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Abstract
3D human reconstruction is an important technology connecting the real world and the virtual world, but most of previous
work needs expensive computing resources, making it difficult in real-time scenarios. We propose a lightweight human body
reconstruction system based on parametric model, which employs only one RGBD camera as input. To generate a human
model end to end, we build a fast and lightweight deep-learning network named Fast Body Net (FBN). The network pays
more attention on the face and hands to enrich the local details. Additionally, we train a denoising auto-encoder to reduce
unreasonable states of human model. Due to the lack of human dataset based on RGBD images, we propose an Indoor-
Human dataset to train the network, which contains a total of 2500 frames of action data of five actors collected by Azure
Kinect camera. Depth images avoid using RGB to extract depth features, which makes FBN lightweight and high-speed in
reconstructing parametric human model. Qualitative and quantitative analysis on experimental results show that our method
can improve at least 57% in efficiency with similar accuracy, as compared to state-of-the-art methods. Through our study, it
is also demonstrated that consumer-grade RGBD cameras can provide great applications in real-time display and interaction
for virtual reality.

Keywords FBN · Real-time · Parametric model · RGBD · Indoor-Human

1 Introduction

Our interaction with the world is no longer limited to text,
voice or video. As 3D reconstruction technology continues
advancing, the representation method of people is develop-
ing towards 3D as well. Taking social network as an exam-
ple, Facebook launched a virtual reality(VR) social platform
Horizon [24], in which people are represented as differ-
ent 3D cartoon models and are brought to a 3D world
full of exploration. During the 2021 COVID-19, Horizon
extends an application called Horizon Workrooms to enable
people to work from home. Technically, it realizes 3D
communication between multiple people.

The works [9, 27, 29, 35] of reconstructing static human
body have achieved excellent results. These methods obtain
depth data through active measurement or depth estimation,
and then fuse 3D models using point cloud registration or
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deep learning. Unfortunately, the speed of these methods is
always pretty slow.

Many scenarios require not only the ability to reconstruct
a static human body, but the process in real time, such as
remote conference [19], VR fitting [26] and online VR edu-
cation [33]. The above applications commonly need to rep-
resent human in real time. To meet the speed requirement,
most of the existing methods adopt 3D cartoon models and
focus on the deformation of some certain parts, such as face
[30], hand [28] or pose [2]. However, these methods are
not straightforward or realistic enough. To get the same
shape and texture with the real human body, there have been
categories of solutions. One is the non-parametric recon-
struction methods [6, 7, 11, 31] based on multi-camera
calibration and point cloud fusion, while the other is the
parametric reconstruction methods [3, 8, 14, 16] based on
the deformation of 3D human model template. Paramet-
ric reconstruction methods have high performance without
relying on expensive computing resources. Recent works
show that it is becoming the mainstream method. Exist-
ing results have either high reconstruction accuracy or high
reconstruction speed, but usually not both.

Depth cameras can have absolute advantages in 3D static
human reconstruction tasks. The multimodal inputs enrich
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the dimension of data and reduce the influence of illumina-
tion and other factors. Additionally, the depth data obtained
by active measurement can help to reduce the difficulty
of extracting depth features. Therefore, using depth data
is expected to improve the speed performance in 3D real-
time human reconstruction system. The increased speed can
be then exchanged to improve the representation of local
details.

In this paper, we investigate a real-time 3D human body
reconstruction scheme by a single RGBD camera, based on
parametric methodology. The scheme can reconstruct rich
local details in more reasonable states with real-time speed.
The result shows that the additional depth information is
proven to accelerate the reconstruction computation. The
contributions of our work include the following aspects:

– We build a deep neural network called FBN to predict
parameters from RGBD data end-to-end. FBN pays
more attention to details and reduces the unreasonable
states of human body. To train the network, we use
Azure Kinect camera to collect the RGBD data of five
actors and build an Indoor-Human dataset.

– We propose a lightweight 3D real-time human body
reconstruction system based on parametric methodol-
ogy with a single RGBD camera.

We further show that FBN can achieve huge improve-
ment in efficiency and similar accuracy, by better employing
depth information, as compared to state-of-the-art paramet-
ric methods.

2 Related work

2.1 Non-parametric reconstructionmethods

In non-parametric reconstruction methods, Holoportion [22]
system proposed by Microsoft leads the upsurge. Holo-
portion used Conditional Random Field for foreground
segmentation and Fusion4D [7] for voxel fusion on time
series. Based on embedded deformation (ED), Fusion4D
proposed an energy equation to estimate non-rigid deforma-
tion field and proposed a fusion error correction mechanism
to search corresponding point cloud. These optimizations
adapted Fusion4D to fast human movements and topol-
ogy changes. Motion2Fusion [6] and VolumeDeform [11]
proposed after Holoportation were focused on optimizing
detail, texture and topology. Xu et al.[32] proposed Unstruc-
turedFusion, whcih employed three depth cameras to recon-
struct the whole body by online multi-camera calibration
and skeleton warping based non-rigid tracking. Unstruc-
turedFusion almost perfectly removed the dependence on
tiresome pre-calibration, reducing the difficulty of system
construction. The above methods are based on spacial model

fusion, and the key point is to find an efficient calibration
method or registration method. Another approach is tempo-
ral fusion. Yu et al.[34] proposed Function4d, which used
dynamic sliding fusion to fuse neighboring depth obser-
vations together with topology consistency. Similar works
include RobustFusion [25], POSEFusion [15] and so on.

2.2 Parametric reconstructionmethods

For the specific object such as human body, with its prior
knowledge, parametric method can greatly remove the
dependency on computing requirements and reduce the
complexity of the model representation. The process can
be divided into two steps: one is to create a 3D template
model of the human body, and the other is to control
the deformation of the template model with several key
parameters.

In recent years, SMPL(A Skinned Multi-Person Linear
Model) [17]has been widely used in the field of human
reconstruction. The method learned mixed shapes from
massive data and described the posture as a linear com-
bination of rotation matrices. As compared to LBS(Linear
Blending Skinning), SMPL is more standard, simple, real-
istic and has better generalization ability. However, it lacks
the representation of expression and gesture. The face and
hands only occupy a small part of the body, but they trans-
mit the most interactive information. Therefore, Pavlakos et
al. [23] proposed SMPL-Xmodel which paid more attention
to local details. At the same time, SMPL-X is 8 times faster
than SMPL. SMPL and SMPL-X both used low dimensional
parameters as inputs to generate a high-dimensional human
model. In this paper, we use SMPL-X as the template human
model as we expect to improve local details.

After the human model can be controlled by parameters,
the method of generating parameters needs to be designed.
SMPLify and SMPLify-X are basic methods based on
optimization given by the authors [17, 23]. Compared with
SMPLify, SMPLify-X trained a gender detector to optimize
the performance on different genders. Both methods needed
to obtain the key points of human body from OpenPose
[2], and then predicted the shape and pose parameters
through numerical fitting. However, it took more than 40
seconds for both SMPLify and SMPLify-X to process a
frame. Additionally, the two methods depend on 2D attitude
and optimization-based method, which could suffer from
the issues of local optimum. HMR [12] trained a network
that can generate 3D human body model only by 2D
annotation. The method took the back-projection of key
points as the loss, to get rid of the limitation of 2D-3D
matching data. Omran et al. [21] proposed NBF method,
inferring SMPL parameters based on bottom-up human
semantic segmentation and top-down model constraints.
ExPose proposed by Choutas et al. [23] focused more on
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the hand and face through multi-stage and back projection,
making the details more abundant.

All current methods based on parametric methods get
3D shape and pose from 2D images. The mapping from
2D to 3D is such a complex process that it requires a
great deal of computation. In this paper, we use the depth
information directly to accelerate the 3D reconstruction
process accurately.

3 System overview

Our reconstruction system is shown in Fig. 1. The entire sys-
tem consists of three main parts: data acquisition and pre-pro-
cessing, real-time 3D reconstruction and texture mapping.

3.1 Data acquisition and pre-processing

In terms of sensing equipment, we adopt a depth camera
that can output depth data together with RGB data. There
are two advantages as follows.

First, depth camera can obtain depth information directly.
Indirect methods using RGB cameras require complex
algorithms or deep neural networks, which usually consume
plenty of computing resources. If the depth data can be
obtained directly, the prediction process will naturally be
greatly simplified.

Second, the depth data is more robust. Due to uneven
illumination, the quality of RGB images is easy to decline.
Subsequently, the image contrast will bias the recognition
of the human contour. Depth data can help to reduce these
effects. ToF method used by Kinect and structured light
method used by RealSense are not insensitive to illumination,
for they both adopt infrared source to actively measure
distance. Advantageously, the reconstruction algorithm
using the depth camera can be more robust.

Combining the above two advantages, we chose the depth
camera as our sensing equipment. Specifically, we select the
Azure Kinect DK camera which uses the ToF method. Com-
pared with the RealSense D435 camera using structured
light, it has longer effective distance and lower sensitivity to
the lighting environment.

The depth image output by the camera has non-uniform
response noise, random noise and fixed noise, which is
disadvantageous to subsequent steps. To reduce the noise,
raw outputs are buffered and pre-processed before entering
to the network. In the buffering step, depth images are
smoothed temporally. Raw data is sequentially entered into
the buffer queue and the average value is output in turn. In
data pre-processing step, we use Gaussian filter to filter out
the background noise. After that, we use Poisson filter to
smooth the local concave convex of the depth image.

3.2 Real-time 3D reconstruction

For the representation of human model, we use the paramet-
ric representation method. Specifically, we choose SMPL-X.

To predict parameters from RGBD data, we build a
deep-learning network, Fast Body Net (FBN), achieving
real-time results (Fig. 2). However, for such a high-
dimensional regression problem, it’s difficult to control all
the parameters in a balanced way, especially for the hand
and face. Certain body parts occupy only a small part of the
pixels but are decisive for the expression of human model.
FBN adopts a parallel multi-branch structure, which makes
the model pay more attention to faces and hands while
maintaining the original resolution.

3.3 Texture mapping

Textures can be mapped to 3D model in two ways: per-
vertex and per-face. Per-vertex method obtains the face

Fig. 1 Real-time 3D human body reconstruction system
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Fig. 2 Given a single RGBD image, we get the pose of joint points
and use the result to extract the face and hand separately. Then we
send them to the network parallel to the global body network. Each

parallel network is weighted and fed into SMPL-X model. For the pose
parameter, we can choose to use an automatic encoder to reduce the
unreasonable output

color by interpolating and the mesh color resolution is equal
to the vertex resolution. Per-face method obtains the face
color directly from the texture and the mesh color resolution
is equal to the texture resolution. According to SMPL-X
[23], the vertex index remains unchanged during model
deformation while the face index does not. Assuming that
colors can be stored according to the vertex index, the
real-time texture can be realized only by loading a color
sequence. Therefore, we adopt per-vertex texture mapping
method and correspondingly pre-establish color sequences
according to the vertex index and texture image.

Color sequences depend on texture images which need
to be collected offline. The input RGBD data can be taken
from multiple angles. However, there will be discontinuous
textures in the overlapping areas. In order to make the
texture of the model smoother, we only collect input data
from the front and back. The complete steps are as follows:

1. Collect RGBD data of the target human from the front
and back. The resolution is recommended to be greater
than 1920x1080.

2. Predict the 3D point cloud and camera parameters by
FBN and SMPL-X.

3. Calculate the projection transformation and generate
texture image by pixel matching.

4 Fast body net

4.1 Network architecture

We use SMPL-X model for human body representation,
which includes shape β ∈ R

10, expression ψ ∈ R
10, and

pose θ ∈ R
99. The pose parameter θ includes hand pose

θh ∈ R
24 , body pose θb ∈ R

21×3, jaw pose θj ∈ R
1×3,

eye pose θe ∈ R
2×3 and global orient θg ∈ R

1×3 . The hand
pose parameter θh is reduced by PCA, otherwise it will be
θh ∈ R

30×3. SMPL-X generates vertices v and faces f as
(1), and then a 3D human mesh m can be obtained by (2).

[v, f ] = M (β, θ, ψ) (1)

m = F (v, f ) , v ∈ R
10475 (2)

In order to enrich the details, we focus the attention of
the network on the face and hand. ExPose [4] first predicted
a rough human model, and then back projected the model
onto the original image to get the local pixels of the face
and hand. We take a different approach that FBN directly
uses OpenPose [1] to get the local parts of human body.
According to the output of OpenPose O ∈ R

3×25, we
calculate the boundary points xmax , xmin, ymax , ymin in the
set of human joint points. The center c and size s of the
bounding box can be computed as:

c =
(

xmin + xmax

2
,
ymin + ymax

2

)
, (x, y) ∈ O (3)

s = γ (xmax − xmin, ymax − ymin) , (x, y) ∈ O (4)

where γ represents a magnification factor. We use the
calculated bounding box to make an affine transformation
Tp (c, s) , p ∈ [global, f ace, hand] to clip the original
RGB image I and depth image D. The same operation is
applied to the face node and hand node. Finally, we get
three RGB images Ip, p ∈ [global, f ace, hand] and three
depth images Dp, p ∈ [global, f ace, hand] containing
human body, face and hand respectively.

Ip = ST
[
I ; Tp

(
cp, sp

)]
, Dp = ST

[
D; Tp

(
cp, sp

)]
,

p ∈ [global, f ace, hand] (5)
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where ST represents spatial transformers. Compared with
ExPose, we focus on the face and hands faster without
back projection. Moreover, the network describing details is
rarely coupled to the overall network. The quality of local
details does not depend on the output of the first step, which
is more robust. FBN adopts parallel multi branch structure
that global sub-network uses Resnet50 and the other two
use Resnet18. We extract features ϕglobal ∈ R

2048 from
Iglobal , Dglobal and O. At the same time, we extract features
ϕf ace ∈ R

512 from If ace and ϕhand ∈ R
512 from Ihand .

After that, FBN uses a MLP containing 3 layers to predict
all parameters.

The output of the three sub networks is weighted and
fused to get the final output. The loss can be calculated
by a combination of parameters loss Lparams , joint loss
Ljoint and re-prejection loss Lre−project . The equations are
as follows:

L = Lparams + Ljoint + Lre−project (6)

Lparams = Lshape + Lpose + Lexpression

= ‖{β̂, θ̂ , ψ̂} − {β, θ, ψ}‖22 (7)

Ljoint =
J∑

j=1

∥∥∥X̂j − Xj

∥∥∥ (8)

where Xj represents the 2D joint position. All capped
variables represent ground-truth quantities. After the three
sub networks are trained, we stop the gradient propagation
and output the weighted results. The final output is:

[β̂, θ̂ , ψ̂] = [β̂, λgθ̂g + λhθh, ζgψ̂g + ζf ψf ] (9)

where λ denotes the pose weight between global sub-
network and hand sub-network, ζ denotes the expression
weight between global sub-network and face sub-network.

The whole pipeline is implemented through Pytorch.

4.2 Implementation details

4.2.1 Datasets

The existing 3D human body model datasets do not contain
depth image. Therefore, we establish Indoor-Human dataset
with 2500 frames of RGBD images. Indoor-Human uses
Azure Kinect DK camera as sensor equipment to collect
raw data. The depth image obtained by Azure Kinect DK
is more complete and smoother than Kinect2. In order to
verify the robustness of our model in indoor scenes, we also
adjust the indoor light intensity and collect a few samples.
Instead of providing raw data and camera parameters, we
provide aligned depth images and RGB images. After
pre-processing, the dataset can be used more widely and

conveniently. Our labels are obtained by running SMPLify-
X , and some unreasonable data trapped in local optima are
removed manually.

In addition, we use depth data to expand the dataset. We
first project the depth map into a point cloud in 3D space,
and then rotate it by plus or minus 45 degrees around the
three axes of X, Y, Z to obtain six side views from the point
cloud. In fact, we can rotate randomly from 0 to 90 degrees,
but the small angle keeps almost the same information as
the original data, while the large angle is completely out of
the view range.

The datasets generated during and/or analysed during the
current study are available from the corresponding author
on reasonable request.

4.2.2 Compression of the parameters

Based on the network, FBN can generate SMPL-X parame-
ters from RGBD data. However, due to occlusion, the whole
body will be in some unreasonable states, such as palm val-
gus and elbow joint inward. As shown in the Fig. 3, when
hands appear almost flat, the algorithm cannot recover the
true posture. We find this problem in most of the datasets
like 3DPW [18] and MPI-INF-3DHP [20]. To make the
states of the body more reasonable, we train a denoising
auto-encoder and put it at the end of FBN. In this paper,
the samples with unreasonable states are regarded as noise
samples and the clean dataset is obtained through man-
ual intervention. Although the encoder will inevitably lose
some accuracy, it filters out unreasonable states and makes
the human reconstruction more realistic. Besides, reducing
the number of parameters is also beneficial in scenarios
where parameter transmission is required.

5 Results

5.1 Qualitative and quantitative analysis of FBN

5.1.1 Evaluation dataset and evaluation metrics

The existing datasets do not contain depth data, so we
cannot apply FBN to them. Therefore, we only use Indoor-
Human dataset for comparison.

We have adopted two indicators to measure accuracy:
Mean Per-Joint Position Error (MPJPE) and Vertex-to-
Vertex (V2V). To compare the computing speed, we
calculate the average running time under the same
configuration and environment. It is worth noting that
running time here refers to all the time from inputting
the original data to rendering the final human body
model, including pre-processing, pose estimation and other
necessary processes.
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Fig. 3 Unreasonable states of
reconstruction results. (a) is the
input image. (b), (c), (d) are
different perspectives of the
model reconstructed by ExPose

Additionally, to compare with methods using SMPL
model like HMR and SPIN, we retrain a FBN version based
on SMPL. Secondly, the output parameters of ExPose are
not standard. It used the buildlayer function to build the
model which has no dimensionality reduction. We transform
the output to make a fair comparison.

All our experimental environments are: i79700k CPU,
RTX2080ti GPU, 32G RAM.

5.1.2 Experimental results and analysis

The reconstruction results of FBN are shown in the Fig. 4.
We compare HMR, SPIN, ExPose, and FBN on Indoor-
Human dataset.

Quantitative result are given in Table 1. SPIN, ExPose
and FBN have similar performance in MPJPE and V2V.
However, HMR and SPIN do not concern about face or hand
parts. So, when considering face and hand details, ExPose
and FBN have higher reconstruction accuracy. In terms of
reconstruction time, FBN and SPIN take the least time. They
are 57% faster than ExPose if Pyrender is used as the render
and 63% faster than ExPose if Open3D is used as the render.
When considering face and head details, FBN has the fastest
reconstruction speed.

From the Fig. 5, we can also make a qualitative analysis.
Compared with SPIN, ExPose fits better in body proportion
and body size. But neither of them can express the details of
the hand. FBN performs better for the local details than the
previous two methods, while maintaining the advantages of
ExPose.

After proving that FBN can be effectively applied to 3D
human reconstruction, we further conduct ablation experiments.

First, we evaluate whether sub-networks are effective
for reconstructing the details of human body. As shown in
Table 2, a single global network has the worst performance
while parallel sub-networks with or without clipping have
better performance. Additionally, if we use the result of
OpenPose as a mask to clip the hand and face parts, the
details are slightly improved. Resnet18 as feature extractor
in the sub-network is not so deep that clipping will help it
more intensively focus on local parts.

Another ablation experiment is about the denoising auto-
encode added at the end of the network. As shown in Table 3,
the accuracy is reduced a little if the automatic encoder is
used. This is due to the correction of the unreasonable body
states. On the other hand, the results show that the total size
of the parameters has decreased by 35.7%. The reduction
is beneficial in scenarios where parameter transmission is
required.

5.2 Texture acquisition and texturemapping

As shown in Fig. 6, the texture we generate is of great
fidelity despite that some small parts outside the camera’s
view are lost. This can be attributed to the method that we
get the depth data directly from the depth camera rather
than indirectly calculated from RGB images. This method
is consistent with the whole reconstruction system.

In Fig. 7, we show the reconstruction results of different
actors’ textures with different shapes and poses.
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Fig. 4 Parameter prediction of
human model and real-time
reconstruction results

Table 1 Comparison of
algorithms in Indoor-Human
dataset

MPJPE (mm) V2V (mm) Time with Pyrender (s) Time with Open3D (s)

HMR[12] 80.1 119.2 0.28 0.14

SPIN[13] 59.2 110.8 0.21 0.07

ExPose[4] 61.5 96.5 0.33 0.19

FBN (Ours) 60.3 97.8 0.21 0.07

Fig. 5 Performance comparison
of different methods. (a) is the
input. (b), (c), (d) and (e) are
Results of SPIN, ExPose, FBN
and textured FBN
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Table 2 Comparison made
with parallel sub-networks and
cropped face and hand

MPJPE (mm) V2V (mm) Time with Pyrender (s) Time with Open3D (s)

Not parallel 89.1 130.2 0.19 0.05

Parallel only 62.5 103.8 0.21 0.07

Parallel & clip 60.3 97.8 0.21 0.07

Table 3 Comparison made
with compressed parameters MPJPE (mm) V2V (mm) Size of parameters (KB/frame)

With compression 62.0 106.1 2.92

Without compression 60.3 97.8 4.54

Fig. 6 Texture acquisition and
texture mapping. (a) and (b) are
inputs. (c) and (d) map textures
to the human model

Fig. 7 Reconstruction results of
different actions and textures

8742 Y. Lu et al.



Fig. 8 The reconstruction results of parametric and non-parametric methods are compared. (a), (b), (c) and (d) are the reconstruction results of
SurfelWarp [10]. (e), (f), (g) and (h) are the reconstruction results of our method

5.3 Comparison with non-parametric methods using
RGBD images

We compare our method with SurfelWarp [10], a non-
parametric human reconstruction method using a single
RGBD camera as the sensor equipment. The comparison
result is shown in Fig. 8. SurfelWarp has high fidelity, but
the point cloud is rough. Besides, it can only reconstruct
the parts in the camera’s view. In contrast, our system
can robustly reconstruct an unbroken human body with
smooth skin even if some parts of the body are out of
camera’s view. In terms of efficiency, our system takes only
0.21 seconds to run a frame, while SurfelWarp takes more
than 1 second. In addition, our system can deploy FBN
on the server side and only put the rendering part on the
client side. This CS architecture makes client only need

very few computing resources. However, SurfelWarp is
difficult to separate the architecture due to direct process of
point cloud.

5.4 Integration with static scenes

The above works realize the real-time reconstruction with a
single RGBD camera. To be more realistic, the 3D human
models can be integrated with static scene models like
laboratory or bedroom. We keep the mesh of the static
scene unchanged, and dynamically update human mesh
nodes by identification. The renderer we use in this work
is Pyrender, which is a pure Python library for physically-
based rendering and visualization.

We use BundleFusion [5] to reconstruct the house.
Results of the fusion is shown in Fig. 9.

Fig. 9 Dynamically changing human model placed in a static scene
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6 Conclusion

In this paper, we investigate a real-time 3D human body
reconstruction scheme by a single RGBD camera, based
on parametric methodology. Under the condition of recon-
structing hand and face details, our method achieves the
fastest reconstruction speed. The use of the depth camera
allows us to take 3D information directly and the additional
depth information is proven to accelerate the reconstruction
computation. In the future, we hope to improve accuracy
and efficiency by using higher dimensional semantic infor-
mation between frames.

The real-time 3D representation of non-rigid objects
such as humans and animals is considered to be one
of the most difficult tasks. Such a lightweight real-time
reconstruction system of human body will be of great social
and commercial value. As such, in the future, people can
shuttle freely between the real world and the virtual world,
e.g., study, work, make friends, shop and travel in the
metaverse.
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