as
follows.

(2.1) By Definition 3, we may easily obtain that
({(A, B, C) | (A, B, C) ⊆ (U, V, W)}, �) is a poset
with (U,∅, W) as the maximum element. As a gen-
eralization of the upper approximation expressed in
Lemma 2, we define apr(X, Y, Z) = (U,∅, W) for
(X, Y, Z) ⊆ (U, V, W) if one of X, Y and Z is
empty, in particular, if X = U, Y = ∅ and Z = W .
Hence, apr(X, Y, Z) = (U,∅, W) is reasonable in
Definition 11 if one of X, Y and Z is empty.

Because we have “A �= ∅, B �= ∅, C �= ∅” ⇒
“B ∩ V �= ∅ since B ⊆ V ”, and (∅, V , ∅) ∈ T I, we
obtain (∅, V , ∅) ∈ upr(A, B, C) if any of A, B and
C is not empty. This means that apr(A, B, C) is well
defined for the case of A �= ∅, B �= ∅ and C �= ∅.

(2.2) Let U be the set of collected insect specimens of
a group, V be the set of considered morphological
characteristics, and W be the set of sources of
collected specimens in U .

Let U = ∅. This means that a specimen could not
be obtained, so no insect specimens were collected for
research. This case is not valuable for biologists to research.

If V = ∅. This means that there are no morphological
characteristics to be considered for the collected specimens.
This will not occur in biological research, since any
specimen must possess some morphological characteristics
to be considered.

If W = ∅. This means that the sources of all the collected
insect specimens in U are unknown. However, biologists
generally know where the researched specimens were col-
lected from. Even in special cases in which the source of a
specimen is unknown, biologists will try to infer the source
of the specimen. Hence, W �= ∅ holds if U �= ∅.
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The above analysis shows that U �= ∅, V �= ∅ and
W �= ∅ generally hold in scientific research.

In addition, if (A, B, C) ⊆ (U, V, W) is considered by
biologists, then in general, we have A �= ∅, B �= ∅ and C �=
∅. Hence, if any of A, B and C is not empty for (A, B, C) ⊆
(U, V, W), then biologists infer the properties of (A, B, C)

using their known knowledge T I, for example, known
specimens, known morphological characteristics or known
locations, to approximate (A, B, C). This implies that the
supposition of X ∩ A �= ∅ or Y ∩ B �= ∅ or Z ∩ C �= ∅ in
upr(A, B, C) is reasonable. Furthermore, apr(A, B, C) is
effective.

Lemma 5 Let (U × V × W, T I) be a precovering TP-
matroid. Then, upr(A, B, C) �= ∅ holds for ∀(A, B, C) ⊆
(U, V, W) such that one of A, B and C is not empty.

The proof of Lemma 5 can be found in the Appendix.

Remark 10 We analyze the supposition in Lemma 5 on the
basis of biological ideas.

Let U be a set of collected insect specimens of a group, V
be the set of the considered morphological characteristics,
and W be the set of locations of the collected specimens
in U . Let (U × V × W, T I) be a TP-matroid, and let
(A, B, C) ⊆ (U, V, W).

(1) Using the set T I of basic biological knowledge to
approximate (A, B, C) is a common method in biologi-
cal research. If A = B = C = ∅, then according to the
discussion in Remark 9(2), this case is not valuable for
biologists. Therefore, we assume that at least one of
A, B and C is not empty. That is, biologists pay much
more attention to (A, B, C) ⊆ U × V × W \ (∅, ∅, ∅).

(2) If A∩Xγ = B ∩Yγ = C ∩Zγ = ∅ for any (Xγ , Yγ , Zγ ) ∈ T I,
then no known knowledge exists in T I to infer
the properties of (A, B, C). During actual biologi-
cal research, some known knowledge generally exists
to infer the properties of (A, B, C), or approximate
(A, B, C). Hence, (U × V × W, T I) should be pre-
covering. That is, the supposition of the precovering
of (U × V × W, T I) in Lemma 5 is suitable for bio-
logical research and more generally for research in
real life.

We explore some properties of apr and apr as
characterized in Definition 11 to decide whether apr and
apr are a pair of lower and upper approximations defined
on 2U × 2V × 2W according to Definition 8.

Lemma 6 Let (U × V × W, T I) be a TP-matroid. Let apr

and apr be given as in Definition 11. Then, the following
statements are correct for ∀(A, B, C) ⊆ (U, V, W).

(1) If one of A, B and C is empty, then (A, B, C) �
apr(A, B, C) holds.

(2) Let (U × V × W, T I) be precovering. If any of A, B

and C is not empty, then (A, B, C) � apr(A, B, C)

holds.
(3) If any of A, B and C is not empty and (U × V ×

W, T I) is precovering, then (A, B, C) ∈ T I ⇒
apr(A, B, C) = (A, B, C) holds.

(4) If (A, B, C) ∈ T I and (A, B, C) = (U,∅, W), then
apr(A, B, C) = (A, B, C) holds.

(5) If T I is 	-closed, then apr(A, B, C) = (A, B, C) ⇒
(A, B, C) ∈ T I holds.

(6) apr(A, B, C) � (A, B, C).
(7) (A, B, C) ∈ T I ⇒ apr(A, B, C) = (A, B, C).

The proof of Lemma 6 can be found in the Appendix.

Remark 11 Let U be the set of collected insect specimens
in a group, V be the set of considered morphological
characteristics, and W be the set of the sources of collected
specimens in U . Let Xj ⊆ U (j = 1, 2). Let Yj ⊆ V

be the set of common morphological characteristics for any
x ∈ Xj(j = 1, 2). Then, the common morphological
characteristics of X1 ∪ X2 must be contained in Y1 ∩
Y2. With the increase in the number of locations, the
chance of collecting specimens will increase. Thus, for
(Xj , Yj , Zj ) ⊆ (U, V,W) (j = 1, 2), the definition of
(X1, Y1, Z1) 	 (X2, Y2, Z2) = (X1 ∪ X2, Y1 ∩ Y2, Z1 ∪ Z2)

is useful in biology. Furthermore, the restricted condition of
T I is 	-closed is similar to some ideas in biology. Hence,
the supposition that T I is 	-closed in Lemma 6(5) is in line
with typical biological ideas.

We next use an example to illustrate Definition 11 and
Lemma 6.

Example 3 Let (U × V × W, T I) be as given in Example
1. Let A = {a3}, B = {b2} and C = {c1}. Then by
Definition 11, we obtain the following results:

(1) {(X, Y, Z) ∈ T I | X ∩ A �= ∅} = ∅.
(2) {(X, Y,Z) ∈ T I | Y ∩ B �= ∅} = {(aj , {b1, b2}, ∅), j =

1, 2} ∪ {(aj , {b1, b2}, c1), j = 1, 2} ∪ {(∅, {b1, b2}, c1),

(∅, {b1, b2}, ∅), ({a1, a2}, {b1, b2}, ∅), ({a1, a2}, {b1, b2}, c1)}.
(3) {(X, Y, Z) ∈ T I | Z ∩ C �= ∅} = {(aj , b1, c1),

(aj , {b1, b2}, c1), (j = 1, 2)} ∪ {(∅, b1, c1),(∅, {b1,

b2}, c1), ({a1, a2}, b1, c1), ({a1, a2}, {b1, b2}, c1)}.
Hence, we obtain upr(A,B, C) = {(X, Y,Z) ∈ T I | Y ∩B �=

∅} ∪ {(X, Y, Z) ∈ T I | Z ∩ C �= ∅}, and furthermore,
apr(A, B, C) = (∅, b2, c1). In addition, using Definition 11,
we obtain low(A,B, C) = {(∅, {b1, b2}, ∅), (∅, {b1, b2}, c1)} and
therefore apr(A, B, C) = (∅, {b1, b2}, c1).
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We have the following results from the above discus-
sions:

(**1) apr(A, B, C) � (A, B, C).
(**2) (A, B, C) �� apr(A, B, C) since A = {a3} �⊆ ∅.
Result (**1) implies the correctness of Lemma 6(6).

Result (**2) shows that if none of A, B and C are empty,
this does not imply that (A, B, C) � apr(A, B, C). Using
Example 1, we know that (U × V × W, T I) is not
precovering. Hence, the supposition that (U × V × W, T I)

is precovering is necessary to obtain the consequences in
Lemma 6(2) and Lemma 6(3).

Let A1 = {a1, a2}, B1 = ∅ and C1 = c1, where a1, a2

and c1 are defined as in Example 2. Then, we obtain the
following result:

(**3) apr(A1, B1, C1) = (A1, B1, C1) �∈ J .
Combined with Example 2, we know that J is

not 	-closed. The above result (**3) implies that the
condition apr(A, B, C) = (A, B, C) is necessary for the
consequence of (A, B, C) to be feasible in Lemma 6(5).

We next perform an analysis combining Example 1 and
Example 2 with Example 3.

Because the evolution of natural history is impossible to
repeat, entomologists often use their known entomological
knowledge to infer unknown content in their own research.
Such inference is helpful for studying the distribution of
insect populations, the formation of historical develop-
ments, and so on. It is particularly important for the targeted
collection of specimens. For instance, in Table 2, a3, i.e.,
the specimen japonica 3, is collected in c2, i.e., China. Since
the Korean Peninsula, to which Korea belongs, and China
are connected by land, the entomologists in Example 1 and
Example 2 hypothesize that if a3 is collected in c1, i.e.,
Korea, it may also have the characteristic b2 that it currently
has. This is represented by the set (A = a3, B = b2, C =
c1) in Example 3. We will see that (1) using his or her known
knowledge T I, the entomologist in Example 1 obtains
the pessimistic result apr(A, B, C) of the hypothesis as
(∅, {b1, b2}, c1) and the optimistic result apr(A, B, C) as
(∅, b2, c1) (see Example 3). Both the first coordinates of
apr(A, B, C) and apr(A, B, C) are ∅; that is, both of
the corresponding sets of specimens of apr(A, B, C) and
apr(A, B, C) are ∅. This means that no conjectured speci-
mens will appear. Therefore, this entomologist will not go
to Korea, i.e., c1, to collect the specimen according to his
or her hypothesis. (2) Using his or her known knowledge
J , the entomologist in Example 2 obtains the pessimistic
result apr(A, B, C) of the hypothesis as (A, B, C) and the
optimistic result apr(A, B, C) as (A, B, C). In other words,
theoretically, he or she is convinced that the hypothesis is
correct. (3) From Example 2, we find (A, B, C) ∈ J . That
is, the known knowledge of the entomologist in Example 2

completely covers (A, B, C), but that of the entomologist
in Example 1 does not since (A, B, C) �∈ T I holds in
Example 1. This leads to the different conclusions of the
two entomologists regarding the same hypothesis. In fact,
(A, B, C) ∈ J and (A, B, C) �∈ T I imply that the con-
clusion of the entomologist in Example 2 is more correct
than that of the entomologist in Example 1. Therefore, the
hypothesis should be true. (4) In fact, a similar analysis can
be done for sets that can be represented in a ternary form
(X, Y, Z), where (X, Y, Z) ⊆ (U, V, W) and the three sets
U, V and W are as given in Example 1. (5) Rough sets, an
intelligent theory, are an effective tool for intelligent com-
puting. (1)-(4) above show that the method proposed here,
i.e., rough set approximation based on the TP-matroidal
structure, is helpful and usable for the study of insect sys-
tematics, which includes the classification of insects. This
also shows a practical application of the rough sets provided
in this paper. Therefore, it is necessary to further discuss the
rough set approximations provided here.

Example 4 Let (U × V × W, T I) be a TP-matroid with
U �= ∅ or W �= ∅. Let (U,∅, W) ∈ T I. Then, we
obtain (X, Y, Z) ∈ T I for any (X, Y, Z) ⊆ (U, V, W)

since (X, Y, Z) � (U,∅, W) and (I2) holds. In particular,
we obtain (∅, ∅, ∅) ∈ T I. That is, T I is the family of
all subsets of (U, V, W). Thus, it is easy to see that T I is
	-closed and (U × V × W, T I) is precovering.

We may easily obtain apr(U,∅, W) = apr(U, ∅, W) =
(U,∅, W). We also see that apr(∅, ∅, ∅) = (∅, ∅, ∅) and
apr(∅, ∅, ∅) = (U,∅, W) �= (∅, ∅, ∅). Therefore, we have
apr(∅, ∅, ∅) �= apr(U,∅, W) since one of U and W is not
empty.

Remark 12 On the one hand, Example 4 examines the
correctness of Lemma 6(4). On the other hand, Example 4
shows that if one of A, B and C is empty in a precovering
TP-matroid (U × V × W, T I) such that T I is 	-closed,
then we cannot confirm apr(A, B, C) = apr(A, B, C) =
(A, B, C) even if (A, B, C) ∈ T I.

By Definition 8 with the relationships between a covering
and the feasible sets of a precovering TP-matroid, we obtain
the following theorem by Lemmas 5 and 6.

Theorem 2 Let (U × V × W, T I) be a precovering TP-
matroid and T I be 	-closed. Let (A, B, C) ⊆ (U, V, W)

satisfy A �= ∅, B �= ∅ and C �= ∅. Then,
(1) apr(A, B, C) � (A, B, C) � apr(A, B, C).
(2) (A, B, C) ∈ T I ⇔ apr(A, B, C) = (A, B, C) =

apr(A, B, C).
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Using items (2) and (6) in Lemma 6, the proof of item (1)
is straightforward. The proof of Theorem 2(2) can be found
in the Appendix.

Using Theorem 2 and Definition 8, we find that apr

and apr are indeed a pair of rough set approximations
based on a precovering TP-matroid with a family of feasible
sets that is 	-closed. In what follows, we describe how to
acquire information from apr and apr in Algorithms 1 and
2, respectively. In Algorithms 1 and 2, we need to visit n

feasible sets; that is, the complexity of Algorithm 1 is O(n),
as is that of Algorithm 2.

Algorithm 1 Acquiring lower approximation based on a precovering
TP-matroid.

Algorithm 2 Acquiring upper approximation based on a precovering
TP-matroid.

Remark 13 (1) From Definition 8 and Theorem 2, we
can find that apr and apr are the lower and upper
approximations generated by the family of feasible
sets of a precovering TP-matroid (U × V × W, T I)

such that T I is 	-closed.
(2) Considering Remark 11, we know that the definition

of 	-closed for T I is in line with common ideas. In
real cases, biologists and other researchers consider
(A, B, C) ⊆ (U, V, W) satisfying A �= ∅, B �= ∅
and C �= ∅. Hence, the suppositions in Theorem 2 are
valuable according to the ideas of biologists and other
researchers.

(3) The outline of the process of searching the lower and
upper approximations generated by a TP-matroid in
this subsection is shown in Fig. 1.

The process in this section is as follows:
(U × V × W, T I), a TP-matroid

=⇒ apr(A, B, C), apr(A, B, C), a pair of operators
relative to the approximations, where (A, B, C) ⊆
(U, V, W).

(U ×V ×W, T I), a precovering TP-matroid, and T I, a
	-closed family

=⇒ apr(A, B, C), apr(A, B, C), a pair of approxima-
tion operators, where
(A, B, C) ⊆ (U, V, W) and A �= ∅, B �= ∅, C �= ∅.

The converse of the above process is considered in the
next section.

4 Approximations related to formal contexts

It is necessary to find matroidal structures with rough sets.
This work has been done for a single universe, such as
in [17]. The TP-matroid is established over three sets in
Section 3, and determining how to build constructions of
TP-matroids with rough set theory is now the task that we
face. Using rough set theory, the first step of this work
is to set up a pair of approximation operators. According
to Definitions 5, 6, 7 and 8, the pair of approximation
operators is based on a family of basic knowledge. We know
that rough set theory and formal concept analysis are two
important tools for dealing with data tables. This suggests
that formal concept analysis may be helpful in our work.
Therefore, in this section, we will construct TP-matroids
with the help of some rough set approximations based on a
kind of data table—a formal context.

We provide some preliminary definitions.

Definition 12 Let U = U1 ∪ U2 ∪ . . . ∪ Un be a universe
satisfying Ui �= ∅ and Ui ∩ Uj = ∅ (i �= j ; i, j =
1, 2, . . . , n). Let V = {bj , j = 1, 2, . . . , m} and W =
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Fig. 1 Diagram of searching for
lower and upper approximations
from TP-matroids

{wj , j = 1, 2, . . . , n} be universes. Any two of U, V and
W are disjoint.

(1) For every wj , there is a formal context Kj = (Uj , V , Rj )

relative to wj(j = 1, 2, . . . , n). The derivation
operators of Kj are denoted as ′wj (j = 1, 2, . . . , n).

(2) Let {i1, i2, . . . , is} ⊆ {1, 2, . . . , n} and 1 ≤ s ≤ n; the
derivation operators in the formal context Ki1i2...is =
(Ui1 ∪ Ui2 ∪ . . . ∪ Uis , V , Ri1i2...is ) are denoted as
′wi1i2 ...is , respectively, where Ri1i2...is is defined as: for
x ∈ Ui1 ∪ Ui2 ∪ . . . ∪ Uis and y ∈ V , xRi1i2...is y ⇔
xRjy if x ∈ Uj satisfies xRjy for some j ∈
{i1, i2, . . . , is}.

Remark 14 Let U =
n⋃

j=1
Uj , V, W and Kj (j = 1, 2, . . . , n)

be as in Definition 12.

(1) U × V × W can be decomposed into n different
spaces Uj × V × wj (j = 1, 2, . . . , n). In other
words, U × V × W is a combination of n different
spaces Uj × V × wj (j = 1, 2, . . . , n), where

(U, V, W) = (
n⋃

j=1
Uj , V,

n⋃

j=1
wj).

(2) We analyze the formal context given in Definition 12
as follows.

(2.1) For wj ∈ W , there is one and only one formal
context Kj = (Uj , V , Rj ) corresponding to wj

since Ui ∩ Uj = wi ∩ wj = ∅ (i �= j ; i, j =
1, 2, . . . , n).

If wi �= wj , then ′wi �=′wj holds since Ui ∩
Uj = ∅ implies that x

′wj is not defined for any
x ∈ Ui (i �= j ; i, j = 1, 2, . . . , n). Furthermore,
combining Lemma 1 and X = ⋃

x∈X

x ⊆ Ui , we know

that X
′wj is not defined (i �= j ; i, j = 1, 2, . . . , n).

(2.2) Let {i1, i2, . . . , is} ⊆ {1, 2, . . . , n}. xRi1i2...is y

means that there is one and only one j ∈
{i1, i2, . . . , is} such that xRjy holds in the formal
context Kj = (Uj , V , Rj ), since Up ∩Uq = ∅ (p �=
q; p, q ∈ {i1, . . . , is}).

We will use an example to show the existence of the
formal contexts in Definition 12.

Example 5 Table 4 shows some of the biological informa-
tion in [75, Table 4].

Let a1 := japonica 1, a2 := japonica 2, a3 :=
neochlora 1, a4 := neochlora 2, a5 := neochlora 3, a6 :=
antipoda sp. nov. 1, a7 := antipoda sp. nov. 2; b1 :=‘The
number of teeth in the distal part’, b2 :=‘The number of
teeth in the proximate part’; w1 := Korea, w2 := China,
and w3 := Australia. Then, the mathematical expression of
Table 4 is shown in Table 5.

From Table 5, we can obtain T4, as shown in Table 6.
Using Algorithm 2 from [78] on T4, we obtain a formal

context K
0 = ({aj , j = 1, . . . , 7}, {b1, b2}, f ), where

f ⊆ {aj , j = 1, . . . , 7} × {b1, b2} is shown in Table 7.

Table 4 Some features of stridulatory files

Specimen The number of teeth in the distal
part

The number of teeth in the
proximate part

Source/specimen, origin (scan-
ning electron microscope, SEM)

Japonica 1 4(9) 61 Kim (2009): Korea, SEM

Japonica 2 6 57-60 CH7421-2: Korea (n = 2)

Neochlora 1 10 66 Shi et al. (2003): China,SEM

Neochlora 2 5 72 Shi et al. (2003): China,SEM

Neochlora 3 7 68 CH7670: China

Antipoda sp. nov. 1 12 45 CH4147: Australia

Antipoda sp. nov. 2 12 51 CH4148: Australia
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Table 5 Mathematical expression of Table 4

b1 b2

a1 4(9) 61 w1

a2 6 57-60 w1

a3 10 66 w2

a4 5 72 w2

a5 7 68 w2

a6 12 45 w3

a7 12 51 w3

Combining Tables 5 and 7, we obtain the expression of
Table 5 with the language related to the formal context; see
Table 8.

In Tables 7 and 8, ‘1’ means that ai has bj , and ‘0’
means that ai does not have bj (i = 1, 2, . . . , 7; j =
1, 2). Let U = {aj , j = 1, 2, . . . , 7}, V = {b1, b2} and
W = {w1, w2, w3}. Then, based on w1, w2 and w3, we can
obtain U1 = {a1, a2}, U2 = {a3, a4, a5} and U3 = {a6, a7},
respectively. Hence, we obtain the formal context Kj =
(Uj , V , Rj ) corresponding to wj from Table 8; see Tables 9,
10, and 11 (j = 1, 2, 3).

It is easy to see that

(1) U = U1 ∪U2 ∪U3 = {aj , j = 1, 2, . . . , 7}; Ui ∩Uj =
∅ (i �= j ; i, j = 1, 2, 3).

(2) x ∈ U ⇔ there is a unique j satisfying x ∈ Uj for
some j ∈ {1, 2, 3}.

(3) U × V × W =
3⋃

j=1
(Uj × V × wj ) = (

3⋃

j=1
Uj , V,

3⋃

j=1
wj ).

In addition, we may easily obtain K123 = (U, V, R123),
i.e., Table 12, such that for ∀x ∈ U and ∀y ∈ V , xR123y ⇔
xRjy if x ∈ Uj for some j ∈ {1, 2, 3}.

Remark 15 (1) We can use any algorithm to change the
information table expressed by T4 to a formal context
and need not always use an algorithm such as the one
in [78]. However, it is possible that the obtained formal
context will not completely match Table 6. Even so,

Table 6 A part T4 of Table 5

b1 b2

a1 4(9) 61

a2 6 57-60

a3 10 66

a4 5 72

a5 7 68

a6 12 45

a7 12 51

Table 7 Formal context K0

b1 b2

a1 1 1

a2 1 1

a3 1 1

a4 0 0

a5 1 0

a6 0 0

a7 0 0

this does not affect the research method and results
provided in this paper.

(2) Based on the source of the specimens, Table 4 can
produce three formal contexts Kj = (Uj , V , Rj ) (j =
1, 2, 3). In fact, biologists can discuss the relationships
among specimens belonging to different locations
to determine where their predecessors come from.
Furthermore, it may be possible to find other
biological content.

Lemma 7 Let U, V, W be given as in Definition 12. Then

(1) b
′wi1 ...is = b

′wi1 ∪ . . . ∪ b
′wis for any b ∈ V and

{i1, . . . , is} ⊆ {1, . . . , n}.
(2) Y

′wi1...is = ⋂

y∈Y

(
s⋃

j=1
y

′wij ) for any Y ⊆ V .

The first property of Lemma 7 can be easily verified by
Definitions 2 and 12. The second property can be easily
verified by the combination of Lemma 1 and item (1). The
proofs of these two items are omitted.

Lemma 8 Let U, V, and W be given as in Definition
11. In the formal context Ks = (Us, V , Rs), where s ∈
{1, 2, . . . , n}, we define a relation ∼s on Us as follows:
a ∼s b ⇔ a′ws = b′ws . Then, ∼s is an equivalence on
Us . We use [a]Rs to denote a category in ∼s containing an
element a ∈ Us .

Table 8 Formal context language’s expression corresponding to
Table 5

b1 b2

a1 1 1 w1

a2 1 1 w1

a3 1 1 w2

a4 0 0 w2

a5 1 0 w2

a6 0 0 w3

a7 0 0 w3
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Lemma 8 can be easily verified by Definition 4, and its
proof is omitted.

We will use an example to show Lemma 8.

Example 6 Let U1, U2, U3, U, V, W,K1,K2, and K3 be
defined as in Example 5. Using Definition 2(1) on K1,K2,

and K3, we obtain a
′w1
1 = {b1, b2} = a

′w1
2 , a

′w2
3 = {b1, b2},

a
′w2
4 = ∅, a

′w2
5 = {b1}, and a

′w3
6 = ∅ = a

′w3
7 . Combining

Lemma 8, we obtain the following results:

(1) on U1 : [a1]R1 = {a1, a2} = [a2]R1 ;
(2) on U2 : [a3]R2 = {a3}, [a4]R2 = {a4}, and [a5]R2 =

{a5};
(3) on U3 : [a6]R3 = {a6, a7} = [a7]R3 .

Definition 13 Let Uj , U, V , W, and Kj (j = 1, . . . , n) be
defined as in Definition 12. In Kj , [a]Rj

is defined as in
Lemma 8 for ∀a ∈ Uj (j = 1, . . . , n). Let (A, B, C) ⊆
(U, V, W). Let S = {(a, bl0, wi0) | there are wi0 ∈
C and bl0 ∈ B such that a ∈ b

′wi0
l0

�= ∅ for some a ∈
Ui0 , some i0 ∈ {1, . . . , n} and some l0 ∈ {1, . . . , m}}.
Let (

⋃
S) ∩ (∅, B, ∅) = (∅, {bli , i = 1, 2, . . . , t}, ∅)

and (
⋃

S) ∩ (∅, ∅, C) = (∅, ∅, {wαj
, j = 1, . . . , δ}). If

(a, bl0 , wi0) ∈ S, then [a]Ri0
∩A and [a]Ri0

∪A are denoted
as ([a]Ri0

∩ A)bl0
and ([a]Ri0

∪ A)bl0
, respectively. We give

the following definitions:

(1) Low(A, B, C) = {(([a]Ri0
∩ A)bl0

, bl0, wi0) |
(a, bl0 , wi0) ∈ S}.

(2) Upr(A, B, C) = {(([a]Ri0
∪ A)bl0

, bl0 , wi0) |
(a, bl0 , wi0) ∈ S}.

(3) If Low(A, B, C) = ∅, then define APr(A, B, C) =
(∅, V , ∅).

(4) If Low(A, B, C) �= ∅, then define APr(A, B, C) =
(

t⋂

i=1

δ⋃

j=1
([a]Rαj

∩ A)bli
, B,

δ⋃

j=1
wαj

).

(5) If Upr(A, B, C) = ∅, then define APr(A, B, C) =
(U,∅, W).

(6) If Upr(A, B, C) �= ∅, then define APr(A, B, C) =
(

t⋂

i=1

δ⋃

j=1
([a]Rαj

∪ A)bli
,

t⋃

i=1
bli ,

δ⋃

j=1
wαj

).

Remark 16 Let Uj , U, V, W, and Kj (j = 1, 2, . . . , n) be
defined as in Definition 12. Let (A, B, C = {wij , j =
1, 2, . . . , |C|}) ⊆ (U, V, W). Using Definition 13, we
obtain the following:

(1) Low(A, B, C) = ∅ means that for any wij ∈ C

and every x ∈ Uij , there is an x �∈ b
′wij for any

b ∈ B (j = 1, . . . , |C|). Combining Definition 2(1),

we obtain B
′wij = ∅ (j = 1, . . . , |C|). Therefore,

B
′wi1 ...i|C| = ∅ holds by Lemma 7.

Similarly, we find that B
′wij = ∅ and B

′wi1i2 ...i|C| =
∅ if Upr(A, B, C) = ∅.

(2) Clearly, (∅, V , ∅) is the minimum element in the poset
({X, Y,Z) | (X, Y,Z) ⊆ (U, V, W)}, �) according to Def-
inition 3 and the definition of �. Hence, we define
APr(A,B,C) = (∅, V ,∅) as reasonable in the case
Low(A, B, C) = ∅ by means of the definition of the
lower approximation operator in Yao [74]. (U,∅, W)

is the maximum element in the poset ({X, Y, Z) |
(X, Y, Z) ⊆ (U, V,W)}, �) by Definition 3 and the defini-
tion of �. Hence, APr(A,B, C) = (U, ∅, W) is reason-
able in the case of Upr(A,B, C) = ∅ by the definition of
the upper approximation operator in Yao [74].

We give an example of Definition 13 and Lemma 7.

Example 7 Let Uj (j = 1, 2, 3), U, V, and W be given as
in Example 5. Let A = {a2, a3, a6} ⊆ U, B = {b1, b2} ⊆ V

and C = {w1, w2} ⊆ W . By Example 5, we know that
a2 ∈ U1, a3 ∈ U2 and a6 ∈ U3. Since C = {w1, w2}, we
only consider K1 and K2, which are given in Example 5.

In K1 = (U1, V , R1), we know that b
′w1
1 = {a1, a2} and

b
′w1
2 = {a1, a2}.

In K2 = (U2, V , R2), we know that b
′w2
1 = {a3, a5} and

b
′w2
2 = a3.

Thus, we obtain
S = {(ai, b1, w1), i = 1, 2} ∪ {(ai, b2, w1), i = 1, 2} ∪

{(a3, b1, w2), (a5, b1, w2), (a3, b2, w2)}.
By Definition 13 and Example 6, we know that [a1]R1 ∩

A = [a2]R1 ∩A = a2, [a3]R2 ∩A = a3 and [a5]R2 ∩A = ∅.
Therefore, we obtain ([a2]R1 ∩A)b1 = a2, ([a2]R1 ∩A)b2 =
a2, ([a3]R2 ∩ A)b1 = a3, ([a5]R2 ∩ A)b1 = ∅, and ([a3]R2 ∩
A)b2 = a3. In addition, blj = bj and wαj

= wj (j = 1, 2).
Thus, t = 2 and δ = 2. Hence, we obtain the following:

(�1) For b1: ([a2]R1 ∩ A)b1 ∪ ([a3]R2 ∩ A)b1 ∪ ([a5]R2 ∩
A)b1 = a2 ∪ a3 ∪ ∅ = {a2, a3} =

δ⋃

j=1
([a2]Rαj

∩ A)b1 .

(�2) For b2: ([a2]R1 ∩A)b2 ∪ ([a3]R2 ∩A)b2 = a2 ∪a3 =
{a2, a3} =

δ⋃

j=1
([a2]Rαj

∩ A)b2 .

Furthermore, we obtain
t⋂

i=1
(

δ⋃

j=1
([a]Rαj

∩ A)bli
) =

{a2, a3} ∩ {a2, a3} = {a2, a3}.
In addition, we easily find that

δ⋃

j=1
wαj

=
{w1, w2}. Therefore, we have APr(A, B, C) =
({a2, a3}, {b1, b2}, {w1, w2}).

Additionally, it is easy to see that ([a1]R1 ∪ A)b1 =
([a2]R1 ∪A)b1 = {a1, a2, a3, a6}, ([a1]R1 ∪A)b2 = ([a2]R1 ∪
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Table 9 Formal context K1

b1 b2

a1 1 1

a2 1 1

A)b2 = {a1, a2, a3, a6}, ([a3]R2 ∪ A)b1 = {a2, a3, a6},
([a5]R2 ∪ A)b1 = {a2, a3, a5, a6}, and ([a3]R2 ∪ A)b2 =
{a2, a3, a6}.

Considering the above, we obtain the following:

(��1) For b1:
δ⋃

j=1
([a]Rαj

∪ A)b1 = {a1, a2, a3, a6} ∪
{a2, a3, a6} ∪ {a2, a3, a5, a6} = {a1, a2, a3, a5, a6}.

(��2) For b2:
δ⋃

j=1
([a]Rαj

∪ A)b2 = {a1, a2, a3, a6} ∪
{a2, a3, a6} = {a1, a2, a3, a6}.

Furthermore, we obtain
t⋂

i=1
(

δ⋃

j=1
([a]Rαj

∪ A)bli
) =

{a1, a2, a3, a5, a6} ∩ {a1, a2, a3, a6} = {a1, a2, a3, a6}.
In addition, we easily find that

t⋃

i=1
bli = {b1, b2}

and
δ⋃

j=1
wαj

= {w1, w2}. Hence, APr(A, B, C) =
({a1, a2, a3, a6}, {b1, b2}, {w1, w2}) holds. From the above
results, we can obtain the following:

(1) Low(A, B, C) �= ∅ and Upr(A, B, C) �= ∅.
(2) APr(A, B, C) � (A, B, C) � APr(A, B, C) holds

since {a2, a3} ⊆ {a2, a3, a6} = A ⊆ {a1, a2, a3, a6},
{b1, b2} ⊇ {b1, b2} = B ⊇ {b1, b2}, and {w1, w2} ⊆
{w1, w2} = C ⊆ {w1, w2}.

(3) B ′w12 = {b1, b2}′w12 = (b
′w1
1 ∪ b

′w2
1 ) ∩ (b

′w1
2 ∪ b

′w2
2 ) =

{a1, a2, a3}.

Lemma 9 Let U, V, and W be given as in Definition
12. Let S, {wα1 , . . . , wαδ }, {bli , i = 1, . . . , t}, APr ,
APr be given as in Definition 13. Let Kα1...αδ =
(

δ⋃

j=1
Uαj

, V , Rα1...αδ )be given as in Definition 12(2), and

let δ be given as in Definition 13. Then, we can obtain the
following results for any (A, B, C) ⊆ (U, V, W) such that
A �= ∅, B �= ∅, and C �= ∅:

(1) Low(A, B, C) �= ∅ ⇔ Upr(A, B, C) �= ∅.

Table 10 Formal context K2

b1 b2

a3 1 1

a4 0 0

a5 1 0

Table 11 Formal context K3

b1 b2

a6 0 0

a7 0 0

(2) Let B = {bBi
, i = 1, . . . , |B|} �= ∅ and C =

{wcj
, j = 1, . . . , |C|} �= ∅. Then, b

′wcj

Bi
= ∅, (i =

1, . . . , |B|; j = 1, . . . , |C|) ⇔ Low(A, B, C) =
∅ ⇔ Upr(A, B, C) = ∅.

(3) If Low(A, B, C) �= ∅, then APr(A, B, C) ∩
(U, V,∅) = (A∩B

′wα1...αδ , B, ∅) and APr(A, B, C)∩
(U,∅, ∅) = (A ∪ B

′wα1...αδ , ∅, ∅).
(4) APr(A, B, C) = APr(A, B, C) = (A, B, C) ⇒

(A, B) ∈ B(Kα1...αδ ).
(5) If (A, B) ∈ B(Kα1...αδ ), Low(A, B, C) �= ∅, t = |B|

and δ = |C|, then APr(A, B, C) = APr(A, B, C) =
(A, B, C).

(6) APr(A, B, C) � (A, B, C); (A, B, C) �
APr(A, B, C) if δ = |C|.

The proof of Lemma 9 can be found in the Appendix.

Remark 17 Let Uj , U, V, W,S, {wαj
, j = 1, . . . , δ}, {bli , i =

1, . . . , t}, and Kα1...αδ be as in Lemma 9. Let (A, B, C) ⊆
(U, V, W).

If B = ∅, then S = ∅. This implies Low(A, B, C) = ∅
and Upr(A, B, C) = ∅. If C = ∅, then Kα1...αδ is not
defined by Definitions 12 and 13.

In biology research, A = ∅ means that no biological
specimens are considered by biologists. B = ∅ means that
no biological characteristics are considered by biologists.
These two cases do not have any value for biological
research. C = ∅ means that no locations of specimens are
chosen. This has no value for biologists since W �= ∅ and
C ⊆ W .

Hence, in the suppositions of Lemma 9, we require A �=
∅, B �= ∅ and C �= ∅.

Table 12 Formal context K123

b1 b2

a1 1 1

a2 1 1

a3 1 1

a4 0 0

a5 1 0

a6 0 0

a7 0 0
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Theorem 3 Let Uj (j = 1, . . . , n), U, V, and W =
{wj , j = 1, . . . , n} be as given in Definition 12. Let APr

and APr , {α1, . . . , αδ}, be as given in Definition 13, and let
Kα1...αδ be as given in Definition 12(2).

If for any wj ∈ W and Kj = (Uj , V , Rj ) satisfies
b

′wj �= ∅ for every b ∈ V (j ∈ {1, . . . , n}), then
the following statements are correct for ∀(A, B, C) ⊆
(U, V, W) with A �= ∅, B �= ∅ and C �= ∅.

(1) APr(A, B, C) = APr(A, B, C) = (A, B, C) ⇔
(A, B) ∈ B(Kα1...αδ ).

(2) APr(A, B, C) � (A, B, C) � APr(A, B, C).

The proof of Theorem 3 can be found in the Appendix.
Considering Definition 8 and Theorem 3, we can determine

that APr and APr are a pair of approximation operators.
We give an example to explain Theorem 3.

Example 8 Let U1 = {a1, a2}, U2 = {a3, a4, a5}, V =
{b1, b2}, W = {w1, w2} be given as in Example 5. Let
A = {a1, a2, a3}, B = {b1, b2} and C = {w1, w2}. Then
by Example 7, we know the following: for w1: b

′w1
1 =

{a1, a2} = b
′w1
2 ; for w2: b

′w2
1 = {a3, a5} and b

′w2
2 = a3.

Considering the above, we obtain S = {(a, b, w) |
w ∈ C and b ∈ B satisfy a ∈ b′w �= ∅} = {(a1, b1, w1),

(a1, b2, w1), (a2, b1, w1), (a2, b2, w1), (a3, b1, w2),
(a5, b1, w2), (a3, b2, w2)}. Hence, we have {bli , i =
1, . . . , t} = {b1, b2} and {wα1 , . . . , wαδ } = {w1, w2}.

Using Lemma 7(2), we have B ′w12 = {a1, a2, a3}
since α1 = 1 and αδ = 2. Hence, A = B ′w12

holds. Therefore, we confirm (A, B) ∈ B(K12) and
K12 = (U1 ∪ U2, V , R12). By Lemma 9(3), we obtain

APr(A, B, C) = (A, B,
δ⋃

j=1
wαj

) = (A, B, C) and

APr(A, B, C) = (A,
t⋃

j=1
blj ,

δ⋃

j=1
wαj

) = (A, B, C). This

means that APr(A, B, C) = APr(A, B, C) = (A, B, C).

Remark 18 We analyze Lemma 9 and Theorem 3.

(1) Considering Lemma 9(3), B
′wα1...αδ plays an

important role in determining APr(A, B, C)

and APr(A, B, C). For a given C ⊆ W ,
{wα1 , . . . , wαδ } ⊆ C is known immediately. Fur-
thermore, Kα1...αδ is found at the same time. Hence,
finding APr(A, B, C) and APr(A, B, C) relies on
finding B

′wα1...αδ . Combining items (4) and (5) in
Lemma 9, we know that APr and APr can character-
ize the family B(Kα1...αδ ) of basic knowledge under
some preconditions.

Using Definitions 7 and 13 with Theorem 3,
we can say that APr and APr are the lower and
upper approximations with respect to formal contexts
Kα1...αδ for (A, B, C) ⊆ (U, V, W) \ {(X, Y, Z) ⊆
(U, V, W) | at least one of X, Y and Z is ∅}.

Therefore, under some preconditions on (U, V, W),
we provide the lower and upper approximations in a
ternary form to characterize B(Kα1...αδ ).

(2) Using Definition 8 and Theorem 3, we can say that
B(Kα1...αδ ) is the family of basic knowledge used to
approximate (A, B, C) ⊆ (U, V, W) for A �= ∅, B �=
∅ and C �= ∅ with the rough set approximations APr

and APr .
(3) Using Theorem 3 and Lemma 9, we can roughly say

that the definitions of APr and APr in Definition 13
are the generalizations of lower and upper approxima-
tions in Definition 8 from one universe to three sets with
respect to formal contexts. We can also roughly say that
APr and APr generalize the rough set approxima-
tions in [50] from two sets to three sets with respect to
the family of semiconcepts in formal contexts.

(4) Let Uj be the set of insect specimens of a group
(j = 1, . . . , n), V be the set of morphological
characteristics considered by biologists, and W be

the set of sources of specimens in U =
n⋃

j=1
Uj .

By Lemma 9(2), Low(A, B, C) = ∅ implies that
b

′wj = ∅ for every b ∈ B and any wj ∈ C.
This implies that no specimen in A has any of
the considered morphological characteristics in B for
every specimen location in C. In this case, biologists
will change their ideas, such as by changing the set
of considered morphological characteristics, since they
hope to obtain the real phylogenetic relationships or
other biological relationships among the specimens.
This requires Low(A, B, C) �= ∅.

(5) In a formal context K, (A, B) ∈ B(K) means that
A is the set of objects having the attributes in B. In
biology, if A is a set of insect specimens in a group and
B is a set of morphological characteristics considered
by biologists, then (A, B) ∈ B(K) means that
every specimen in A jointly has every morphological
characteristic in B. That is, every specimen in A jointly
has the set of ancestral morphological characteristics
in B if the biologists are studying biological properties
such as phylogenesis for A. This demonstrates the
importance of discussing B(K) and of researching
APr(A, B, C) = APr(A, B, C) = (A, B, C)

according to Theorem 3.

In Section 3.2, we discuss how to construct a pair of
approximation operators with the basic knowledge T I,
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which is the feasible set of a TP-matroid. Now, we consider
the converse, i.e., how to establish a TP-matroid with respect
to the rough set approximation operators APr and APr .

Theorem 4 Let Uj (j = 1, . . . , n), U, V, W and Kα1...αδ be
described as in Definition 12, in which {α1, . . . , αδ}
is as given in Definition 13. Let (A, B, C) ⊆
(U, V, W) satisfy Low(A, B, C) �= ∅. Define
T I(AP r(A, B, C)) = {(X, Y, Z) ⊆ (U, V, W) |
(X, Y, Z) � APr(A, B, C)} and T I(AP r(A, B, C)) =
{(X, Y, Z) ⊆ (U, V, W) | (X, Y, Z) � APr(A, B, C)}.
Then, (U × V × W, T I(AP r(A, B, C)) and
(U × V × W, T I(AP r(A, B, C))) are two TP-matroids.

Theorem 4 can be easily verified by combining
Definition 9 and Definition 13, and its proof is omitted.

We discuss some properties of the two TP-matroids given
in Theorem 4.

Theorem 5 Let U =
n⋃

j=1
Uj , V,W,Kα1 ...αδ ,T I (AP r(A, B,

C)) and T I(AP r(A, B, C)) be given as in Theorem 4,
in which (A, B, C) ⊆ (U, V, W) satisfies A �= ∅, B �=
∅, C �= ∅ and Low(A, B, C) �= ∅. Then, we have the
following:

(1) T I(AP r(A, B, C)) ⊆ T I(AP r(A, B, C)).
(2) If Kj = (Uj , V , Rj ) satisfies b

′wj �= ∅ for every
b ∈ V (j = 1, . . . , n), then (A, B) ∈ B(Kα1...αδ ) ⇔
T I(AP r)(A, B, C)) = T I(AP r(A, B, C)).

The proof of Theorem 5 can be found in the Appendix.

Remark 19 (1) Example 7 shows APr(A, B, C) ��
(A, B, C) and APr(A, B, C) �= APr(A, B, C) for
some (A, B, C) ⊆ (U, V, W). This implies

T I(AP r(A, B, C)) �= T I(AP r(A, B, C)) since
APr(A, B, C) �∈ T I(AP r(A, B, C)) holds by
Example 7 and the definition of T I(AP r(A, B, C))

for (A, B, C) ⊆ (U, V, W) in Example 7. This
demonstrates that the converse of Theorem 5(1) is not
correct and shows the importance of Theorem 5(2).

(2) Theorem 5 implies that the set of semiconcepts
in the formal context Kα1...αδ is characterized by
the families of feasible sets of two TP-matroids
(U × V × W , T I(AP r(A, B, C))) and (U ×
V × W, T I(AP r(A, B, C))). The two TP-matroids
are determined by the lower and upper approxima-
tions APr(A, B, C) and APr(A, B, C), respectively.
These facts indicate that studies of TP-matroids and
approximation operators will have similar positions in
research on knowledge-based fields. They also demon-
strate the intimate relationships between matroid the-
ory and rough set theory.

(3) A sketch of the process of searching for TP-matroids
in formal contexts is shown in Fig. 2.

In this paper, we present two pairs of operators related
to rough set approximations over three sets: (apr, apr)

and (AP r, AP r). Next, we will explore the relationships
between (apr, apr) and (AP r, AP r), and we aim to
determine under what conditions they are the same.
Considering Remark 18(3) and Theorems 3, 4 and 5, we can
obtain the following corollary.

Corollary 1 Let U = U1 ∪ . . .∪Un, V , W = {w1, . . . , wn}
and Kj be defined as in Definition 12 (j = 1, . . . , n). Let
(A, B, C) ⊆ (U, V, W) satisfy A �= ∅, B �= ∅ and C �= ∅.
Let S, {bli , i = 1, . . . , t}, {wα1 , . . . , wαδ }, AP r, AP r be
as given in Definition 13, and let Kα1...αδ be as given in
Definition 12.

Fig. 2 Diagram of searching for
TP-matroids in formal contexts
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Suppose that S is a covering of (U, V, W). If Kj =
(Uj , V , Rj ) satisfies b

′wj �= ∅ for every b ∈ V (j =
1, . . . , n), then the following statements are correct.

(1) Let apr and apr be the rough set approximations
generated by

(U × V × W, T I(AP r(A, B, C))) as given in
Definition 11. Then, they satisfy apr(A, B, C) =
apr(A, B, C) = APr(A, B, C).

(2) Let (apr, apr) be the pair of rough approximations

generated by (U × V × W, T I(AP r(A, B, C))) as
given in Definition 11. Then, (A, B) ∈ B(Kα1...αδ ) ⇔

apr(A, B, C) = apr(A, B, C) = apr(A, B, C) =
apr(A, B, C) = APr(A, B, C) = APr(A, B, C) =
(A, B, C).

The proof of Corollary 1 can be found in the Appendix.
We will use an example to illustrate Corollary 1.

Example 9 Let U1 = {a1, a2}, U2 = {a3, a5}, V =
{b1, b2}, and W = {w1, w2} be given in Example 5.
It is clear that (1) b

′wj �= ∅ for every b ∈ V (j =
1, 2) and (2) aided by Example 8, we obtain S =
{(a, b, w) | w ∈ C and b ∈ B satisfy a ∈ b′w �=
∅} = {(a1, b1, w1), (a1, b2, w1), (a2, b1, w1), (a2, b2, w1),

(a3, b1, w2), (a3, b2, w2), (a5, b1, w2)}. Therefore, it fol-
lows that ∪S = ({a1, a2, a3, a5}, {b1, b2}, {w1, w2}). That
is, S is a covering of (U = U1 ∪ U2, V , W).

Let A = {a1, a2, a3}, B = {b1, b2} and C =
{w1, w2}. Considering Example 8, we may easily obtain
APr(A, B, C) = (A, B, C) = APr(A, B, C). Thus,
using Theorem 4, we obtain T I(AP r(A, B, C)) =
{(X, Y, Z) ⊆ (U = U1 ∪ U2, V , W) | (X, Y, Z) �
APr(A, B, C)} = {(X, {b1, b2}, Z) | X ⊆ A, Z ⊆
C}. Furthermore, considering Definition 11, we confirm
that low(A, B, C) = {(X, Y, Z) ∈ T I(AP r(A, B, C)) |
(X, Y, Z) � (A, B, C)} = T I(AP r(A, B, C)) and
upr(A, B, C) = {(X, {b1, b2}, Z) ∈ T I(AP r(A, B, C)) |
(X ⊆ A and X �= ∅) or (Z ⊆ A and Z �= ∅)}.

Using Definition 11, we obtain apr(A, B, C)=
(

⋃

(X,Y,Z)∈low(A,B,C)

X,
⋂

(X,Y,Z)∈low(A,B,C)

Y,
⋃

(X,Y,Z)∈low(A,B,C)

Z)

=
(

⋃

X⊆A

X, {b1, b2}, ⋃

Z⊆C

Z) = (A, {b1, b2}, C) = (A, B, C)

and apr(A, B, C) = (
⋃

X �=∅,X⊆A

X, {b1, b2}, ⋃

Z �=∅,Z⊆C

Z) =
(A, B, C). Hence, we obtain apr(A, B, C) =
apr(A, B, C) = APr(A, B, C). That is, item (1) in
Corollary 1 is confirmed.

By Theorem 4, we obtain T I(AP r(A, B, C)) =
{(X, Y, Z) ⊆ (U, V, W) | (X, Y, Z) � APr(A, B, C) =
(A, B, C)} = {(X, {b1, b2}, Z) | X ⊆ A, Z ⊆

C}. In view of Definition 11, we may easily obtain
apr(A, B, C) = apr(A, B, C) = (A, B, C). Moreover, we

arrive at apr(A, B, C) = apr(A, B, C) = apr(A, B, C) =
apr(A, B, C) = APr(A, B, C) = APr(A, B, C) =
(A, B, C). Considering wα1 = w1, wα2 = w2, α1 =
1, α2 = 2 and the formal context language expression
corresponding to (U, V, W) with Example 5, we obtain
U = {a1, a2, a3, a5}, V = {b1, b2}, W = {w1, w2} and the
formal context Kα1α2 in Table 13 below.

We may easily show that B ′w12 = {b1, b2}′w12 =
{a1, a2, a3} = A. By Definition 2(2) and Remark 2, this
means that (A, B) ∈ B(K12). Therefore, item (2) in
Corollary 1 is confirmed.

Remark 20 Let U, V, and W be as given in Definition 12,
and let S be as given in Definition 13. Let (A, B, C) ⊆
(U, V, W).

(1) If there is an a0 ∈ U satisfying a0 �∈ b′w0 for any
b ∈ V and every w0 ∈ W , then (a0, b, w0) �∈ S holds.
Therefore, S is not a covering of (U, V, W).

If a0 ∈ A �= ∅ satisfies a0 �∈ b′w0 for any b ∈ V

and every w0 ∈ W , then we obtain Low(A, B, C) =
Low(A\a0, B, C), and furthermore, APr(A, B, C) =
APr(A \ a0, B, C). Therefore, we determine that
T I(AP r(A, B, C)) = T I(AP r(A \ a0, B, C)).
Hence, (U × V × W, T I(AP r(A, B, C))) is not a
precovering TP-matroid.

In addition, the above results show that a0 ∈
A �= ∅ is not reasonable for the properties of
T I(AP r(A, B, C)). Therefore, in the assumptions
of Corollary 1, we suppose S to be a covering of
(U, V, W).

(2) Let A �= ∅, B �= ∅, and C �= ∅, and let S be a
covering of (U, V, W). Suppose that every Kj satisfies
the given condition as in Corollary 1 (j = 1, . . . , n).

On the one hand, according to Theorem 4, we know
that T I(AP r(A, B, C)) = {(X, Y, Z) | (X, Y, Z) �
APr(A, B, C)}. Considering the proof in Corollary 1, we
know that APr(A, B, C) = (A ∩ B

′wα1...αδ , B, C). Let
(X1, Y1, Z1), (X2, Y2, Z2) ∈ T I(AP r(A, B, C)). Then,
we have (Xj , Yj , Zj ) � APr(A,B,C) (j = 1, 2). We

Table 13 Formal context K12

b1 b2

a1 1 1

a2 1 1

a3 1 1

a5 1 0
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obtain (X1, Y1, Z1)	(X2, Y2, Z2) = (X1∪X2, Y1∩Y2, Z1∪
Z2) � (A∩B

′wα1 ...αδ , B, C) since Xj ⊆ A∩B
′wα1...αδ , Yj ⊇

B and Zj ⊆ C (j = 1, 2). Thus, T I(AP r(A, B, C)) is
	-closed by Definition 10.

Analogously, we determine T I(AP r(A, B, C)) to be
	-closed according to Theorem 4 and Definition 10.

However, from the proof of Corollary 1, we know that
Low(A, B, C) �= ∅. Taking this result and Lemma 9(3),
we conclude that APr(A, B, C) = (A ∩ B

′wα1...αδ , B, C) ⊆
(A, B, C) ⊆ (U, V, W) and APr(A, B, C) =

(A ∪ B
′wα1...αδ , B, C) �� (A, B, C) since A ⊆ A ∪

B
′wα1...αδ . Thus, we determine that
(†1) T I(AP r(A, B, C)) is not a covering of (U, V, W)

since it generally does not satisfy A ∩ B
′wα1...αδ = U .

(†2) T I(AP r(A, B, C)) is not a covering of (U, V, W)

since it generally does not satisfy A ∪ B
′wα1...αδ = U .

Therefore, (U × V × W, T I(AP r(A, B, C))) and (U ×
V × W, T I(AP r(A, B, C))) may not be precovering TP-
matroids.

The above analysis of two cases with Corollary 1
indicates that for a TP-matroid (U × V × W, T I) and
(A, B, C) ⊆ (U, V, W) satisfying A �= ∅, B �= ∅ and
C �= ∅, if we assume that results (1) and (2) in Theorem 2
are correct, then we cannot determine (U × V × W, T I) to
be a precovering TP-matroid. That is, we cannot determine
the correctness of the converse proposition of Theorem 2.
Hence, we cannot use Theorem 2 in the proof of Corollary
1. This result demonstrates that the two pairs of rough
set approximations provided in this paper are different.
Each of them has its own distinguishing features. They are
two different kinds of generalizations of Pawlak’s classical
rough set approximations.

(3) Using the analysis in Remark 19(1) and Theorem 5,
we believe that in general, apr(A, B, C) �= APr(A, B, C)

and apr(A, B, C) �= APr(A, B, C) hold since
low(A, B, C) = {(X, Y, Z) ∈ T I(AP r(A, B, C)) |
(X, Y, Z) � (A, B, C)} and upr(A, B, C) = {(X, Y, Z) ∈
T I(AP r(A, B, C) | X ∩ A �= ∅ or Y ∩ B �= ∅ or
Z ∩ C �= ∅}.
(‡1) APr(A, B, C) is the maximum element in
(T I(AP r(A, B, C)),�).
(‡2) APr(A, B, C) �� (A, B, C) ⇒ APr(A, B, C) �∈
low(A, B, C)

⇒ apr(A,B, C) ∩ (U, ∅, ∅) � (A,∅, ∅) � APr(A,B, C) ∩

(U, ∅, ∅) = (
t⋂

i=1

δ⋃

i=1
([a]Rαj

∪ A)bli
, ∅, ∅),

(
⋃

(X,Y,Z)∈upr(A,B,C)

(X ∩ A),∅, ∅) � (A, ∅, ∅) �
(

t⋂

i=1

δ⋃

i=1
([a]Rαj

∪ A)bli
,∅, ∅

)

= APr(A,B, C) ∩ (U, ∅, ∅),

(
⋃

(X,Y,Z)∈upr(A,B,C)

(X ∩ A), ∅, ∅) = apr(A, B, C) ∩

(U,∅, ∅) � APr(A, B, C) ∩ (U,∅, ∅).
Corollary 1 demonstrates that if (A, B) is a semiconcept

in the formal context Kα1...αδ = (
δ⋃

j=1
Uj , V, Rα1...αδ ), then

apr(A, B, C) = apr(A, B, C) = APr(A, B, C) holds.

Corollary 1 also shows the linkage between semiconcepts
and the two kinds of rough set approximations provided in
this paper. Since the theory of semiconcepts belongs to the
research field of formal concept analysis, we use formal
concept analysis to build TP-matroids based on a pair of
approximation operators. Therefore, the work described at
the beginning of this subsection is completed.

5 Conclusion and future work

This paper provides a new mathematical structure—the TP-
matroid. It shows that a TP-matroid is a generalization of
a matroid from one set to three sets up to isomorphism.
Furthermore, using the structure of the TP-matroid and
the covering of a set, we provide a precovering TP-
matroid over three sets. To precover TP-matroids over three
sets, we search for a pair of rough set approximations in
Section 3.2. The method used here is different from already
existing methods of establishing rough set approximations
with matroidal structures [13, 14, 17, 59, 60], since those
methods consider matroidal structures over one set, and our
structures are over three sets U, V and W ; that is, their
structures are in one-dimensional space, and ours are in
three-dimensional space. In fact, one set U is a subset of
three sets (U, V, W) up to set isomorphism since U ∼=
(U,∅, ∅) ⊆ (U, V, W). Under this idea, we can say that
TP-matroids are a generalization of the matroids in [13, 14,
17, 59, 60]. In Section 4, we study some properties of rough
set approximations over three sets with respect to formal
contexts. All expressions here are different from those in
[34–40] since our expressions are in ternary form and theirs
are over two universes; our expressions are also different
from those in [36] since the model of rough sets in [36] is
relation-based and ours is covering-based. However, both
the results here and the research results in [34–40] are based
on some practical needs and are generalizations of Pawlak’s
classical rough set approximations. That is, the research
here may be applied in more practical studies, which is one
of the goals of this paper. Furthermore, the proposal of TP-
matroids enabling some rough set approximations to extract
information on three sets with the help of the covering idea
is a highlight of the paper.
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Using a pair of approximation operators aided by formal
concept analysis, we build up two TP-matroids. Regarding
other pairs of approximation operators such as that used
in [34] to build up TP-matroids, we hope that the ideas
presented here can assist in exploring these researches.

Im et al. [79] discussed a new matroidal structure—the
matroid cup game on R

n, or on a kind of n-dimensional
space. How can TP-matroids be generalized to an n-
dimensional space U1 × . . . × Un, where Ui is a set (i =
1, . . . , n > 3) such that at least one of Ui is a universe
(i = 1, . . . , n)? We now try to solve this problem as follows.
Let I ⊆ {(X1, . . . , Xn) | Xj ⊆ Uj , j = 1, . . . , n} satisfy
the following conditions:

(n1) I �= ∅.
(n2) Let (X1, . . . , Xn), (Y1, . . . , Yn) ⊆ U1 × . . . ×

Un. (X1, . . . , Xn) �� (Y1, . . . , Yn) ∈ I ⇒
(X1, . . . , Xn) ∈ I, where (X1, . . . , Xn) ��
(Y1, . . . , Yn) if and only if Xi ⊆ Yi, Xj ⊇ Yj for
(i, j ∈ {1, . . . , n); i is odd, and j is even).

(n3) Let (X1, . . . , Xn), (Y1, . . . , Yn) ∈ I. Then
|(X1, . . . , Xn)| = ∑n

i=1 |Xi | <
∑n

i=1 |Yi | =
|(Y1, . . . , Yn)|

⇒ ∃(y1, . . . , yn) ∈ (Y1, . . . , Yn)\(X1, . . . , Xn) = ((Y1\
X1, . . . , Yn \Xn) satisfies (X1, . . . , Xn)∪(y1, . . . , yn) ∈ I,
where (y1, . . . , yn) �= ∅. Then, (U1 × . . . × Un, I) is a
matroidal structure, called an n-partial matroid or simply an
np-matroid.

Comparing the np−matroid with matroid cup game, we
find the following:

(1) Ui can be different, but every Ri is the same as R (i =
1, . . . , n).

(2) The matroid cup game solves the n-cup game used
in practice. What are the practical needs of the
np−matroid?

(3) How can np−matroids be used to simulate a
continuous process such as that of Im et al. [79]?

The questions raised in (2) and (3) will be answered in
the future.

Additionally, in the future, we will consider the following
work:

(*) It is well known that matroid theory provides a good
platform for designing greedy algorithms, which are used
widely in practice. How can a greedy algorithm be designed
for a TP-matroid? How can this greedy algorithm be used to
solve some problems in rough set theory that are NP-hard?

(**) Sun and Ma [36] set up a fuzzy rough set model over
multiple universes based on relations. How can we establish
a covering-based rough set model over multiple universes

and explore the relationships between the covering-based
rough set model over multiple universes and that in [36]?

Appendix A

A.1: Proof of Lemma 5

Proof The precovering of (U ×V ×W, T I) and Definition
9 together imply

⋃
T I = (U, V, W) and U �= ∅, or

V �= ∅, or W �= ∅. Thus, we find A ∩ Xγ1 �= ∅ if A �= ∅,
B ∩ Yγ2 �= ∅ if B �= ∅, and C ∩ Zγ3 �= ∅ if C �= ∅, for
some (Xγi

, Yγi
, Zγi

) ∈ T I such that A �= ∅ and i = 1, or
B �= ∅ and i = 2, or C �= ∅ and i = 3. This means that
(Xγi

, Yγi
, Zγi

) ∈ upr(A, B, C) by Definition 11(2). Thus,
upr(A, B, C) �= ∅ follows.

A.2: Proof of Lemma 6

Proof Let low(A, B, C) = {(Xα, Yα, Zα), α ∈ 	} and
upr(A, B, C) =

{(Xβ, Yβ, Zβ), β ∈ �}. According to |U |, |V |, |W | <

∞, we confirm |low(A, B, C)| < ∞ and |upr(A, B, C)| <

∞.
The proof of item (1) is as follows:

One of A,B and C is empty

⇒ apr(A,B, C) = (U, ∅, W) (Definition 11(4))

⇒ (A, B, C) � apr(A,B, C) (A ⊆ U, B ⊇ ∅, C ⊆ W

and Definition of �).

The proof of item (2) is as follows:
According to Definition 11(4), the precovering of (U ×

V × W, T I), A �= ∅, B �= ∅, C �= ∅ and Lemma 5, we
obtain upr(A, B, C) �= ∅ and

apr(A, B, C) = (
⋃

β∈�

(Xβ ∩ A),
⋃

β∈�

(Yβ ∩
B),

⋃

β∈�

(Zβ ∩ C)).

Suppose a ∈ A since A �= ∅. The precovering of (U ×
V × W, T I) implies a ∈ Xa for some (Xa, Ya, Za) ∈ T I.
This implies Xa ∩ A �= ∅, and furthermore, (Xa, Ya, Za) ∈
upr(A, B, C) holds in light of Definition 11(2). Therefore,
A = ⋃

a∈A

a ⊆ ⋃

a∈A

Xa ⊆ ⋃

β∈�

Xβ holds. Thus, we obtain

A ⊆ (
⋃

β∈�

Xβ) ∩ A = ⋃

β∈�

(Xβ ∩ A).

Similarly, using C �= ∅, we obtain C ⊆ ⋃

β∈�

(Zβ ∩ C).
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In addition, B ⊇ (Yβ ∩ B) holds for any (Xβ, Yβ, Zβ) ∈
upr(A, B, C), (β ∈ �). Therefore, B ⊇ ⋃

β∈�

(Yβ ∩ B) holds
Therefore, we confirm (A, B, C) � apr(A, B, C).
The proof of item (3) is as follows:
A �= ∅, B �= ∅, C �= ∅ and the precovering of (U × V ×

W, T I)

⇒ upr(A, B, C) �= ∅ (Lemma 5)

⇒ (A, B, C) ∈ upr(A, B, C) ((A, B, C) ∈ T I and A ∩ A = A �= ∅)

⇒ A ⊆
⋃

β∈�

Xβ, B ⊆
⋃

β∈�

Yβ, C ⊆
⋃

β∈�

Zβ

⇒ A = A ∩ (
⋃

β∈�

Xβ) =
⋃

β∈�

(Xβ ∩ A),

B = B ∩ (
⋃

β∈�

Yβ) =
⋃

β∈�

(Yβ ∩ B),

C = C ∩ (
⋃

β∈�

Zβ) =
⋃

β∈�

(Zβ ∩ C)

⇒ apr(A, B, C) = (A, B, C) (Definition 11(4)).

The proof of item (4) is as follows:
“(A,B,C) = (U, ∅,W)′′ ⇒ “B = ∅′′ ⇒ “apr(A,B,C) =

(U,∅,W) according to Definition 10(4))′′ ⇒
“apr(A, B, C) = (A, B, C)′′.

The proof of item (5) is as follows:
According to Definition 11(1) and 	-closed of T I, it

is easily obtained that apr(A, B, C) ∈ T I by Definition
10. Thus, (A, B, C) ∈ T I holds since apr(A, B, C) =
(A, B, C).

The proof of item (6) is as follows:

(Xα, Yα, Zα) ∈ low(A,B,C) (∀α ∈ 	)

⇒ (Xα, Yα, Zα) � (A,B, C) (∀α ∈ 	) (Definition 11(1))

⇒ Xα ⊆ A, Yα ⊇ B, Zα ⊆ C (∀α ∈ 	) (Definition of �)

⇒
⋃

α∈	

Xα ⊆ A,
⋂

α∈	

Yα ⊇ B,
⋃

α∈	

Zα ⊆ C

⇒ (
⋃

α∈	

Xα,
⋂

α∈	

Yα,
⋃

α∈	

Zα) � (A, B,C) (Definition of �)

⇒ apr(A,B, C) � (A,B, C) (Definition 11(3)).

The proof of item (7) is as follows:

(A, B, C) ∈ T I
⇒ (A, B, C) ∈ low(A, B, C) ((A, B, C) � (A, B, C), Definition 11(1))

⇒ (A, B, C) = (Xα1 , Yα1 , Zα1 ) for some α1 ∈ 	

⇒ A ⊆
⋃

α∈	

Xα, B ⊇ B ∩ (
⋂

α∈	\α1

Yα), C ⊆
⋃

α∈	

Zα (α ∈ 	)

⇒ (A, B, C) � apr(A, B, C) (Definition 11(3) and Definition of �)

⇒ (A, B, C) = apr(A, B, C) (Combining item (6))

A.3: Proof of Theorem 2(2)

Proof We prove the two parts (⇒) and (⇐).

(⇒): Let (A, B, C) ∈ T I. Using Lemma 6(7), we obtain
apr(A, B, C) = (A, B, C). Combining the precovering
of (U × V × W, T I) and Lemma 6(3), we obtain
apr(A, B, C) = (A, B, C).

(⇐): Let apr(A, B, C) = (A, B, C) = apr(A, B, C).
Considering Lemma 6(5), we obtain (A, B, C) ∈ T I.

A.4: Proof of Lemma 9

Proof The proof of item (1) is as follows:

Low(A,B,C) �= ∅
⇔ (([a]Ri0

∩ A)bl0
, bl0 , wi0 ) ∈ Low(A,B,C)

for every (a, bl0 , wi0 ) ∈ S �= ∅ (Definition 13(1))

⇔ (([a]Ri0
∪ A)bl0

, bl0 , wi0 ) ∈ Upr(A,B,C)

for every (a, bl0 , wi0 ) ∈ S �= ∅ (Definition 13(2))

⇔ Upr(A,B,C) �= ∅.

The proof of item (2) is as follows:

b
′wcj

Bi
= ∅ for every i = 1, 2, . . . , |B| and j = 1, 2, . . . , |C|

⇔ S = ∅ (Definition of S)

⇔ Low(A,B,C) = ∅ (Definition 13(1))

⇔ Upr(A,B,C) = ∅ (item (1))

The proof of item (3) is as follows:

Low(A, B, C) �= ∅ and item (2) together imply that
there is a

j0 ∈ {α1, α2, . . . , αδ} satisfying b
′wαj0 �= ∅ for some

b ∈ B.

We obtain A ∩ B
′wα1α2...αδ = A ∩ (

⋂

b∈B

(
δ⋃

j=1
b

′wαj )) = A ∩

(
t⋂

i=1
(

δ⋃

j=1
b

′wαj

li
)) = ⋂

b∈B

(
δ⋃

j=1
([a]Rαj

∩A)b) since Lemma 7(2)
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implies B
′wα1α2...αδ = ⋂

b∈B

(
δ⋃

j=1
b

′wαj ). Thus,
δ⋃

j=1
wαj

⊆ C

holds since wαj
∈ C (j = 1, 2, . . . , δ). Hence, in 2U ×2V ×

2W , the first coordinate of APr(A, B, C) is A ∩ B
′wα1α2 ...αδ .

Moreover, we obtain that APr(A, B, C) ∩ (U, V,∅) =
(A ∩ B

′wα1α2...αδ , B, ∅) holds according to Definition 13(4)
and B ⊆ V .

Using item (1) and Low(A, B, C) �= ∅, we know that
Upr(A, B, C) �= ∅. Similarly to the above, using Definition
13(6), we obtain the first coordinate of APr(A, B, C) in
2U × 2V × 2W is A ∪ B

′wα1α2 ...αδ . Moreover, we obtain
APr(A, B, C)∩ (U,∅, ∅) = (A∪Bwα1α2...αδ , ∅, ∅).

The proof of item (4) is as follows:
If Low(A, B, C) = ∅, then Upr(A, B, C) = ∅

holds by item (1). Combining items (3) and (5) in
Definition 13, we know that APr(A, B, C) = (∅, V , ∅) and
APr(A, B, C) = (U,∅, W). The given APr(A, B, C) =
APr(A, B, C) implies (∅, V , ∅) = (U,∅, W). Therefore,
U = V = W = ∅ follows. This result contradicts
the suppositions of U �= ∅, V �= ∅ and W �= ∅.
Hence, we confirm Low(A, B, C) �= ∅. We also confirm
Upr(A, B, C) �= ∅ by item (1).

Considering Low(A, B, C) �= ∅, item (3) and Definition
13 with Lemmas 7 and 8, we obtain APr(A, B, C) =
(A ∩ B

′wα1α2 ...αδ , B,
δ⋃

j=1
wαj

) and APr(A, B, C) = (A ∪

B
′wα1α2...αδ ,

t⋃

j=1
blj ,

δ⋃

j=1
wαj

). Therefore, APr(A, B, C) =
APr(A, B, C) implies A∩B

′wα1α2...αδ = A∪B
′wα1α2...αδ and

B =
t⋃

j=1
blj .

On the one hand, APr(A, B, C) = (A, B, C) implies
A ∩ B

′wα1α2 ...αδ = A, and so A ⊆ B
′wα1α2...αδ . On the other

hand, APr(A, B, C) = (A, B, C) implies A∪B
′wα1α2...αδ =

A, and so B
′wα1α2 ...αδ ⊆ A. Hence, A = B

′wα1α2...αδ holds.

APr(A, B, C) = (A, B, C) also implies C =
δ⋃

j=1
wαj

,

so δ = |C| holds. Using Definition 2(2) and Remark 2, we
confirm (A, B) ∈ B(Kα1α2...αδ ).

The proof of item (5) is as follows:
By (A, B) ∈ B(Kα1α2...αδ ) and Definitions 2 and 12, we

obtain A = B
′wα1α2...αδ . Combining Low(A, B, C) �= ∅ and

item (3) with items (4) and (6) in Definition 13, we obtain

APr(A, B, C) = (A, B,
δ⋃

j=1
wαj

) and APr(A, B, C) =

(A,
t⋃

j=1
blj ,

δ⋃

j=1
wαj

).

Because of |B| = t and the definition of {bli , i =
1, 2, . . . , t} in Definition 13, we know

t⋃

i=1
bli = B.

According to δ = |C| and the definition of {wαj
, j =

1, . . . , δ} in Definition 13, we know that
δ⋃

j=1
wαj

= C.

Hence, APr(A, B, C) = APr(A, B, C) = (A, B, C) is
correct.

The proof of item (6) is as follows:
We distinguish two cases in the proof.

Case 1. Low(A, B, C) = ∅.
Combined with item (1), we know that

Upr(A, B, C) = ∅. Using items (3) and (5) in Def-
inition 13, we obtain APr(A, B, C) = (∅, V , ∅)

and APr(A, B, C) = (U,∅, W). In view of
∅ ⊆ A ⊆ U, V ⊇ B ⊇ ∅ and ∅ ⊆ C ⊆ W , we confirm
that APr(A, B, C) � (A, B, C) � APr(A, B, C).

Case 2. Low(A, B, C) �= ∅.
Using item (1) in Definition 13, we obtain the

following three results:

(1)
t⋂

i=1

δ⋃

j=1
([a]Rαj

∩ A)bli
⊆ A since ([a]Rαj

∩
A)bli

⊆ A for any (([a]Rαj
∩ A)bli

, bli , wαj
) ∈

Low(A, B, C) (i = 1, . . . , t; j = 1, . . . , δ);
(2) B ⊇ B ;

(3)
δ⋃

j=1
wαj

⊆ C since wαj
∈ C (j = 1, . . . , δ).

Thus, APr(A, B, C) � (A, B, C) holds according to
Definition 13(4) and the definition of �.

Additionally, considering item (1) above and Low

(A, B, C) �= ∅, we know that Upr(A, B, C) �= ∅. Using
Definition 13(6), we obtain the following consequences:

(1) A ⊆ ([a]Rαj
∪ A)bli

for some a ∈ Uαj
and every

bli (i = 1, . . . , t; j = 1, . . . , δ)

⇒ A ⊆
δ⋃

j=1
([a]Rαj

∪ A)bli
for every (a, bli , wj ) ∈

S and any bli (i = 1, . . . , t; j = 1, . . . , δ) ⇒ A ⊆
t⋂

i=1

δ⋃

j=1
([a]Rαj

∪ A)bli
;

(2)
t⋃

i=1
bli ⊆ B is correct since bli ∈ B (i = 1, . . . , t);

(3) C =
δ⋃

j=1
wαj

is correct since wαj
∈ C (j = 1, . . . , δ)

and δ = |C|.
Hence, (A, B, C) � APr(A, B, C) holds according to

Definition 13(6) and the definition of �.

A.5: Proof of Theorem 3

Proof The condition b
′wj �= ∅ for ∀b ∈ V and ∀j ∈

{1, . . . , n} yields the following:
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(1) δ = |C| holds since {wα1 , . . . , wαδ } ⊆ C,
{α1, . . . , αδ} ⊆ {1, . . . , n} and the αj is arbitrary.

(2) t = |B| holds since {bli , i = 1, . . . , t} ⊆ B ⊆ V and
b is arbitrary.

(3) a ∈ b
′wj holds for some a ∈ Uj and some j ∈

{1, . . . , n}.
We have that (3) above implies S �= ∅ according to the

definition of S in Definition 13. Furthermore, it follows that
Low(A, B, C) �= ∅ according to Definition 13(1).

If APr(A, B, C) = APr(A, B, C) = (A, B, C), then
(A, B) ∈ B(Kα1α2...αδ ) holds by Lemma 9(4).

If (A, B) ∈ B(Kα1α2...αδ ), then combining the above
results of Low(A, B, C) �= ∅, t = |B| and δ = |C| with
Lemma 9(5), we obtain APr(A, B, C) = APr(A, B, C) =
(A, B, C).

Taking the above and δ = |C| with Lemma
9(6), we confirm that APr(A, B, C) � (A, B, C) �
APr(A, B, C).

A.6: Proof of Theorem 5

Proof Low(A, B, C) �= ∅ and Lemma 9(1) imply
Upr(A, B, C) �= ∅.

The proof of item (1) is as follows:
Using Definition 13, we know that APr(A, B, C) =

(
t⋂

i=1

δ⋃

j=1
([a]Rij

∩ A)bli
, B,

δ⋃

j=1
wαj

) and APr(A, B, C) =

(
t⋂

i=1

δ⋃

j=1
([a]Rαj

∪ A)bli
,

t⋃

i=1
bli ,

δ⋃

j=1
wαj

). This implies

t⋂

i=1

δ⋃

j=1
([a]Rαj

∩ A)bli
⊆

t⋂

i=1

δ⋃

j=1
([a]Rαj

∪ A)bli
since

([a]Rαj
∩ A)bli

⊆ ([a]Rαj
∪ A)bli

, and B ⊇
t⋃

i=1
bli since

bli ∈ B (i = 1, . . . , t). Combined with the definition of
�, we obtain APr(A, B, C) � APr(A, B, C). Hence, we
obtain:

(X, Y, Z) ∈ T I(AP r(A, B, C))

⇒ (X, Y, Z) � APr(A, B, C) (Definition of T I(AP r(A, B, C)))

⇒ (X, Y, Z) � APr(A, B, C) (AP r(A, B, C) � APr(A, B, C))

⇒ (X, Y, Z) ∈ T I(AP r(A, B, C)) (Definition of T I(AP r(A, B, C)))

⇒ T I(AP r(A, B, C)) ⊆ T I(AP r(A, B, C)).

The proof of item (2) is as follows:
(⇒): “(A, B) ∈ B(Ki1...iδ )” ⇒ “APr(A, B, C) =

APr(A, B, C) according to the supposition for Kj (j =
1, . . . , n), Low(A, B, C) �= ∅, Lemma 9(1) and Theorem
3” ⇒ “T I(AP r(A, B, C)) = T I(AP r(A, B, C))

according to the definitions of T I(AP r(A, B, C)) and
T I(AP r(A, B, C)”.

(⇐): Using the definitions of T I(AP r(A, B, C))

and T I(AP r(A, B, C)), we obtain APr(A, B, C) ∈
T I(AP r(A, B, C)) and APr(A, B, C)) ∈
T I(AP r(A, B, C)). Considering T I(AP r(A, B, C)) =
T I(AP r(A, B, C)), we obtain APr(A, B, C) ∈
T I(AP r(A, B, C)) and APr(A, B, C)) ∈
T I(AP r(A, B, C)). Hence, we infer

APr(A, B, C) � APr(A, B, C)) � APr(A, B, C).
Therefore, APr(A, B, C) = APr(A, B, C). Combining
the above with Lemma 9(3) and Low(A, B, C) �= ∅, we
confirm that A ∩ B

′wα1...iδ = A ∪ B
′wα1...αδ . Thus, we obtain

A ⊆ A ∪ B
′wα1...αδ = A ∩ B

′wα1...αδ ⊆ B
′wα1...αδ ;

B
′wα1...αδ ⊆ A ∪ B

′wα1...αδ = A ∩ B
′wα1...αδ ⊆ A.

Moreover, we obtain A = B
′wα1...αδ . That is, (A, B) ∈

B(Kα1...αδ ) holds.

A.7: Proof of Corollary 1

Proof If there exists an a0 ∈ U such that for any j and every

b ∈ V , a0 �∈ b
′wj holds, then in view of a0 ∈ U =

n⋃

j=1
Uj ,

we obtain a0 ∈ Uj0 for some j0 ∈ {1, . . . , n}. This means

a0 �∈ b
′wj0 for any b ∈ V since Ui ∩ Uj = ∅ (i �=

j ; i, j = 1, . . . , n). That is, (a0, b, wj0) �∈ S holds for any
b ∈ V . Hence, S is not a covering of (U, V, W). This is
a contradiction to the supposition of S. In other words, for
any a ∈ U , there must exist ja ∈ {1, . . . , n} and ba ∈ V

satisfying (a, ba, wja ) ∈ S. This implies Low(A, B, C) �=
∅ by Definition 13(1).

The given condition that “b′wj �= ∅ for every b ∈ V

in Kj = (Uj , V , Rj ) (j = 1, . . . , n)” yields the following
results:

(1) {bli , i = 1, . . . , t} = B holds by B ⊆ V and the
definition of {bli , i = 1, . . . , t} in Definition 13.

(2) δ = |C| holds by C ⊆ W and the definition of
{wα1 , . . . , wαδ } in Definition 13.

Using results (1) and (2) above, we obtain
t⋃

i=1
bli = B

and
δ⋃

j=1
= C. Furthermore, we obtain of APr(A, B, C)

∩(∅, V , W) = (∅, B, C) and APr(A, B, C)∩(∅, V , W) = (∅, B, C)

from Definition 13. We obtain APr(A, B, C)∩ (U,∅, ∅) =
(A∩B

′wα1...αδ , ∅, ∅), and therefore,
t⋂

i=1

δ⋃

j=1
([a]Rαj

∩A)bli
=

A ∩ B
′wα1...αδ ⊆ A by Lemma 9(3) and Low(A, B, C) �= ∅.

Hence, it follows that
APr(A, B, C) = (A ∩ B

′wα1...αδ , B, C) �
(A, B, C).

Utilizing the definition of T I(AP r(A, B, C)) in Theo-
rem 4, we find that
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APr(A, B, C) ∈ T I(AP r(A, B, C)). Therefore,
APr(A, B, C) ∈ low(A, B, C) =
{(X, Y, Z) ∈ T I(AP r(A, B, C)) | (X, Y, Z) �
(A, B, C)} holds.

Combining the above and Definition 11 with
A �= ∅, B �= ∅ and C �= ∅, we obtain
apr(A, B, C) = (

⋃

(X,Y,Z)∈low(A,B,C)

X, B, C). On the

one hand, we have (X, Y, Z) ∈ low(A, B, C) ⇒
“(X, Y, Z) ∈ T I(AP r(A, B, C)) and (X, Y, Z) �
(A, B, C)” ⇒ (X, Y, Z) � APr(A, B, C), Y ⊇ B,

Z ⊆ C, and X ⊆
t⋂

i=1

δ⋃

j=1
([a]Rαj

∩ A)bli
from Definition

13(4). However, APr(A, B, C) ∈ T I(AP r(A, B, C))

and APr(A, B, C) � (A, B, C) together imply
APr(A, B, C) ∈ low(A, B, C). Furthermore, we obtain⋂

(X,Y,Z)∈low(A,B,C)

Y = B,
⋃

(X,Y,Z)∈low(A,B,C)

Z = C and

⋃

(X,Y,Z)∈low(A,B,C)

X =
t⋂

i=1

δ⋃

j=1
([a]Rαj

∩ A)bli
.

Thus, we obtain apr(A, B, C) = APr(A, B, C).
Additionally, by Definition 3, it is easy to see that

(T I(AP r(A, B, C)),�) is a poset with APr(A, B, C) as
the maximum element. This implies that APr(A, B, C) is
the maximum element in the poset (upr(A, B, C),�) since
B ∩ B = B �= ∅, where upr(A, B, C) = {(X, Y, Z) ∈
T I(AP r(A, B, C)) | X ∩ A �= ∅ or Y ∩ B �= ∅ or
Z ∩ C �= ∅}. Therefore, we obtain

⋃

(X,Y,Z)∈upr(A,B,C)

(X ∩

A) =
t⋂

i=1

δ⋃

j=1
([a]Rαj

∩A)bli
,

⋃

(X,Y,Z)∈upr(A,B,C)

(Y ∩B) = B

and
⋃

(X,Y,Z)∈upr(A,B,C)

(Z ∩C) = C . Hence,we confirm that

apr(A, B, C) = APr(A, B, C) according to Definition
11(4) with A �= ∅, B �= ∅ and C �= ∅.

The above implies that item (1) is correct.
Next, we prove item (2).
If (A, B) ∈ B(Kα1...αδ ), then by Definition 2(2) and

Remark 2, we know that A = B
′wα1...αδ . Therefore, consid-

ering Lemma 9, t = |B|, δ = |C| and Low(A, B, C) �= ∅,
we obtain APr(A, B, C) = APr(A, B, C) = (A, B, C).
We also obtain T I(AP r(A, B, C)) = T I(AP r(A, B, C))

by Theorem 5. Let low(A, B, C) = {(X, Y, Z) ∈ T I
(AP r(A,B, C)) | (X, Y, Z) � (A, B, C)} and upr(A, B, C) =
{(X, Y, Z) ∈ T I(AP r(A, B, C)) | X ∩ A �= ∅
or Y ∩ B �= ∅ or Z ∩ C �= ∅}. Then, we obtain
low(A,B, C) = low(A,B, C) and upr(A, B,C) = upr(A,B, C)

since T I(AP r(A, B, C)) = T I(AP r(A, B, C)).
Combined with Definition 11, we determine that
apr(A, B, C) = apr(A, B, C) and apr (A, B, C) =
apr(A, B, C). Therefore, using the above and item (1), we
confirm that apr(A,B, C) = apr(A, B,C) = apr(A,B, C) =
apr(A,B, C) = APr(A,B, C) = APr(A, B,C) = (A,B, C).

Conversely, if the given expression is correct, then by
Theorem 3, we know that (A, B) ∈ B(Kα1...αδ ).
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39. Uǧur A, Diker M (2020) Generalized texatural rough
sets:rough set models over two universes. Inf Sci 521:398–421.
https://doi.org/10.1016/j.ins.2020.02.044

40. Yao YY (1996) Two views of the theory of rough sets in finite uni-
verses. Int J Approx Reason 15:291–317. https://doi.org/10.1016/
S0888-613X(96)00071-0

41. Fu WQ, Khalil AM (2021) Graded rough sets based on
neighborhood operator over two different universes and their
applications in decision-making problems. J Intell Fuzzy Syst
41(2):2639–64. https://doi.org/10.3233/JIFS-202081

42. Yang B (2022) Fuzzy covering-based rough set on two different
universes and its application. Artif Intell Review, published online
17-January-2022. https://doi.org/10.1007/s10462-021-10115-y

43. Bai HX, Li DY, Ge Y, Wang JF, Cao F (2022) Spatial rough set-
based geographical detectors for nominal target variables. Inf Sci
586:525–39. https://doi.org/10.1016/j.ins.2021.12.019

44. Bashir Z, Mahnaz S, Malik MGA (2021) Conflict resolution
using game theory and rough sets. Int J Intell Syst 36(1):237–59.
https://doi.org/10.1002/int.22298

45. Bashir Z, Wahab A, Rashid T (2022) Three-way decision with
conflict analysis approach in the framework of fuzzy set theory.
Soft Comput 26:309–26. https://doi.org/10.1007/s00500-021-065
09-3

46. Das M, Monanty D, Parida KC (2021) On the neutrosophic
soft set with rough set theory. Soft Comput 25:13365–76.
https://doi.org/10.1007/s00500-021-06089-2

47. Guo DD, Jiang CM, Wu P (2022) Three-way decision based
on confidence level change in rough set. Int J Approx Reasoin
143:57–77. https://doi.org/10.1016/j.ijar.2022.01.007

48. Kong QZ, Xu WH, Zhang DX (2022) A comparative study
of differnt granular structures induced from the information
systems. Soft Comput 26:105–22. https://doi.org/10.1007/s00500-
021-06499-2

49. Lang GM, Luo JF, Yao YY (2020) Three-way conflict
analysis:a unification of models based on rough sets and
formal concept analysis. Knowl-Based Syst 105556:194.
https://doi.org/10.1016/j.knosys.2020.105556

50. Mao H (2019) Approximation operators for semiconcepts. J Intell
Fuzzy Syst 36:3333–43. https://doi.org/10.3233/JIFS-18104

51. Roma R, Palmisano GO, Boni AD (2020) Insects as novel food:a
consumer attitude analysis through the dominance-based rough set
approach. Foods 9:87. https://doi.org/10.3390/foods9040387

52. Shakeel PM, Manogaran G (2020) Prostate cancer classification
from prostate biomedical data using ant rough set algorithm with
radial trained extreme learning neural network. Health Technol
10:157–65. https://doi.org/10.1007/s12553-018-0279-6

53. Sinha AK, Namdev N (2020) Computational approach of tumor
growth in human body with a significant technique the rough set.

13107

https://doi.org/10.1016/j.ins.2016.01.029
https://doi.org/10.1016/j.ins.2016.01.029
https://doi.org/10.1007/s13042-014-0314-5
https://doi.org/10.1016/j.tcs.2021.06.037
https://doi.org/10.1016/j.ins.2019.02.034
https://doi.org/10.1016/j.ins.2019.02.034
https://doi.org/10.3233/fi-2017-1601
https://doi.org/10.1007/s00500-020-04744-8
https://doi.org/10.1016/j.knosys.2019.105269
https://doi.org/10.1016/j.knosys.2019.105269
https://doi.org/10.1007/s00500-021-06393-x
https://doi.org/10.1007/s00500-021-05773-7
https://doi.org/10.1016/j.ijar.2021.11.001
https://doi.org/10.1016/j.knosys.2018.11.022
https://doi.org/10.1007/s41066-019-00178-2
https://doi.org/10.1007/s41066-019-00178-2
https://doi.org/10.1016/j.ijar.2019.11.002
https://doi.org/10.1016/j.ijar.2021.11.012
https://doi.org/10.1016/j.ijar.2021.11.012
https://doi.org/10.1016/j.ijar.2021.09.017
https://doi.org/10.1007/s41066-020-00247-x
https://doi.org/10.1007/s41066-020-00247-x
https://doi.org/10.1007/s00500-021-05693-6
https://doi.org/10.1016/j.ijar.2021.10.001
https://doi.org/10.1007/s00500-020-05098-x
https://doi.org/10.1016/j.ijar.2022.01.010
https://doi.org/10.1016/j.ijar.2022.01.010
https://doi.org/10.1080/0308107042000193561
https://doi.org/10.1007/s13042-018-0803-z
https://doi.org/10.3233/JIFS-151977
https://doi.org/10.1016/j.knosys.2017.01.036
https://doi.org/10.1016/j.knosys.2017.01.036
https://doi.org/10.1016/j.ins.2019.05.080
https://doi.org/10.1016/j.ins.2020.02.044
https://doi.org/10.1016/S0888-613X(96)00071-0
https://doi.org/10.1016/S0888-613X(96)00071-0
https://doi.org/10.3233/JIFS-202081
https://doi.org/10.1007/s10462-021-10115-y
https://doi.org/10.1016/j.ins.2021.12.019
https://doi.org/10.1002/int.22298
https://doi.org/10.1007/s00500-021-06509-3
https://doi.org/10.1007/s00500-021-06509-3
https://doi.org/10.1007/s00500-021-06089-2
https://doi.org/10.1016/j.ijar.2022.01.007
https://doi.org/10.1007/s00500-021-06499-2
https://doi.org/10.1007/s00500-021-06499-2
https://doi.org/10.1016/j.knosys.2020.105556
https://doi.org/10.3233/JIFS-18104
https://doi.org/10.3390/foods9040387
https://doi.org/10.1007/s12553-018-0279-6


G. Wang et al.

IOP Conf. Series: Mater Sci Eng 012038:798. https://doi.org/10.
1088/1757-899X/798/1/012038

54. Wang G, Mao H (2020) Approximation operators based on pre-
concepts. Open Math 18(1):400–16. https://doi.org/10.1515/math-
2020-0146

55. Yao YY (2019) Three-way conflict analysis:Reformulations and
extensions of the Pawlak model. Knowl-Based Syst 180:26–37.
https://doi.org/10.1016/j.knosys.2019.05.016

56. Whitney H (1935) On the abstract properties of linear dependence.
American J Math 57:509–33. https://doi.org/10.1007/978-1-4612-
2972-8 10

57. Oxley J (2011) Matroid Theory, 2nd. edn. Oxford University
Press, New York. https://doi.org/10.1093/acprof:oso/97801985
66946.001.0001

58. Welsh DJA (1976) Matroid Theory. Academic Press Inc., London.
https://doi.org/10.1007/978-1-4612-9914-1 10

59. Restrepo M, Cornelis C (2019) Rough matroids based on dual
approximation operators. Lecture Notes Comput Sci 11499:1-12.
https://doi.org/10.1007/978-3-030-22815-6 10

60. Xu GY, Wang ZH (2016) A rough set approach to the
characterization of transversal matroids. Int J Approx Reason
70:1–12. https://doi.org/10.1016/j.ijar.2015.12.001

61. Corah M, Michael N (2019) Distributed matroid-constrained
submodular maximization for multi-robot exploration:theory and
practice. Autonom Rob 43:485–501. https://doi.org/10.1007/s10
514-018-9778-6

62. Deng SC (2022) On clustering with discounts. Inf Process Lett
106272:177. https://doi.org/10.1016/j.ipl.2022.106272
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