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Abstract
In response to the current problem of low intelligence of mobile lower limb motor rehabilitation aids. This paper proposes
an intelligent control scheme based on human movement behavior in order to control the rehabilitation robot to follow
the patient’s movement. Firstly, a multi-sensor data acquisition system is designed according to the rehabilitation needs
of the patient and the movement characteristics of the human body. A mathematical model of movement behavior is then
established. By analyzing and processing motion data, the change in the center of gravity of the human body and the behavior
intention signal are derived and used as a control command for the robot to follow the human body’s movement. Secondly, in
order to improve the control effect of rehabilitation robot following human motion, an adaptive radial basis function neural
network sliding mode controller (ARBFNNSMC) is designed based on the robot dynamic model. The adaptive adjustment
of switching gain coefficient is performed by radial basis function neural network. The controller can overcome the influence
caused by the change of robot control system parameters due to the fluctuation of the center of gravity of human body,
enhance the adaptability of the system to other disturbance factors, and improve the accuracy of following human body
motion. Finally, the motion following experiment of the rehabilitation robot is performed. The experimental results show that
the robot can recognize the motion intention of human body and perform the training goal of following different subjects to
complete straight lines and curves. The correctness of human motion behavior model and robot control algorithm is verified,
which shows the feasibility of the intelligent control method proposed in this paper.

Keywords Mobile rehabilitation robot · Human motion intention recognition · Dynamic model ·
Adaptive radial basis function neural network · Sliding mode control

1 Introduction

Stroke is the main cause of death and disability. Although
the mortality rate of stroke has begun to decline, its
incidence rate remains high, and the number of patients
with motor dysfunction caused by stroke also significantly
increased [1]. The individual situation of stroke patients
and the severity of stroke greatly vary, and about 65%
of survivors will receive rehabilitation services. Clinicians
need to master the rehabilitation nursing technology for
stroke patients. However, there are still some problems
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in artificial rehabilitation treatment, such as fatigue and
differences in multiple training, which will also bring
huge economic costs to stroke patients [2]. As a kind
of robot used in the field of rehabilitation medicine,
the rehabilitation robot can help patients with motor or
cognitive function training. In the past decades, several
studies have focused on rehabilitation robots, but with the
growth of the demand for auxiliary rehabilitation systems,
it is necessary to develop auxiliary rehabilitation systems
and rehabilitation equipment suitable for the needs of
patients [3]. However, most of the rehabilitation robots only
provide patients with motor function training or cognitive
function training. Because patients have independent
consciousness, the interactive control between rehabilitation
robots and patients is essential [4]. The establishment
of human-computer interaction mechanism can improve
the rehabilitation concentration and rehabilitation effect
of stroke patients [5, 6]. The human-computer interaction
system can supplement the gait rehabilitation plan of
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patients, reduce the workload of doctors, give patients
motivation and encouragement in the treatment process, and
improve the participation and expression of patients in the
treatment process [7]. In addition, the assisted rehabilitation
system can adapt to the needs and ideas of each patient
and efficiently ensure the comfort of patients in the process
of rehabilitation, which plays a crucial role in assisting
mobile robot technology. Although relevant researchers
have developed several control modes sharing autonomy in
recent years, this control mode has not been widely used [8].

Assisted rehabilitation robot can improve the enthusiasm
of patients in the process of rehabilitation treatment, and
efficiently bring the robot into the assisted and rehabilitation
scene. Human-computer interaction plays a crucial role [3]. At
present, researchers have designed a variety of human motion
intention recognition technologies to improve the rehabilitation
effect and efficiency of patients [9]. In the next five years,
wearable inertial sensors will be widely accepted and used in
clinical environment, not only to evaluate human mobility,
motor performance and motor disorders, but also to extend
to cognitive training based on home mobile health [10].
In the recognition of human motion, it is very important
to design an intelligent wearable device that can provide
recognition help [11, 12]. Simultaneously, through the
body’s sensor network, it can also monitor the user’s state
in real time or identify the walking activities [13] and
gait events performed by the user [14]. This method has
become an indispensable part of intelligent medical services
[15]. The authors in [16] propose a walking assistant robot
with walking stick to follow the user, which can assist and
supervise patients with lower limb dysfunction to walk long
distance through the estimation of human walking intention.
However, this robot is only suitable for patients who recover
to the stage of independent walking, and cannot provide
patients with body weight support and more reliable safety
protection. Based on the principle of bilateral lower limb
motor coordination, the authors in [17] propose an adaptive
sliding mode control strategy based on a complete radial
basis function neural network for the rehabilitation of the
patient’s affected limb by detecting the motor information
on the unaffected side of the patient.

The rehabilitation robot is a nonlinear dynamic system,
which needs to use control strategy to meet the coordination
in human-computer interaction. However, for the nonlinear
and time-varying system, it is difficult to establish an
accurate mathematical model, and the traditional controller
is difficult to achieve the ideal control effect. The authors
in [4] proposed an adaptive control method of human
centered lower limb rehabilitation robot based on human-
computer interaction dynamic model, which overcomes
the uncertainty of human limb and robot parameters and
stiffness coefficient in the interaction force model. The
authors in [18] propose an adaptive PD like control method

for lower limb exoskeleton robot based on healthy human
gait data, which enables the lower limb rehabilitation robot
to track the human gait trajectory obtained through the
motion capture system more quickly, and improves the
comfort, anti-interference ability and convergence speed
of tracking the desired trajectory in passive training. The
authors in [19] discusse the feasibility of using biofeedback
and fuzzy control rules to control patients for rehabilitation
training. This method can promote patients to actively
participate in rehabilitation treatment, efficiently guide
the recovery of patients’ self-consciousness, and enhance
the adaptability of robots to different populations. The
authors in [20] propose a continuous and seamless auxiliary
control method based on sliding mode adaptive control.
The auxiliary torque required to reference the normal
gait trajectory is completed through radial basis function
neural network learning, so that the rehabilitation robot
can adaptively provide auxiliary torque according to the
needs of subjects. The authors in [21] propose a method
of adjusting the model free controller for the middle angle
of the wrist joint. This method can obtain the ideal finger
dynamic equation required in the EMG control system
based on the artificial hand, simulate the process behavior
of the control system by the fuzzy model, optimize and
adjust the free parameters of the intelligent proportional
controller by using the meta heuristic gray wolf optimizer
algorithm in a model-based manner. It can be seen from
the above literature that there are different control strategies
for different systems. Therefore, aiming at the modeling
uncertainty, system load change and external interference in
the control system of mobile rehabilitation robot, this paper
focuses on finding an efficient control strategy to improve
the performance of the system.

Therefore, it is necessary to reduce the influence of
the uncertainty of mobile rehabilitation robot modeling,
system load change and external interference on the stability
and dynamic performance of the actuator system. Because
neural network has good approximation characteristics, it is
a common control method for nonlinear dynamic systems.
For the approximation error of neural network, sliding mode
control strategy is usually used to compensate, the authors
in [22] propose an efficient control framework integrating
neural network and compensation controller. This method
improves the trajectory tracking ability, anti-interference
ability and robustness of the mobile robot to a certain extent.
The authors in [23] propose a RBF neural network adaptive
sliding mode controller for nonlinear electromechanical
actuator system to compensate the friction disturbance
torque in the electromechanical actuator system, so that
the electromechanical actuator system has better stability
and dynamic performance. The authors in [24] propose
an adaptive sliding mode dynamic controller based on
disturbance observer, which can automatically adjust the
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control gain by estimating the disturbance in real time,
so that the robot has good tracking performance and high
accuracy in the steady state. The authors in [25] propose an
autonomous grounding robot controller based on adaptive
sliding mode on the premise of considering the change of
robot load, and the feasibility of this method is proved by
simulation results.

Combined with human-computer interaction technology
and mobile robot technology, this paper carries out the
research on the following control strategy of lower limb
rehabilitation robot based on human motion intention, and
takes the human behavior intention signal as the instruction
to control the robot to follow human motion. However, the
patient affects the change of robot human system load when
walking. Therefore, it is difficult to identify the parameters
in the robot model in practical application. Therefore,
an adaptive radial basis function neural network sliding
mode controller (ARBFNNSMC) is proposed in this paper.
Aiming at the uncertainty of the dynamic parameters of the
rehabilitation robot system and other external disturbances,
and based on the dynamic model of the rehabilitation
robot, the radial basis function neural network (RBFNN)
adaptive method is used to approximate the switching gain
coefficient, so as to enhance the adaptability to the changes
of system parameters and other disturbance factors. Aiming
at the approximation error and other nonlinear disturbances,
the sliding mode control strategy is used to improve the
control performance of the system, so as to ensure the global
stability of the system, so that the robot can follow the
subject along the set trajectory after identifying the human
motion intention.

The remainder of this paper is organized as follows.
In Section 2, some problems faced by stroke patients in
the current rehabilitation field are described. According
to the rehabilitation needs of patients, an intelligent
control method based on human motion behavior to make
the rehabilitation robot follow the motion of patients
is proposed. By analyzing the characteristics of human
walking, the mathematical model of motion behavior is
established, a motion data acquisition system is designed,
and the processing method of motion data and the
correctness of data feature extraction are described. In
order to improve the control effect of rehabilitation robot
following human motion, an ARBFNNSMC algorithm is
proposed, and the stability is analyzed. In Section 3,
the experimental scheme of following motion control
is designed, and then the experimental data are briefly
analyzed. In Section 4, the experimental results of this paper
under the current research background are analyzed and
explained in detail, and the shortcomings of the current

research are also found. Finally, the conclusions are drawn
in Section 5.

2Methods

2.1 System scheme design

2.1.1 Problem description

The coordinated movement between the rehabilitation
robot and the stroke patient is a complex human-
computer interaction process. The analysis of the interaction
information between the patient and the rehabilitation
robot can identify the patient’s motion intention. Finally,
the following motion controller is constructed according
to the motion intention data and the characteristics of
the rehabilitation robot, so that the rehabilitation robot
can achieve the goal of following the patient’s accurate
movement and improve the rehabilitation training effect
of the patient with maximum efficiency, However, in the
process of walking rehabilitation training based on human-
computer interaction, the following problems exist: (1) It is
necessary to establish the interactive relationship of motion
information between patients and robots in physical form.
(2) It is necessary to define the physical characteristics of
human body and the influence of patient degree on exercise
behavior. (3) It is necessary to accurately perceive the
motion signal in the process of human-computer interaction
and apply it to the design of robot following controller.
(4) The patient’s motion intention has more disturbance
signals. Therefore, it is difficult for the rehabilitation
robot to accurately follow the motion according to the
patient’s motion intention. (5) The man-machine coupling
relationship between patient and robot brings uncertainty to
the design of rehabilitation robot control system.

2.1.2 Overall system design

The system of the rehabilitation robot platform is shown
in Fig. 1a. The robot system consists of four parts: multi-
sensor, control, weight support and driving systems [26].
Firstly, the user stands in the middle of the rehabilitation
robot and wears auxiliary clothes to connect with the
rehabilitation robot. During use, the weight support system
provides auxiliary support for the user, in order to reduce the
burden of lower limb movement when the user walks. The
multi-sensor system senses the motion data of the human
body and transmits the data to the control system. The latter
sends the control command to the driving system, in order to
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(a) (b)

Fig. 1 (a) Structure design of the rehabilitation robot (b) Structure of the control system

make the robot follow the human body. The overall control
system structure of the rehabilitation robot is presented in
Fig. 1b.

2.2 Design and data analysis of themulti-sensor
information system

During walking, people’s body posture will periodically and
regularly change. Due to individual differences in height,
weight, step frequency and step length, everyone’s posture
change rules are different and have their own unique forms.
The more obvious posture changes are the up and down
fluctuation of human center of gravity and the left and
right swing of shoulder, as shown in Figs. 2 and 3. The
rehabilitation object to be studied in this paper is mainly the
stroke patients in the middle and late stage of rehabilitation.
The clinical performance of patients is that the muscle
strength level is greater than level 3, and they have a
clearer thinking consciousness and can make a clearer limb
behavior. Although the body posture of stroke patients is
different from that of healthy people, the posture change
during walking still has the characteristics of periodicity and
regularity. Firstly, by processing the motion posture data of
stroke patients, the mathematical model of human motion

behavior is established, the human behavior intention is
recognized, and the behavior intention signal is used as the
ideal input of the follow-up control of the rehabilitation
robot. Secondly, in practical application, the center of
gravity of the patient fluctuates up and down when walking,
which makes the dynamic parameters of the rehabilitation
robot system uncertain. Therefore, the influence of the
change of the center of gravity of the human body on the
dynamic parameters of the robot is explored, so as to lay a
theoretical foundation for improving the control effect of the
rehabilitation robot following the movement of the human
body. This section introduces the design scheme of motion
data acquisition system and the establishment of human
motion mathematical model, and verify the correctness of
data feature extraction.

2.2.1 Design of the motion data acquisition system

The multi-sensor system collects the center of gravity
fluctuation and shoulder displacement data with obvious
changes during human walking. It is necessary to select the
sensor used for sensing the human behavior, and determine
the type, quantity and installation position of the sensor
according to the characteristics of the human walking

Fig. 2 Posture change of human
motion center of gravity

Rehabilitation robot following motion control algorithm based on human behavior intention 6327



(a) (b) (c)

Fig. 3 Posture changes of human shoulder (a) straight forward (b) turn right (c) turn left

posture, in order to obtain accurate human motion data.
The scheme of the multi-sensor motion data acquisition
system is shown in Figs. 4 and 5. The system includes two
displacement sensors and two tension sensors.

The system uses the MPS-XXXS pull rope displacement
sensor, with a displacement accuracy of 0.1 mm and a
displacement stroke range of 0-200 mm. The Dyly-106
tension sensor is used with a range of 0-50 kg and a tension

Fig. 4 Schematic diagram of a
dual displacement sensor (a) top
view (b) axonometric view

(a) (b)
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Fig. 5 Schematic diagram of a
double tension sensor (a)
walking on the right side of limb
(b) walking on the left side of
limb

(a) (b)

accuracy of 0.03 kg. Both sensors have the advantages
of high precision, fast response and long service life, and
meet the actual working conditions. The data collected
by the displacement and tension sensors are digital. The
motion data is sent to MCU through RS-485. The sampling
frequency of the sensor is 200 Hz. The feedback data of
the displacement and tension sensors is the basis for the
subsequent controller design and robot motion control [26].

2.2.2 Notation

For better readability and comprehensibility, we briefly
summarize some important Notations used in the paper. In
human motion intention recognition, x1 and x2 represent the
displacement of the left and right sides of the displacement
sensor. v1 and v2 represent the behavior speed of the left
and right sides of the human body. λ represents the constant
coefficient between the displacement and the speed of
human body. F1 and F2 represent the set value of the left
and right auxiliary force of the robot. F1r and F2r represent
the actual auxiliary force value fed back by the left and
right force sensors of the robot. �F1 and �F2 are the
auxiliary forces changes on the left and right sides of the
human body, respectively. represents the change value of
the auxiliary force caused by the change of the center of
gravity of the human body. In the robot dynamic equation,
m represents the dynamic parameters of the rehabilitation
robot, m is the sum of m1 and m2, where m1 is the mass of

the rehabilitation robot and m2 is the auxiliary force of the
patient. In the design of robot following control algorithm,
τeq represents for equivalent control law, τsw represents
for switching control law, ξ is the gain coefficient of the
switching control law, hij represents Gaussian function, cij

and σij are the center vector and extension constant of
Gaussian function, respectively. w represents the adjustment
weight from hidden layer to output layer of RBFNN. β

represents adaptive parameters.

2.2.3 Motion data analysis and processing

Firstly, the displacement of the human shoulder is consid-
ered as the external control input of the overall system of
the rehabilitation robot, and the linear relationship between
the displacement x1 and x2 of the displacement sensor and
the behavior speed v1 and v2 is established. The relationship
between the displacement of the sensor and the behavior
speed of the human body is shown in Fig. 6. The speed
obtained by the linear relation (1) is considered as the
motion speed of the human body, which is considered as the
expected input of the internal controller of the robot. If the
robot can accurately follow the desired motion speed, the
control goal of following the motion of the human body can
be realized.

{
v1 = λ × x1

v2 = λ × x2
(1)

Fig. 6 Relationship between
human motion displacement and
behavior speed (a) left (b) right

(a) (b)
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where λ is the constant coefficient between the displace-
ment and human motion speed.

Since the rehabilitation robot needs to provide auxiliary
force for stroke patients, the dynamic parameter m of the
robot will change according to the auxiliary force. Because
parameter m directly affects the control effect of the
rehabilitation robot controller, the law and characteristics of
the center of gravity change in the process of human walking
are studied. Data support is also provided for the subsequent
controller design. The initial values of the auxiliary force are
set as F1 and F2. With the change of the center of gravity of
the human body during walking, the actual auxiliary force
values fed back by the tension sensor are F1r and F2r. The
change values of the auxiliary force on both sides of the
human body are then:{

�F1 = F1r − F1

�F2 = F2r − F2
(2)

The variation values of the auxiliary forces on both
sides of the human body are treated and considered as
the variation characteristics of the center of gravity of the
human body. The variation values of this point are given by:

�m = �F1 + �F2

2
(3)

In (2) and (3), �F1 and �F2 are the auxiliary forces
changes on the left and right sides of the human body,
respectively.

2.2.4 Correctness verification of data feature extraction

In order to verify the correctness of the data processing
method of the human center of gravity change, the
human center of gravity change data collected by Minisun-
IDEEA gait analyzer is used as the reference standard
for verification [27–29]. Firstly, a healthy adult volunteer
is selected as the object of human center of gravity data
acquisition. The motion data of volunteers are then collected
by the IDEEA gait analyzer and rehabilitation robot data
acquisition system. The change curve of the human center
of gravity, obtained by gait analyzer, is shown in Fig. 7. The
change curve of auxiliary power on the left and right sides
of the human body, obtained by the robot data acquisition
system, is presented in Fig. 8.

By comparing the human motion data in Figs. 7 and 8,
it can be seen that, when the center of gravity of the human
body moves up, the auxiliary force of the robot decreases.
On the contrary, when the center of gravity moves down,
the auxiliary force increases. Therefore, the auxiliary force
curves on the left and right sides of the human body have
the opposite characteristics with the center of gravity curve.
Since the units of the gravity center displacement value
and auxiliary force value are different, the human motion
data collected by the robot, are uniformly processed. It can

Fig. 7 Fluctuation curve of human gravity center

be seen from Fig. 9 that the displacement behavior of the
left and right sides of the human body, and the reference
displacement of the gravity center, are approximately the
same. The human weight center displacement obtained
by the gait analyzer is almost 30 mm. The human body
displacement collected by the robot is almost 25 mm on
the left side, while that on the right side is almost 27.5
mm with a small error, which proves the reliability of the
data acquisition system design and the correctness of feature
extraction.

Finally, the Fourier function first-order polynomial is
used to approximate the function expression of the auxiliary
force change curve. The auxiliary force change fitting curve
is shown in Fig. 10. The obtained relationship is expressed
as:

f (x) = a0 + a1 cos(x × w) + a2 sin(x × w) (4)

where a0, a1, a2 and w are the fitting function coefficients.
In the subsequent design of rehabilitation robot con-

troller, the result of this function is considered as the
disturbance factor in the robot system.

2.3 Dynamics modeling of the rehabilitation robot

The research object of this paper is a mobile rehabilitation
robot with six wheels structure. As shown in Fig. 11,
this robot is composed of two central driving wheels and
four front and rear universal wheels installed on the same
axis [26]. Vector (x, y, θ)T represents the posture of the
rehabilitation robot in the coordinate system OXY , where
(x, y) represents the p coordinate of the rehabilitation
robot reference point, θ denotes the steering angle of the
rehabilitation robot. The spacing of the driving wheels is 2b,
while the radius of the driving wheels is r .

The rotational angular speeds of the left and right driving
wheels of the rehabilitation robot are ϕl and ϕr . Let V (t) =
[v, w]T , where v and w are respectively used to represent
the linear and angular speed of the rehabilitation robot point
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Fig. 8 Variation curve of left
and right auxiliary forces of
human body

Fig. 9 Comparison curve of
human gravity center
displacement

Fig. 10 Fitting curve of
auxiliary force change
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Fig. 11 Schematic diagram of
the rehabilitation robot

p. The motion speed of the rehabilitation robot is given by:

V (t) =
[

v

w

]
=

[
r
2

r
2

r
2b

− r
2b

] [
ϕl

ϕr

]
(5)

The dynamic model of the rehabilitation robot is the
most essential model, and it can best reflect its motion
characteristics. The dynamic equation of the rehabilitation
robot is given by:

M̄(q)V̇ + C̄(q, q̇)V + τ̄d = B̄(q)τ (6)

According to (6):

V̇ = M̄−1(q)
[
B̄(q)τ − τ̄d

] = B0τ − M̄−1(q)τ̄d (7)

where M̄(q) is the inertia matrix, C̄(q, q̇) is the Coriolis
force and centripetal force matrix, V (t) = [

vp, wp

]T is a
generalized velocity vector, τ̄d is the unknown disturbance
of bounded unmodeled dynamics, B̄(q) is a nonsingular
matrix related only to the wheel spacing b and wheel radius
r , and τ is the input of the driving wheel torque control of
the rehabilitation robot.

Each matrix is taken as:

M̄(q) =
[

m 0
0 I

]
; C̄(q, q̇) =

[
0 0
0 0

]
; B̄(q) =

1
r

[
1 1
b −b

]
; τ =

[
τ1

τ2

]
; M̄−1(q) = 1

mI

[
I 0
0 m

]
; B0 =

M̄−1(q)B̄(q) = 1
mrI

[
I I

mb −mb

]

The rehabilitation robot requires to provide auxiliary
force for the patient. Part of the weight of the patient’s body

will be applied to the robot as a load. Different patients need
different auxiliary force and different load on the robot.
Therefore, the dynamic parameter m of the robot changes.
In the previous matrix, m is the sum of m1 and m2, where m1

is the mass of the rehabilitation robot and m2 is the auxiliary
force of the patient, I is the central moment of inertia of the
rehabilitation robot, τ1 and τ2 are the torque of the left and
right drive wheels, respectively.

By ignoring the uncertain interference (τ̄d = 0), (7) is
simplified as:

V̇ = B0τ (8)

2.4 Controller design of rehabilitation robot

2.4.1 Control algorithm design

In this paper, a sliding mode controller is designed by
combining the motion speed input of human body and the
torque input of dynamics to overcome the instability of the
system, make the speed of the rehabilitation robot converge
to the expected speed given by human body motion, meet
the performance of the system, and consider the motion
speed Vc of the human body as the expected input of the
robot:

Vc =
[

vc

wc

]
=

[
(v1 + v2) /2
(v1 − v2) /2b

]
(9)
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The speed following error is defined as:

ec = Vc − V =
[

e1

e2

]
=

[
vc − v

wc − w

]
(10)

The sliding surface,selected according to equation(8),is
given by:

S =
[

s1

s2

]
= ec + η

∫ t

0
ecdτ (11)

where η is the sliding mode area fraction constant and η >

0.
The derivative of (11) can be computed as:

Ṡ = ėc + ηec = V̇c − B0τ + ηec (12)

In order to make the state trajectory stay on the sliding
mode surface (Ṡ=0), the equivalent control rate τeq is
expressed as:

τeq = B−1
0

(
V̇c + ηec

)
(13)

where B−1
0 = r

2b

[
mb I

mb −I

]
.

On the premise that the system model is accurately
known, the equivalent control law τeq can make the system
stable on the sliding mode surface. When considering the
uncertainty caused by the change of the center of gravity
of the human body to the dynamic parameter m and other
external disturbances, (8) can be rewritten as:

V̇ = B̄0τ + �B0τ + d(t) (14)

where B̄0 is the nominal part of the system matrix,
determined by the parameters r , b, I and m1 of the robot
and the auxiliary force value m2 of the patient. �B0 is
the internal disturbed part of the system matrix, determined
by the dynamic parameters �m and �I caused by the
change of the center of gravity of the human body, d(t) is
an external disturbance vector, including plane friction and
disturbance torque, whose specific value is difficult to be
determined in practical applications. Wherein, the change

function (4) of the patient’s auxiliary force is substituted
into matrix B0 in order to obtain:

�B0 = 1

�mr�I

[
�I �I

�mb −�mb

]
(15)

The system uncertainty is expressed as:

δ(t) = �B0τ + d(t) (16)

The dynamic equation of the rehabilitation robot can be
expressed as:

V̇ = B̄0τ + δ(t) (17)

In order to satisfy the sliding condition, a discontinuous
control law is introduced τsw to enhance the robustness
of the system. Finally, the integral sliding mode motion
following control law is determined by the equivalent
control law τeq and switching control law τsw composition:

τ = τeq + τsw = B−1
0

(
V̇c + ηec + ξ sgn(S)

)
(18)

where ξ is the gain coefficient of the switching control law,

ξ =
[

ξ1 0
0 ξ2

]
, sgn(S) = [

sgn (s1) , sgn (s2)
]T , and ξ is a

normal number.
When the sliding mode control theory is used to design

the control law, this modeling uncertainty produces a
large switching gain, which results in large chattering. In
order to compensate the chattering phenomenon in sliding
mode control, RBFNN with Gaussian activation function
is designed to approximate the system. RBFNN is a three-
layer feedforward network composed of input layer, hidden
layer and output layer. It has the performance of optimal
approximation and global optimization. In addition, it is
widely used in pattern recognition, function approximation,
signal processing and other fields. The structure of RBFNN
is presented in Fig. 12.

The hidden layer neurons use a Gaussian function:

hij = exp

(
−

∥∥xi − cij

∥∥
2σ 2

ij

)
, i = 1, 2, j = 1, 2, · · · n (19)

Fig. 12 Structure diagram of
RBFNN
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where cij and σij (cij , σij > 0) are the center vector and
extension constant of Gaussian function, respectively.

The sliding surface is defined as the input of RBFNN, the
input is xi = si , i = 1,2, the output value of neural network
is ξi , and the RBFNN algorithm based on Gaussian function
is:

ξi = WT
i Hi =

n∑
i=1

winhin (20)

where Wi = [wi1wi2 · · · win]T is the adjustment weight
from hidden layer to output layer of RBFNN, Hi =
[hi1hi2 · · · hin]T is the activation function of the hidden
layer.

It is assumed that the upper bound of system uncertainty
δ(t) and the upper bound of switching term coefficient
ξ of sliding mode control exist. In addition, the upper
bound of system uncertainty satisfies: ξi − ‖δi‖ > εi ,
εi > 0. Because the rehabilitation robot has parameter
uncertainty and unpredictable disturbance, the upper bound
of uncertainty ξi is difficult to predict. For the RBFNN
structure, its ideal output is given by:

ξ∗
i = W ∗T

i Hi + ξ̃ (21)

where ξi is the estimation error of switching gain and ξi is

bounded
(∥∥∥ξ̃i

∥∥∥ ≤ εi

)
.

Since the ideal vector W ∗ of neural network weight
cannot be obtained, it needs to be estimated when designing
the controller. ξ̂i is the estimated value of ξ∗

i , then the
adaptive switching gain ξ̂i of the sliding mode control output
from RBFNN is expressed as:

ξ̂i = ŴT
i Hi (22)

The weight adaptive law of the neural network is given
by:

˙̂
Wi = βiHi ‖si‖ , i = 1, 2 (23)

where βi > 0 is the adaptive parameter.

The ARBFNNSMC law obtained by substituting (22)
into (18) is given by:

τ = τeq + τsw = B−1
0

(
V̇c + ηec + ξ̂ sgn(S)

)
(24)

The design of the final rehabilitation robot controller is
based on the equivalent sliding mode control of the robot
dynamic model and the robust switching term, in order
to suppress the system uncertainty. The coefficient of the
switching term should be the upper bound of the sum of
these uncertainties. The RBFNN is used to adaptively learn
and approach the upper bound of the system uncertainty.
The output time of the neural network is compared with
the actual uncertainty of the system. The weight of the
neural network is adaptively adjusted according to the
difference between them, so as to approach the uncertainty
and perform the self-adjustment of the number of switching
terms. The structural framework of the dynamic control
system of the rehabilitation robot is shown in Fig. 13.

The number of hidden layer units of the neural network
is selected according to the experience. The number of
hidden layer units of RBFNN used in this paper is 5. The
selection range of the central point of the neural network
should be evenly selected between the upper and lower
limits of its input change. The center value of Gaussian
radial basis function is considered as a uniform distribution
with an interval of 0.25, and the expansion constant σij of
hidden layer nodes is determined according to the maximum
distance of data center.

σij = dmax√
2n

, i = 1, 2, j = 1, 2, · · · n (25)

where dmax is the maximum distance between data centers.
The parameters of the rehabilitation robot are m1 =

165 kg, I = 46.3kg · m2, r = 0.06 m, b = 0.45 m. For
the parameter setting of rehabilitation robot controller, the
weight vector of the neural network is obtained by adaptive
law. Therefore, the initial value of weight matrix w is set to
zero. In practical applications, combined with the adaptive
law formula (cf. (23)), adaptive learning adjusts the robust

Fig. 13 Framework of ARBFNNSMC system
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term coefficients ξ1 and ξ2 of sliding mode control, and
implements control law formula (cf. (24)). The specific
parameter design of the robot controller is shown in Table 1.

2.4.2 Stability analysis

The Lyapunov function is chosen as:

V = 1

2
sT s + 1

2
β−1

1 ŴT
1 Ŵ1 + 1

2
β−1

2 ŴT
2 Ŵ2 (26)

The derivative of (26) is obtained and combined with the
adaptive control law:

V̇ = sT ṡ −
2∑

i=1

β−1
i Ŵ T

i
˙̂

Wi

= sT (ėc + ηec) −
2∑

i=1

β−1
i Ŵ T

i
˙̂

Wi

= sT [−ξ̂ sgn(S) − δ(t)] −
2∑

i=1

β−1
i Ŵ T

i
˙̂

Wi

= −
2∑

i=1

{
si

[
ŴT

i Hi sgn (Si)
]

+ siδi (t) + β−1
i Ŵ T

i
˙̂

Wi

}

= −
2∑

i=1

{
‖si‖

(
ŴT

i Hi − ξi

)
+ ‖si‖ ξi + siδi (t) + β−1

i Ŵ T
i

˙̂
Wi

}

= −
2∑

i=1

{‖si‖ εi + (‖si‖ ξi + siδi (t))} ≤ 0

(27)

Since ξi − ‖δi‖ > εi > 0, ξi > −δi . Since‖Si‖ > Si ,
‖Si‖ ξi > −Siδi , that is ‖si‖ ξi + siδi > 0, and ‖si‖ εi >

0, then V̇ ≤ 0. Therefore, V̇ is semi negative definite,
and the sliding surface s will tend to zero. When s = 0,
ec = −η

∫ t

0 ec(τ )dτ , ec(∞) → 0, the closed-loop system is
asymptotically stable.

3 Results

3.1 Experimental design and result analysis

3.1.1 Experimental design of motion control

The following motion control effect of the rehabilitation
robot can be evaluated using a quantitative analysis.
More precisely, it can be evaluated by controlling the

rehabilitation robot to complete the established trajectory
and analyzing the position, velocity and angular velocity
errors. The “straight line” and “curve” trajectories are the
most commonly used. In order to verify the use effect
of the robot in the actual environment, two groups of
experiments are carried out. The subject walks along the
target trajectory on the ground, and the rehabilitation robot
follows the subject’s motion. Collect the robot’s walking
trajectory, and analyze the pose error between the actual
walking trajectory and the target trajectory to judge the
robot’s following motion control effect. In this paper, two
subjects of different gender, age, height and weight are
selected in the experiment. The information of the subjects
is shown in Table 2, and the experimental site is shown in
Fig. 14.

The robot tracking control performance is evaluated by
letting the subjects walk along the given path. The target
path of Experiment 1 is a “straight line” track, while that of
Experiment 2 is a “curve” track. The red dot on the ground is
the target trajectory to be tracked. The subject walked along
the target trajectory, and the robot followed him.

The mathematical expression of the “straight line” target
track is given by:

⎧⎨
⎩

xr = t

yr = t

θr = π/4
(28)

The mathematical expression of the curve target track is
given by:

⎧⎨
⎩

xr = 0.3 × t

yr = 0.6 × sin(t)

θr = 0
(29)

The subject walked along the target trajectory, and the
robot followed him, and to calculate the position and
angle of the rehabilitation robot reference point through the
angular velocity value of the driving wheel encoder. The
calculation steps are as follows:

Actual running linear speed and angular speed of the
rehabilitation robot body:

{
vr = (vl + vr) /2

wr = (vl − vr) /2b
(30)

Table 1 Rehabilitation robot controller parameters

η1 = η2 c1 = c2 σ1 = σ2 β1 = β2 ξ1 ξ2

5 [–0.5 –0.25 0 0.25 0.5] [0.3 0.3 0.3 0.3 0.3] 3 0 0
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Table 2 Motion Control Experiment Volunteer Information

Num Gender(f/m) Age(year) Height(cm) Weight(kg) Remarks

1 female 26 163 58.8 healthy

2 male 52 171 73.6 patient

The pose of the next moment is calculated according to the
pose of the rehabilitation robot at the last moment and (25)
and (26):
⎧⎨
⎩

θt = θt−1 + wr

xt = xt−1 + vr × cos θt

yt = yt−1 + vr × sin θt

(31)

The following effect of the reference trajectory is eval-
uated using the integral square error (ISE) normalization
method of the pose error evaluation function ERROR. The
pose error evaluation function error defines the target pose
(xr , yr , θr ) and actual pose (xt , yt , θt ). The pose error can
be expressed as:

ERROR = 1

L

t∑
0

(
(xr − xt )

2 + (yr − yt )
2 + (θr − θt )

2
)

(32)

where L is the total length of the trajectory.

The experimental results are recorded by the encoder of
the driving wheel, and the data are transformed into the
position and attitude of the robot reference point through
kinematics.

3.1.2 Analysis of experimental results of robot following
motion

According to the designed dynamic controller, the following
motion experiment is performed on the rehabilitation robot
system when the load changes. The control mode of the
rehabilitation robot is set to automatic, and the auxiliary
force provided to the subjects is 24 kg. The healthy
subjects complete the motion task within 30 s, while
the patients complete the motion task within 60 s. The
robot followed two subjects and completed the given task
within the specified time. The experimental results of the
subjects walking along the “straight line” track are shown
in Figs. 15 and 16. The subjects need a short human-
computer interaction adaptation process when walking

Fig. 14 The picture of following
the movement experiment (a)
healthy subjects walking in a
straight line (b) healthy subjects
walking in a curve (c) patients
walking in a straight line (d)
patients walking in a curve

(a) (b)

(c) (d)
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(a) (b)

(c) (d)

Fig. 15 Follow the experimental curve of linear motion of healthy subjects (a) follow the trajectory (b) pose error (c) speed error (d) control torque

along the “straight line” trajectory. In this process, due to
the asymmetric change of displacement data, it can be seen
from (1) and (9) that the angular velocity of the robot
will obviously fluctuate. Therefore, there are obvious errors
in the following trajectory at the initial stage of straight-
line walking. In addition, it is easy for the subject to
move the displacement sensors on both sides of the body
to the maximum value of the stroke, and make a small
movement at the maximum displacement. Therefore, when
the subject’s adaptation stage is over, the human motion
speed identified by the human behavior intention model can
be approximately constant. Therefore, when the obtained
speed is finally used as the input of the mobile rehabilitation
robot, the following trajectory of the robot in the later stage
shows a good following effect. In general, the following
trend of the experimental trajectory of the two subjects is
coherent with that of the target trajectory, and the position
error with the target trajectory is small and convergent. The
position and pose error evaluation function values of the two
subjects are 5.35 and 6.64, respectively. This indicates that
the control effect of the rehabilitation robot following the
human motion in the linear motion meets the requirements.
However, it can be seen from the figure that the effect of
the robot following the healthy person is better than that

of the patient. Moreover, in the forward direction control,
the healthy person does better, and the angle change of
the robot following the healthy person is smaller and the
convergence is faster. Figure 17 shows the convergence of
RBFNN adaptive control gain coefficient in linear following
motion of healthy people and patients.

Figures 18 and 19 show the experimental results of two
subjects walking along the “curve” track. It can be seen
that, when following a more complex trajectory, the subject
needs to constantly adjust the walking posture. The patient’s
body coordination is poor when walking, and it is easier to
make the motion input uncertain when walking along the
curve. Although the two subjects completed the movement
task within the specified time, and the trend of the actual
walking trajectory is approximately consistent with that of
the target trajectory, clear pose errors exist. The evaluation
function values of the pose errors of the two subjects are
36.19 and 73.61, respectively. This indicates that the effect
of the rehabilitation robot following the healthy person in
the curve movement is better than that of the patient, and
the healthy person does better in the direction control of
the movement. The angle change of the robot following
the healthy person is less than that of the patient, and
the consistency is better. Healthy people walk faster, and
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(a) (b)

(c) (d)

Fig. 16 Follow the experimental curve of linear motion of patients (a) follow the trajectory (b) pose error (c) speed error (d) control torque

therefore the fluctuation of speed error curve of healthy
people is more significant than that of patients. However,
due to the uncoordinated body of patients, the fluctuation of
torque curve is more significant than that of healthy people.
Figure 20 shows the convergence of RBFNN adaptive
control gain coefficient in curve following motion of healthy
people and patients.

Table 3 shows the comparison results of the calculated
values of error evaluation function of subjects under the
same “straight line” and “curve” trajectory experimental
conditions. The calculation results show that the patients
pose error is larger than that of healthy subjects.

4 Discussion

It can be seen from the “straight line” trajectory tracking
experimental results of healthy people and patients that, in
the “straight line” movement, the body posture of healthy
people significantly changes, and the motion characteristics
of healthy people are clear and easy to be distinguished. In
addition, the dynamic controller of the robot can adaptively
adjust the switching gain of the controller in real time,
according to the change characteristics of the healthy person
center of gravity when walking. Therefore, the rehabilitation
robot can quickly identify the motion posture of healthy

Fig. 17 Linear motion adaptive
switching gain coefficient
convergence curve (a) healthy
person (b) patient
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(a) (b)

(c) (d)

Fig. 18 Follow the experimental curve of curvilinear motion of healthy subjects (a) follow the trajectory (b) pose error (c) speed error (d) control
torque

people, and then accurately follow the trajectory of healthy
people. The pose and velocity errors of the robot are small,
and the system can quickly converge to a stable motion state.
However, the patient’s lower limb motor function is limited,
the body coordination is poor, and the movement posture is
not clear due to discontinuous walking. Therefore, a certain
error exists in the recognition of the patient’s movement
posture by the robot multi-sensor data acquisition system.
The error in the early stage of the robot following the
patient’s linear movement is clear, and the speed also
changes sharply. Moreover, when the patient walks, the
change range of the center of gravity is greater, and the
system disturbance to the rehabilitation robot is also greater.
Through the continuous adaptive learning of the control
algorithm, the control switching gain of the dynamics is
corrected in real time. In the later stage of motion, the
pose and speed errors of the robot begin to decrease, and
the system gradually tends to a stable following motion
state. Although the pose error of the robot following the
patient is greater than that of the healthy person, there is
no clear difference in the experience of the two subjects in
the process of practical application. Furthermore, the pose

error in the straight-line following motion of the robot can
be ignored.

In the “curve” movement, the subject needs to continu-
ously adjust the body posture, and the displacement of the
displacement sensor changes in real time according to the
change of the subject’s shoulder posture. According to the
“straight line” trajectory tracking experiment, the efficiency
of the proposed ARBFNNSMC algorithm has been proved.
However, it can be seen from the “curve” trajectory track-
ing experimental results of healthy people and patients that
there is an obvious deviation in the motion trajectory of the
robot following the two subjects along the curve. This indi-
cates that the robot multi-sensor data acquisition system has
a poor recognition effect on the left and right turning motion
posture of the patients. Since the healthy person and the
patient have to respectively complete the task in 30 s and
60 s, the walking speed of the healthy person is higher than
that of the patient, and the motion speed of the rehabilita-
tion robot following the healthy person is also faster, making
the robot too fast when following the human body in steer-
ing and easy to produce sudden changes in angular velocity.
In addition, because the limb reaction speed of the healthy
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(a) (b)

(c) (d)

Fig. 19 Follow the experimental curve of curvilinear motion of patients (a) follow the trajectory (b) pose error (c) speed error (d) control torque

person is better than that of the patient, and the motion char-
acteristics are more obvious when walking along the track.
The rotation action is more natural than that of the patient,
the rotation angle of the robot following the healthy person
is also more regular. Therefore, when the robot follows the
subject to turn, the motion response of the healthy person
is better than that of the patient. Since the patient’s move-
ment is slow and the body’s movement during steering is not
significant. Although there is no sudden change in angular
velocity when the robot turns, there is a significant delay in
following the patient’s trajectory. Although the error of the
rehabilitation robot following the subject’s curve motion is
greater than the linear motion, the rehabilitation robot can

still recognize the motion posture of the healthy person. The
position, posture and speed errors of the robot change within
a small range. Finally, the system can converge to a sta-
ble motion state. The “curve” trajectory tracking experiment
also demonstrates that the control algorithm can improve the
tracking control effect in human motion tracking control.

In the “straight line” and “curve” trajectory tracking
experiments, the robot performed the simple recognition of
the subject’s motion intention, based on the feedback data
of the displacement sensor. The two groups of experiments
proved the efficiency of the dynamic model and control
algorithm of the mobile platform. However, the follow-up
effect of patients was different from that of healthy subjects.

Fig. 20 Curve motion adaptive
switching gain coefficient
convergence curve (a) healthy
person (b) patient

(a) (b)
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Table 3 Motion control experiment volunteer information

Num 1 2

straight line 5.35 6.64

curve 36.19 72.61

Therefore, the intention recognition algorithm and mobile
platform control algorithm should be further improved.

5 Conclusions

This paper first designs a human-computer interaction data
acquisition device based on a multi-sensor system according
to the characteristics of the human body’s movement
behavior. It then analyses the change information of human
posture in order to derive the change pattern and behavioral
intention of the human body’s center of gravity. In addition,
considering the changes of the robot auxiliary force, the
influence of the fluctuation of human gravity center on the
control system parameters and other external disturbances
in the tracking process of the mobile rehabilitation robot,
a sliding mode control is introduced. The RBFNN is
used to perform the adaptive adjustment of switching
gain coefficient, enhance the adaptability to the changes
of system parameters and other disturbance factors, and
eliminate the jitter phenomenon in sliding mode control.
Finally, the robot following motion experiment is designed.
The control experiment, quantitative analysis and evaluation
methods are used to test the following motion control effect
of the rehabilitation robot on healthy subjects and patients.
The experimental results show that the robot can follow
different subjects to complete the tasks of straight lines and
curves. This proves the correctness of the dynamic modeling
method of the mobile platform, and the efficiency of the
control algorithm. The algorithm has the characteristics of
strong convergence and robustness, which proves that the
proposed intelligent control scheme is feasible. However,
compared with the effect of following healthy subjects,
the error of the robot following patient motion is large, in
contrast to that of healthy subjects. In future work, because
the human-computer interaction data acquisition device of
the robot has a better recognition effect on the posture of
healthy people than patients, it is crucial to further improve
the goodwill map recognition algorithm. We also aim at
performing further research on the intention recognition
algorithm. Therefore, the robot could accurately identify the
motion intention of patients and achieve a better follow-up
control effect.

Abbreviations ARBFNN, Adaptive radial basis function neural
network.
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