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Abstract
Software repositories are increasingly essential to support the management of typical artifacts building up projects, including
source code, documentation, and bug reports. GitHub is at the forefront of this kind of platforms, providing developer
with a reservoir of code contained in more than 28M repositories. To help developers find the right artifacts, GitHub uses
topics, which are short texts assigned to the stored artifacts. However, assigning inappropriate topics to a repository might
hamper its popularity and reachability. In our previous work, we implemented MNBN and TopFilter to recommend GitH-
ub topics. MNBN exploits a stochastic network to predict topics, while TopFilter relies on a syntactic-based function to
recommend topics. In this paper, we extend our work by building HybridRec, a recommender system based on stochastic
and collaborative-filtering techniques to generate more relevant topics. To deal with unbalanced datasets, we employ a
Complement Naı̈ve Bayesian Network (CNBN). Furthermore, we apply a preprocessing phase to clean and refine the input
data before feeding the recommendation engine. An empirical evaluation demonstrates that HybridRec outperforms three
state-of-the-art baselines, obtaining a better performance with respect to various metrics. We conclude that the conceived
framework can be used to help developers increase their projects’ visibility.

Keywords Recommender systems · GitHub tagging · Mining software repositories · Collaborative filtering · Bayesian
network

1 Introduction

Over the last decade, open-source software repositories have
gained a prominent role in storing and managing software
projects. Different kinds of artifacts, including source code,
mailing lists, bug tracking systems, and documentation, are
stored and managed homogeneously employing powerful
technologies. In such a context, GitHub is playing the role of
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forefront platform managing more than 190M repositories,
with more than 28M of them being available to the public.1

The platform offers developers the possibility to classify
the stored artifacts by means of topics, i.e., it introduced
the possibility of labeling the stored repositories only in
2017 to help developers increase the reachability of their
repositories. The assigned labels allow users to characterize
projects, e.g., with respect to the provided functionalities
and employed technologies.

However, assigning wrong labels to a given repository
can compromise its popularity [3], and even worse, prevent
developers from finding projects that they might be willing
to contribute. In this respect, we come across the following
motivating question:

“Which label should I use to annotate this new project
managed by means of the employed OSS repository?”

Repo-topix [10] is a mechanism based on information
retrieval techniques, and it has been developed and inte-
grated into GitHub to recommend topics. In an attempt to
improve repo-topix, e.g., in terms of the variety of the sug-
gested topics, we proposed MNBN [8] as a novel approach
based on a Multinomial Naı̈ve Bayesian network to rec-
ommend relevant topics starting from the textual content,

1The numbers are collected at the time of writing.
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i.e., README files, of the repository of interest. However,
such a tool can recommend only featured topics, i.e., a
set of topics, which are curated by GitHub.2 Subsequently,
we successfully developed another approach, called Top-
Filter [7], that relies on a collaborative filtering technique
to extend the recommendation capabilities of MNBN, tak-
ing into consideration non-featured topics. Given an initial
set of topics already assigned to the GitHub repository of
interest, a project-topic matrix is created starting from a
graph-based format that encodes the reciprocal relationships
between projects and relationships. Then, the underpinning
recommendation algorithm relies on a syntactic similarity
function based on featured vectors to recommend the most
similar topics.

In our recent work [7], we show that the combined
use of MNBN and TopFilter (named TopFilter+ hereafter3)
can improve the results obtained by MNBN. However,
according to further investigations, there is still room for
improvement for TopFilter+. In particular, it is necessary
to deal with unbalanced datasets (as typically occur in
real contexts) as well as to enhance the quality of the
recommended items. In this work, we further advance the
existing tools by proposing a hybrid recommender system,
named HybridRec, which retrieves topics for repositories
using a combination of stochastic and collaborative filtering
recommendation strategies (thereby yielding the name
hybrid), being capable of dealing with unbalanced and
heterogeneous datasets. To enable both techniques we select
the most used artifacts4 by relying on popular topics. A
crucial step lies in the preprocessing phase of the dataset
and topics, which dramatically differs from the one set
in place for the GitHub repositories. In particular, the
type of available metadata for each project can affect the
recommendation outcomes as well as the efficiency of the
underpinning techniques.

To evaluate HybridRec, we perform a series of experi-
ments, exploiting real-world datasets collected from GitH-
ub. Moreover, we compare HybridRec with MNBN [8],
TopFilter, and TopFilter+ [7], which can be considered as
among state-of-the-art approaches to the recommendation
of topics for GitHub repositories. The experimental results
show that HybridRec performs better than the baselines,
recommending highly relevant topics in most cases. In this
sense, the contributions of this paper are summarized as
follows:

2https://github.com/topics
3Originally, there was no specific name for the combined use of
MNBN and TopFilter. In the scope of this paper, we name the
combination as TopFilter+ to facilitate the presentation.
4For the sake of the presentation, the terms “project,” “repository,” and
“artifact” are used interchangeably throughout the paper.

– A comprehensive discussion on open challenges in
retrieving relevant information from the GitHub eco-
system;

– A hybrid recommender system, called HybridRec, built
on top of (i) a Complement Naı̈ve Bayesian Network
[23], (ii) a collaborative-filtering technique, and (iii)
a rule-based preprocessing phase to suggest topics for
GitHub repositories;

– An empirical study using real-world datasets col-
lected from GitHub and MVN Repository, comparing
HybridRec with three state-of-the-art baselines, i.e.,
MNBN [8], TopFilter, and TopFilter+ [7];

– The tools and datasets developed and curated through
our work have been published to foster future research.5

The paper is structured into the following sections.
In Section 2, we motivate the problem addressed in this
paper and the research objective we aimed to achieve. The
conceived approach is presented and evaluated in Section 3
and Section 4, respectively. Afterward, the obtained results
are quantitatively and qualitatively analyzed in Section 5.
Next, we discuss the probable threats to the validity of the
performed experiments in Section 6, while the related work
is reviewed in Section 7. Finally, we draw some perspective
work and conclude the paper in Section 8.

2 Background andmotivation

This section provides an introduction to the importance of
topics in GitHub. We identify several challenges that arise
during the mining process of the ecosystem. The research
problem addressed in this paper is then introduced.

2.1 Problem statement

Software developers use open-source software (OSS) repos-
itories to publish and disseminate their work. GitHub is
amongst the most popular platforms that offer open envi-
ronments where developers can share their code and inter-
act with each other. To assist developers in approaching
projects of their interest, GitHub provides users with tools
and techniques that help narrow down the search scope
and increase the visibility of its projects. In particular, to
characterize the stored artifacts, GitHub leverages featured
topics,6 i.e., a list of the most popular and active top-
ics, which are periodically monitored and updated. Such
a public list indicates the community’s trend in terms of
the most used topics. Developers have manually assigned

5https://github.com/MDEGroup/HybridRec
6https://github.com/topics
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Fig. 1 The longclaw repository
from GitHub with different
topics

GitHub topics according to their experience as well as to
the content of the repositories at hand. Nevertheless, topics
assigned in such a way might be inaccurate or repre-
sent wrong concepts, thus compromising the visibilities of
projects.

Figure 1 represents an explanatory example consisting
of the longclaw repository,7 which implements extensions
of Wagtail CMS8 to enable the development of typical e-
commerce functionalities. By looking at the list of topics,
users can easily understand that the project employs
django, a python web framework. Though the given topics
characterize the repository’s features, some of them might
be considered redundant, e.g., python3, python-2, and
wagtail-cms. Moreover, only three topics are considered to
be featured as they are given in Table 1.

The example in Fig. 1 shows that on the one hand, user-
specified topics are usually more extensive than the featured
ones. On the other hand, two different topics can express
the same concept, and a larger set of topics could affect the
prediction accuracy of automatic approaches that might rely
on such data.

Summary. Topics are an effective means of summarizing the
main features of a GitHub repository. Furthermore, the proper
use of topics facilitates the searchability and discoverability of
different items. Thus, there is the need for techniques and tools
to automatically generate topics to prevent them from being
misleadingly/wrongly established and not correctly reflecting the
contents of the considered projects.

2.2 Challenges in mining the GitHub ecosystem

According to existing work [5, 15], extracting valuable data
from GitHub is a daunting task and exhibits several pitfalls.
We identify the following challenges to be undertaken to
conceive the desired recommender system:

7https://github.com/JamesRamm/longclaw
8https://github.com/wagtail/wagtail

C1: Data redundancy. GitHub topics are specified (or even
created) by users to classify their repositories. However,
this manual process results in inaccurate labeling in
some situations. For instance, a user can define both
python and python-3 as topics for its repository, which are
redundant. Refining the list of topics by removing such
kinds of topics can improve the discoverability of the
repository;

C2: Structure of available metadata. Concerning the avail-
able sources of knowledge, a standard GitHub project
is described by one or more README file(s), a brief
description, and possibly by a Wiki. Furthermore, there
are different kinds of accessible metadata, e.g., commits,
issues, forks, and stars. Though GitHub provides publicly
access in most of the cases, extracting valuable infor-
mation from the data mentioned above requires a set of
tailored preprocessing techniques;

C3: Popularity mechanisms. GitHub provides users with
the star and forking mechanisms to assess the popularity
of a given repository [3, 14]. The former is used to
improve the visibility of a project. The latter is typically
employed when a developer wants to “freely experiment
with changes without affecting the original project.”9

Moreover, GitHub groups the most popular projects
under a curated list, i.e., featured topics. In such a
way, the popularity of a repository helps the mining
process filter out unuseful artifacts, e.g., toy and dummy
projects. Though many software artifact repositories
provide popularity mechanisms, there is no uniform way
to define the popularity of an artifact. For instance, GitH-
ub includes many elements, i.e., star, forking, number
of committers, etc., to assess the repository popularity,
while Maven defines the popularity of an artifact by
relying on the number of usages, i.e., when another
project employs the artifact;

9https://docs.github.com/en/free-pro-team@latest/github/
getting-started-with-github/fork-a-repo
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Table 1 The longclaw repository topics

Topics GitHub featured topics

python, django, e-commerce, shop, python, django, wagtail

python3, python-2, wagtail, wagtail-cms

C4: Crawling and Data Dump. The availability of input
data is a crucial aspect of the recommendation process.
To gather them from a platform that stores OSS projects
we can (i) use a crawler or (ii) rely on a data dump
stored in some database format. Concerning the crawling
activity, GitHub exposes its API to obtain all needed data
by exploiting different libraries, e.g., JGit,10 PyGitHub,11

to name a few. Furthermore, GHTorrent [11] offers a
regularly updated data dump of the entire platform in
several formats, e.g., SQL, and MongoDB. It is worth
noting that GHTorrent does not include the actual content
of each repository, but only stores metadata;

C5: Configurations of the underpinning recommender
systems. Depending on the features of the considered
OSS ecosystem, the employed recommendation algo-
rithm must be adapted accordingly by changing its
internal configurations. Such a phase can rely on differ-
ent parameters that vary according to the nature of the
used algorithms.

Research objective. Considering the need mentioned above and
the corresponding challenges, we propose a workable solution
to the recommendation of topics to GitHub repositories. We
conceptualize a hybrid use of a complement naı̈ve bayesian
network and a collaborative-filtering technique.

3 Proposed approach

In this section, we present in detail HybridRec, the proposed
recommender system to provide topics for GitHub reposi-
tories. HybridRec parses textual contents, e.g., README
files, Wiki contents, and commit messages collected from
GitHub, and employs a Complement Naı̈ve Bayesian Net-
work [23], or CNBN for short, to extract preliminary topics.
The predicted topics are then fed as input to retrieve addi-
tional relevant topics by means of a collaborative-filtering
technique. The outcome of this phase is combined with the
preliminary topics to yield the final recommendations.

Figure 2 illustrates the architecture of HybridRec, which
consists of two main components, namely (i) ST: Probabil-
ity based recommendation using a stochastic network [23];

10https://www.eclipse.org/jgit/
11https://pygithub.readthedocs.io/en/latest/index.html

and (ii) CF: Collaborative-filtering based recommenda-
tion [21, 27]. The following subsections describe these
components in greater detail.

3.1 ST: The stochastic-based component

The architecture of the first component is depicted in Fig. 3.
Data is crawled from GitHub and then vectorized by the
TF-IDF encoding component. The obtained data is used to
feed the CNBN component, which returns a set of most
probable topics. By resembling the choice made in the
original work [8], we consider only the featured topics, i.e.,
the most popular according to GitHub’s statistics. In such
a way, we can train CNBN with the projects labeled with
featured topics that are representative in terms of coverage.
Furthermore, various NLP techniques are applied to both
predicted and actual topics to improve the quality of the
outcomes, as we explain as follows.

3.1.1 TF-IDF encoding

Given a repository, this module vectorizes the textual
content of its artifact descriptions, using the scikit-learn
library12 that provides all the functionalities to encode
textual content by finding the most representative terms.
Encoder computes the inverse document-frequency using
the following formula:

idf (t) = log
1 + n

1 + df (t)
+ 1 (1)

where n is the total number of documents in the document
set; df(t) is the number of documents in the document set
that contain term t. A previous study [16] showed that
applying such a weighting scheme should possibly enhance
the quality of predicted items of the Bayesian classifier.
Thus, we decide to apply this additional preprocessing step
to improve the quality of the recommended topics.

3.1.2 CNBN-based prediction

In our previous work [8], a Multinomial Naı̈ve Bayesian
network (MNBN) has been used to extract topics, and the
results were encouraging. In this paper, in an attempt to
improve the recommendation capability as well as to deal
better with unbalanced datasets, we adopt an enhanced
version of the Multinomial Naı̈ve Bayesian Network called
Complement Naı̈ve Bayesian Network to compute the
predictions. The term “naı̈ve” refers to the assumption
that all the features are conditionally independent. In other

12https://scikit-learn.org/stable/modules/generated/sklearn.
feature extraction.text.TfidfVectorizer.html
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Fig. 2 Overview of the
HybridRec approach

words, the network augments its prediction capabilities
when each element has weak or no ties with the others.
This model has been successfully employed to classify
multinomial distributed data. Though MNBN and CNBN
are similar from the structural point of view, their
underpinning mechanisms used to compute the outcomes
are completely different. In particular, MNBN employs a
stochastic model that predicts a certain class c by relying
on its training data. In contrast, CNBN makes use of the
training data coming from all classes except c. In such
a way, the performed estimation is more effective as the
model uses a more even amount of training data per class.
To be concrete, CNBN computes predictions by means of
the following formula.13

θ̂ci =
αi + ∑

j :yj �=c dij

α + ∑
j :yj �=c

∑
k dkj

wci = log θ̂ci

wci = wci
∑

j |wcj | (2)

where the summations are over all documents j not in class
c, dij is the tf-idf value of term i in document j and ai is a
smoothing parameter used to compute the final weight wci .

This mechanism impacts positively on the computation
of the weights by using the same input data. In fact,
using CNBN instead of MNBN leads to better accuracy
considering unbalanced datasets [23]. After this phase,
CNBN produces a list of top-N topics according to their
probability.

13We made use of the Python implementation of CNBN embedded
in the scikit-learn library (https://scikit-learn.org/stable/modules/
generated/sklearn.naive bayes.ComplementNB.html).

3.1.3 Post natural language processing

The following lightweight post-processing steps are per-
formed on the obtained topics, with the aim of further
enhancing the prediction capabilities:

– Dash removal: All the dash occurrences in each topics
are removed. For instance, the build-system topics
becomes buildsystem. In this way, we enlarge the
possible set of recommended items;

– Stemming: Using Porter’s stemmer implementation
provided by the nltk language processing library,14 we
squeeze each term to its root by cutting the suffix. Thus,
terms such as monitoring or testing collapse to monitor
and test, respectively.

The topics retrieved by ST are fed as input for the
collaborative-filtering component to further refine the rec-
ommendation results, as we explain in detail in the next
subsection.

3.2 CF: The collaborative filtering-based component

Though CNBN can recommend relevant topics by using
textual contents, it provides only featured topics, i.e., a
set of topics curated by GitHub. Therefore, it is necessary
to have machinery to provide also non-featured topics.
Being inspired by the TopFilter system [7], in this work
we further extend the recommendation capabilities of the
ST component to non-featured topics, using a collaborative-
filtering recommendation engine.

Figure 4 provides an overview of the CF component.
The Preprocessing module is used to obtain a filtered
dataset. Given an initial set of topics already assigned to
the repository of interest, Data Encoder encodes it in
a graph-based structure to represent the mutual relationships

14https://www.nltk.org/api/nltk.stem.html
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Fig. 3 The ST component

between repositories and topics. From this, a project-
topic matrix is created by following the typical user-item
structure used in existing collaborative filtering applica-
tions [27]. Then, Similarity Calculator computes
similarities among all the considered artifacts. Finally, the
Recommendation Engine module retrieves a ranked
list of top-N topics that are suggested by using user-
based collaborative filtering technique [35]. The functional-
ities and preprocessing techniques implemented in CF are
described in detail as follows.

3.2.1 TopFilter preprocessing

We adapt semantic mapping rules proposed in a recent
work [13], revise them as well as propose our own rules,
with the aim of enhancing the quality of the retrieved topics.
These rules have been manually defined by building direct
relationships among the terms. For instance, topics firefox
and chrome are rooted to a common term, i.e., browser. In
particular, we adopt two types of rules, i.e., Aggregating
Rewriting Rules (ARR)s and Extending Rewriting Rules
(ERR)s. The former are used to restrict the dictionary
of possible topics by rewriting the topics in a different
manner, e.g., exporter and exporting are aggregated
in export that preserves their semantic. Meanwhile,
the latter provide additional information about the topic,
e.g., the repository containing the sysmodule topic are
augmented by adding the system and module topics.
Given a repository, ERRs extend the list of topic by adding
new ones. Specifically, we perform the following ordered
preprocessing steps:

1. [ARR - version removal] All the substrings referring to
versions are removed from the topics. We use the fol-
lowing regular expression v[ndn.]+ to match versions.
Then, the identified string matches are removed from

the topics. For instance, this rule allows us to aggregate
terms like riot-api-v4 and riot-api-v3 to the
common term riot-api-;

2. [ARR - extra digits removal] Punctuation digits,
non-English and non-ASCII characters at the end of
the topics are filtered out. This rule enables us to
match topics that are very similar apart from non
alphabetic chars. For instance, using this rule will boil
python3, python2 and python down to the final
term python;

3. [ERR - abbreviation expansion] Popular software
engineering and computer science related abbreviations
and acronyms, e.g., lib, config, DB, doc, are rewritten
with their original form, e.g., library, configuration,
database, document.

4. [ERR - split frequent topics] By computing the
frequency of tokens, we split those that are made
from the most frequent topics. For example, java-
script-tutorial is split into two separate terms,
i.e., javascript and tutorial;

5. [ERR - alias substitution] Relying on the topic aliases
recently proposed [13], we transform topics according
the identified aliases. As an example, angularjs is
converted to angular following this rule;

6. [ERR - split tokens] Tokens are split based on
the snake case (terms separated by underscores),
camelCase (terms separated with a single capitalized
letters) or kebab-case (terms separated by hyphens)
naming conventions. For instance, springDemo is
split into spring and demo;

7. [ARR - nlp process] Stop words are removed, then NLP
stemming and lemmatization methods are applied
on the topics. For instance, programming-in-
haskell becomes program and haskell topics;

8. [ARR - infrequent topics removal] Finally, topics with
a frequency of less than a given threshold are removed.
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Fig. 4 The CF component

3.2.2 Data encoder

This component represents the relationships between
projects and topics in a matrix, whose rows and columns
represent all the projects and all the corresponding topics.
Thus, the cell (i, j) is set to 1 if the artifact in the ith row
is labeled with the topic in the jth column, 0 otherwise. The
matrix is eventually constructed by preprocessing raw topics
with the same NLP techniques used in MNBN to filter out
possible biased terms (see Section 3.1.2).

To illustrate how Data Encoder works, we consider
a set of four GitHub repositories P = {p1, p2, p3, p4}
together with a set of topics T = {t1 = junit; t2 = testing; t3
= specs; t4 = module; t5 = mocking, t6 = mock}. Moreover,
the repositories-topics inclusion relationships is denoted as
�. A parsing of the projects reveals the following inclusions:
p1 � t1, t2, t6; p2 � t1, t3; p3 � t1, t3, t4, t5; p4 �
t1, t2, t4, t5. After the NLP normalization steps, t5 and t6
collapse on the same term which is named as t6. The final
project-topic matrix is shown in Table 2.

Table 2 The artifact-topic matrix for the example

t1 t2 t3 t4 t5

p1 1 1 0 1 1

p2 0 1 0 1 1

p3 0 1 1 0 0

p4 0 1 0 0 1

3.2.3 Similarity calculator

Given the encoded data, this module computes the similarity
among the projects by considering the mutual relationships.
Two nodes in a graph are considered to be similar if they
share the same neighbours by considering their edges. We
represent a set of projects and their labels in a graph,
so as to calculate the similarities among the projects. For
instance, Fig. 5 depicts the graph-based representation of
the project-topic matrix in Table 2.

Considering a project p that has a set of neighbor nodes
(t1, t2,.., tl), the features of p are represented by a vector φ =
(φ1, φ2, .., φl), with φi being the weight of node ti computed

Fig. 5 Graph representation for repositories and topics

9714



HybridRec: A recommender system for tagging GitHub repositories

as the term-frequency inverse document frequency function
as follows: φi = fti × log(|P | × a−1

ti
), where fti is the

number of occurrences of ti with respect to p, it can be
either 0 and 1. |P | is the total number of considered projects;
ati is the number of projects connecting to ti via correspond-
ing edges. Intuitively, the similarity between two projects
p and q with their corresponding feature vectors φ =
{φi}i=1,..,l and ω = {ωj }j=1,..,m is computed as the cosine
of the angle between the two vectors as given below.

sim(p, q) =
∑n

t=1 φt × ωt
√∑n

t=1(φt )2 ×
√∑n

t=1(ωt )2
(3)

where n is the cardinality of the union of topics by p and q.

3.2.4 Recommendation engine

Given an input project p, and an initial set of related topics
decided by the developer, the inclusion of additional topics
can be predicted from the projects that are similar to p.
The collaborative-filtering recommender works based on
the assumption that “if projects share some topics, then they
will probably share additional topics.” In other words, it
predicts topics’ presence by means of those collected from
the top-k similar projects using the following formula [21]:

rp,t = rp +
∑

q∈topsim(p)(rq,t − rq) · sim(p, q)
∑

q∈topsim(p) sim(p, q)
(4)

where rp and rq are the mean of the ratings of p and q,
respectively; q belongs to the set of top-k most similar
projects to p, denoted as topsim(p); sim(p, q) is the
similarity between the active project and a similar project q,
and it is computed using (3).

The next sections present the experiments performed to
evaluate HybridRec as well as to compare it with MNBN,
TopFilter and TopFilter+.

4 Evaluation

This section describes the process conducted to study the
performance of HybridRec. In particular, three research
questions are presented in Section 4.1 to address different
aspects of the quantitative and qualitative evaluations. After-
ward, an informative description of the datasets exploited in
the evaluation is given in Section 4.2. Sections 4.3 and 4.4
describe the evaluation metrics and process, respectively.

To facilitate future research, we made available the
HybridRec tool together with the related data in GitHub.15

15https://github.com/MDEGroup/HybridRec

4.1 Research questions

We study the performance of our proposed approach by
answering the following research questions:

– RQ1: How does HybridRec perform compared to
TopFilter+? In our previous work [7], TopFilter+ was
used to predict topics for GitHub repositories, obtaining
promising results. HybridRec has been conceptualized
following the same line of reasoning and implementing
various boosting mechanisms. This research question
investigates the impact of the enhancement on the over-
all prediction performance by comparing HybridRec
with TopFilter+;

– RQ2: In comparison to MNBN, does CNBN contribute
to a better HybridRec performance? We compare
the recommendation capability of the two considered
stochastic networks, i.e., MNBN and CNBN, using an
unbalanced dataset. This aims to find out the factors that
contribute to gain in the prediction performance;

– RQ3: How do the preprocessing steps impact on the
HybridRec performance? We investigate the impact
of the preprocessing steps on the collaborative-filtering
component by experimenting with both preprocessed
and raw datasets;

– RQ4: What are the key differences between GitHub and
MVN Repository, and how do they impact on the whole
HybridRec recommendation process? GitHub projects
available on MVN Repository16 are characterized by
different features as well as metadata; we investigate
to which extent such varieties could affect the mining
process and the prediction capabilities of HybridRec.

4.2 Data extraction

To answer the four research questions, we curate four
different datasets, namely D1, D3, D2, and DM as shown in
Table 3 and described as follows.

– D1 is the original dataset already used in our previous
work [7, 8] consisting of 11,694 GitHub repositories
with 19,337 topics;

– D2: As discussed in our previous work [7], infrequent
topics negatively affect the prediction outcomes. In this
way, we removed infrequent elements from the dataset
to analyze their impacts on the overall recommendation
phase. We firstly filtered the initial set of topics using
their frequencies counted on the entire GitHub dataset.
Afterward, topics that occur in less than 20 repositories
were removed, obtaining D2 with 6,253 repositories and
455 topics;

16https://mvnrepository.com/

9715

https://github.com/MDEGroup/HybridRec
https://mvnrepository.com/


J. Di Rocco et al.

Table 3 Datasets features

D1 D2 D3 DM

# of artifacts 11,694 6,253 5,620 2,932

# of topics 19,337 455 6,442 489

Avg. number of topics 8.24 6.70 8.60 3.23

Avg. frequency of topics 16.13 42.10 29.90 36.5

– D3: To evaluate the impact of the preprocessing steps,
we created the third dataset by applying the preprocess-
ing rules presented in Section 3.2.1. The resulting D3

dataset consists of 5,620 repositories labeled with 6,442
topics.

– DM : To evaluate the performance of HybridRec on a
different repository of artifacts, we collected a set of
2,932 unique projects from MVN Repository Repos-
itory using Beautiful Soup,17 a well-founded Python
scraping library. Tags in MVN Repository are well-
maintained as they are not freely assigned by developers
but by a central authority once artifacts have been made
available on the platform. The DM dataset contains
the most popular tags belonging to the top categories
curated list.

4.3 Metrics

In this work, success rate, precision, recall, top rank, and
catalog coverage are employed to study the considered
systems, as these metrics have been widely exploited by
related research [21, 24]. First, the following notations are
introduced:

– t is the frequency cut-off value of input labels, i.e., all
topics that occur less than t times are removed from the
dataset;

– τ is the number of topics fed as input to TopFilter;
– N corresponds to the cut-off value for the ranked list of

recommended items;
– k specifies the number of top-similar neighbor projects

TopFilter incorporated to predict topics;
– GT(p) is defined as a half of the extracted topics for a

testing project p using as ground-truth data;
– RECN(p) is the top-N suggested topics sorted in a

descending order;
– a recommended topic rt to a repository p is marked as a

match if rt ∈ REC(p);
– matchN(p) is the set of items in RECN(p) that match

with those in GT(p) for repository p.
– T is the set of all the available topics.

17https://www.crummy.com/software/BeautifulSoup/

Using the aforementioned notations, the success rate,
accuracy and coverage metrics are defined as follows.

Success rate@N Given a set of testing projects P, SR@N is
defined as the fraction of projects having at least a matched
topic among the total number of queries.

success rate@N = countp∈P (|matchN(p)| > 0)

|P | (5)

Accuracy Given a list of top-N libraries, precision and recall
are utilized to measure the accuracy of the recommendation
results. In particular, precision is the ratio of the top-
N recommended topics found in the ground-truth data,
whereas recall is the ratio of the ground-truth topics
belonging to the N recommended items [6]:

P @N = |matchN(p)|
N

(6)

R@N = |matchN(p)|
|GT (p)| (7)

Top rank It measures the percentage of the first top element
in the user’s topics:

T op rank = TpRank(r)

|R| × 100% (8)

where TpRank(r) returns 1 if the first predicted element
belongs to GT(p), 0 otherwise.

Catalog coverage Given the set of projects, we compare
the number of recommended topics with the global number
of the available ones. This metric measures the suitability
of the delivered topics considering all the possible set of
values.

coverage@N =
∣
∣∪p∈P RECN(p)

∣
∣

|T | (9)

4.4 Evaluation process

We use the ten-fold cross-validation technique [17] to
analyze the performance of our proposed approach.
Figure 6 depicts the evaluation process consisting of three
consecutive steps, i.e., Data Preparation, Recommendation
Production, and Outcome Evaluation, which are explained
as follows.

Data preparation This phase is conducted to collect repos-
itories from GitHub that match the requirements defined
in previous section during the Data collection step.
The dataset is then split into a training and a testing set
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Fig. 6 Evaluation process

using Split ten-fold. Since the recommender sys-
tems are different in terms of input data, i.e., CNBN requires
README files as input and training data, whilst HybridRec
uses a set of assigned topics as input and for training, testing
and training sets need to be specifically parsed for each indi-
vidual approach. The Split labels activity simulates
a real development scenario when a developer has already
assigned some topics to her repository, and waits for rec-
ommendations, i.e., Query labels. For instance, given
a GitHub repository and its topics, we fed the CNBN com-
ponent using the repository README file annotated with
the corresponding topics. Meanwhile, the testing data rep-
resent unlabeled README files that need to be categorized
by the network. Contrariwise, TopFilter requires only train-
ing topics and an initial set of labels extracted from the input
repository, namely Query labels since the underpin-
ning engine makes use of a collaborative filtering technique
that suffers from the cold start problem.

Recommendation production To enable the evaluation of
HybridRec, we extracted a part of the topics for each testing
project, resulting in the ground-truth data. The remaining
part is used as a query to produce recommendations. We
parsed and encoded text files in vectors using the TF-IDF
weighting scheme to provide input to CNBN.

Outcome evaluation We evaluate HybridRec and compare
it with MNBN, TopFilter, and TopFilter+, analyzing the
recommendation results by comparing them with those
stored as ground-truth data to compute the quality metrics,
i.e., Success rate, Precision, Recall, Top rank, and Catalog
coverage.

5 Results and discussion

In this section, we study the performance of our proposed
approach by answering the research questions presented
Section 4.1. First, Section 5.1 takes a concrete example to
illustrate how TopFilter+ and HybridRec recommend topics
to a repository. Afterward, Sections 5.2 and 5.3 report and
analyze the experimental results.

5.1 Explanatory example

Before answering the research questions, we illustrate the
recommendations provided by TopFilter+ and HybridRec
through a running example. As shown in Table 4, the
maintainers of the repository markdown-viewer18 labeled it

18https://github.com/simov/markdown-viewer
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Table 4 Recommendation results for the markdown-viewer repository (topics matching with ground-truth data are reported in bold)

Original topics (D2) Freq. (D2) Processed topics (D3) Freq. (D3) Rank TopFilter+ HybridRec

javascript 865 javascript 884 1 markdown markdown

chrome-extension 69 chrome 123 2 firefox emoji

markdown 105 markdown 123 3 sass browser

firefox 65 firefox 68 4 vim chrome

chrome 103 extension 38 5 github-api emacs

firefox-addon 29 viewer 34 6 c html

firefox-extension 17 addon 38 7 editor javascript

browser-extension 13 browser 220 8 javascript extension

markdown-viewer 4 9 html firefox

10 vue mozilla

11 document privacy

12 react safari

13 android golang

14 git opera

15 nodejs addon

16 library python

17 emoji editor

18 web react

19 python secure

20 book latex

with nine labels as listed on the Original topics column.
The column Processed topics, shows the outcomes obtained
from the preprocessing step on the original topics. The last
two columns report the ranked recommendations provided
by TopFilter+ and HybridRec.

Moreover, for each topic, Table 4 lists the corresponding
frequencies over the D2 and D3 datasets. For instance, the
split token rule (see Section 3.2.1) rewrites chrome-
extension as chrome and extension, while the alias
substitution rule generates browser from chrome and
firefox. In other words, the rewriting rules refine the mined
topics to generate more exhaustive and coherent ones.
For instance, it is evident that firefox-extension, chrome-
extension, and browser-extension can be better represented
by their corresponding short forms: browser, firefox, chrome
and extension. By looking to the original topics and the
preprocessed ones, we can see that the semantics of the
topics are preserved but their frequencies are increased.
TopFilter+ and HybridRec return as output a ranked list of
items, and we take the first top-20 topics, and match them
with the ground-truth data. It is evident that HybridRec
provides more matched items compared to TopFilter+. In
the following experiments we show that the preprocessing
steps reduce the usage of different terms that have a very
close semantics and increase the topic frequency.

The values of the considered quality metrics, i.e., success
rate, precision, recall, top rank, and catalog coverage, reported

in the next subsections are obtained by calculating their aver-
age values on all the folds from the cross-validation process.

5.2 RQ1: How does HybridRec perform compared to
TopFilter+?

We compare HybridRec with TopFilter+ on all the consid-
ered datasets, i.e., D1, D2, and D3. Given a testing project
p, a certain number of topics τ is used as input, and the
remaining ones are saved as ground truth data GT(p). In our
experiments, τ is always considered half of the number of
topics already assigned to the project under analysis, and the
number of neighbor projects k is set to 20. This was identi-
fied as the configuration that brings the best performance to
TopFilter+ [7]. Moreover, we try with different values of N

to find out how the size of recommended items impacts the
prediction performance.

The average success rate, precision, and recall scores
obtained by running the ten-fold cross-validation technique
with HybridRec and TopFilter+ on D1, D2 and D3 are
reported in Table 5, considering consecutive cut-off values,
i.e., N = {1, . . . , 10}. In the table, a better performance
– corresponding to higher scores – is printed in bold.
Altogether, it is evident that HybridRec outperforms Top-
Filter+ for any value of N except the success rate for N = 1.
For instance, the best success rate obtained by TopFilter+
is 0.479 when N = 10, while the corresponding score
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Table 5 Success rate,
precision, and recall Success rate Precision Recall

N TopFilter+ HybridRec TopFilter+ HybridRec TopFilter+ HybridRec

1 0.171 0.153 0.113 0.212 0.014 0.034

2 0.223 0.236 0.077 0.179 0.018 0.056

3 0.258 0.291 0.060 0.153 0.021 0.070

4 0.276 0.317 0.052 0.133 0.024 0.082

5 0.290 0.335 0.044 0.117 0.025 0.090

6 0.382 0.504 0.084 0.133 0.058 0.122

7 0.417 0.549 0.099 0.137 0.079 0.145

8 0.449 0.579 0.101 0.136 0.091 0.164

9 0.465 0.598 0.099 0.132 0.100 0.179

10 0.479 0.614 0.095 0.127 0.108 0.191

by HybridRec is 0.614. Moreover, the maximum precision
score is 0.212 for HybridRec, which is much better
than 0.112, the maximum precision achieved with Top-
Filter+. Concerning recall, though both approaches yield
a considerably low performance, HybridRec still always
outperforms TopFilter+ by all the cut-off values N . We find
out in RQ4 when HybridRec can improve its prediction
performance.

Answer to RQ1. In comparison to the baseline TopFilter ,
HybridRec yields a substantial performance improvement in
terms of success rate, precision, and recall.

5.3 RQ2: In comparison toMNBN, does CNBN
contribute to a better HybridRec performance?

In our previous work [7], we utilized a balanced dataset
manually curated from GitHub to improve MNBN’s
performance as the network is not able to handle unbalanced
datasets. Nevertheless, this does not essentially resemble
a real-world situation in the context of OSS platforms,
where the distribution of topics and repositories is usually
not balanced. Thus, we employ an enhanced version of
MNBN, namely CNBN, to deal with realistic settings. This
research question aims to validate such a hypothesis. To
compare with MNBN, we run HybridRec using only the
ST component (see Section 3.1), without triggering the
subsequent collaborative filtering phase.

Figure 7 shows the success rate considering different cut-
off values, i.e., N = {1, . . . , 10}. It is evident that using
CNBN obtains a better success rate with compared to using
MNBN, given that an unbalanced dataset is considered. For
instance, the improvement is around 10% with N = 2,
i.e., MNBN and CNBN achieve 0.50 and 0.67 respectively
in recommending at least one correct topic. As expected,

increasing the number of recommended items leads to a
better performance, i.e., CNBN’s success rate reaches 0.90
with N = 9 and N = 10. This holds also for the MNBN,
which however achieves worst performance since its suc-
cess rate is always lower than 0.65.

To better study the performance of both techniques, i.e.,
MNBN and CNBN, we compute the precision and recall
scores and show them in Table 6. Overall, CNBN improves
the results obtained by MNBN for all the considered
metrics. By considering all the cut-off values, the precision
scores are increased by 10% on average. In particular,
precision reaches its maximum at N=2, i.e., 26.57 and
35.00 for MNBN and CNBN, respectively; The minimum
value obtained by MNBN is 9.41, while the corresponding
score by CNBN is 15.44. Concerning recall, we observe
a remarkable improvement when CNBN is adopted, i.e.,
it increases MNBN’s results 30% of the time with N =
10. As expected, increasing the number of the returned
items positively affects the performance of both networks.
Still, CNBN improves recall from 40.14 to 74.07, while
MNBN gains 45.38 as its maximum value. In other words,
the usage of CNBN reduces the impact of false negatives
during the prediction phase. Finally, the advantage of
CNBN is eventually confirmed by the Top-rank metric,
which measures the accuracy of the two networks in
recommending the first item, i.e., the most probable one.
In particular, the computation shows that CNBN obtains
a better performance also in this case by increasing
the top rank prediction up to 65.85 while MNBN gets
only 49.55.

Answer to RQ2. On an unbalanced dataset, compared to
MNBN, CNBN improves the prediction performance. As data
sources are unbalanced by their nature, adopting CNBN helps
obtain a more precise prediction in the field.
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Fig. 7 Success rate for D1
considering N = {1, . . . , 10}

5.4 RQ3: How do the preprocessing steps impact
on the HybridRec performance?

We measure the impact of the preprocessing steps on the
collaborative filtering recommendation engine on the three
datasets collected from GitHub, i.e., D1, D2 and D3. As
described in Section 4.2, D2 is obtained from D1 by filtering
out topics that occur in less than 20 repositories, while D3

is extracted from D1 by applying the preprocessing rules
defined in Section 3.2.1. To compare with the original
TopFilter approach [7], we run HybridRec using only the
CF component (see Section 3.2).

Given a testing project p, a certain number of topics is
used as input, i.e., τ = 5, and the remaining ones are
saved as ground truth data, i.e., GT(p) (cf. Section 4).
Moreover, we investigate various number of recommended
items N = {5, 10, 15, 20} to understand how the size of
recommended items impacts the prediction performance of
TopFilter. The average success rates obtained by running the
ten-fold cross-validation technique with HybridRec on D2

and D3 are depicted in Fig. 8.
It is evident that HybridRec yields a better success rate

when preprocessed datasets, i.e., D2 and D3, are considered.
For instance, it gets SR@1 of 0.715 for D3, while for

Table 6 Precision, recall with D1

Precision Recall

N MNBN CNBN MNBN CNBN

1 0.582 0.663 0.323 0.374

2 0.266 0.350 0.298 0.401

3 0.231 0.333 0.362 0.529

4 0.194 0.292 0.392 0.597

5 0.164 0.257 0.408 0.641

6 0.143 0.227 0.422 0.673

7 0.126 0.203 0.431 0.694

8 0.112 0.184 0.437 0.714

9 0.102 0.168 0.447 0.728

10 0.941 0.154 0.454 0.741

other datasets, the corresponding value is always lower
than 0.42. Moreover, by comparing the result given by
considering different cut-off values N , we realize that there
is no significant difference between the results for N = 10
to N = 20. This means that most of the matched items
concentrate on the top-5 ranked list, and considering a
longer list of items does not bring any positive matches.

To further study the performance of HybridRec, we depict
in Fig. 9 the precision/recall curves (PRCs). For this setting,
we varied the recommended items N from 1 to 20, aiming to
study the performance for a more detailed recommendation
list. Each dot in a curve represents the precision and recall
scores obtained for a specific value of N . Furthermore,
we fixed k = 20 since this number of neighbors brings
the best prediction outcomes among others, while it allows
HybridRec to maintain a reasonable execution time. As a
PRC close to the upper right corner corresponds to a higher
precision and recall, suggesting a better performance [21],
Fig. 9 shows that by considering a preprocessed dataset,
HybridRec gains a better prediction. In particular, the worst
precision-recall relationship is seen by the raw dataset D1,
while DGP obtains the best one. Overall, these results
are consistent with those presented in Fig. 8, i.e., using
the preprocessing steps given in Section 3.2.1 enables
HybridRec to enhance its performance substantially.

Table 7 Catalog coverage

N D1 D2 D3

1 0.013 0.202 0.006

2 0.022 0.321 0.017

3 0.030 0.411 0.026

4 0.038 0.483 0.033

5 0.045 0.551 0.041

6 0.053 0.604 0.049

7 0.060 0.647 0.056

8 0.068 0.694 0.063

9 0.076 0.732 0.070

10 0.084 0.765 0.077
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Fig. 8 Success rate values for
N = {1, 5, 10, 15, 20}

Finally, we investigate if HybridRec can provide a wide
range of topics to repositories, taking into consideration
catalog coverage. This metric measures the percentage of
the recommended topics in the training data that the model
recommends to a test set, and a higher value corresponds
to better coverage. Table 7 reports the average coverage
values got from running HybridRec on the datasets, i.e.,
D1, D2, and D3. The table suggests an evident outcome:
we get better coverage by considering longer lists of items.
We also studied the impact of the preprocessing step on
the coverage results. The catalog values range from 0.013
(obtained for D1 with N = 1) to 0.765 (obtained for D2

with N = 20). It is important to recall that D2 and D3 are
very different with respect to the number of topics, i.e., 455
compared to 6,442. At the same time, the sets of considered
repositories are very similar (only 239 projects are discarded
in D2) (see Section 4.2). Altogether, we see that using a
denser dataset for training, i.e., projects with more topics
is beneficial to success rate, accuracy but not to catalog
coverage.

Answer to RQ3. The preprocessing steps are beneficial to the
recommendation process as they allow HybridRec to retrieve
more relevant topics, thus improving the recommendation
performance.

5.5 RQ4: What are the key differences between GitH-
ub andMVN Repository, and how do they impact on
the whole HybridRec recommendation process?

To investigate HybridRec’s performance in a different type
of repositories, we run it on a different dataset, namely
DM collected from MVN Repository (see Section 4.2).
The artifacts available in MVN Repository are labeled with
tags, which express similar concepts to GitHub topics,
i.e., summarizing their key functionalities. Moreover, each
artifact comes with a textual description that can be used as
a README file.

There are differences in the nature of topics in GitH-
ub with respect to tags in MVN Repository. In particular,

Fig. 9 Precision/recall curves
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topics for a GitHub repositories are manually assigned by
the owner(s). Thus, the resulting set of the given topics
might include issues, e.g., duplicate drop, and word spelling,
which necessarily require some pre-processing steps. In our
proposed approach, we refined the mined GitHub topics
by means of the rewriting rules defined in Section 3.2.1.
In contrast, MVN Repository tags are well-maintained as
they are not freely assigned by developers but presumably
audited by a watchdog. This implies that MVN repositories
are more curated than those hosted in GitHub, thus limiting
errors that might happen due to the manual activities
performed by developers. Altogether, this helps enhance the
list of possible tags by automatically suggesting new tags,
thus improving the reachability of the artifacts.

We conduct experiments for the DM dataset using the
same settings applied on the GitHub datasets and compute
the quality metrics accordingly. Figure 10 represents the
success rate scores obtained by running HybridRec on the
Maven dataset, using different values of k, the number
of neighbour projects (see Section 3.2). As we can see,
the usage of a more curated dataset to make predictions
contributes to improving the overall performance, i.e., the
maximum success rate obtained by HybridRec reaches
almost 0.90 by most of the cut-off values, and eventually, it
goes beyond the 0.90 threshold with N = 10.

Concerning the neighborhood parameter, the results
show that the best success rate is achieved with k = 15. This
means that starting from k = 15, adding more neighbour
projects to compute recommendations does not bring any
matched tags. Overall, running HybridRec on DM yields a
better prediction performance than the results obtained with
the D1 dataset. It is worth noting that no preprocessing has
been applied on Maven tags since the hand-written rules
are tailored for GitHub topics that need some cleaning due
to duplicates or incorrect terms. In contrast, DM does not
require such a process since tags are already fine-tuned, and
their constituent terms are concretely defined. For instance,
there is no need to predict the language programming tag
since all projects are written in Java.

We compute precision and recall scores and show them in
Fig. 11. Similar to the previous results, running HybridRec

on DM contributes to a better performance since the preci-
sion and recall are higher, compared to those obtained with
the D1 dataset in Table 5. The precision scores increase
by 10% on average with the best configuration, i.e., k =
5. Similarly, the recall scores improve from 0.191 to 0.70
when more recommended items are considered in the ranked
list.

The gain in performance is further confirmed with the
catalog coverage scores in Fig. 12. HybridRec achieves a
maximum catalog coverage of 0.47 with N = 10. This
means that the probability that HybridRec recommends
correct items is higher if DM is considered. Referring to
Table 3, we see that the number of topics in DM is much
smaller than that of D1, i.e., 489 compared to 19,337.
Similarly, DM contains less projects than D1, i.e., 2,932
compared to 11,694. Altogether, this demonstrates that even
on a small Maven dataset, HybridRec can still obtain a good
performance.

Answer to RQ4. Compared to topics in GitHub, tags in MVN
Repository are more well-defined as they are audited by a
central authority. Due to this reason, running HybridRec on
input data curated from Maven repositories brings in a better
prediction performance.

5.6 Discussion

HybridRec has been developed by combining a complement
naı̈ve bayesian network with a collaborative-filtering tech-
nique. Moreover, we employed a tailored preprocessing
phase on the considered topics to clean and refine the input
data before feeding it to the recommendation engine. Alto-
gether, the boosting mechanisms help HybridRec retrieve
more relevant topics. The empirical evaluation has shown
that HybridRec is able to improve the recommendation
results compared to the baselines.

As discussed in Section 2.2, projects coming from
GitHub exhibit different features that could affect the
recommendation outcomes. In this section, by relying on
the previously performed experiments, we analyze the five
challenges highlighted in Section 2.2.

Fig. 10 Success rate on MVN
Repository dataset
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Fig. 11 Precision recall curve
on the MVN Repository dataset

Concerning Challenge C1 (data redundancy), we have
the following investigations. Topics for a GitHub project
are manually assigned by the owner(s). Thus, the resulting
set of given topics might include issues (e.g., duplicate
drop, and word spelling) that necessarily require some pre-
processing steps. In the proposed approaches, we refined
the mined GitHub topics by means of NLP techniques
and word embeddings, e.g., GloVe [22], word2vec [20],
and FastText [12]. Furthermore, we adopt a well-structured
set of rules to consider frequent patterns as well as to
refine them. We have proven that such pre-processing steps
improve the overall HybridRec’s prediction capabilities.

Another aspect that may impact the outcomes is the
topic’s distribution. To analyze to what extent this can affect
the recommendation items, we make use of a GitHub dataset
employed in our previous work [7]. Figure 13 gives an
overview on the distribution of topics among repositories for
the raw D1 dataset. From this picture, we can observe that
many topics are infrequent, i.e., 14,175 among 15,743 topics
are used in less than 11 projects, and just a few topics are
widely adopted by more than 200 projects. In other words,
the long tail effect has a profound impact on the GitHub
datasets.

Challenge C2 involves the structure of available meta-
data that an OSS ecosystem can provide to perform the
recommendation activities. A GitHub repository offers a lot
of metadata about the activities of developers as well as their
interactions. For instance, the platform keeps track of any
user who makes a pull request or modifies the project by

adding files through commits.19 Furthermore, each reposi-
tory is characterized by textual information, e.g., README
files, or Wiki content. In other words, OSS mining tasks can
be characterized by two dimensions: the employed recom-
mendation technique and the proper metadata that can be
extracted from the input data.

Table 8 describes these two dimensions in terms of the
techniques and datasets presented in this work. As shown in
the table, the collaborative-filtering component relies solely
on the list of initial terms to perform the recommendations
considering GitHub platform since all needed relations
concerning projects are encoded in the matrix used to fed
the recommendation engine. Furthermore, it employs the
initial list of terms to enable the recommendation engine.
As stated in Section 5.3, using a larger number of inputs
definitively improves the tool’s performance. In contrast,
the ST component needs textual files to predict GitHub
topics, namely README files.

In the context of collaborative development, the avail-
ability of popularity mechanisms play an important role
to foster the project’s visibility. As we mentioned in the
description of C3, GitHub is reliant on a well-defined pop-
ularity mechanism that considers stars, forks, and featured
topics. Both the ST and CF components benefit from using
popular projects as the initial dataset, i.e., we observed the
best results with respect to various quality metrics. Another

19https://docs.github.com/en/free-pro-team@latest/github/
collaborating-with-issues-and-pull-requests/about-pull-requests
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Fig. 12 Catalog coverage on the
MVN Repository dataset

important factor to consider is the fact the GitHub exposes
the selected featured topics in a dedicated repository20 and
web pages.21 Despite this, the crawling phase requires a
well-structured process to extract the needed information
properly.

Concerning C4 (Crawling and Data Dump), we see that
even when the required data is available, the gathering
process could be a daunting task. Data dumps can simplify
this activity by offering all the information in a structured
way, for instance with a database. As we mentioned before,
data dumps for GitHub have been provided by an external
tool, i.e., GHTorrent [11]. Nevertheless, data contained in
these collections is not suitable for supporting automatic
tagging activities. Therefore, we made use of a crawler that
can download the data belonging to the repositories. In our
previous studies, we exploited the PyGitHub library since
GitHub offers all the required APIs.

With respect to Challenge C5 (Configurations of the
underpinning recommendation systems), besides the chosen
OSS platform, the capabilities of the underpinning recom-
mendation system are affected by the internal parameter
configurations. The possible tuning parameters depend on
the algorithm employed to perform the recommendation
as well as the metadata offered by the platform. Table 9
describes the parameters employed by the two considered
components, i.e., ST and CF, to bring the best prediction
performance.

As described in Section 5.4, we have these values to
reach a balanced dataset which is crucial to earn a better
performance. This process has been conducted manually for
the GitHub datasets as they exhibit heterogeneous support
for each featured topic in terms of projects. Concerning the
collaborative-filtering component, this consideration mainly
impacts the selection of the cut-off values t. In particular,
to cope with different impacts of the long-tail effect, we

20https://github.com/github/explore
21https://github.com/topics

varied t , for example, to evaluate the CF component with
the GitHub dataset we changed t from 5 to 20 with 5 as
the step, while t has been shifted from 1 to 5 with 1 as the
step. Moreover, because of the different levels of similarities
between the projects of GitHub we used a different number
of neighbors k when TopFilter recommends suitable labels.

6 Threats to validity

In this section, we highlight possible threats that may have
an impact on the outcomes of the conducted experiments.
We also list the countermeasures adopted to mitigate these
issues.

Internal validity The overall recommendation capabili-
ties of the presented approaches could be compromised
by the dataset features, i.e., the number of unique tags,
lack of support for each category. To cope with these
risks, we analyzed several configurations obtained by
means of a well-defined data preprocessing phase. These
settings allow for a more comprehensive evaluation of the
two approaches.

External validity As specified in Section 4.2, the data
extraction phase has been conducted by relying on the
GitHub API. This could compromise the quality of the
obtained information as we cannot access the entire
knowledge due to the rate limits. Such a threat has been
mitigated by considering popular repositories. In this
way, we chose the most representative projects that help
minimize any potential bias.

Table 8 Metadata used by the ST and CF components

GitHub

Component Topics Featured Topics README files

ST

CF
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Fig. 13 The distribution of
topics in the D1 dataset

Construction validity The comparison of TopFilter+
with HybridRec might be susceptible to bias. We
carefully examined existing work in the domain, but
no comparable tool is available with an available sound
replication package. Thus, we used the same evaluation
conducted to evaluate MNBN in the original work,
bringing the best results. We adapted the structure of the
two techniques to mitigate any possible pitfalls in the
overall evaluation process.

7 Related work

In this section, we review related studies to our work, focus-
ing on the following two main topics: (i) recommending
GitHub topics; (ii) categorization of open source software
projects; and (iii) advanced techniques for recommender
systems.

7.1 Recommendation of GitHub topics

Before the introduction of topics, GRETA (Graph-Based
Tag Assignment for GitHub Repositories) was the very first
attempt to automatize GitHub tagging [4]. This approach

Table 9 Configuration parameters of the ST and CF components

Parameters ST CF

Number of considered labels 134 6,422

Number of projects 6,700 5,859

TF-IDF vectorizer ✓ –

Topic preprocessing ✓ ✓

GuessLang module ✓ –

Cutoff – 20

Neighborhood – 25

exploited two concepts, namely ETG (entity-tag graph) and
a random walk with a restart algorithm. The former is a
graph that uses StackOverflow and GitHub data. In contrast,
the latter is an algorithm that iteratively explores the global
structure of the network to estimate the proximity (affinity
score) between two nodes. This aims to build the graph
by linking GitHub repositories with StackOverflow posts
which share user and lexical similarities. Afterwards, tags
are propagated using the walk algorithm.

Repo-Topix [10] was released right after the introduction
of GitHub topics as a means to automatically recommend
topics by relying on README files and the textual content
of a given repository. Standard NLP techniques and a
regression model have been applied at the early stage of the
process to exclude biased terms from the recommendation
process. In addition, the tool makes use of an adapted
version of the Jaccard distance to enhance the quality of
retrieved items further. Repo-Topix has been preliminarily
evaluated using the n-gram ROUGE-1 metrics to count the
number of overlapping terms between the recommendation
items and the original repository description.

Recently, Izadi et al. [13] proposed Repologue, a multi-
label classification tool that combines various state-of-the-
art classifiers, i.e., MNB, logistic regression, FastText, and
DistilBERT. The first step involves topic augmentation
using hand-written association rules to derive more informa-
tion from a given repository and its tags. Then, Repologue
compares the mentioned models employing several word
embeddings techniques to discover the best one. This can
be a potential baseline for our approach. Unfortunately, the
tool is not available when writing this paper.22

22Through private communications, the authors of Repologue let us
know that due to some technical issues, the entire replication package
was not available to allow for a deep comparison.
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GHTRec [36] exploits the BERT model to recommend
personalized trending repositories23 by using GitHub
topics. First, the underpinning neural network is fed with
preprocessed README files to predict topics given a
repository. Afterwards, the system captures the user’s topic
preferences by relying on its commits. The retrieved list is
eventually reranked by computing two similarity methods
on the topic vectors, i.e., cosine similarity and shared
similarity between the developer and a trending repository.

Sally [31] is an automated approach aiming to categorize
Maven projects by relying on bytecode analysis and tags
extracted from StackOverflow. Given a JAR file as the input,
the tool obtains relevant data related to the project, i.e.,
class names, class fields, and method names. Such results
are filtred considering tags excerpted from StackOverflow.
In parallel, a weighted graph is computed to identify
and encode project dependencies. Then, primary tags are
computed by considering only the input project. In contrast,
the weighted graph is used to obtain dependencies’ tags.
These two kinds of tags are combined to retrieve final
recommendations in a tag cloud format.

Velázquez-Rodrı́guez and De Roover [32] have recently
proposed MUTAMA, an automated multi-label tagging
approach to support Maven projects. Different from our
approach, the project’s tags are extracted from bytecode,
employing a well-founded tool. For each project, the tool
takes as the input a pair of groupId-artifactId-version and the
corresponding set of tags. In such a way, MUTAMA learns
which projects have been tagged similarly by considering
the Java classes and methods employed. Then, several
machine learning algorithms provided by the MEKA tool
are fed with the extracted tags and the vectors obtained from
the analyzed source code.

Zhang et al. [34] solved the task of keyword-driven
hierarchical classification, proposing a tool with three main
modules as follows: (i) HIN (Heterogeneous Information
Network) construction and embedding; (ii) key-word
enrichment; and (iii) topic modeling and pseudo document
generation. During the first step, HIN creates a graph to
capture all the interactions between the core elements of
GitHub repositories, like Users, Words, Names, to name a
few. The keyword enrichment step is devised to cope with
the problem of scarcity and bias of the keyword provided
by users. The machinery in the last step is employed to feed
a classifier with pre-labeled repositories and the overfitting
related to the usages of the keywords only. The tool has
been tested on two different datasets, a machine learning
taxonomy with 1,600 examples and a bioinformatics one
with 876 projects.

LabelGit [26] is a dataset for the classification of Java
software projects. The authors proposed an approach to

23https://github.com/trending

excerpt information directly from source code and depen-
dency graphs. The former is obtained by a combination
of techniques like code2vec and fastText, while the latter
is a graph describing the dependencies between classes.
Similarly, ClassifyHub [28] is a GitHub projects classifica-
tion algorithm based on ensemble learning. The approach
has been evaluated on a dataset consisting of 681 projects
and obtained a precision of about 60% and a recall of
58%.

7.2 Automated categorization of OSS projects

With Lascad (Language-Agnostic Software Categorization
and Similar Application Detection) [2], the authors pro-
posed a tool based on information retrieval techniques, i.e.,
LDA (Latent Dirichlet Allocation) and hierarchical cluster-
ing. First, the tool extracts terms from the dataset’s source
code, followed by a refining phase where stop words and
similar code-specific terms are removed. The second step
is the most important one; LDA is applied on the terms
corpus to get the topics, then these topics are grouped by
using the hierarchical clustering technique. Finally, projects
are assigned to each group and then labeled. Based on
this result, during the third step, given an application as
input, LASCAD retrieves corresponding software ranked by
similarity.

Five different machine learning algorithms have been
used to classify OSS projects [19], i.e., SVM, Naive
Bayesian, Decision Tree, and IBK classifier. The training
phase for each model relies on bytecode analysis performed
by JClassInfo, a well-founded tool. Each model is fed with
API methods, classes, and packages excerpted from 3,286
projects labeled belonging to SourceForge. The results
show that SVM outperforms the other models in terms
of precision, recall, and success rate. Different from our
work, this study compares five machine learning models
considering only 22 different categories.

Wang et al. [33] propose a tag recommendation based
on a semantic graph (TRG) to classify projects extracted
from two OSS communities, i.e., OhLoh and Freecode.
The first step is to analyze semantic correlations between
the software description and tags and encode them in a
hierarchical graph. Then, a list of tags is retrieved given
an input project by relying on the constructed graph. TRG
eventually ranks the final list of recommendations according
to their probability.

An agglomerative hierarchical clustering for taxonomy
construction name AHCTC has been proposed [18] to
categorize software projects stored on the OhLoh platform.
To this end, the approach integrates the technique mentioned
above with a topic model based on the well-established LDA
algorithm to identify thematic spaces composed of similar
tags. Finally, the proposed clustering technique can extract
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the most central tag from the thematic space to classify the
given project properly.

7.3 Boosting techniques for recommender systems

Research in recommender systems has amassed momentum
in recent years, and various techniques have been proposed
to equip recommender systems with the ability to retrieve
highly relevant items, improving their prediction capability.
In this section, we review the most notable studies in this
domain, and associate them with our work.

Fan et al. [9] conceived an end-to-end framework to
improve recommender systems by means of a knowledge
graph, which can capture users’ preferences. To this end, a
user preference matrix (UPM) was built to project refined
item embeddings from their latent space into the user
embedding space. They evaluated the potential probability
of the user preferences towards the target items through
inner product results of user embedding with the projected
item embedding representation. Such a technique can
come in handy for the collaborative-filtering module of
HybridRec, where it is used to further improve its ability to
find relevant topics.

Taraghi et al. [29] presented a hybrid recommender
system for open journal systems, which uses content based
filtering as the basic system extended by the results of a
collaborative-filtering approach. The collaborative filtering
algorithm works on the basis of weighted user paths, and
the authors conceived a method to reduce the undesirable
effect of the navigation path, allowing the collaborative-
filtering module to retrieve relevant serendipitous and novel
recommendations. We anticipate that such a technique
can be employed to improve the collaborative-filtering
component of HybridRec, and this task is in our calendar
for future research.

Tran et al. [30] provided a systematic overview of
existing research on recommender systems in the healthcare
domain, paying attention to different recommendation
scenarios and approaches. Among the issues raised in the
paper, we assume that the problem of constructing user
profile is interesting and worth being investigated in the
scope of the HybridRec work. We plan to improve the
similarity computation by enriching projects with additional
metadata such as developers, stargazers, or source code.

Given that computing similarity is important in the
whole recommendation process, Al-Shamri [1] studied
existing similarity modifiers and proposed various sim-
ilarity modifiers that consider the active and training
users’ statistical parameters. In fact, computing similar-
ity also plays a crucial role in recommender systems
in software engineering [25], and we anticipate that the
incorporation of new similarity algorithms – like the
ones proposed by Al-Shamri [1] – into the internal

design of HybridRec might help it further improve its
performance.

According to a careful observation, we see that
HybridRec is among the first hybrid recommender systems
in software engineering, as the system works by combin-
ing different algorithms for producing recommendations.
This paves the way for further improvements by considering
various boosting algorithms as we have introduced in this
subsection. We consider this issue as our future work.

8 Conclusion and future work

OSS platforms play an important role in aggregating
and handling projects developed by a prolific community.
Automatic tagging is one of the most valuable techniques
to improve their discoverability, even though it requires
a lot of effort to produce useful outcomes. In this paper,
we conceived HybridRec, a hybrid recommender system
working on top of a stochastic network and a collaborative-
filtering technique to recommend topics. We performed
an empirical evaluation on real-world datasets to study
HybridRec by comparing it with state-of-the-art toots.
The results showed that the newly conceived approach
improves our former recommender systems substantially.
More importantly, we demonstrated that HybridRec can
increase its prediction performance on well-curated data
sources.

For future work, we plan to improve the proposed
framework further by analyzing the source code of OSS
projects to compute similarity for HybridRec. Furthermore,
we plan to conduct a well-structured user study by involving
developers to evaluate HybridRec’s outcomes. Last but not
least, we will create a taxonomy of GitHub topics by
grouping tags with a pairwise ranking algorithm. As a short-
term plan, we plan to propose an integrated approach to
generate a taxonomy of software domains by inspecting
GitHub topics. In such an approach, GitHub repositories are
fetched to collect different topics. Then, various filtering
steps will be used to reduce the number of topics. Afterward,
a reconciliation step is applied, where the selected topics are
linked to Wikidata in order to help with the disambiguation
of these terms. The final step is to create a discrete rank of
the selected application domains by clustering algorithms.
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