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Abstract
This paper proposes an enhanced version of Equilibrium Optimizer (EO) called (EEO) for solving global optimization and
the optimal power flow (OPF) problems. The proposed EEO algorithm includes a new performance reinforcement strategy
with the Lévy Flight mechanism. The algorithm addresses the shortcomings of the original Equilibrium Optimizer (EO) and
aims to provide better solutions (than those provided by EO) to global optimization problems, especially OPF problems.
The proposed EEO efficiency was confirmed by comparing its results on the ten functions of the CEC’20 test suite, to
those of other algorithms, including high-performance algorithms, i.e., CMA-ES, IMODE, AGSK and LSHADE cnEpSin.
Moreover, the statistical significance of these results was validated by the Wilcoxon’s rank-sum test. After that, the proposed
EEO was applied to solve the the OPF problem. The OPF is formulated as a nonlinear optimization problem with conflicting
objectives and subjected to both equality and inequality constraints. The performance of this technique is deliberated and
evaluated on the standard IEEE 30-bus test system for different objectives. The obtained results of the proposed EEO
algorithm is compared to the original EO algorithm and those obtained using other techniques mentioned in the literature.
These Simulation results revealed that the proposed algorithm provides better optimized solutions than 20 published methods
and results as well as the original EO algorithm. The EEO superiority was demonstrated through six different cases, that
involved the minimization of different objectives: fuel cost, fuel cost with valve-point loading effect, emission, total active
power losses, voltage deviation, and voltage instability. Also, the comparison results indicate that EEO algorithm can provide
a robust, high-quality feasible solutions for different OPF problems.

Keywords Equilibrium optimizer · Meta-heuristics · CEC’20 test suite · Optimal power flow ·
Total fuel cost minimization · Total active power losses minimization

1 Introduction

Achieving an optimal power flow (OPF) represents an
essential and complex non-linear optimization problem in
power systems [1]. From an optimization standpoint, the
OPF problem involves minimization of an objective, such
as voltage instability, fuel cost, and total emission. For
this minimization, researchers have applied algorithms in
order to obtain an optimized adjustment of control variables
that respect constraints, i.e., equality and inequality of
operating conditions [2]. These variables include the real
power generator, voltages of generation buses, tap ratios of
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transformers, and reactive powers of shunt compensation
capacitors [3].

Recently, several metaheuristic algorithms (MAs) [4] for
solving the OPF problems have been proposed [5]. These
include the adaptive multiple team perturbation-guiding
Jaya (AMTPG-Jaya) algorithm [6], modified sine-cosine
algorithm (MSCA) [7], modified grasshopper optimiza-
tion algorithm (MGOA) [5], moth swarm algorithm (MSA)
[8], electromagnetism mechanism algorithm (EM) [9], and
colliding bodies optimization (CBO) [10]. Although these
algorithms have solved the same kind of OPF problems,
their objective functions, i.e., optimization goals, were dif-
ferent. Different goals lead to different optimized solutions
and can therefore influence the optimization performance.
Generally, optimization algorithm performance refers to
the quality of the optimized solution and its computation
time, i.e., time required for convergence of the algorithm.
Although many MAs have provided satisfactory results,
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optimization problems have become increasingly challeng-
ing (as the number of optimized variables has increased),
while satisfying many constraints and requirements. How-
ever, in spite of the advantages of algorithms, numerous
existing meta-heuristic optimization algorithms do not con-
stantly guarantee the globally optimum solution. In addi-
tion, owing to the variability of objectives Where, diverse
functions are used for formulating the OPF problem, no
algorithm can be considered the better-quality in solving all
variants of OPF. Therefore, developing new meta-heuristic
algorithms which can effectively handle diverse OPF for-
mulations, is necessary [6]. Combining MAs - often referred
to as hybridization- is effective in addressing the cur-
rent optimization challenges [11]. Although hybridization
improves optimization performance, it should be performed
with adequate algorithms. Thus, selecting the algorithms is
an important step. And common practice is to select them
based on their standalone performance. Another way to
improve algorithm performance is by adding optimization
components to an original algorithm.

Therefore, to develop a more effective algorithm (than
the methods typically employed) for solving OPF problems,
we have studied recent algorithms and features. The Equi-
librium Optimizer (EO) has attracted the attention of many
researchers –in approximately one year, this method has
been cited 500 times. In [12], the EO performed better
than several other algorithms. This algorithm has been vali-
dated for over 58 benchmark functions, including composite
functions and functions from the Congress On Evolution-
ary Computation 2017 (CEC’17), which are considered
challenging optimization problems. To further validate its
efficiency, the EO has also been applied to three canonical
engineering problems, i.e., welded beam design, pressure
vessel design, and tension/compression spring design. The
EO optimized results yielded superior performance com-
pared with those of seven other MAs. Although the EO has
yielded promising results, the algorithm has some draw-
backs. For example, depending on the optimization problem,
slow convergence speed, convergence to a local minimum,
performance dependence on algorithm parameters, and dif-
ficulty in achieving a balance between the exploration and
exploitation phases, have been reported [13].

In this regard, the EO has gained much popularity in
recent days in several fields of engineering and complex
applications. Authors in [13] used EO in a similar context
for solving combinatorial, global, engineering, and Multi-
Objective problems. Authors in [14] applied Opposition
Based Learning (OBL) at the initialization phase of EO
for parameters identification of photovoltaic modules. In
[15], authors combined the dimension learning hunting
(DLH) with EO for multi-thresholding based COVID-
19 CT images. Authors in [16], the support vector
regression (SVR) method with equilibrium optimizer (EO)

is combined for stock market prediction. In [17], authors
developed a new variant of EO called general learning
equilibrium optimizer (GLEO), they utilizes a general
learning strategy to explore the promising regions, the
GLEO is employed as a wrapper feature selection method,
to select a subset of informative biological dataset’s
features. Authors in [18] proposed an enhanced EO version
using ReliefF algorithm and the local search strategy, the
introduced feature selection algorithm, is tested on 16
UCI datasets and 10 biological datasets. In [19], authors
introduced an adaptive variant of EO called LWMEO for
solving the engineering design problems, the Lévy flight
random walk is utilized to enhance the traditional EO
exploration, and spiral encirclement mechanism to enhance
the exploitation process. In [20], an improved variant of
the EO (IEO), to optimize the optimal power flow (OPF)
problem, the IEO uses the chaotic equilibrium pool to
improve the information sharing between individuals. In
[21], authors suggested an algorithm that combines the a
modified version of the EO and the extreme learning machine
(ELM). To enhance the exploratory search, a gaussian
mutation method is incorporated to the original EO.

Some studies have focused on overcoming these short-
comings. Recently, the Lévy Flights (LF) algorithmic fea-
ture has yielded excellent results in improving MA perfor-
mance [22], and consequently has attracted attention from
optimization algorithm developers. Indeed, LF has been
integrated into the algorithms of some MAs, such as Grey
wolf optimizer (GWO) [23], Particle swarm optimization
[24, 25], Evaporation rate water cycle algorithm [26], Whale
Optimization Algorithm (WOA) [27], Chimp optimization
algorithm [28], marine predators algorithm [29], and Lévy
flight distribution [30]. The results have shown that (in gen-
eral) LF improves standard MAs by strengthening the local
search, escaping local minima, enhancing the convergence
speed, or improving the exploration-exploitation balance.
With these benefits in mind, incorporating LF features into
an algorithm seems a promising avenue for addressing the
aforementioned shortcomings. Therefore, the motivations of
this paper are to:

1. Device a methodology for reinforcing the exploration
and exploitation phases of MAs, thereby providing
improved solutions to optimization problems;

2. Investigate the OPF and provide enhanced solutions;
3. Propose an optimization algorithm that exhibits better

performance than recent and high-performance algo-
rithms.

Thus, this paper proposes an enhanced EO (EEO), which
includes an LF component and a new reinforcement strat-
egy for solving OPF problems more efficiently than other
methods. In particular, the proposed enhancing method con-
sists of three components for improving the local and global
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searches. The aim is to reduce the potential weaknesses
(such as premature convergence, unbalanced exploration
and exploitation phases, and convergence to a local opti-
mum) of the standard EO. Thus, the proposed algorithm
aims to solve OPF problems more efficiently (than other
methods) and to serve as a high-performance optimization
tool [31]. To achieve this goal, the efficiency of the pro-
posed EEO is evaluated on ten benchmark functions of the
CEC’20 test suite. The proposed EEO is then used to solve
the OPF problem of a standard IEEE 30-bus system. The
fuel cost, fuel cost with value-point loading effect, emis-
sion, total active power losses, voltage stability enhance-
ment, and voltage deviation are all individually optimized.
Simulation results are compared with the results of the
original EO, some of the most recent algorithms, and high-
performance optimizers and winners of IEEE CEC competi-
tions including; Moth-flame optimization algorithm (MFO),
Sine Cosine Algorithm (SCA), Whale Optimization Algo-
rithm (WOA), Grey wolf optimizer (GWO), Harris hawk
optimization algorithm (HHO), Black Widow Optimiza-
tion Algorithm (BWO), Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES), Ensemble Sinusoidal Differ-
ential Covariance Matrix Adaptation (LSHADE cnEpSin),
Improved Multi-Operator Differential Evolution algorithm
(IMODE), Adaptive Gaining Sharing Knowledge (AGSK)
and the original EO.

In summary, the features that distinguish our work from
previous studies are as follows:

– We proposed an enhanced algorithm, i.e., the EEO,
which includes a new exploitation-exploration method.

– The EEO performance is analyzed over 10 benchmark
functions of the CEC’20 test suite. This benchmark is
more recent than other related works. The optimized
results are compared with the standard EO and other
recently published algorithms.

– Statistical and qualitative analyses validate the perfor-
mance of the proposed EEO.

– The OPF objective functions are more comprehensive
than those considered in many other studies on the topic.
That is, six functions (fuel cost, fuel cost with value-
point loading, emissions, total real power losses, volt-
age instability, and voltage deviation) are minimized.

– The proposed EEO achieved high-quality optimized
solutions for the standard IEEE 30-bus power system
compared with the results of seven recent algorithms
and 20 published results.

The rest of this paper are organized as follows: Section 2
presents some preliminaries about EO and other used
enhancement methods i.e., the original EO, the LF method.
Section 3 presents the details of the proposed EEO
algorithm, and its components. Section 4 introduces the
formulation of OPF problem, i.e., the mathematical model

and constraints. Section 5 presents the results obtained and
analyses performed by the proposed EEO and competitive
algorithms on the CEC’20 test suite and the OPF problems.
Section 6 concludes the paper.

2 Preliminaries

The different components of the proposed algorithm, i.e.,
the original EO, the LF feature, are described in the
following subsections.

2.1 Equilibrium optimizer (EO)

Inspired by physics observations, the authors of [12] have
proposed an EO. Specifically, EO is based on the physics
laws governing the balance of concentrations of nonreactive
constituents in a controlled volume. An equation defines
the conservation of mass that enters and leaves a specific
volume and the system always tends to an equilibrium point.
The EO algorithm is based on the ability to reach this point.
Indeed, the algorithm tries to stabilize the concentration
within the system. The three main mathematical steps of EO
are: 1) Initialization, 2) Equilibrium pool and candidates,
and 3) Concentration update (we describe these steps below
and refer readers to [12] for additional details about the EO).

Initialization Similar to MAs based on population evolu-
tion, EO generates a population randomly. The population
consists of particles and a uniform distribution is obtained.
Particles are defined by concentration vectors. The initial
population is generated from:

P initial
i = Pmin + randi (Pmax − Pmin) i = 1, 2, . . . , n (1)

Where, P initial
i is the vector corresponding to the initial

concentration of particle i, Pmax and Pmin are the upper and
lower bounds, respectively, n is the number of particles in
the population, and randi generates a random value ∈ [0, 1].

Equilibrium pool and candidates From an optimization
standpoint, EO employs a pool of five particles to achieve
the unknown state of equilibrium, which represents the
optimal solution. The pool is composed of the four best-
so-far particles for diversification purposes. The average of
these four particles is employed for the exploitation process.
The pool is defined as:
−→
P eq =

[−→
P eq(1),

−→
P eq(2),

−→
P eq(3),

−→
P eq(4),

−→
P eq(avg)

]
. (2)

Concentration update At each iteration, the EO updates the
particle population through the following equation:

�P = −→
Peq + ( �P − −→

Peq) �F + �R
�λ (1 − �F), (3)
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Where, �F influences the exploration-exploitation balance
and is defined as follows:

�F = e−�λ(t−t0), (4)

Where, λ is a random value ∈ [0, 1], and and the value of t
decreases with increasing iteration number iter , as follows,

t =
(

1 − iter

Max iter

)(
a2

(
iter

Max iter

))

. (5)

iter is the current iteration and Max iter is the maximum
number of iterations. The constant a2 controls the exploita-
tion; as a2 increases, the intensification process improves,
but the exploration capability decreases. The vector �t0 is
computed as follows:

�t0 = 1
�λ ln

(
−a1 sign(�r − 0.5)

[
1 − e−�λt

])
+ t, (6)

Where, the constant a1 controls the diversification.
The term sign(r − 0.5) designates the diversification and
intensification directions. The exploration ability increases
with increasing a1 value, but the exploitation capability
decreases. The vector �R is referred to as the generation rate
and is computed as follows:

�R = −−→
RCP(

−→
Peq − �λ �P)e−�λ(t−t0), (7)

Where,
−−→
RCP is :

−−→
RCP =

{
0.5r1 r2 > RP
0 otherwise ,

(8)

Where, r1 and r2 are random values ∈ [0, 1] and RP is
a variable that also influences the exploitation-exploration
balance.

3 The proposed EEO algorithm

Initialization The proposed EEO integrates the above-
mentioned strategies. Particularly, the EEO initializes its
population with LF distribution as follows:

P initial
i = Pmin+Levy (β)×(Pmax − Pmin) i = 1, 2, . . . . . . NP (9)

Where, P initial
i are the initial values of the ith particle,

Pmin and Pmax are the lower and upper bounds, respectively.
Levy (β) is LF random walk described. Previous work
has confirmed that LF allows effective coverage of the
search region, and hence candidate solutions will most
likely converge to (near)-optimal solutions. Indeed, a
previous study [32] has demonstrated that LF is an effective
mechanism for escaping regions with local minima (even
those with many deep local minima).

Reinforce exploration During the exploration stage, algo-
rithm particles search the problem space broadly in order to

identify promising areas. The exploration performed by the
original EO algorithm involves only searches near the best
particle, i.e., Peq , and can therefore be improved. Thus, this
work proposes a new reinforcement exploration method that
mutates the search particles by selecting two particles in the
population as follows:

1. Based on the fitness value, the population is divided into
two parts, i.e., the best and worst solutions;

2. The Pr1 solution from the best fitness solutions and
Pr2 from the worst fitness solutions are selected via the
tournament selection method, which is defined by:

P tj = Peqj + (Pr2(j) − Pi,j ) ∗ x + (Pi,j − Pr1(j)) ∗ y. (10)

Where, x, y operators retain the stochastic nature and
define the convergence direction of search particles,
when generating P t solution; x and y are generated
randomly through the following equations:

x = 0.05 + 0.95 ∗ rand (11)

y = 0.9 + 0.1 ∗ rand (12)

Where, rand is a random number generated within
average ∈ [0, 1].

Reinforce exploitation During the exploitation process, the
particles are crowded for searching around the identified
promising areas from early exploration. As illustrated below,
search-particle evolution is achieved by minimizing the dis-
tance from the best agent Peq . (3) of the original EO algo-
rithm is slightly adapted in the proposed EEO and is given
as follows:

Pm(j) = P(i, j)+ �F(Pi,j −Peq(j))+ ( �G/�λ)(1− �F) (13)

Where, vectors F and λ are defined by (4) and (3)
respectively, and Peq(j) refers to the j-th portion of the best
particle, P(i, j) refers the j-th portion of the i-th particle.

Balancing exploration and exploitation During the first iter-
ations, strengthening the exploration phase is essential for
algorithm identification of promising areas in the problem
space, while the subsequent iterations exploit the identi-
fied areas. Therefore, the following strategy is proposed for
balancing the exploration and exploitation phases:

P(new)j =
⎧⎨
⎩

Pm(j) if (rand > 0.6)

P tj else if (z > 1/2)

Pi,j otherwise

(14)

Where, z is computed as follow:

z =
(

1 − iter

Max iter

)
e

(
a2

(
iter

Max iter

))
. (15)
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The value of z decreases with increasing iteration number
iter; iter is the current iteration and Max iter is the
maximum number of iterations. The variable a2 is a
constant that controls the exploitation step. During the
optimization process, the particles evolve by mutating some
parts of each particle and keeping the best information parts;
indeed, (14) retains the best parts of each particle Pi,j .

Algorithm 1 presents the pseudo-code of the EEO
algorithm, Where, iter refers to the current iteration number
and Max iter refers to the total number of iterations.

Computation of complexity The time complexity of the
EEO relies mainly on the process of updating solutions’
positions. Therefore, it can be formulated as follows:

The time complexity is mainly depends on the number of
particles (NP), the optimization problem dimension (D), the
total number of iterations (T) and the function evaluations’s
cost (C). In a particular way, the time complexity of EEO
is computed as follow: O(EEO) = O ((problem definition)
+ (initialization) + O (cost function) + O(Solution update)),
consequently,

O(EEO) = O(1+NP ∗D+T ∗NP ∗C+T ∗NP ∗D) (16)

The terms of each component in (16) can be defined as
below:

– The problem definitions require O(1) time.
– The particles initialization step require O(NP×D) time.
– Evaluation of the population particles demands O(T ×

C× NP) time.
– The population particles update phase require O(T ×

NP × D) time.

Hence, the overall EEO time complexity in polynomial
order.

4 OPF problems - mathematical formulation

4.1 General structure of OPF

We modeled the OPF problem as follows [33]:

Minimize : f (x, u) (17)

subject to:

g (x, u) = 0 (18)

h (x, u) <= 0 (19)

Where, f is the objective functions, g and h are sets
of equality constraints and inequality constraints of the
power system network, which are voltage and angle of load
buses respectively. And x, which represents various state
variables, is defined as follows:

x = [PG1 , VL1 , . . . , VLNL
,QG1 , . . . ,QGNG

, Sl1 , . . . , Slnl
] (20)

Where, PG1 is the active power of the generator at the
slack bus, VLi

is the voltage magnitude of the ith load bus,
QGi

is the reactive power output of the ith generator, and
Slj is the line loading of the j th line. NL is the number
of load buses. NG is the number of generators and ln is
the number of transmission lines. Furthermore, u, the vector
of control variables, which are included real and reactive
power outputs from generators, bus voltages, series and/or
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shunt capacitors (reactors), tap-changer transformers setting
defined as [33]:

u = [PG2 , . . . , PGNG
, VG1 , . . . , VGNG

, Qc1 , . . . , QcNc
, T1, . . . , TNT ]

(21)

Where, PGi
is the ith bus generator real power excluding

the swing generator, VGi
is the voltage magnitude of the

ith generator, Qcd
is the shunt compensation of the dth bus,

Tk is the kth branch transformer tap, NT is the number
of regulating transformers, and NC is the number of shunt
compensators. Any value within its range can be assumed
as a control variable.

4.2 Objective functions for the OPF

The proposed EEO performance is evaluated over six case
studies with various objective functions for a standard IEEE
30-bus system [33].

4.2.1 Case 1: fuel cost minimization

We can relate the total fuel cost ($/h) to the generated power
(MW) as follows:

f (x, u) = FC =
NG∑
i=1

(ai + biPGi + ciP
2
Gi), (22)

Where, ai , bi , and ci aare the cost coefficients of the
thermal generators PGi

.

4.2.2 Case 2: fuel cost with value-point loading effect
minimization

Minimization of the total fuel cost with value-point loading
effect is achieved through the following relation:

f (x, u) = FCvp =
NG∑
i=1

(ai + biPGi
+ ciP

2
Gi

+ | di × sin(ei ×(P min
Gi −PGi

)) |) (23)

Where, di and ei are the cost coefficients of the ith

thermal generators. Table 1 lists the coefficient values
presented in [34].

4.2.3 Case 3: emission minimization

The third objective function is used to minimize the
emission produced by the thermal generation units:

f (x, u) = E =
NG∑
i=1

(0.01×(αi+βiPGi
+γiP

2
Gi)+ωie

μiPGi )

(24)

Table 1 Cost coefficients of the thermal power generators

Generator Bus a b c d e

G1 1 0 2 0.00375 18 0.037

G2 2 0 1.75 0.0175 16 0.038

G3 5 0 1 0.0625 14 0.04

G4 8 0 3.25 0.00834 12 0.045

G5 11 0 3 0.025 13 0.042

G6 13 0 3 0.025 13.5 0.041

Where, αi , βi , γi , ωi , μ are the emission coefficients
of the thermal generators. The values presented in [34] are
listed in Table 2.

4.2.4 Case 4: total real power losses minimization

The fourth objective minimizes the total real power loss and
is expressed as follows:

f (x, u) = Ploss =
nl∑

q=1

(Gq(ij)
×(V 2

i +V 2
j −2ViVj cos(δij )))

(25)

Where, Gq(ij)
is the conductance transfer of branch q(ij)

and δij is the difference in voltage angles. Vi is the voltage
at bus i and Vj is the voltage at bus j .

4.2.5 Case 5: voltage instability minimization

The power system stability refers to the ability of the
system to maintain bus voltages within admissible limits.
The voltage stability index (L-index) of each bus, which is
an accepted metric for assessing this stability, is given as:

Lj =| 1 −
NG∑
i=1

(Fji

Vi

Vj

) | (26)

Where, Fji = −[YLL]−1[YLG]. YLG and YLL are
submatrices of the admittance matrix at a specific bus. Thus,
we can express the voltage stability as follows [35]:

f (x, u) = Lmax = max[Lj ], Where,j = 1, 2, 3, . . . , NL (27)

Table 2 Emission coefficients of the thermal power generators

Generator Bus α β γ ω μ

G1 1 4.091 -5.554 6.49 0.0002 2.857

G2 2 2.543 -6.047 5.638 0.0005 3.333

G3 5 4.258 -5.094 4.586 0.000001 8

G4 8 5.326 -3.55 3.38 0.002 2

G5 11 4.258 -5.094 4.586 0.000001 8

G6 13 6.131 -5.555 5.151 0.00001 6.667
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Where, Lj is the L-index of the j th load bus.

4.2.6 Case 6: voltage deviation minimization

The last objective function is used to minimize the
cumulative deviation of voltages obtained for the entire load
bus:

f (x, u) = V D =
NG∑
i=1

| VLp − 1 | (28)

4.3 Constraints

Usually, the OPF constraints are split into two categories:
i) equality constraint and ii) inequality constraints [5]. The
equality constraints are as follows:

PGi − PDi = Vi

NB∑
j=1

Vj (Gij cos θij + Bij sin θij ) (29)

QGi − QDi = Vi

NB∑
j=1

Vj (Gij sin θij + Bij cos θij ) (30)

Where, θij is the difference in voltage angles. PDi and
QDi are the active load demand and the reactive load
demand, respectively. Gij is the transfer conductance and
Bij is the susceptance.

The inequality constraints, which are associated with five
parts of the power system, are given as follows:

– Generator constraints:

V min
Gi

≤ VGi
≤ V max

Gi
, i = 1, . . . , NG (31)

P min
Gi

≤ PGi
≤ P max

Gi
, i = 1, . . . , NG (32)

Qmin
Gi

≤ QGi
≤ Qmax

Gi
, i = 1, . . . , NG (33)

– Transformer tap setting constraints

T min
j ≤ Tj ≤ T max

j , j = 1, . . . , NT (34)

– Shunt compensator constraints

Qmin
Cd

≤ QCd
≤ Qmax

Cd
, d = 1, . . . , NC (35)

– Voltages at load bus constraints

V min
Lh

≤ VLh
≤ V max

Lh
, h = 1, . . . , NL (36)

– Transmission line loading constraints

Slk ≤ Smax
lk

, k = 1, . . . , nl. (37)

We use the following penalty function to ensure feasible
solutions, where all the constraints are respected:

penalty = Kp(PG1 − P Lim
G1

)2 + Kq

NG∑
i=1

(QGi
− QLim

Gi
)2

+Kv

NL∑
i=1

(VLi
− V Lim

Li
)2 + Ks

nl∑
i=1

(Sli − SLim
li

)2 (38)

Where, Kp, Kq , Kv , and Ks are penalty factors. In this
study, Kp = Kq = Kv = 100, and Ks = 100, 000. Figure 1
shows the flowchart of the OPF optimization performed by
the proposed EEO.

5 Simulations results and discussion

Before applying the proposed algorithm to OPF prob-
lems, we assess the proposed EEO efficiency on the IEEE
Congress on Evolutionary Computation 2020 (CEC’20)
[36]. The simulation results of the proposed EEO are com-
pared with those obtained from various classes of existing
optimization methodsincluding; LSHADE cnEpSin, CMA-
ES, IMODE, AGSK, MFO, SCA, WOA, GWO, HHO,
BWO, and EO.

Fig. 1 Flowchart of EEO for the OPF problem
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Table 3 Parametrization of
EEO and the other algorithms Algorithms Parameters setting

Common Settings Population size: NP = 30

Maximum iterations: Maxiter = 5, 000

Number of independent runs : 30

LSHADE cnEpSin H = 5, NPmin = 4, P best rate = 0.11, Arc rate = 1.4, ps = 0.5, pc = 0.4

CMA-ES alphamu = 1.2020

AGSK KFpool = [0.1, 1.0, 0.5, 1.0], NPmin = 12

KR pool = [0.2, 0.1, 0.9, 0.9]
IMODE archrate = 2.6

MFO b = 1

SCA A = 1.57

WOA α = 1

HHO E0 = 1.67, E1 = 1

BWO Percent of Crossover = 0.56 and Percent of Mutation = 0.78

EO a1 = 0.778, a2 = 0.556

EEO a1 = 2.33, a2 = 1.89

x = [0.07, 0.50], y = [0.45, 0.89]

5.1 Parameter settings

To conduct a fair comparison, the EEO algorithm and the
other competitors are investigated through 30 runs. The
function evaluations (FEs) number is set to 150,000 for
all considered problems. Table 3 shows the parameters’
setting for each algorithm. The parameters of the proposed
algorithm and competitive algorithms are tuned first. In
order to get the suitable parameter values corresponding
to the best performance when applying the test methods,
the taguchi robust design parameter is used. The Taguchi
[37] method utilizes the Orthogonal Array (OA) and the
mean analysis to investigate the effects of the algorithm’s
parameters based on the statistical analysis of experiments.
The OA is a fractional factorial matrix of numbers arranged
so that each row represents the level of the factors in each
run and each column represents a specific factor that can be
changed from each run.

5.2 Experimental series 1: applying EEO for solving
CEC’20 test suit

5.2.1 Statistical results and analysis

The algorithm results on the CEC’20 functions are
compared. In particular, the efficiency of each algorithm is
measured with the average of the best solutions obtained at
each run and the corresponding standard deviation (STD).
Table 4 presents the average and STD values of each
algorithm for functions of 10-dimension, i.e., Dim = 10.
The best results are shown in boldface.

5.2.2 Convergence behavior analysis

The convergence of the algorithms is evaluated (see Fig. 2.
As shown in the figure, the EEO algorithm converges
to (near)-optimal solutions faster than most of the other
algorithms, and is therefore a viable optimization technique
for problems requiring fast computation, such as online
optimization.

5.2.3 Wilcoxon rank test analysis

Wilcoxon’s rank-sum test is performed to show the signif-
icance of the achieved results. Wilcoxon test demonstrates
that the algorithm behavior is not random. Although, MAs
are stochastic ones the probable performance is expected
to be precise. For more details relating to Wilcoxon’s test,
interested reader can refer to [38]. Wilcoxon’s rank sum
test based on the average values is used to investigate the
difference between EEO and the other optimization tech-
niques. Table 5 compares the results obtained by EEO and
the other algorithms. The “Better” column represents the
sum of ranks on 10 problems when the EEO is better than
the other methods. However, the “Worse” column denotes
the sum of ranks on 10 functions when the EEO is worse
than the other methods. The “p-value” is the significance
test that decides whether the similarity hypothesis should be
rejected. The significance test level should be less than 5%.

Due to Friedman rank, EEO performs better than the
MFO, SCA, WOA, GWO, HHO, BWO, and EO, in the
same context, EEO compete with the CEC’20 competition
winners including the IMODE and AGSK. In specific way,
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Fig. 2 Convergence curves of the proposed EEO and the other algorithms obtained on CEC’20 test suite with Dim = 10

similar to the AGSK, IMODE and LSHADE cnEpSin, the
proposed EEO reached the optimum value for F1. For
the mult-imodal F2 and F3 test methods, the proposed
algorithm achieved a better performance rather than the
AGSK algorithm. Over the hybrid functions F5 to F7,
the EEO exhibits a robust performance near the optimal
solution, i.e. the EEO and AGSK achieved the best solutions

of functions F5 and F7 compared to the remain algorithms.
For the composite functions F8 to F10 the EEO algorithm
shows a comparative performance against the IMODE and
AGSK winner algorithms. Aso, it is observed that the EEO
get low performance on test functions F2 and F9, as a result
the EEO get the third rank on the friedman test after AGSK
and IMODE algorithms.

Table 5 Wilcoxon test (p ≥ 0.05) for the CEC’20 test suite statistical results

Compared Algorithms Criteria Better Similar Worse p-value

EEO vs. LSHADE cnEpSin Average 4 5 1 0.359

EEO vs. IMODE Average 5 3 2 1.00

EEO vs. AGSK Average 3 5 2 0.426

EEO vs. CMA-ES Average 9 1 0 0.002

EEO vs. MFO Average 8 2 0 0.002

EEO vs. SCA Average 9 1 0 0.002

EEO vs. WOA Average 8 2 0 0.002

EEO vs. GWO Average 8 2 0 0.002

EEO vs. HHO Average 10 0 0 0.002

EEO vs. BWO Average 10 0 0 0.002

EEO vs. EO Average 10 0 0 0.002

1 3

7241



E. H. Houssein et al.

0

50

100

0

50

100
0

1

2

3

x 10
21

F1

−100 −50 0 50
−100

−50

0

50

Search history

0 50 100
0

1

2

3

4

5

6

7
x 10

10
Average fitness history

0 50 100
10

6

10
7

10
8

10
9

10
10

10
11

Optimization history

0 50 100
0.02

0.03

0.04

0.05

0.06

0.07
Diversity

0

50

100

0

50

100
0

2

4

6

8

x 10
6

F2

−100 −50 0 50
−100

−50

0

50

Search history

0 50 100
3000

3500

4000

4500

5000
Average fitness history

0 50 100
10

3.4

10
3.5

Optimization history

20 40 60 80 100

0.065

0.066

0.067

0.068

0.069

0.07

0.071

0.072

Diversity

0

50

100

0

50

100
4

5

6

7

8

x 10
5

F3

−100 −50 0 50
−100

−50

0

50

Search history

0 50 100
600

800

1000

1200

1400

1600
Average fitness history

0 50 100
10

2

10
3

10
4

Optimization history

0 50 100

0.04

0.045

0.05

0.055

0.06
Diversity

0

50

100

0

50

100
0

2

4

6

8

x 10
15

F4

−100 −50 0 50
−100

−50

0

50

Search history

0 50 100
0

0.5

1

1.5

2

2.5
x 10

8
Average fitness history

0 50 100
10

3

10
4

10
5

10
6

Optimization history

0 50 100
0.01

0.02

0.03

0.04

0.05

0.06

0.07
Diversity

0

50

100

0

50

100
0

2

4

6

x 10
9

F5

−100 −50 0 50
−100

−50

0

50

Search history

0 50 100
0

0.5

1

1.5

2

2.5
x 10

9
Average fitness history

0 50 100
10

3

10
4

10
5

10
6

10
7

10
8

Optimization history

20 40 60 80 100
0.045

0.05

0.055

0.06

0.065

0.07

0.075
Diversity

0

50

100

0

50

100
1599

1599.5

1600

1600.5

1601

F6

−100 0 100
−100

−50

0

50

100
Search history

0 50 100
1600

1700

1800

1900

2000

2100

2200
Average fitness history

0 50 100

10
3.205

10
3.208

10
3.211

10
3.214

Optimization history

20 40 60 80 100
0.058

0.06

0.062

0.064

0.066

0.068

0.07
Diversity

0

50

100

0

50

100
0

1

2

3

4

x 10
10

F7

−100 −50 0 50
−100

−50

0

50

Search history

0 50 100
0

1

2

3

4
x 10

9
Average fitness history

0 50 100
10

3

10
4

10
5

10
6

10
7

Optimization history

20 40 60 80 100

0.045

0.05

0.055

0.06

0.065
Diversity

0

50

100

0

50

100
0.6

0.8

1

1.2

1.4

x 10
4

F8

−100 −50 0 50
−100

−50

0

50

Search history

0 50 100
2000

3000

4000

5000

6000
Average fitness history

0 50 100

10
3.4

10
3.5

Optimization history

0 50 100
0.02

0.03

0.04

0.05

0.06
Diversity

0

50

100

0

50

100
2000

4000

6000

8000

10000

F9

−50 0 50 100

−50

0

50

100
Search history

0 50 100
2800

3000

3200

3400

3600
Average fitness history

0 50 100

10
3.45

10
3.46

10
3.47

Optimization history

0 50 100
0.04

0.045

0.05

0.055

0.06

0.065
Diversity

0

50

100

0

50

100
0

2

4

6

8

x 10
5

F10

−100 −50 0 50
−100

−50

0

50

Search history

0 50 100
2000

4000

6000

8000

10000
Average fitness history

0 50 100

10
3.47

10
3.49

10
3.51

10
3.53

Optimization history

0 50 100
0.03

0.035

0.04

0.045

0.05

0.055
Diversity

Fig. 3 The qualitative metrics on CEC’20 test suite: 2D views of the functions, search history, average fitness history, and optimization history
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5.2.4 Qualitative metrics analysis

The qualitative analysis of the proposed EEO algorithm
are illustrated in Fig. 3. Notably, the agent’s behaviors
are displayed in Fig. 3, which include 2D views of the
functions, search history, average fitness history, and con-
vergence curves. The qualitative analysis depicts the explo-
ration/exploitation balance of the optimization algorithm,
through various metrics, especially the fluctuation of solu-
tions diversity [39, 40], over the course of the optimization
process.

The following points are worthwhile from the qualitative
analysis:

– In terms of domain’s topology - functions in 2D views:
The first column of Fig. 3 depicts the 2-dimensional
space of the optimization test method. Further, the test
functions have a various topologies, which in turn extends
a focus into determining the type of function spaces, the
optimization algorithm yields a better performance.

– In terms of regarding the search history: The search
history of the EEO particles, over the course of the
iterations, is illustrated in the second column of the
Fig. 3. Where the increasing of the fitness value through
the search space is represented with counter lines,
which in turn gradated from the blue lines to red lines
with high fitness value. In this point, the Search history
reveal that for some functions the EEO is able to get the
areas Where the fitness values are the lowest.

– In terms of average fitness history: The third column
of Fig. 3 explains the average fitness history, such
that the averages of fitness value as a function
of the iteration number. This metric concentrates
the light over the general behavior of the particles
through the optimization process. Particularly, the result
history curves are in a decreasing pattern, which is
referring the improve of particles at each iteration. This
stable improvement confirms a cooperative searching
behavior between the EEO particles.

– In terms of population diversity: The diversity plot
curves are presented in the last column of Fig. 3, these
curves depict the average distance between the pop-
ulation particles during the optimization process. The
result diversity curves show that, at the iterations, the
particles are most likely exploring the search space
with a high diversity value. While the optimization pro-
gresses, the particles converge towards the best solution,
in the exploitation phase, matched with a decreasing in
the diversity value. The stable interchange in the parti-
cles diversity boost the exploration/exploitation balance
strategy in the EEO algorithm.

In summary, from the results obtained, the following
points can be observed:

– The proposed EEO reached the optimal value for F1,
F3, F4, F6 and F7 and near-optimal value for F5,
F8, and F10. These results strongly suggest that the
proposed EEO could perform well on other functions
with similar characteristics.

– The proposed EEO reached equivalent or better results
than the other algorithms on most CEC’20 functions, as
shown in Table 4.

– The Wilcoxon’s rank-sum test confirms that the EEO
algorithm is statistically significant.

– The convergence curves in Fig. 2 confirm that
the proposed algorithm has better exploration and
exploitation abilities than the other algorithms. For
most functions, some of the other algorithms either
get stuck in a local optimum or fail to converge to a
lower value, indicating respectively poorer exploration
ability and poorer exploitation capability than those of
the proposed algorithm. The improved exploitation and
exploration abilities result from addition of the LF and
reinforcement exploration/exploitation strategies to the
original EO algorithm.

5.3 Experimental series 2: applying EEO for solving
OPF problems

The OPF problem-solving ability of the proposed EEO is
evaluated. For this evaluation, we compared the proposed
EEO to the original EO using the standard IEEE 30-bus
system; Fig. 4 shows the single-line diagram of the system
[41]. Its characteristics are presented in Tables 10, 11 and
12 in the Appendix. This system has 24 control variables
which consist of the active power of PV buses, voltages
magnitudes of generator buses, transformer ratio, and shunt
reactive power compensating. Furthermore, the transformer
tap and shunt reactive power compensating among the
control variables both are discrete variables.

We performed 20 independent runs for each objective
function detailed in subsection 4.2; Table 6 lists the six case
studies. We run the simulations with MATLAB R2016a on
a computer that has a 2.4 GHz processor and 8 GB RAM.
For both algorithms, the maximum number of iterations is
300 and the population size is 30.

Table 7 presents the settings of all control and state
(dependent) variables along with their allowable ranges for
the best fitness value obtained for the objective function in
a case study pertaining to a 30-bus test system using the
proposed EEO and original EO algorithms. Active power of
swing generator (PG1) and reactive power of all generators
are states or dependent variables treated as constraints in
the optimization. Values of these variables are listed here
to show that the proposed EEO techniques duly comply
with the limits of these constraining variables for the six
cases. The statistical results of 20 runs for each study case
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Fig. 4 Single-line diagram of
IEEE 30-bus system [42]

performed (i.e. case 1 to case 6) using the EEO and EO
algorithms are presented in Table 8. The columns indicate
the best, mean, worst, and standard deviation (STD) values
for the objective function in each case. The best solutions
are shown in boldface.

For all objective functions, the proposed algorithm
reached better solutions in regards to the average, best,
worst, and STD values. Figure 5 presents the voltage
profiles of the load buses obtained by EO and EEO for the
six cases.

Table 6 Different objectives that will be minimized for solution of the
OPF problem

Case no. Objective function to minimize

1 Fuel cost

2 Fuel cost with value-point loading effect

3 Total emission

4 Total active power loss (Ploss)

5 Voltage instability (L-index)

6 Voltage deviation (VD)

We can see that EEO yields voltages within the lower
and upper bounds. The safety margin (the largest absolute
value of the voltage difference between the bounds and the
value obtained by the algorithm) values achieved with EEO
are higher than those achieved with EO. Thus, the optimized
system by EEO will tolerate higher voltage perturbations
than the system optimized by the original EO. Figures 6
to 8 compare the convergence curves of both algorithms;
except for case 3, in the beginning, the original EO has lower
objective function values than EEO, but after fewer than 50
iterations, the proposed EEO reaches lower values. Narrow
data distributions are obtained for all cases (highest STD
value obtained by EEO: 0.305491785). Figure 9 shows the
20 independent run distributions obtained by the proposed
EEO for Case 1.

Fuel cost minimization is also performed. The EEO
obtained a fuel cost of 800.415 $/h, which is lower than
the value obtained by the original EO (800.433 $/h) and
other techniques, as shown in Table 9. Figure 6a compares
the convergence characteristics of EEO and EO; the EEO
performs better than the EO. Table 7 presents the statistical
analysis of the optimized solutions. In addition, Figs 6b and
7a show the load bus voltages of the IEEE 30-bus system
for the cases considered.
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Table 8 Statistical analysis of the proposed EEO and the original EO

Case no. Method Best Mean Worst STD

Case 1 EEO 800.4145068 800.5418237 800.6858073 0.082200045
EO 800.4333827 800.566219 800.8858013 0.147686575

Case 2 EEO 832.1817334 832.6177702 833.5261004 0.305491785
EO 832.1969006 832.6990767 834.1425238 0.484922433

Case 3 EEO 0.2048212 0.20484045 0.2048727 1.65853E-05
EO 0.20482522 0.2048702 0.2049223 3.09025E-05

Case 4 EEO 3.088973939 3.129399194 3.176506296 0.025197238
EO 3.096270703 3.136782048 3.191664999 0.025250504

Case 5 EEO 0.124235794 0.125074084 0.125744463 0.000437337
EO 0.124268107 0.125272548 0.127181735 0.000762836

Case 6 EEO 0.089034887 0.095279721 0.099550829 0.003002618
EO 0.090567 289 0.098106481 0.117290411 0.00629304

Fig. 5 Voltage profiles of the load buses Fig. 6 Convergence curves
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5.3.1 Case 2: minimizing the fuel cost with value-point
loading effect

This case aims to minimize the fuel cost associated with the
value-point loading effect. Figure 6b shows the convergence
of the studied algorithms; the EEO outperforms the original
EO in terms of achieving the best solution. Table 7 shows
that total fuel costs of 832.1817 $/h and 832.1969 $/h
are achieved for EEO and EO, respectively, indicating the
superiority of the proposed EEO to the original EO. Table 9
compares the best values of the costs obtained by the EEO
with other counterparts.

Fig. 7 Convergence curves

5.3.2 Case 3: minimizing emission

This case is aimed at minimizing the total emission,
thereby reducing pollution. The results obtained for this
case are provided in Table 7, which reveals that EEO
and EO achieve optimal total emissions of 0.2048212
t/h and 0.20482522 t/h, respectively. Figure 7a shows
the convergence curves obtained by both algorithms.
Furthermore, Table 9 compares the best result obtained by
the proposed algorithm with the results available in the
literature; the EEO provides one of the best results.

Fig. 8 Convergence curves

1 3

7247



E. H. Houssein et al.

Fig. 9 Data distribution
obtained by EEO - Case 1
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Table 9 Comparison of EEO and other studied optimization algorithms

Cases Algorithms Fuel cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L-index (max)

Case 1 EEO 800.4145 0.365163 8.99217 0.870319 0.129852

EO 800.4334 0.366289 9.023216 0.910383 0.127399

MGOA [5] 800.4744 0.3649 8.9882 0.8851 0.1295

FCGCS [43] 800.4173 – 9.0127 0.9131 0.1376

DGWO [44] 800.433 – 8.6428 0.7285 0.1299

MSA [8] 800.5099 0.36645 9.0345 0.90357 0.13833

AGSO [45] 801.75 0.3703 – – –

Jaya [46] 800.4794 – 9.06481 – 0.1273

ABC [47] 800.66 – 9.0328 – 0.1381

SKH [48] 800.5141 0.3662 9.0282 – 0.1382

BSA [49] 799.0760a 0.3671 8.6543 1.9129a 0.1273

PSOGSA [50] 800.49859 – 9.0339 – 0.12674

ICBO [10] 799.0353a – 8.6132 1.9652a 0.1261

SCA [7] 800.1018a – 9.0633 – –

APFPA [51] 798.9144a – 8.5800 1.9451a –

FHSA [49] 799.914a – – 1.5265a –

GEM [52] 799.0463a 0.3665 8.6257 1.9312a 0.1264

DE [53] 799.0827a – 8.63 1.8505a 0.1277

Case 2 EEO 832.1817 0.438335 10.74492 0.841403 0.129291

EO 832.1969 0.43666 10.62788 0.841403 0.126421

PSO [10] 832.6871 – – – –

ICBO [10] 830.4531a – 10.2370 1.7450a 0.1289

BSA [49] 830.7779a 0.4377 10.2908 1.2050a 0.1363

APFPA [51] 830.4065a – 10.2178 1.8909a –
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Table 9 (continued)

Cases Algorithms Fuel cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L-index (max)

Case 3 EEO 944.3474 0.204821 3.238253 0.896563 0.127141

EO 944.5611 0.204825 3.250641 0.894562 0.128741

MSA [8] 944.5003 0.20482 3.2358 0.87393 0.13888

DSA [54] 944.4086 0.20583 3.2437 – 0.12734

AGSO [45] 953.629 0.2059 – – –

GEM [52] 943.6358a 0.2048a 3.0160 1.9504a 0.1269

Case 4 EEO 967.5845 0.207265 3.088974 0.913766 0.126786

EO 967.5772 0.207265 3.096271 0.915076 0.127273

MSA [8] 967.6636 0.20727 3.1005 0.88868 0.13858

DSA [54] 967.6493 0.20826 3.0945 – 0.12604

EM [9] 954.3150 – 3.1775 – 0.1253

IEM [9] 967.1147 – 2.8699a – 0.1156

APFPA [51] 965.6590a – 2.8463a 2.0720a –

ABC [47] 967.681 – 3.1078 – 0.1386

GEM [52] 966.7473a 0.2072 2.8863a 1.9755a 0.1265

Case 5 EEO 931.9871 0.215376 3.634622 0.980597 0.124236

EO 887.8918 0.233406 4.988621 0.974147 0.124268

ECHT-DE [55] 917.5916 – 4.5224 – 0.13632

SEUMRE [56] 918.1040 – 3.3194 – 0.0769a

SSO [57] – – – – 0.1267

NISSO [57] – – – – 0.12547

Case 6 EEO 864.2726 0.266382 6.313853 0.089035 0.136279

EO 809.101 0.375725 10.95594 0.090567 0.136635

SKH [48] 814.0100 0.3740 9.9056 – 0.1366

GEM [52] 816.9095a 0.2802 6.2313 1.8320a 0.1257

DE [53] 915.2172 – 3.626 2.1064a 0.1243

HS [58] 895.6223 – 4.3244 0.1006 –

Jaya [46] 840.7181 – 7.884 0.1243 –

MSCA [7] 849.2812 – 7.0828 0.1031 –

aThe constraint on load bus voltage is not respected, making this an impractical option

5.3.3 Case 4: minimizing total active power loss

In this case, the OPF solutions are optimized by considering
the optimal total active power loss values. The convergence
characteristics of the considered algorithms for this case
are shown in Fig. 7b. From Table 9, the optimal power
losses obtained by the EEO and EO are 3.088974
MW and 3.096271 MW, respectively. Compared with
recent techniques (see Table 9), the EEO provides
an approved solution and guarantees that all limits
are always respected, unlike some of the published
algorithms.

5.3.4 Case 5: voltage stability enhancement

The main objective of this case is to obtain the best values
of voltage stability enhancement. The optimal settings of
design variables for the finest stability enhancement by EEO
and basic EO are listed in Table 7. As shown in the table,
the L-index (the voltage stability indicator) obtained by
EEO, 0.124236, is lower and therefore better than the value
(0.124268) obtained by the original EO. A comparison
of the EEO and EO convergence characteristics (Fig. 8a)
reveals that the EEO outperforms the original EO in terms
of convergence rate and optimized solution.
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5.3.5 Case 6: minimizing the voltage deviation

The obtained results from the proposed algorithm and
original algorithms for case 6 are listed in Table 7. Table 9
presents the results obtained by the proposed technique
and other optimization techniques used for solving the
same case. We see from the tables that, compared with
the other algorithms, the proposed algorithm achieved a
better solution. The convergence curves obtained from the
proposed EEO and the original EO of case 6 are presented
in Fig. 8b; the proposed method yields rapid convergence to
the best solution.

5.3.6 Comparing EEO with published studies

We compared the EEO results to more than 20 published
results as shown in Table 9. Compared with other methods,
the EEO achieved lower function values in most cases,
substantiating the EEO efficiency. Thus, at a large scale,
substantial cost savings and emission reductions can
potentially be achieved by EEO while improving the system
stability.

6 Conclusion and future work

This paper proposed an enhanced version of the Equilibrium
Optimizer (EO) called EEO, which relies mainly on
reinforcing the algorithm exploration and exploitation
process. The proposed EEO is applied for obtaining
improved solutions to global optimization problems, and
Optimal Power Flow (OPF) problems. During the process,
we assess the performance of the proposed EEO with

regard to ten functions of the CEC’20 test suite. The EEO
achieved better or similar results than LSHADE cnEpSin,
CMA-ES, IMODE, AGSK, MFO, SCA, WOA, GWO,
HHO, BWO, and EO. Wilcoxon’s rank-sum test confirms
that the proposed EEO results are statistically significant.
Moreover, we demonstrated the efficiency of the proposed
EEO on OPF for the standard IEEE 30-bus system. We
minimized different objectives, i.e., the fuel cost, fuel
cost with value-point loading effect, total emission, active
power loss, voltage deviation, and voltage instability. For
most objectives, the EEO yielded better results than the
original EO and the methods reported in 20 published
studies. Substantial cost savings and emission reductions
can potentially be achieved with EEO at a large scale while
improving system stability. Thus, the proposed algorithm is
a valuable optimization tool for engineers of power systems
and a promising tool for solving more complex optimization
problems than those associated with such systems.

Indeed, as future work, the proposed EEO will be applied
to more challenging problems (than the problem considered
here), including multi-objective problems and problems
such as prediction, image segmentation, Cloud Data Center
[59, 60], and prediction of cloud workloads [61–63].

Appendix A: Data of IEEE 30-bus test system

Table 10 presents as in [5] the characteristics if the IEEE
30-bus system.

Table 11 presents as in [64] the branch data used for the
IEEE 30-bus system.

Table 12 presents as in [64] the branch data used for the
IEEE 30-bus system.

Table 10 Characteristics of
IEEE 30-bus test system Characteristics Value details Details

Buses 30 11

Branches 41 –

Generators 6 Buses: 1, 2, 5, 8, 11 and 13

Load voltage limits 24 [0.95:1.05]

Shunt VAR compensation 9 Buses: 10, 12, 15, 17, 20, 21, 23, 24 and 29.

Transformers 4 Branches: 11, 12, 15 and 36

Control variables 24 –
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Table 11 Branch data used for IEEE 30-bus system

Branch no. Bus no. R (p.u.) X (p.u.) B/2 (p.u.) Rating (MVA) Branch no. Bus no. R (p.u.) X (p.u.) B/2 (p.u.) Rating (MVA)

From To From To

1 1 2 0.0192 0.0575 0.0264 130 22 15 18 0.1073 0.2185 0 16

2 1 3 0.0452 0.1652 0.0204 130 23 18 19 0.0639 0.1292 0 16

3 2 4 0.0570 0.1737 0.0184 65 24 19 20 0.0340 0.0680 0 32

4 3 4 0.0132 0.0379 0.0042 130 25 10 20 0.0936 0.2090 0 32

5 2 5 0.0472 0.1983 0.0209 130 26 10 17 0.0324 0.0845 0 32

6 2 6 0.0581 0.1763 0.0187 65 27 10 21 0.0348 0.0749 0 32

7 4 6 0.0119 0.0414 0.0045 90 28 10 22 0.0727 0.1499 0 32

8 5 7 0.0460 0.1160 0.0102 70 29 21 22 0.0116 0.0236 0 32

9 6 7 0.0267 0.0820 0.0085 130 30 15 23 0.1000 0.2020 0 16

10 6 8 0.0120 0.0420 0.0045 32 31 22 24 0.1150 0.1790 0 16

11 6 9 0 0.2080 0 65 32 23 24 0.1320 0.2700 0 16

12 6 10 0 0.5560 0 32 33 24 25 0.1885 0.3292 0 16

13 9 11 0 0.2080 0 65 34 25 26 0.2544 0.3800 0 16

14 9 10 0 0.1100 0 65 35 25 27 0.1093 0.2087 0 16

15 4 12 0 0.2560 0 65 36 28 27 0 0.3960 0 65

16 12 13 0 0.1400 0 65 37 27 29 0.2198 0.4153 0 16

17 12 14 0.1231 0.2559 0 32 38 27 30 0.3202 0.6027 0 16

18 12 15 0.0662 0.1304 0 32 39 29 30 0.2399 0.4533 0 16

19 12 16 0.0945 0.1987 0 32 40 8 28 0.0636 0.2000 0.0214 32

20 14 15 0.2210 0.1997 0 16 41 6 28 0.0169 0.0599 0.0065 32

21 16 17 0.0524 0.1923 0 16

Table 12 Cost and emission coefficients of generators for IEEE 30-bus system

Generator Bus a b c d e α β σ γ μ

PG1 1 0 2 0.00375 18 0.037 4.091 -5.554 6.49 0.0002 2.857

PG2 2 0 1.75 0.0175 16 0.038 2.543 -6.047 5.638 0.0005 3.333

PG3 5 0 1 0.0625 14 0.04 4.258 -5.094 4.586 0.000001 8

PG4 8 0 3.25 0.00834 12 0.045 5.326 -3.55 3.38 0.002 2

PG5 11 0 3 0.025 13 0.042 4.258 -5.094 4.586 0.000001 8

PG6 13 0 3 0.025 13.5 0.041 6.131 -5.555 5.151 0.00001 6.667
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