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Abstract
In software, an algorithm is a well-organized sequence of actions that provides the optimal way to complete a task.
Algorithmic thinking is also essential to break-down a problem and conceptualize solutions in some steps. The proper
selection of an algorithm is pivotal to improve computational performance and software productivity as well as to
programming learning. That is, determining a suitable algorithm from a given code is widely relevant in software engineering
and programming education. However, both humans and machines find it difficult to identify algorithms from code without
any meta-information. This study aims to propose a program code classification model that uses a convolutional neural
network (CNN) to classify codes based on the algorithm. First, program codes are transformed into a sequence of structural
features (SFs). Second, SFs are transformed into a one-hot binary matrix using several procedures. Third, different structures
and hyperparameters of the CNN model are fine-tuned to identify the best model for the code classification task. To do so,
61,614 real-world program codes of different types of algorithms collected from an online judge system are used to train,
validate, and evaluate the model. Finally, the experimental results show that the proposed model can identify algorithms and
classify program codes with a high percentage of accuracy. The average precision, recall, and F-measure scores of the best
CNN model are 95.65%, 95.85%, and 95.70%, respectively, indicating that it outperforms other baseline models.

Keywords Program code classification · Structural features · Algorithm identification · Program code · Programming
education · Software engineering · Convolutional neural network

1 Introduction

Information technology (IT) has become an indispensable
part of global society. One of the essential requirements
for developing IT tools is computer programming and
the importance of programming education is attracting
global attention [1]. Programming languages, curriculum,
teaching, and learning methods as well as platforms have
become the subject of representative basic research on
programming education [2–4]. As a result, a considerable

Yutaka Watanobe and Md. Mostafizer Rahman are contributed
equally to this work and considered primary contributors.

� Md. Mostafizer Rahman
mostafiz26@gmail.com

Extended author information available on the last page of the article.

amount of code1 is generated and accumulated daily by
learners at different levels in platforms such as online
judge (OJ) systems [5]. These large code archives can be
used as a suitable reference for problem solving, searching
for problems and answers as well as for educational
research and analysis [6]. In the context of education,
identifying the algorithm in the code can be useful
for advanced code analysis, including code evaluation
[7, 8], plagiarism checking, and problem evaluation (or
difficulty estimation) [9, 10]. Furthermore, educational
data mining (EDM) using large-scale programming data
from repositories enable various empirical analyses. These
analyses demonstrate the correlation between academic
achievement and programming skills, user assessment,
learning path recommendations to facilitate programming
learning [1, 11, 12].

1The terms code, solution code, source code, and program code are
used interchangeably.
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In software engineering (SE), algorithms are imple-
mented at the functional level of the code. Solution codes
can be reused for various purposes in SE in the form of
libraries, open sources, components and APIs. One of the
important aspects for faster coding is code reuse [13]. Code
reuse is a practice of using existing code snippets to create
a new function or code, as it requires understanding other
codes and algorithms used. The identification of algorithms
are also important for development environments (IDEs,
editors, etc.) and related intelligent software tools, where
feedback and support functions are involved. In a develop-
ment environment, services for various types of searches
against a set of program codes are indispensable. Identifying
algorithms in code can be useful for advanced code analy-
sis, including code cloning, refactoring, function prediction,
debugging, code evaluation, and software metrics. On the
other hand, as intelligent software tools, various ML models
have been specifically designed for generating, evaluating,
modifying, supplementing, and improving source code. The
accuracy and efficiency of many specialized ML models for
these operations as well as augmentation and retrieval tasks
are highly dependent on identifying the program code [14,
15]. Therefore, the algorithm implemented in the code can
be a useful feature for ML models.

Due to the vast amount of code accumulated, manually
searching for codes using keywords, comments/documents,
tags, names, and other metadata is a challenging task. The
unavailability, non-uniformity, and inadequacy of metadata
is also a major obstacle in code retrieval. This is because
many keywords are freely defined by programmers, the
main reason for non-uniformity, and these keywords may
not be suitable for accurate code classification. However, to
find similar codes for reference purposes, it is not enough
to find identical codes of similar algorithms based only
on metadata. Therefore, artificial intelligence (AI) can be
useful as a core technology to solve this problem. In recent
years, advanced deep neural network (DNN) models, such
as recurrent neural networks (RNN), feed-forward neural
networks (FNN), long short-term memory (LSTM) [16],
bidirectional long short-term memory (BiLSTM) [17], and
convolutional neural network (CNN) [18], are effectively
used for such diverse tasks as computer vision [19–22],
travel and Internet-of-Things time series data [23, 24],
fault diagnosis of chemical data [25], and autonomous
transportation systems [26]. Meanwhile, DNN models
are considered an effective method in the context of
programming activities.

In recent times, DNN models have achieved significant
results for program code classification, recommendation,
error detection, prediction, and code assessment [7, 12,
27–30]. Moreover, DNN models are used for various
programming tasks (e.g., code completion, evaluation,

repair, generation, and summarization) [31–33]. To make
DNN models more effective in programming-related
tasks, real-world programming data resources can be
advantageous, and one of the sources can be OJ data.
The OJ system is an effective platform for programming
exercises and competitions, allowing programmers to
practice throughout the year [34, 35]. OJ systems can
effectively provide autonomous learning opportunities for
code evaluation and detailed feedback on program errors
[9, 10, 12]. Let P = {p1, p2, p3, · · · , pn} be the
set of problems related to various algorithms, V =
{v1, v2, v3, · · · , vm} be the set of verdicts. For each problem
P , there are many solutions S = {s1, s2, s3, · · · , sw} and
each solution receives a verdict in V with evaluation values
such as CPU time. Typically, OJ systems provide decisions
or verdicts depending on the errors and acceptance of the
codes. Each error decision gives a specific reason for an
error in the code. For example, error decisions such as
memory limit exceeded (MLE), time limit exceeded (TLE),
and runtime error (RE) are made when the performance of
the algorithm is not enough for solving the corresponding
problem. In contrast, the error decision, e.g., wrong answer
(WA), is made when the code contains logical errors. Thus,
large real-world OJ data (solution codes with verdict and
performance logs for problem sets) can be a real treasure in
the task of AI for coding [36–38].

Despite the remarkable results of DNN models in
programming tasks, the structural (or algorithmic) features
of the code have not been adequately discussed. However,
knowing the algorithms used in the program code is
important from an educational and software development
perspective to better understand the code. Therefore, the
classification of program code based on the structural
features of the code remains an open problem. To address
this research gap, we propose a CNN-based program
code classification model that can be applied to both
programming education and software development. The
proposed model classifies program codes by identifying the
algorithms contained in the codes. In addition, this study
presents a new data preprocessing approach for program
codes. The code preprocessing requires several steps,
including (i) user-defined properties/tokens of program
codes such as functions, classes, keywords, and variables
are filtered; (ii) as the structural features (SFs) such as
if , else, loops, mathematical operators, bitwise operators,
and assignment operators of the codes are considered; (iii)
the SFs of each program code are converted into a one-
hot binary matrix (OBM). We have collected two different
datasets of real-world program codes based on various
algorithms for model training, validation, and evaluation.
Three CNN models are developed, trained, and evaluated
based on various structures and hyperparameters to select
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the best model for program code classification. The best
CNN model is applied for the classification task considering
the experimental results. The contribution of the research
work is as follows:

• The proposed CNN model can identify the algorithm
used in the program code and classify the code based on
the identified algorithm.

• We present a novel strategy for program code pro-
cessing. SFs are extracted from program codes and
converted into OBM for model training. SFs facilitate
the model to understand the algorithmic properties of
codes better.

• The average precision, recall, and F-measure values of
the proposed model are 95.65%, 95.85% and 95.70%,
respectively, which outperform the values obtained by
other referenced models.

• The proposed classification model and its novel data
preprocessing approach can be useful for various
educational and industrial applications.

The remainder of this paper is structured as follows.
Section 2 presents the background and related works.
Section 3 describes the proposed approach, and Section 4
presents the experimental results and evaluations. Section 5
discusses the results in detail, and finally, Section 6
concludes this study with suggestions for future work.

2 Background and related works

This section presents prior studies related to programming
education and its challenges, ML in software development
practices and its challenges, code evaluation and repair, and
code classification.

2.1 Programming education and its challenges

Research in programming education has gained potential
worldwide, and learning programming in higher educa-
tion has been recognized as significantly important for the
sustainable development of IT infrastructure [39]. A data-
driven study [1] has shown that better programming skills
have a positive impact on students’ academic performance.
In [40], EDM has been performed to support programming
learning based on programming data. Sun et al. [41] have
proposed a model to evaluate students’ programming skills
in terms of programming and test performance. Based on
object-oriented programming tasks, the model observed the
improvement of students’ programming skills. The experi-
mental results showed that test performance was positively
correlated with programming performance. Qian et al. [42]
conducted a comprehensive study to identify students’ mis-
conceptions and difficulties in introductory programming

course. Students are most confronted with these misconcep-
tions, such as conceptual, syntactic, and strategic knowl-
edge. The challenges faced by students depend on many
factors, including the unusualness of language syntax, pro-
gramming environments, incorrect concepts and strategies,
and instructor competence. Medeiros et al. [2] categorized
the challenges in introductory programming and essential
issues for learning programming and teaching in higher
education. In addition, the study [43] identified significant
challenges such as writing, debugging, conceptualizing, and
tracing code. To overcome these challenges in learning pro-
gramming, pedagogical teaching/learning techniques and
valuable learning tools are also presented. Meanwhile, due
to rapid social and technological changes, many interesting
and convenient tools are available, which sometimes have
a negative impact on programming learning and students’
motivation [39].

2.2 Machine learning in software development
practices and its challenges

Recently, ML has been gaining attention as a method
for developing various software systems, such as speech
recognition, computer vision, natural language processing
(NLP), robot control, and other application domains. ML
capabilities can be integrated into a software system in
many ways, including ML components, tools, libraries
(cover ML functionalities), and frameworks [14]. In
contrast, a widespread trend has emerged: the development
and implementation of ML-enabled systems are fast and
inexpensive. However, long-term maintenance is not cost-
effective [44]. Wan and collaborators investigated the
differences in software development practices between
ML and non-ML [14]. Moreover, common practices
and workflows for building large-scale ML applications,
systems, and platforms at Microsoft, Amazon, and Google
have been presented in [6, 45–47]. Additionally, various
testing and debugging tools have been proposed to test
and debug ML-based applications and systems [48–51].
Despite these efforts, standardization and operationalization
of reliable ML systems are inevitable. Based on real-world
ML-enabled software development practices [6], around
11 challenges have been identified, from data collection
to model evolution, evaluation, and deployment. However,
our proposed classification model can be a supporting
component in building large-scale ML-based applications
and systems dealing with SFs.

2.3 Program code evaluation and repairing

Recently, researchers have made continuous efforts to
achieve significant results in this area. Programming
languages are quite different from natural languages,
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as program codes contain a large amount of complex
structural information. However, conventional NLP models
are inadequate for program codes. Therefore, in [52], a tree-
based CNN model for the programming code processing
task has been proposed. Rahman et al. [8] presented a
model for source code evaluation using LSTM neural
networks. These networks have been combined with an
attention mechanism to understand the complex context
of the code. During code evaluation, the model identified
errors, including logic and syntax errors in codes with a high
accuracy percentage.

In [53], a multi-modal attention network (MMAN) has
been proposed to properly represent the SFs of source
codes and improve the reasoning for which features have
the most impact on the final results. The MMAN can
represent both structured and non-structured features of
source codes, using a tree-LSTM for the abstract syntax
tree (AST) and a gated graph neural network (GNN) for
the control flow graph. In another study [7], an LSTM
model has been developed to identify source code errors
in C programming. In this model, characters, variables,
keywords, tokens, numbers, functions, and classes have
been encoded with the defined IDs. The model detected
errors in faulty solution codes with high accuracy. Terada
et al. [29] presented an interesting model for predicting the
following unknown code sequence to complete the code.
The model was built using an LSTM network. Their model
can help novice programmers who have difficulty writing
complete code from scratch. This model has effectively
predicted the correct words to complete the code. In
addition, code evaluation, completion, and repair tasks have
been performed using an LSTM neural network at different
levels of programming learning [31, 32].

2.4 Program code classification

The program code classification model is essential for a bet-
ter understanding of the code. Researchers have proposed
various approaches for program code classifications. In the
early stages of code classification and prediction, NLP mod-
els have been applied to source code to perform various pre-
diction tasks [54–56]. A GNN model [57] was proposed for
students’ program code classification that integrates AST
and data flow to improve the performance of the model.
The GNN model classifies student program code with an
accuracy of 97%. Fan et al. [28] proposed a method for clas-
sifying defective source codes using RNNs with attention
mechanisms. Two evaluation indicators, such as area under
the curve (AUC) and F1-measure, were used. AUC and F1-
measure achieved about 7% and 14% additional accuracy
compared to other benchmark models.

Furthermore, many models have been proposed for clas-
sifying program codes based on programming languages.

Ugurel et al. [58] performed two types of classification
using SVM: first, classification of programming languages
and, second, classification of different categories of pro-
grams (e.g., databases, multimedia, and graphics). Tian et al.
[59] used a Latent Dirichlet mapping method to classify
the programming language associated with the source code
based on the words. Alreshedy et al. [60] presented an
ML language model to classify the source code snippets
based on the programming language. A multinomial naive
bayes (MNB) classifier was used to classify the source
code snippets in their works. The contributions of the stack
overflow were used as experimental data. This classifica-
tion method used features such as comments, variables, and
functions, instead of syntactic information. Reyes et al. [61]
presented a model for classifying source code using LSTM.
Archived source codes are classified based on written pro-
gramming languages. Empirical results show that the LSTM
model performed better than the Naive Bayes and linguis-
tic classifier. Gilda has used a CNN model [62] to identify
programming languages from source code snippets.

In [63], classification based on code tags has been
performed using three classification methods SVM, random
forest, and AdaBoost. In [64], the decision tree-based
classification method has been used to classify source codes
related to sorting algorithms. LeClair et al. [65] mentioned
that the source code can be classified into six categories:
games, admin, network, words, science, and usage. Xu et al.
[66] used LSTM and CNN to identify vulnerabilities in
source code. In addition, a CNN-based classification model
was used to classify code based on the algorithms used.

In brief, numerous promising methods have been
proposed and experimented with in various studies.
The researchers have used traditional unsupervised and
supervised classifiers. In addition, CNN and LSTM have
been employed as language models for source code-related
research and applications. However, the relative importance
of the methods is challenging to identify. The proposed
code classification model differs from other models due
to its novel data preprocessing and selection approach for
the CNN model. In this study, three CNN models based
on different structures and hyperparameters are trained,
validated, and evaluated. The best CNN model is selected
for the classification task based on the results.

3 Proposed approach

Programmers prefer implementing algorithms for efficient
code. However, implementing algorithms in code is not a
trivial task. This research aims to identify the algorithm
contained in the program code and classify the code
based on the identified algorithm. We have used real-world
solution codes of different algorithms from programming
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competitions and academic courses. A crucial step is a data
preprocessing for model training and evaluation, where SFs
are extracted from the codes, excluding all user-defined
elements (e.g., variables, classes, and functions). These
SFs of the codes help the DNN model better understand
the algorithm’s flow. CNN-based classification models are
developed for classifying codes with various structures and
hyperparameters. Although the CNN models are widely
used in computer vision research, they have recently
achieved significant success in various programming-
related tasks (classification, error detection, prediction, and
language modeling) [67, 68]. The proposed classification
model includes several phases, from data acquisition to
model training and evaluation: (i) data acquisition and
categorization, (ii) data preprocessing, (iii) CNN models
training, and (iv) program code classification with the
optimal CNN model. The basic framework of our proposed
approach is shown in Fig. 1. The proposed approach is
explained in detail in the following sections.

3.1 Data collection and categorization

Selecting relevant datasets from a real-world data repository
is essential in research. In this study, real-world program
codes are collected from the Aizu Online Judge (AOJ)
system [69, 70]. All program codes are written in the
C++ programming language. AOJ is a platform that hosts
various academic programming activities and programming
competitions. As of February 2022, AOJ has over 3,000
programming problems and 100,000 users. It presents
programming problems very efficiently based on categories
and algorithms. The AOJ system has archived more than
6 million solution codes and submission logs, creating
research opportunities for SE and programming education.
For example, IBM and MIT have used solution codes from
AOJ for their CodeNet project [36, 71].

In this study, all program codes are divided into two
separate datasets: A and B. In Dataset A, we considered
the categories that cover a large number of algorithms in
computer science and engineering, such as computational
geometry problems (CGP), number theory problems (NTP),
flow network problems (FNP), shortest path problems
(SPP), query for data structures problems (QDSP), and
combinatorial optimization problems (COP), as shown
in Table 1. These categories include basic algorithms
from graph theory, geometry, numerical analysis, puzzles,
numbers, search, computational theory, networks, advanced
mathematics, and advanced data structures and algorithms.
All program codes of each category in Dataset A are
collected from the problems of programming competitions
in AOJ2.

2https://onlinejudge.u-aizu.ac.jp/challenges/search/categories

As shown in Table 2, all program codes related to sorting,
such as counting sort, bubble sort, insertion sort, merge sort,
selection sort, shell sort, and quick sort, are contained in
Dataset B3. In addition, some essential key features such as
complexity and method of sorting algorithms are presented.

3.2 Data preprocessing

To achieve better results from DNN models, effective input
shapes can play a vital role. It is essential to create a suitable
input shape that represents the actual features of the original
data. Programming is a highly complex representation than
natural languages. Therefore, we extracted suitable features
from the program codes for model training so that the model
can be trained effectively. The workflow of preprocessing
the program code is shown in Fig. 2.

Only structural properties are extracted from the code
for tokenization in program code transformation. Usually,
program code consists of operators, operands, loops,
branches, keywords, methods, and classes. Therefore, key
attributes of the program code are extracted. In contrast,
user-defined elements such as comments, variables, classes,
and functions with little impact, are not considered. A list of
featured tokens (T) and their corresponding IDs are shown
in Table 3. Initially, SFs are extracted from the program
codes according to Algorithm 1. The steps of program code
preprocessing are described in the forthcoming subsections.

Algorithm 1 Extraction of structural features from code.

3.2.1 Comments deletion

All comments in the program code are identified and
removed with the removeComments() function because

3https://onlinejudge.u-aizu.ac.jp/courses/list
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Fig. 1 Framework of the
proposed approach

Table 1 Algorithms and number of codes for dataset A

Sl. Category Algorithms # of Codes

1 Computational Geometry
Problems (CGP)

Geometric Algorithms, etc. 6299

2 Number Theory Problems
(NTP)

modPow, LCM, GCD, Prime
Number, Euler’s Phi Function,
extGCD, etc.

11698

3 Flow Network Problems (FNP) Maximum flow, Bipartite matching, etc. 1906

4 Query for Data Structures
Problems (QDSP)

LCA, Euler Tour, HLD, Union
Find, Weighted Union Find, RMQ,
RSQ, kDTree, Rolling Hash, Suf-
fix Array, Longest Match, etc.

9917

5 Combinatorial Optimization
Problems (COP)

Combinatorial Algorithms, etc. 10222

6 Shortest Path Problems (SPP) Dijkstra, BFS, Belman Ford, etc. 5356

Table 2 Feature attributes and number of program codes for dataset B

Sl. Category Method Complexity # of Codes

1 Bubble Sort Exchanging O(n2) 3610

2 Selection Sort Exchanging O(n2) 2918

3 Counting Sort Counting O(n + k) 1089

4 Insertion Sort Insertion O(n2) 4092

5 Shell Sort Insertion − 1689

6 Merge Sort Merging O(n log n) 1826

7 Quick Sort Partitioning O(n log n) 992
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Fig. 2 Workflow of program
code preprocessing

the comments in the program code are not significant, as
shown in Fig. 3.

3.2.2 Extraction of feature tokens

After removing comments from the code, feature tokens,
such as if , else, loops, the math operator, bitwise operator,
assignment operator, compound assignment operator, com-
parison operator, braces, parentheses, and square braces, are
selected. Typically, in C++ programming, parentheses are
used for function calls and declarations, conditional state-
ments (if , while, do), loops, and operator precedence. In
contrast, braces are used for processing functions, classes,
structs, if and loops. Square brackets are also used to

access arrays. With this definition, all the feature tokens
in the program code are selected for extraction using the
extractSelectedFeatures() function, as shown in Fig. 4.

In addition, irrelevant tokens such as functions and
variables are identified and removed from the code, e.g.,
all variables and functions arbitrarily defined by the
programmers. The names of the variables and functions
may vary depending on the programmer’s definition in
the code. Thus, a single code can have many different
variable and function names. Also, C++ is a statically
typed programming language; the type of variables must be
explicitly specified in the code, while Ruby and Python are
dynamically typed languages. Therefore, all user-defined
variable and function names are removed from the code so

Table 3 List of feature tokens and their IDs

Token name Token Symbol/Sign Token ID

Assignment Operator = 0

Arithmetic Operators +, −, ∗, /, % 1

Bitwise Operators &, |, ∧, ∼, �, � 2

Compound Assignment Operators + =, − =, ∗ =, / =, % =, ++, −− 3

Compound Bitwise Assignment Operators & =, | =, ∧ =, �=, �= 4

Comparison Operators ==, ! =, <, <=, >, >= 5

Logical Operators &&, ‖, ! 6

Others if 7

else 8

f or 9

while 10

( 11

) 12

{ 13

} 14

[ 15

] 16
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Fig. 3 Identification and removal of unnecessary comments from the code

that the DNN model can better understand the context of the
code.

3.2.3 Tokenization of the features

All the feature tokens are extracted from the code, as
shown in Fig. 5(a). Next, the extracted feature tokens are
converted into token IDs according to Table 3. This process
is called tokenization or encoding. In this research, the
tokenization/encoding process represents each SF of code
as a token. All these tokens are mapped with the numeric
numbers to feed DNN models. In learning DNN models,
a sequence of tokens is converted into a sequence of

numerical vectors, which are later processed by the neural
network. Basically, DNN models neither know the SFs such
as { + & = [ ] } of the code nor understand the
semantic or algorithmic features of the code. Therefore,
tokenization/encoding is an important process of DNN to
learn the neural network model from scratch. For example,
we defined token IDs from 0−16 for different features of the
code (Table 3). When some features such as { + & = [ ] }
are extracted from the code, these features are converted
to numeric numbers such as 13 1 2 0 15 16 14 after
tokenization/encoding. Once the tokenization process is
completed, the code contains only a list of IDs, as shown in
Fig. 5(b).

Fig. 4 Extraction of selected
feature tokens
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Fig. 5 (a) A program code with featured tokens, and (b) Tokenization
with IDs

3.2.4 One-hot binary matrix conversion from token IDs

After the tokenization process, the IDs are assigned to the
corresponding feature tokens. A sequence of token IDs is
converted to a P × Q matrix structure, where P represents
the number of token IDs and Q is the highest value of
token ID +1. According to the definition of token ID, the
maximum value of a token is 16, so the maximum length of
the Q (column of matrices) will be 17. Finally, the token IDs
are converted to an OBM structure of P elements according
to Algorithm 2. In Algorithm 2, the concept of the (1) has
been used for constructing the OBM. The conversion of
token ID to OBM is shown in Fig. 6.

MP,Q =
{

1, ifQ = SP + 1
0, Otherwise

(1)

Where SP represents the token ID of P th iteration and Q is
the sequence of column.

In Algorithm 2, first, line 5 takes the entire tokenized
solution code (e.g., Fig. 5(b)), then line 6 processes the
individual tokens for OBM conversion, and finally lines 7-
14 are repeatedly used for OBM construction until the token
of a code runs out.

3.2.5 Padding

The final step of preprocessing the program code is padding.
This is an essential step for the DNN model with batches. To
train a DNN model, all input sequences in each batch must

Fig. 6 OBM conversion process

Algorithm2 OBM conversion from tokenized structural feature (T F ).

have the same length. Therefore, random tokens are added
to the input sequence’s end (post) and beginning (pre) to
make the same length. One of the reasons for this is to avoid
overfitting by adding random tokens to the input sequences.

3.3 Architecture of the CNNmodel

CNN has become an effective deep learning technique
for solving complex tasks in various domains in recent
years. Thus, the use of CNN has increased significantly
in various fields of computer science and engineering [22,
68, 72]. The architecture of a CNN model is illustrated
in Fig. 7. The CNN architecture includes different sized
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convolutional layers (CL), activation functions (AF), max-
pooling, fully connected layers (FCL), dropout layers, and
softmax function for the classification tasks. The OBM is
used as input for different sized CL via a dropout layer. To
determine the features of the code for the evaluation process,
each CL learned the features of the code from the input
sequences. The output of each CL is used as input to the AF
(e.g., ReLU/LeakyReLU). The ReLU and LeakyReLU AFs
are expressed by (2) and (3), respectively.

ReLU f (z) = max(0, z) (2)

LeakyReLU f (z) = max(αz, z) (3)

Where z is an input and α is a small magnitude.
A max-pooling layer is added after each CL. The max-

pooling layer extracts the maximum value from the output
of each activation/feature map generated by the convolu-
tional filter/kernel. In this manner, important information
is preserved, and the size of the feature/activation map is
reduced. Thereafter, the output of different max-pooling
layers is concatenated. The pooled results are passed to an
FCL via a dropout layer. The FCL is learned from com-
bining filters that are highly correlated with each algorithm
category. Finally, the output of the FCL is converted into
probabilities via the softmax layer according to (4). In the
following (4), the probability Yk is calculated from ak ,
where ak is the output of the FCL. The loss function L is cal-
culated by (5) using the predicted value Yk and actual value
tk .

Yk = exp(ak)∑N
j=1 exp(aj )

(4)

L =
∑

tk log(Yk) (5)

The dropout layer was placed in front of CL and FCL
to avoid overfitting. The initial dropout layer randomly

generates the whole column zero, and the other dropout
layers randomly generate some inputs zero. Lastly, the
softmax layer is used to classify program codes based on
probability. The output probabilities are calculated in the
softmax layer for each category based on the given codes.
The sum of the probabilities of all the categories is 1 (one).
The category with the highest value is declared the winner.

3.4 Hyperparameters

Different architectures and hyperparameters of the CNN
model are fine-tuned to select the best/optimal model for
program code classification. We used filters/kernels of
different sizes such as 16 × 17, 32 × 17, and 64 × 17 in the
CL. The lengths/batch sizes (BS) for the input sequences
are 16, 32, and 64. However, the horizontal length of the
convolutional filter and the OBM is always equal, i.e., 17.
The output length of all convolution layers is 64, and thus
the length of the training sequence is also 64. The large
convolutional filter length is that the CL can learn the
characteristics of the entire code block of the program code.
Some hyperparameters are given in Table 4.

4 Experimental results

4.1 Overview

In this section, we present the target models and experi-
mental steps, dataset preparation, evaluation metrics, and
experimental environment. In this paper, we conducted the
experiments in two phases. In the first phase, experiments
are conducted using different architectures of CNN mod-
els. Based on the performance of the CNN models, the best
model is selected for further experiments. In the second
phase, experiments are conducted with the best CNN model
and two other baseline models (i.e., LSTM and BiLSTM).
An overview of the experimental phases is shown in Fig. 8.

Fig. 7 A sample network architecture of the two-parallel convolutional layered CNN model
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Table 4 List of hyperparameters

Name of the parameters Value

Optimization Algorithm Adam

Learning Rate (LR) 0.01, 0.001, and 0.0001

Batch Size (BS) 16, 32, and 64

Number of iterations for learning 100,000

Epoch 100

Height of convolution filters/kernels 16, 32, and 64

Output length of convolution layers 64

Dropout rate at the first dropout layer 10%

Dropout rate at the second dropout layer 50%

Dropout rate at the third dropout layer 50%

4.1.1 Target models and experimental flow

In this paper, CNN, LSTM and BiLSTM models are used
for the training, validation and evaluation purposes. To do
so, comprehensive experiments are performed and the main
steps are as follows: (i) experiments are performed with
different CNN architectures, (ii) training accuracy and time,
evaluation accuracy, and comparison are demonstrated, (iii)
the best CNN model is selected, (iv) code classification with
the best CNN models is performed, (v) code classification
with baseline models such as LSTM and BiLSTM is
performed, and (vi) comparisons of overall classification
performance are made with baseline models and other
related studies.

4.1.2 Data preparation for experiments

The details of our datasets and their preprocessing
procedures are presented in Sections 3.1 and 3.2. We have
two datasets A and B. Dataset A covers a wide variety of
algorithms, including combinatorial, geometric, graph, and
numerical algorithms. Dataset B, on the other hand, consists
of codes related to sorting algorithms. In the experiments,

the total number of program codes for datasets A and B
of 45,398 and 16,216, respectively, are used, and about
10% of the total number of program codes for each dataset
are randomly selected for evaluation. In addition, all the
program codes are written in C++ programming language
and have been accepted by the AOJ, which means that all
codes are “correct” and efficient enough. Since dataset A
has more program codes and more diversity than dataset
B, dataset A is used for training and evaluation in the first
phase of the experiment. Next, the best CNN model is
selected based on the performance and both datasets A and
B are used for evaluation. In the second phase, experiments
are performed on dataset A and comparisons are made
between the best CNN, LSTM and BiLSTM models.

4.1.3 Evaluation metrics

To evaluate the model performance, precision (Po), recall
(Ro), F-measure (Fo), and accuracy (Ao) are calculated and
the following corresponding (6), (7), (8), and (9) are used
for these evaluation metrics. A larger Po value indicates the
higher credibility of the classification results of a particular
category. In other words, Po indicates the accuracy of
classification predictions. The Ro is an index that measures
program codes classified into a certain category; the Fo is a
harmonic mean between Ro and Po.

Po = T P

T P + FP
(6)

Ro = T P

T P + FN
(7)

Fo = 2 × Po × Ro

Po + Ro

(8)

Ao = G

N
(9)

Where T P is the true positive, FP is the false positive,
FN is the false negative, G is the correct number of
classification and N is the total program codes.

Fig. 8 Overview of the experimental phases
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4.1.4 Implementation details

All the experiments are executed on the PyTorch framework
with two NVIDIA GeForce GTX 1080 GPU of 32 GB of
memory. Details of the experimental hyperparameters of the
model are presented in Section 3.4.

4.2 Performance of different CNNmodels

Instead of using a basic CNN model, we conducted
experiments by varying the network architectures and
hyperparameters of the CNN to investigate the performance.
The optimal CNN model is selected based on the learning
accuracy and classification accuracy. For this purpose,
three different architectures are developed and used in the
experiments: (i) single convolutional layer CNN (CNN-
Arch-I) model, (ii) two parallel convolutional layer CNN
(CNN-Arch-II) model, and (iii) three parallel convolutional
layer CNN (CNN-Arch-III) model. In each CL, three
different sizes of filters (e.g., 16, 32, and 64) and two
AFs (e.g., ReLU and LeakyReLU) are used separately. In
addition, three different BSs (e.g., 16, 32, and 64) and
LRs (e.g., 0.01, 0.001, and 0.0001) are used. The network
architectures of all three models are shown below.

(i) CNN-Arch-I Model: Input (OBM) → dropout
(10%) → Single Conv. Layer[Filter/Kernel Size (64)
+ ReLU/LeakyReLU + MaxPool] → dropout (50%)
→ FCL → dropout (50%) → FCL → Softmax Layer

(ii) CNN-Arch-II Model: Input (OBM) → dropout
(10%) → two-parallel Conv. Layer[Filter/Kernel
Sizes (32, 64) + ReLU/LeakyReLU + MaxPool] →
dropout (50%) → FCL → dropout (50%) → FCL →
Softmax Layer

(iii) CNN-Arch-III Model: Input (OBM) → dropout
(10%) → three-parallel Conv. Layer [Filter/Kernel
Sizes (16, 32, 64) + ReLU/LeakyReLU + MaxPool]
→ dropout (50%) → FCL → dropout (50%) → FCL
→ Softmax Layer

Experimental results of training accuracy and time,
classification accuracy, comparisons between training,
validation, and evaluation scores, and accuracy with 10-fold
cross-validation of the models are presented below.

4.2.1 Training accuracy and time of the CNNmodels

To investigate the training accuracy, Dataset A is first used
for model training because it contains a variety of program
codes from different algorithms compared to dataset B.
Training accuracy is calculated at the 100th epoch of
the 1st round of 10-fold cross-validation. Figures 9, 10,
and 11 show the training accuracy of the CNN-Arch-I,
CNN-Arch-II, and CNN-Arch-III models, respectively. The
results reveal that (i) the CNN-Arch-II and CNN-Arch-
III models achieved training accuracy of more than 96%,
when AF of ReLU/LeakyReLU, LR of 0.001, and BS of
16, 32, and 64 are used, as shown in Figs. 10 and 11.
(ii) In contrast, the CNN-Arch-I model achieved a training
accuracy of approximately 92%, as shown in Fig. 9, which
is comparatively lower than the other two models.

The training time for each model with different
hyperparameter combinations, i.e., {AF , BS, LR}, is also
compared. Figures 12, 13, and 14 compare the training times
for all models, where the X-axis represents BS and the Y -
axis represents the time (in seconds) required to train the
model. Several observations can be derived from Figs. 12,
13, and 14: (i) the CNN-Arch-I model required an average

Fig. 9 Training accuracy of CNN-Arch-I model
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Fig. 10 Training accuracy of CNN-Arch-II model

of 26172.77 s (7.27 h) to train for each hyperparameter
combination, which is smaller than that required by the
other two models. In contrast, the CNN-Arch-II and CNN-
Arch-III models required an average of 34772.77 s (9.66
h) and 37595.05 s (10.44 h) to train each hyperparameter
combination, respectively; (ii) the training time increased
linearly with the increasing number of CLs, regardless of
BS and LR; (iii) all models required relatively more time
to train when AF of LeakyReLU was used instead of ReLU.
Because ReLU ignores all negative values of neurons, which
results in many neurons becoming inactive and generating
only 0. This is also known as the dying ReLU/dead neuron
problem [73]. LeakyReLU is used to solve the dying ReLU
problem by using a small slop value (e.g., α = 0.01).

4.2.2 Classification accuracy of the models

In this part of the experiment, we present the initial
classification accuracies of all three models with different
hyperparameters. All the results are calculated with
dataset A on the 100th epoch and the 1st round of
10-fold cross-validation. The top-3 models and their
corresponding hyperparameters are selected for further
experiments based on the classification results. Tables 5,
6, and 7 show the classification results of the CNN-Arch-
I, CNN-Arch-II, and CNN-Arch-III models, respectively.
For better understanding, a set of hyperparameters is the
combination of different values of AF , BS, and LR, i.e.,
{ReLU, 16, 0.001}. The CNN-Arch-I model achieved the

Fig. 11 Training accuracy of CNN-Arch-III model
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Fig. 12 Training time of CNN-Arch-I model

highest Fo score of 93.30% and Ao of 93.10% with this set
of hyperparameters {LeakyReLU, 32, 0.0001}. Similarly,
the CNN-Arch-II model obtained the highest Fo score of
94.20% and Ao of 93.90% with this set of hyperparameters
{LeakyReLU, 16, 0.0001}. The CNN-Arch-III model
achieved highest Fo score of 94.1% and Ao of 93.9% with
{LeakyReLU, 64, 0.0001}.

In addition, we performed the experiments with three
more layers (e.g., 4, 5, and 6) to demonstrate the
performance of the models with the set of hyperparameters
{LeakyReLU, 16, 0.0001}. The CNN model with four

(04) convolutional layers (8, 16, 32, 64) achieved Po,
Ro, and Fo scores of 93.21%, 92.80%, and 92.65%,
respectively, and Ao score of 92.42%. The model required
approximately 11 hours and 18 minutes to complete the
training process. Similarly, the CNN model with five (05)
convolutional layers (8, 16, 32, 64, 128) achieved Po,
Ro, and Fo scores of 94.03%, 92.10%, and 92.60%,
respectively, and Ao score of 92.17%; the model required
approximately 21 hours and 14 minutes to complete the
training process. Furthermore, the CNN model with six
(06) convolutional layers (8, 16, 32, 64, 128, 256) achieved

Fig. 13 Training time of CNN-Arch-II model
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Fig. 14 Training time of CNN-Arch-III model

Po, Ro, and Fo scores of 93.31%, 90.93%, and 91.61%,
respectively, and Ao score of 90.90%. The experimental
results of these three CNN models (with 4, 5, and 6
convolutional layers) failed to achieve better classification

scores and required much more time for training than the
CNN-Arch-III model. Depending on the combination of
hyperparameters, the models yielded different accuracies.
These models achieved a significant classification accuracy

Table 5 Classification results of CNN-Arch-I model

AF BS LR Po Ro Fo Ao

ReLU 16 0.01 0.828 0.702 0.680 0.618

0.001 0.926 0.941 0.931 0.929

0.0001 0.917 0.919 0.915 0.911

32 0.01 0.875 0.857 0.835 0.808

0.001 0.915 0.923 0.917 0.914

0.0001 0.917 0.924 0.918 0.916

64 0.01 0.858 0.834 0.816 0.792

0.001 0.905 0.912 0.902 0.901

0.0001 0.924 0.927 0.925 0.921

LeakyReLU 16 0.01 0.855 0.809 0.814 0.797

0.001 0.862 0.874 0.857 0.856

0.0001 0.911 0.901 0.899 0.896

32 0.01 0.879 0.823 0.836 0.823

0.001 0.890 0.908 0.894 0.891

0.0001 0.931 0.937 0.933 0.931

64 0.01 0.886 0.884 0.879 0.871

0.001 0.939 0.934 0.935 0.929

0.0001 0.905 0.909 0.904 0.901

Bolded entries in these tables are important in this paper because they are used for comparison and description
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Table 6 Classification results of CNN-Arch-II model

AF BS LR Po Ro Fo Ao

ReLU 16 0.01 0.850 0.591 0.563 0.489

0.001 0.930 0.902 0.908 0.901

0.0001 0.931 0.933 0.930 0.929

32 0.01 0.860 0.810 0.787 0.742

0.001 0.918 0.924 0.916 0.916

0.0001 0.938 0.941 0.938 0.936

64 0.01 0.864 0.862 0.842 0.825

0.001 0.919 0.925 0.918 0.916

0.0001 0.918 0.930 0.922 0.921

LeakyReLU 16 0.01 0.881 0.807 0.800 0.800

0.001 0.927 0.921 0.923 0.916

0.0001 0.946 0.942 0.942 0.939
32 0.01 0.915 0.868 0.879 0.866

0.001 0.915 0.937 0.928 0.924

0.0001 0.936 0.944 0.938 0.934

64 0.01 0.881 0.903 0.881 0.871

0.001 0.932 0.916 0.920 0.914

0.0001 0.935 0.933 0.933 0.929

Bolded entries in these tables are important in this paper because they are used for comparison and description

up to about 94%. Therefore, the classification scores
of the models help to identify and select the optimal
hyperparameters for each model to achieve the best results.
Based on the classification Ao and Fo scores, the top-3
results are presented in Table 8.

4.2.3 Comparison between training, validation,
and evaluation of the top-3 models

To evaluate the performance of the top-3 models, the
training, validation, and evaluation curves were compared,

Table 7 Classification results of CNN-Arch-III model

AF BS LR Po Ro Fo Ao

ReLU 16 0.01 0.795 0.500 0.433 0.376

0.001 0.936 0.929 0.929 0.921

0.0001 0.933 0.918 0.920 0.911

32 0.01 0.852 0.730 0.700 0.643

0.001 0.896 0.910 0.894 0.896

0.0001 0.928 0.930 0.926 0.924

64 0.01 0.874 0.882 0.857 0.838

0.001 0.940 0.913 0.920 0.911

0.0001 0.924 0.913 0.915 0.914

LeakyReLU 16 0.01 0.907 0.871 0.880 0.870

0.001 0.912 0.883 0.885 0.878

0.0001 0.934 0.937 0.932 0.929

32 0.01 0.903 0.885 0.889 0.883

0.001 0.913 0.878 0.880 0.873

0.0001 0.931 0.936 0.932 0.929

64 0.01 0.902 0.865 0.864 0.861

0.001 0.937 0.927 0.929 0.924

0.0001 0.940 0.943 0.941 0.939

Bolded entries in these tables are important in this paper because they are used for comparison and description
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Table 8 List of the top-3 results achieved with all three models and hyperparameters

Model AF BS LR Fo Ao

CNN-Arch-I LeakyReLU 32 0.0001 93.30% 93.10%

CNN-Arch-II LeakyReLU 16 0.0001 94.20% 93.90%

CNN-Arch-III LeakyReLU 64 0.0001 94.10% 93.90%

which were generated based on 100,000 iterations for
the top-3 models, as shown in Fig. 15(a), (b), and (c),
respectively. From these figures, the following observations
can be made: (i) all models achieved a training accuracy
of approximately 96% and a validation and evaluation
accuracy of approximately 94%; (ii) during the first 55,000
iterations, all three models experienced more overfitting;
(iii) all accuracies increase linearly up to 80,000 iterations
and then become more stable.

Although the top-3 models achieved almost similar Fo

score and Ao, as shown in Table 8. Herein, 10-fold cross-
validation is performed with the top-3 models and their
corresponding hyperparameters to select the best/optimal
model. In each cross-validation, different sets of training,
validation, and test data are randomly selected to verify
the effectiveness of the models. The accuracy comparison
between top-3 models for each validation step is shown in
Fig. 16. In addition, the average cross-validation accuracy
(ACV) is calculated for each model using (10).

ACV =
∑H

i=1 Aoi

H
(10)

where H is the number of cross-validation, Ao is the
accuracy.

Figure 16 demonstrates that (i) the CNN-Arch-II and
CNN-Arch-III models achieved higher accuracy than the
CNN-Arch-I model in 10-fold cross-validations, except for
the 10th round of 10-fold cross-validation; (ii) the CNN-
Arch-III model achieved an ACV of 92.76%, which is
comparatively higher than that of the other two models;

(iii) the ACV values of the CNN-Arch-I and CNN-
Arch-II models are 91.56% and 92.69%, respectively.
Considering the results in training, validation, evaluation,
and classification of all the models, the CNN-Arch-III
model achieved better results. To validate the superiority
of the CNN-Arch-III model, we also performed additional
experiments with three (03) more convolution layers (e.g., 4,
5, and 6) (see in Section 4.2.2). The obtained experimental
results could not exceed the performance of the CNN-Arch-
III model. Henceforth, all experiments are performed with
the CNN-Arch-III model.

4.2.4 Effects of tuning hyperparameters

Instead of using a simple CNN architecture, we investigated
the performance of CNN models with different architectures
and hyperparameters on our dataset. Different sets of
hyperparameters, such as CL = {single, two −
parallel, three − parallel}, filter/kernel size (KS)=
{16, 32, 64}, AF = {ReLU, LeakyReLU}, BS =
{16, 32, 64} and LR = {0.01, 0.001, 0.0001}, were
used in three CNN models in different combinations.
The performance of each model strongly depends on the
hyperparameter settings. For example, CNN-Arch-I has
very low accuracy regardless of AF or BS when LR is high
(i.e., 0.01). Similarly, the performance of CNN-Arch-II and
CNN-Arch-III varies based on changes in hyperparameters.
As shown in Figs. 9, 10, and 11, the CNN-Arch-III model
achieved the highest training accuracy of approximately
96.7% at the 100th epoch when AF , BS, and LR were
LeakyReLU , 64, and 0.001, respectively. As shown in

Fig. 15 Comparison between training, validation and evaluation accuracy of the top-3 models
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Fig. 16 10-fold cross-validation accuracy of top-3 models

Figs. 12, 13, and 14, the training time increased for all
models, regardless of LR or AF , when BS was set to
16. In addition, all models consumed approximately 0.60%
additional time for training when LeakyReLU is used.
Furthermore, in most cases, the models achieved better
classification results with Fo scores of 94.20% and Ao

of 93.90% when LR was slowed to 0.0001 and AF was
LeakyReLU , as shown in Tables 5, 6, and 7. Thus, it can
be seen that the optimal hyperparameter settings have a
significant impact on model performance.

4.3 Program code classification with the optimal
CNNmodel

In this part of the experiment, the results of program
code classification using the best model are presented.
The best CNN model (CNN-Arch-III) is used for further
experiments. Here, program code classification tasks are
performed with datasets (A and B), and the corresponding
results are presented.

4.3.1 Model performance with Dataset A

Dataset A contains a large number of program codes
on various algorithms such as a tree, graph, geometry,
computational theory, discrete mathematics, and data
structure (see in Table 1). Therefore, dataset A is more
diverse than dataset B. During model training, Po, Ro,

and Fo scores are calculated using the validation data for
each category, as shown in Fig. 17. All learning curves are
generated with 100,000 iterations. From the Fig. 17, it is
evident that (i) the model obtained relatively low Po values
(approximately 90%) for the QDSP and COP categories,
implying that a large number of false positive (FP) occurred
for both categories. On the other hand, about 99% and 96%
of Po values are obtained for the SPP and CGP categories;
(ii) the model achieved about 100% of Ro values for the
FNP category; in contrast, the model scored the lowest Ro

scores for both NTP and SPP categories, indicating that
more false negative (FN) occurred; (iii) the value of the
Fo in each category is gradually increased with successive
iterations; (iv) the model achieved the highest Fo values
of approximately 98% for both CGP and FNP categories
and the Fo values of these two categories are more stable
compared to those in the other categories.

The confusion matrix of Po and Ro is calculated using
test data to find out how the model learned the features of
program codes of different algorithms. The test program
codes for each category COP, CGP, FNP, NTP, QDSP, and
SSP are 61, 30, 22, 22, 31, and 35. The confusion matrix
of Po and Ro for program code classification is shown in
Fig. 18(a) and (b). The confusion matrices indicate that the
model achieves approximately 100% of Po and Ro values
for the FNP and CGP categories, respectively.

Table 9 shows the validation performance for each cat-
egory of algorithms. The model (CNN-Arch-III) achieved
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Fig. 17 Precision, Recall, and F-measure curves for each category of algorithm

an average Po, Ro, and Fo score of 95.50%, 94.80%, and
95.00%, respectively, for the validation. In contrast, the
model achieved an average Po score of 94.30%, Ro score
of 94.80%, and Fo score of 94.50% at the time of evalua-
tion, as shown in Table 10. In this part of the experiment,
precision and recall scores are calculated for each category,
and validation and evaluation are also performed for dataset
A using the CNN-Arch-III model. Given the diversity of
dataset A, the overall classification results achieved with the
best model are significant.

4.3.2 Model performance with Dataset B

Dataset B is also used for training, validation, and evaluation
of the model (CNN-Arch-III) similar to Dataset A. The
program codes of Dataset B refer to sorting algorithms.
The purpose of all sorting algorithms is the same, but the
way they are applied in the codes is different. The SFs of
the program codes of all the sorting algorithms are used

for model training, allowing the models to learn the actual
features of the sorting algorithms, instead of the codes. For
the evaluation, the average Po, Ro, and Fo are calculated
for each category of sorting algorithm, as shown in Table 11.
The model obtained an average Po, Ro, and Fo scores of
97.00%, 96.90%, and 96.90%, respectively.

Comparing the performance of the model in datasets A
and B, the model achieved a higher Fo score of 96.90% for
Dataset B than for Dataset A (Fo score of 94.50%). This is
due to the more diversity of program codes and algorithms
in Dataset A so that the model could better process and learn
the features of the sorting algorithms.

4.4 Program code classification with the LSTM
and BiLSTMmodels

To compare the classification performance of the proposed
model, experiments with baseline models, such as LSTM
and BiLSTM are performed under considering the same

Fig. 18 Confusion matrix of precision (Po) and recall (Ro)
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Table 9 Validation scores for each category of algorithm

Category Po Ro Fo

COP 0.903 0.933 0.918

CGP 1.000 0.966 0.982

FNP 1.000 1.000 1.000

NTP 0.95 0.905 0.927

QDSP 0.909 1.000 0.952

SPP 0.968 0.882 0.923

Average 0.955 0.948 0.950

Bolded entries in these tables are important in this paper because they
are used for comparison and description

dataset. All results are computed at the 100th epoch, and
for each combination of hyperparameters, an average of
3480.16 s is required for the LSTM model training. The
LSTM model achieved the highest Fo score of 82.02%
and Ao score of 83.10% with a set of hyperparameters
{LeakyReLU, 16, 0.001} as shown in Table 12. Further-
more, the experimental results show that the LSTM model
fails to yield significant Ao and Fo scores when using the
AF of ReLU and any combination of BS and LR.

On the other hand, the BiLSTM model achieved the high-
est Fo score of 84.14% and Ao score of 84.64% with the
set of hyperparameters {LeakyReLU, 32, 0.001} as shown
in Table 13. For each combination of hyperparameters, this
model took an average of 6084.83 s to train. In addition,
the BiLSTM model achieved relatively good Ao and Fo

scores for each combination of hyperparameters. Overall,
the BiLSTM model achieved comparatively better results
than the LSTM model because the BiLSTM model can con-
sider code sequences from both directions (forward and
backward), leading to better performance of the model.

4.5 Comparison with baselinemodels

To validate the effectiveness of our CNN-based program
code classification model, different state-of-the-art models

Table 10 Evaluation scores for each category of algorithm

Category Po Ro Fo

COP 0.966 0.918 0.941

CGP 0.968 1.000 0.984

FNP 1.000 0.955 0.977

NTP 0.870 0.909 0.889

QDSP 0.853 0.935 0.892

SPP 1.000 0.971 0.986

Average 0.943 0.948 0.945

Bolded entries in these tables are important in this paper because they
are used for comparison and description

Table 11 Evaluation scores for each category of the sorting algorithm
(Dataset B)

Category Po Ro Fo

Bubble Sort 0.986 0.986 0.986

Counting Sort 0.981 0.989 0.984

Insertion Sort 0.990 0.989 0.989

Merge Sort 0.951 0.946 0.948

Selection Sort 0.991 0.992 0.991

Shell Sort 0.955 0.960 0.957

Quick Sort 0.937 0.921 0.928

Average 0.970 0.969 0.969

Bolded entries in these tables are important in this paper because they
are used for comparison and description

that use real-world program codes are compared. The over-
all approaches, datasets, data preprocessing, model training,
validation, and evaluation vary per model. Therefore, two
comparisons are made: first, a comparison of the results
with the most similar tasks in different studies, as shown
in Table 14, and second, a comparison of the results with
state-of-the-art models, as shown in Table 15.

The experimental results, datasets, number of program
codes, languages, and models are considered when making
comparisons with other studies, as shown in Table 14.
Models such as DP-ARNN [28], RF [28], LSTM [8], and
LSTM-AttM [8] are used to classify the defective source
codes as either defective or non-defective (i.e., binary
classification). In the binary classification, the LSTM-AttM
model achieved a comparatively higher Fo score of 94.00%
than the other referenced models. The Stacked Bi-LSTM
model achieved an Fo score of about 89.24% for the
multiclass classification task, which is higher than that
for other models. In contrast, the proposed CNN-Arch-III
model achieved a higher Fo score of 95.70% than the other
comparative multiclass classification models. In addition,
the CNN-Arch-III model achieved a higher Fo score among
all classification models (binary and multiclass). Moreover,
the experimental data size of our study is 61,614, which
is also larger and more diverse than that of the other
compared baseline classification models from different
studies.

In addition, experiments are performed on the same
dataset for LSTM and BiLSTM models, as shown in
Tables 12 and 13, respectively. The results are compared
with the proposed CNN models, as shown in Table 15.
The LSTM model achieved the Fo score of 82.02% and
Ao score of 83.10%, which are the lowest among all the
models, and BiLSTM model obtained Fo and Ao scores of
84.14% and 84.64%, respectively, which is better than the
LSTM model. The CNN-Arch-III model achieved Fo and
Ao scores of 94.10% and 93.90%, respectively, which is
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Table 12 Classification results of the LSTM model

AF BS LR Po Ro Fo Ao

ReLU 16 0.01 0.0374 0.1666 0.0612 0.2249

0.001 0.0436 0.1666 0.0692 0.2620

0.0001 0.8319 0.8212 0.8258 0.8295

32 0.01 0.0436 0.1666 0.0692 0.2620

0.001 0.0436 0.1666 0.0692 0.2620

0.0001 0.0436 0.1666 0.0692 0.2620

64 0.01 0.0436 0.1666 0.0692 0.2620

0.001 0.0436 0.1666 0.0692 0.2620

0.0001 0.0436 0.1666 0.0692 0.2620

LeakyReLU 16 0.01 0.6345 0.6448 0.6248 0.6747

0.001 0.8241 0.8178 0.8202 0.8310

0.0001 0.8083 0.7964 0.8018 0.8172

32 0.01 0.0436 0.1666 0.0692 0.2620

0.001 0.0436 0.1666 0.0692 0.2620

0.0001 0.0436 0.1666 0.0692 0.2620

64 0.01 0.0436 0.1666 0.0692 0.2620

0.001 0.0446 0.1666 0.0704 0.2680

0.0001 0.6991 0.6911 0.6932 0.7335

Bolded entries in these tables are important in this paper because they are used for comparison and description

better than both LSTM and BiLSTM models. In particular,
all CNN models achieved relatively better results than
LSTM and BiLSTM models when using the same dataset

and hyperparameters. This comparison demonstrates the
superiority of the proposed CNN model in understanding
the algorithmic features (or SFs) of the code. The overall

Table 13 Classification results of the BiLSTM model

AF BS LR Po Ro Fo Ao

ReLU 16 0.01 0.6778 0.6702 0.6690 0.7055

0.001 0.8439 0.8362 0.8398 0.8417

0.0001 0.8327 0.8350 0.8333 0.8376

32 0.01 0.7518 0.7564 0.7530 0.7650

0.001 0.8425 0.8395 0.8406 0.8414

0.0001 0.8326 0.8332 0.8320 0.8348

64 0.01 0.7913 0.7490 0.7653 0.7741

0.001 0.8398 0.8383 0.8384 0.8339

0.0001 0.8334 0.8396 0.8355 0.8392

LeakyReLU 16 0.01 0.7167 0.6785 0.6873 0.7049

0.001 0.8393 0.8280 0.8331 0.8364

0.0001 0.8361 0.8222 0.8284 0.8326

32 0.01 0.7307 0.6936 0.7069 0.7304

0.001 0.8440 0.8393 0.8414 0.8464

0.0001 0.8316 0.8304 0.8301 0.8348

64 0.01 0.7735 0.7463 0.7553 0.7694

0.001 0.8420 0.8398 0.8406 0.8417

0.0001 0.8341 0.8258 0.8297 0.8310

Bolded entries in these tables are important in this paper because they are used for comparison and description
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Table 14 Experimental results comparison with baseline models of different studies

Models # of Codes Language Classification type Brief description Fo (%)

RF [28] 3,391 Java Binary Defective code classification 49.40

LSTM [8] 10,362 C Binary Erroneous (syntax and logic) solution code classification 79.00

LSTM [74] 35,000 Multilingual Multi-class Classification of codes based on category 81.16

LSTM-AttM [8] 10,362 C Binary Erroneous (syntax and logic) solution code classification 94.00

Bi-LSTM [74] 35,000 Multilingual Multi-class Classification of codes based on category 83.48

DP-ARNN [28] 3,391 Java Binary Defective code classification 56.40

Stacked Bi-LSTM [74] 35,000 Multilingual Multi-class Classification of codes based on category 89.24

CNN-Arch-III (ours) 61,614 C++ Multi-class Algorithm detection in program codes using structural features 95.70

classification results of the proposed CNN models showed
the potential for detecting algorithms in program codes.

5 Discussion

In this section, we discussed the approach, including
scalability of the model compared to other state-of-the-
art models, and usefulness of the model in learning
programming and software engineering. In addition, we
discuss the threats to the validity of the proposed model.

5.1 Model performance analysis

In this paper, we focus on training the DNN models using
the algorithmic features of the code rather than the meta-
information. We considered SFs as key components of
the algorithm in each solution code. A large number of
practice-oriented solution codes are collected and processed
for training and evaluation of the model. We conducted
extensive experiments with different CNN architectures
and hyperparameters. The CNN-Arch-III model achieved
better training, validation, and evaluation accuracy than
other CNN models. Comparisons are also made between
CNN, LSTM, and BiLSTM models to demonstrate the
classification performance of these models. Experimental
results show that DNN models recognize the algorithm
in solution codes with an acceptable degree of accuracy.
The CNN-Arch-III model achieved an average Fo score
of 94.5% and 96.9% for datasets A and B, respectively
for code classification. This result shows that the model
achieved high accuracy in classifying “program codes”
without meta-information.

In addition, we reviewed a large body of literature on
program code classification. We found that studies classify
codes based on various types of meta-information of the
code, including programming language [58–61], code tags
[63], errors [8, 28], and category [64, 65]. To the best of
our knowledge, no study has considered the algorithmic
(structural) features of codes in the classification task.
Consequently, a comparison of the proposed CNN-Arch-
III model with other relevant classification methods is
presented in Table 14. However, in this paper, we recognize
the importance of the algorithmic (structural) features of the
codes for the classification task. The experimental results
(Tables 5, 6, 7, 12, and 13) show that DNN models have
achieved significant results using the SFs of the program
codes for the classification task.

5.2 Model scalability

In this study, SFs are extracted from the codes and then
the CNN model is trained to classify the program codes.
The model classifies the program codes based on the
category of algorithms with a high percentage of Fo

score of about 95.7%. The higher accuracy demonstrates
that the proposed approach including SFs extraction,
OBM conversion, and training and evaluation of the
best CNN model with real-world program codes, are
effective. Moreover, the experiments are conducted with
program codes of C++ programming, which is considered
a procedural programming language. Thus, the proposed
model can also be utilized for classifying program codes
of other procedural languages, such as Python, Java, and
C. Based on the comparison studies with the baseline
classification models, the proposed model (CNN-Arch-III)

Table 15 Experimental result
comparison with baseline
models

Models Po(%) Ro(%) Fo(%) Ao(%)

LSTM 82.41 81.78 82.02 83.10

BiLSTM 84.40 83.93 84.14 84.64

CNN-Arch-III 94.00 94.30 94.10 93.90
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achieved relatively better classification results than others,
as shown in Tables 14 and 15. Also, the proposed model
has the scalability to classify large industrial program codes.
Typically, industrial program codes are quite long and
contain many functions and classes. As these functions may
contain different algorithms, the proposed model can be
useful for classifying codes at the function-level. It can be
seen that the proposed code classification model can be
useful and scalable for various programming-related tasks.

5.3 Model usage in programming learning

One of our research objectives is how the model can help
programmers learn to program in real-world environments.
From this viewpoint, the proposed model has been devel-
oped. The experimental results indicate that the present
study can be useful for programming learning. A consid-
erable amount of programming code is regularly generated
from various sources such as academia, industry, program-
ming platforms, and the OJ. However, programmers often
find it challenging to identify the algorithms in the reference
program codes while learning and searching from a large
number of codes. Therefore, knowing the program code
algorithm can help programmers better understand the code
and accelerate their learning progress. Here, the proposed
code classification model can effectively assist program-
mers in identifying algorithms contained in program codes.
Moreover, the proposed model can be integrated with var-
ious real-world programming learning platforms, including
OJ systems.

5.4 Model usage in software engineering

Repositories of real-world program codes play a key role in
building effective ML models in SE. ML models are suitable
in various fields of SE, such as strategic decision making,
rapid prototyping, design and analysis, bug detection, code
review, bug fixing, code reuse, and intelligent programming
assistants (IPA). In addition, ML-enabled IPA systems can
provide the best relevant code examples, best practices,
and related texts as just-in-time support. As a result, the
importance of ML models in software development and
their application in SE is increasing significantly [14,
75]. The proposed CNN model classifies program codes
by identifying the algorithms contained in the codes.
Therefore, this model can also be used directly/indirectly
for various SE tasks such as code review, bug detection,
code examples, and code refactoring. In particular, the
proposed model can be used as a supporting component
of other ML models in SE that deal with SFs of program
codes.

5.5 Threats to validity

This study applied several novel ideas from data preprocess-
ing to model development. The model achieved significant
results in classifying program codes during the experiment.
However, the proposed model may suffer due to the following
reasons/threats: (i) variation in the list of feature tokens for
other programming languages; (ii) different strategies for data
preprocessing; (iii) different sets of programming prob-
lems; (iv) problem sets with other programming languages
such as C, Python, Java, and C#; and (v) different values of
hyperparameters and architectures of the CNN model.

In the follow-up work, we plan to validate the model’s
performance by addressing the threats above mentioned.

6 Conclusion and future work

We developed CNN models to classify the program codes
based on the identified algorithms. Real-world program
codes were collected from the AOJ system and utilized in
all experimental tasks. The SFs of the program codes were
extracted to learn the CNN models. They were converted
to OBM, followed by several processing steps. Different
sets of hyperparameters such as CL, LR, AF , BS were
used in CNN models in different combinations. The top-
3 CNN models and their hyperparameters were selected
based on the superior experimental results. In addition, a
10-fold cross-validation was performed to select the most
suitable (topmost) CNN model and hyperparameters for
further experiments. Subsequently, all the experiments with
the best CNN model were performed on both datasets (A
and B). The model achieved significant classification results
for both datasets, an average Po, Ro, and Fo score of
94.30%, 94.80%, and 94.50%, respectively for Dataset A,
and an average Po, Ro, and Fo score of 97.00%, 96.90%,
and 96.90%, respectively, for Dataset B. Furthermore, the
performance of the proposed CNN model was compared
with those of other baseline models. Results indicate that
the proposed model outperforms the referenced models.
The results show that the proposed model is more scalable
in classifying program codes of diverse algorithms. In
addition, the model can be useful in classifying program
codes of other procedural programming languages, such as
C, Java, Python, and C#.

In the future, the code block sequence of program codes
can be considered, instead of SFs, to investigate the model
performance. Moreover, a multi-label classification model
can be considered to classify program codes with multiple
labels. In addition, the model can be used to evaluate
large-scale industrial program codes.
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