
https://doi.org/10.1007/s10489-022-03783-y

Optimization of the structural complexity of artificial neural
network for hardware-driven neuromorphic computing application

Kannan Udaya Mohanan1 · Seongjae Cho1 · Byung-Gook Park2

Accepted: 17 May 2022
© The Author(s) 2022

Abstract
This work focuses on the optimization of the structural complexity of a single-layer feedforward neural network (SLFN) for
neuromorphic hardware implementation. The singular value decomposition (SVD) method is used for the determination of
the effective number of neurons in the hidden layer for Modified National Institute of Standards and Technology (MNIST)
dataset classification. The proposed method is also verified on a SLFN using weights derived from a synaptic transistor
device. The effectiveness of this methodology in estimating the reduced number of neurons in the hidden layer makes this
method highly useful in optimizing complex neural network architectures for their hardware realization.

Keywords Neural networks · Hardware neuromorphic systems · Synaptic device · Neuron circuits · Hidden layer ·
Pattern recognition · Singular value decomposition (SVD)

1 Introduction

Capability of the human brain to process data in a parallel
and energy-efficient architecture is driven by its huge net-
work of ∼ 1011 neurons and ∼ 1015 synapses. The bio-
logical neuron is the fundamental processing unit inside
the brain. A neuron consists of a cell body which is called
as the soma to which the axons and dendrites are attached
(Fig. 1a). The neuron receives information through the
dendrites from the pre-synaptic neuron and the information
is passed on to the post-synaptic neuron through the axon
using action potentials. These signals arrive at the junction
between two adjacent neurons which are referred to as the
synaptic cleft. These synapses are capable of processing
and memorizing the information signal. The connection
strength between the two adjacent neurons is determined
by the synaptic weight. Analogous to the biological neural

� Seongjae Cho
felixcho@gachon.ac.kr

1 Graduate School of IT Convergence Engineering, Gachon
University 1342 Seongnamdaero, Sujeong-gu, Seongnam-si,
Gyeonggi-do, 13120 Republic of Korea

2 Department of Electrical and Computer Engineering, Seoul
National University Gwanak-ro 1, Gwanak-gu, Seoul 08826,
Republic of Korea

network, researchers have tried to develop hardware neuro-
morphic systems [1, 2] which emulate the working of the
human brain. These are purely electrical circuits composed
of neuron circuitry [3–5] and the associated synaptic array
elements. Such a bio-inspired approach can overcome sev-
eral of the shortcomings of current computer architectures
which require large amount of data transfer between the
processing and memory units leading to an increased energy
expenditure and computational times. Currently, software-
based neural network designs are also in much demand due
to their capability to solve data-intensive computational
tasks like face recognition, self-driving cars, and big data
analytics. A feedforward neural network (Fig. 1b) is an
artificial neural network (ANN) which is capable of solving
several tasks like pattern recognition, prediction, and func-
tion approximation. These artificial neural networks are
modelled on the biological neural circuitry and are primar-
ily composed of neurons and synapses. While the synapses
are responsible for the storage of information called as
the ‘weights’, the neurons implement the processing capa-
bilities of the network using vector matrix multiplication
(VMM) [6] followed by input summation and threshold
firing. Non-linear mathematical functions called ‘activation
functions’ are used for determining the output of the neu-
rons from the integrated input signals. The rectified linear
unit (ReLU) [7] function is a popular choice for the neuron
activation function because of its similarity to biological
neurons in zeroing the negative weight values. In an ANN,

/ Published online: 8 July 2022

Applied Intelligence (2023) 53:6288–6306

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03783-y&domain=pdf
http://orcid.org/0000-0001-8520-718X
mailto: felixcho@gachon.ac.kr

Fig. 1 Schematics of (a)
biological neuron and (b)
single-layer feed forward neural
network (SLFN)

Dendrites

Nucleus

Soma

Axon

Myelin sheath

Axon terminal

 Input
 layer

 Hidden
 layer

 Output
 layer

Synaptic
 weights

(a)

(b)

these series processes of summing the inputs and com-
puting the VMM followed by the non-linear activation of
the neurons are carried forward from the input to the next
hidden layer and finally to the output neurons. This process
is referred to as the “feedforward” process, and hence, the
name of the network is usually called as “feed-forward neu-
ral network”. Once the output values are obtained from the
final layer neurons, they are compared with the actual values
and the difference between the two values is computed using
a loss function. The mean cross-entropy loss (MCEL) func-
tion is a commonly-used loss function in classification tasks
which compare the predicted and actual probabilities of the
output. The gradient of the loss function is then computed

(referred to as “stochastic gradient descent”) with respect to
the weights of each layer and the weights are updated based
on the direction of steepest decrease of the gradients. This
backward propagation of the errors from the final output
layer to the initial layers is called the “back-propagation”
method. The “learning rate” determines the magnitude by
which the weights are updated at every back-propagation step.
A complete cycle of feedforward and backpropagation is
computed over a batch of input images called the batch size. For
a typical pattern recognition task, the whole dataset is divided
into several smaller batches of images with equal batch sizes
for the ANN training. Once the training process is carried
out over an entire dataset, it is referred to as one “epoch”

Optimization of the structural complexity of artificial neural network... 6289

of training. The same procedure is followed several times
through multiple epochs until the mean accuracy and MCEL
function converges to a satisfactory value. An ANN net-
work can have multiple layers of neurons between its input
and output neurons, depending on the complexity of the
problem at hand. A single-layer feedforward neural network
(SLFN) is an ANN with a single hidden layer of neurons
and is the most commonly used ANN for pattern recog-
nition tasks. Such a neural network can easily be adopted
into a hardware synaptic array along with neuron circuits
for the realization of hardware neuromorphic system.
Hence, optimizing the structural complexity of feedfor-
ward neural networks is highly important from a hardware
perspective.

1.1 Motivation

There has been a consistent effort from engineers to realise
neuromorphic architecture in hardware sense. Neuromor-
phic hardware design pursues an in-memory computing
with highly energy-efficient parallel processing capability
in the end. Realizing the artificial neural network through
complementary metal-oxide-semiconductor (CMOS) inte-
grated circuits is the first step in this direction. IBM’s
TrueNorth chip has been one of the first major break-
throughs in this respect [8]. This chip encompasses 256
million synapses and 1 million integrate-and-fire (IF) neu-
rons fabricated using the 40-nm-node CMOS technology.
Similarly, Intel’s Loihi chip was fabricated with 130 million
synapses and 131,072 neurons utilizing 14-nm-node CMOS
technology. Both chips support the high capacity and accel-
erated learning in the specifically designed neuromorphic
semiconductor chip. Several other neuromorphic chips have
been reported: Neurogrid [9], Braindrop [10], BrainScales
[11], SpiNNaker [12], ROLLS [13], Darwin [14], Dynap-
SEL [15] etc. Synaptic transistors construct the core of
these neuromorphic chips wherein the weight information
is stored. Unlike software-based weight initialization, the
synaptic devices can only have limited number of conduc-
tance values (weights). More recently, the synaptic devices
are realized by a single memory device including charge-
trap flash (CTF) memory [16], resistive-switching random-
access memory (RRAM) [6, 17–20], phase-change random-
access memory (PRAM) [21], ferroelectric random-access
memory (FRAM) [22], and magnetic random-access mem-
ory (MRAM) [23] for increasing the synapse array density
and minimizing the power consumption, departing from the
conventional synapses made up of circuits or several elec-
tron devices. Also, many of today’s state-of-the-art deep
learning models such as Inception v1, VGG-19, ResNet,
and others contain huge number of neurons with millions
of parameters [24–27]. These are extremely hard to imple-
ment in the hardware due to the limitations with array size

constraints (chip compactness) and manufacturing cost. For
the widespread adoption of these models in the neuromor-
phic hardware, their model size needs to be reduced and
optimized with the hardware constraints (see Fig. 2). It is
in this context that we have verified our current method-
ology for the optimized SLFN design using the weights
extracted from a synaptic transistor device [28]. To the best
of our knowledge, this is the first work focusing on the opti-
mization of SLFN for implementation of the specifically
designed artificial intelligence chip.

1.2 Literature review

A major reason for the structural complexity of a neural
network is the number of neurons in the hidden layer used
for training the data. Several research groups have attempted
to reduce the structural complexity of neural networks.
The seminal work by Arai resulted in a hyperplane-
based algorithm for estimating the hidden neuron number
and found that I − 1 hidden units are sufficient for I

learning patterns [29]. Later, Tamura and Tateishi proposed
a method to determine the number of hidden neurons using
information criteria [30]. Similarly, Fujita et al., statistically
estimated the hidden neuron number with the advantage of
fast learning [31]. The required neuron number is given
by Nh = K log ||PcZ||/logS, where S is defined as the
number of candidates which are arbitrarily searched for
optimised hidden neurons and c is the acceptable error
limit. E. J. Teoh et al. used an SVD-based approach to
estimate the number of hidden neurons in a feed-forward
network [32]. But the method was empirical in nature with
results shown on small datasets only. Pruning is another
well-known method for reducing neural network size by
removing structural parameters based on the relevance
scores. Recently, F.E Fernandes et al. used a filter-pruning
strategy followed by fine tuning to reduce the size of
some popular models like ResNets, DenseNets etc [33].
There have also been several other strategies adapted
for pruning and is the most widely used method for
model compression [34, 35]. However, the method often
requires several iterations and fine-tuning making it hard
to adapt to hardware implementations. There have also
been several advanced techniques like quantization [36],
Huffman encoding [37], and neural architecture search
(NAS) for determining the optimal neural network size
[38]. However, most of these algorithms are developed for
efficient implementation on software using the conventional
von Neumann hardware architecture. They require high
computing power using advanced hardware such as GPU
or cloud-based computational units. A major limitation of
such methods is encountered in their implementation for
neuromorphic hardware where these algorithms have never
been tested with realistic physical constraints.

K. Udaya Mohanan et al.6290

Fig. 2 Schematic showing the
optimization of an SLFN using
SVD method. In the hardware
sense, the synaptic weights can
be obtained from a single
memory component, for
example, a 4-terminal synaptic
transistor [28, 61, 62] whereas
the neurons in the hidden layer
are to be realized by relatively
bulky CMOS circuits which
consume large area and energy
[40]. The inset shows a neuron
circuit consisting of two n-type
metal-oxide-semiconductor
field-effect transistors
(NMOSFETs) and passive
devices (Cmem: membrane
capacitor, Vmem: membrane
potential). Adapted from [41]
with permission from Wiley
Books. The SVD approach is
highly practical in optimizing
the hardware neural network
from the design level
determining the number of
neuron circuits and the size of
synapse array

Synaptic

 weights

Input
 layer

Hidden
 layer

Output
 layer

Neuron Circuit

Sy
na

pti
c

 w
eig

hts

OROR

 SVD

Input
layer

Hidden
 layer

Output
 layer

Optimization of the structural complexity of artificial neural network... 6291

1.3 Contribution

The main goal of this work is to optimise the structural
complexity of a SLFN for hardware realisation. We propose
the use of SVD method for determining the optimized
number of neurons in the hidden layer for a SLFN. SVD
is a comparably simpler method and require much less
iterations to identify the lowest possible model size within
an acceptable error limit. Unlike other reported algorithms,
we have verified our methodology by incorporating
physically reliable weight values from a core-shell dual-
gate (CSDG) nanowire transistor [28] device for identifying
the convergence criterion. Such a device-based verification
is important from a hardware perspective. Through the
device-based weights and weight level variations, we have
taken into account the hardware limitations like limited
range of device conductance values and device non-linearity
considerations while defining the convergence criterion for
determining the reduced number of neurons. To the best
of our knowledge, this is the first work focusing on the
optimization of SLFN for hardware implementation. We
believe that this is a very important step in realizing compact
neural networks for hardware realization.

2Mathematical preliminaries

We consider a general SLFN consisting of J input neurons,
n neurons in the hidden layer, and O output neurons.
The SLFN is trained using a set of T training images
X ∈ {X1, X2, ..., XT }. The activation function used is the
rectified linear unit (ReLU) function. The trained model is
then used to recognize a set of M test images. The activation
matrix is given by the matrix K such that K ∈ R

M×n.The
rows of K can be considered as M data points in an n

dimensional space since K is an M × n matrix. From a
hardware perspective, realization of such an SLFN would
require synaptic devices like resistive-switching random-
access memory [17], charge-trap flash memory [16], field-
effect transistor [39], phase-change memory [21] for the
storage of weight values cooperating with CMOS neuron
circuits [40, 41]. Essentially, the synaptic devices utilize
their electrical conductance states as the equivalent weight
values and the neuron circuits are operated based on the
behavior of the activation function. Although the majority
of area and power efficiencies are determined by the
high-density synaptic device array in the hardware neural
network, while a synaptic device can be realized by a
single electron device with very high scalability reaching
down to nanometer dimension, a neuron is implemented
in the form of complementary metal-oxide-semiconductor
(CMOS) integrated circuit based on plural passive and

active components, and thus, requires relatively larger area
and power consumption compared with a single synapse.
For this reason, the mathematical approach is focused
on reducing the number of neurons, which has not been
seriously considered in the conventional purely software-
oriented artificial intelligence approach. Hence, optimally
minimizing the number of neurons in the hidden layer
should be one of the major concerns for the neuromorphic
hardware implementation. In the current work, we use the
SVD method to reduce the size of the activation matrix
K without compromising on the prediction capabilities of
the network. This is done by determining the best-fitting
lower dimensional subspace for the set of M data points.
For the activation matrix K; sL1 , sL2 , sL3 ,, sLn are the left
singular vectors; sR1 , sR2, sR3 , .., sRn are the right singular
vectors and σ1, σ2, σ3, . . . , σn are the singular values. The
left singular vectors:

sLi = 1
σi
KsRi (1)

where the coordinates of σisLi are the projections of rows
of K onto sRi . Essentially, the singular vectors are the
orthonormal basis for the lower-dimensional subspaces and
the singular values are the projections of the M data points
onto these subspaces.

The SVD of the matrix K is the factorization of the
matrix into the product of three separate matrices SL ∈
R

M×M, β ∈ R
M×n, and SR ∈ R

n×n such that:

K = SLβSR
T (2)

where SL =

⎡
⎢⎢⎢⎢⎣

sL11 . . . sL1M

. . .

. . .

. . .
sLM1 . . . sLMM

⎤
⎥⎥⎥⎥⎦

M×M

,

SR =

⎡
⎢⎢⎢⎢⎣

sR11 . . . sR1n

. . .

. . .

. . .
sRn1 . . . sRnn

⎤
⎥⎥⎥⎥⎦

n×n

and β =

⎡
⎢⎢⎢⎢⎣

σ1 0 . . 0
0 . .
. σn .
. . .
0 . . . σM

⎤
⎥⎥⎥⎥⎦

M×n

The columns of SL and SR are the left and right singular
vectors of the K matrix, respectively, and are orthonormal to
each other. β is a diagonal matrix with n non-zero diagonal
elements arranged such that σ1 ≥ σ2 ≥ σ3, . . . ≥ σn ≥ 0.
Further, σn+1 = σn+2 = = σM = 0. Here, the matrix
K can be expressed as K = ∑n

i=1 σisLisRi
T which can be

proved by the following theorem [42]:

Theorem 1 For an M × n matrix K , with right
singular vectors sR1 , sR2 , sR3 , .., sRn; left singular vectors

K. Udaya Mohanan et al.6292

sL1 , sL2 , sL3 ,, sLn and corresponding singular values
σ1, σ2, σ3, . . . , σn:

K =
n∑

i=1

σisLisRi
T (3)

Proof We see that multiplying the left-hand side of (3),
i.e, matrix K with sRj yields σj sLj (from (1)). Similarly,
multiplying the right-hand side of (3), i.e,

∑n
i=1 σisLisRi

T

with sRj yields σj sLj since sRi are orthogonal to each other
and sRi

T × sRi = I where I is the identity matrix.

KsRj = σj sLj =
n∑

i=1

σisLisRi
TsRj (4)

Any two matrices A and B are equal if Ax = Bx for all
vectors x. Hence, from (4),

K =
n∑

i=1

σisLisRi
T

3 Reducing the over-estimated rank n

Most often, the number of neurons in the hidden layer
taken into account for the SLFN training is highly over-
estimated. Such an over-estimation leads to additional neu-
ronal circuitry in physical cross-bar array implementations,
which can be avoided by determining the reduced rank.
Hence, the reduction of the over-estimated rank n is highly
significant from a CMOS manufacturing perspective. In
the mathematical sense, the over-estimation of neurons in
the hidden layer of SLFN leads to the creation of addi-
tional hyperplanes in the hidden layer activation space. Such
hyperplanes are essentially parallel planes to the linearly
independent basis vectors of the space. An intuitive way of
dealing with this problem was put forward by G.W. Stewart,
where the excess neurons are considered as “contamina-
tions” to the original matrix [43]. Now, the problem reduces
to the determination of the reduced rank g of the hidden-
layer activation matrix from the over-estimated matrix with
n neurons. The sum of squares of all the entries in a matrix
is given by the Frobenius norm of the matrix.

||K||F =
√∑

j,i

k2
j,i (5)

For any row, kj of matrix K , we can show that
∑M

j=1

∣∣kj

∣∣2 =∑n
i=1σi

2 [42]. Hence from (5), we have:

||K||F 2 =
n∑

i=1

σi
2 (6)

Thus, the square of the norm of the activation matrix is equal
to the sum of the squares of the singular values of K . If we
assume E as the “contamination matrix” which accounts for
the excess neurons in the K matrix, then from (6),

σ 2
g+1 + σ 2

g+2 + . . . + σ 2
n ≤ ||E||2F (7)

Therefore, if σg is sufficiently large in comparison to E,
then SVD can provide a reasonable approximation of the
subspace spanned by the hidden-layer activation matrix.

3.1 Determination of g

Several different criteria have been previously suggested for
the determination of g [44]. within a threshold value γ such
that the “spectral energy” of K matrix is retained. We use
the convergence criterion for g based on the spectral energy
approximation as shown below:
g∑

i=1

σ 2
i /

n∑
i=1

σ 2
i ≥ γ (8)

γ has been mostly determined by visual inspection based
on the problem in previous works. Although γ originates
from the spectral energy equation in (8), it has actual
physical significance when dealing with real hardware-
based systems. γ has a direct dependence on the final
accuracy of the trained model and hence the determination
of γ should take into account the device considerations
like the number of stable weights attainable by the synaptic
device. Unlike the near-continuous weights available for a
software based artificial neural network, realistic hardware
implementations can only have a finite number of stable
conductance levels [45] which can be utilized for the
synaptic array fabrication. Such practical considerations
are extremely important in the determination of γ since
the activation matrix output might alter significantly with
a finite-weight network and so does the convergence
criterion for the SVD method. Hence, we have taken into
consideration the various practical weight levels ranging
from 2, 4, 8, 16, and 32 levels for the application of the SVD
method in optimizing the number of neurons in the hidden
layer.

4 Results & discussion

The proposed method was applied to the Modified National
Institute of Standards and Technology database (MNIST)
dataset using two types of weight initializations. In the
first case, weights were randomly initialised using a purely
software-based randomization technique. In the second
case, we have utilised discrete synaptic weights extracted
from a core-shell dual-gate nanowire synaptic transistor
[28].

Optimization of the structural complexity of artificial neural network... 6293

4.1 Software-based weight initialization

The MNIST dataset consists of hand-written digits of
60,000 training images and 10,000 test images [46]. The
images correspond to digits from “0” to “9” with nearly
uniform distribution among all the 10-digit classes. Every
image is in grayscale format with a resolution of 28 × 28
pixels. Before training, the input data was normalized to
a range of [0, 1], and then, reshaped to form a column
matrix of 784 rows. The normalized data is then fed to a
SLFN with 784 input neurons, 100 neurons in the hidden
layer, and 10 output neurons. All the simulations were
performed using PyTorch open source package [47]. The
input data are trained for 100 epochs within which the
mean classification error was reduced to a stable value. The

detailed flowchart and algorithm used for optimization of
the SLFN are shown in Fig. 3 and Algorithm 1, respectively.
Briefly, the training of the SLFN for the input data is
initialized using a large estimate for the neurons in the
hidden layer, say 100. The model is then trained for all
the images in the training dataset using the rectified linear
unit (ReLU) as the non-linear activation function for the
SLFN. The back-propagation algorithm is implemented
using the stochastic gradient descent algorithm. From the
trained model, the accuracy is determined using the test
dataset. The SVD of the hidden layer activation output is
then computed and the β matrix is found. Using a γ value
of 0.97, a reduced rank value of 42 is determined for g such
that the singular value σg satisfies the threshold criterion in
(8). The SLFN training procedure is then repeated for 42

Fig. 3 Flowchart describing the
execution of the proposed SVD
algorithm

Initialize Model,
Start training

Testing on trained model

Compute hidden layer
activation matrix, K

Apply SVD on K,
Find β

From β, find min(σg)

σg satisfies
eq.(8)

Yes

No

Retrain model with
g neurons in the hidden

layer

Set
g=g+1

g is the optimized
number of neurons

K. Udaya Mohanan et al.6294

neurons in the hidden layer. Figure 4a shows the variation
of digit recognition accuracy with the number of epochs for
the network with both 100 and 42 neurons in the hidden
layer. We obtained a maximum test accuracy of 97.65% for
100 neurons in the hidden layer and 97.15% for 42 neurons
in the hidden layer. From this, it is evident that the test
accuracy does not increase appreciably with the addition
of neurons beyond 42 in the hidden layer. Similarly, the
decrease of MCEL function also follows a similar trend for
both 100 and 42 neurons in the hidden layer. The accuracy
and the loss function do not vary significantly beyond
42 neurons in the hidden layer since this is the reduced
rank representation of the activation matrix space. Further
addition of neurons results in the creation of redundant
neurons which adversely affects the network since it adds
only to the structural complexity of the network leading to
increased computational time.

The variation of test accuracy and MCEL function as
a function of the number of neurons in the hidden layer

is shown in Fig. 4b. It is observed from the figure that
the accuracy does not increase considerably beyond 42
neurons in the hidden layer. As discussed before, the
determination of a lower bound for γ is crucial for practical
implementation of the SVD method for rank reduction.
Figure 4c and d show the dependences of accuracy and
MCEL function on the value of γ . We can infer that a value
of 0.9 is a safe choice for the lower bound on γ since the
percentage loss in accuracy between γ = 1 and γ = 0.9
is below 2.3%. Similarly, the MCEL function also does not
increase significantly until about γ = 0.9.

Apart from the recognition accuracy, an important
performance metric of a neural network model is its
capability to predict all the output classes with a similar
level of confidence. The confusion matrix (see Fig. 5) can
be used to measure the overall prediction capabilities of
a model. It is a square matrix which compares the true
output values with that predicted by the model. The diagonal
elements represent the cases where the predicted output

(a) (b)

(c) (d)
Fig. 4 MNIST digit recognition accuracy (%) and mean cross-entropy loss as a function of (a) number of training epochs for 100 and 42 neurons
in the hidden layer. (b) Test accuracy (%) and MCEL variation with neurons. (c) Accuracy and (d) mean cross-entropy loss variation with gamma

Optimization of the structural complexity of artificial neural network... 6295

)b()a(
Predicted Label Predicted Label

Ta
rg

et
 L

ab
el

Ta
rg

et
 L

ab
el

Fig. 5 Confusion matrix for the MNIST test data for (a) 100 and (b) 42 neurons in the hidden layer

is same as the true output. All the off-diagonal elements
represent the faulty predictions made by the model. From
Fig. 5a and b we see that our trained model is showing a
high degree of predictability for all the classes even with

a reduced number of neurons. This indicates that the SVD
method has reduced the effective ranks of the activation
matrix without compromising the class separability in
model prediction. In order to evaluate the performance of

0 20 40 60 80 100
0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

Epochs

100 Hidden Neurons
30 Hidden Neurons

0.0

0.5

1.0

1.5

2.0

2.5

M
ea

n
C

ro
ss

-E
nt

ro
py

Lo
ss

0 20 40 60 80 100

82

84

86

88

90

Ac
cu

ra
cy

(%
)

Neurons
0.35

0.40

0.45

0.50

0.55

M
ea

n
C

ro
ss

-E
nt

ro
py

Lo
ss

Ta
rg

et
La

be
l

Ta
rg

et
La

be
l

lebaLdetciderPlebaLdetciderP

(a) (b)

(c) (d)
Fig. 6 Application of the proposed method to fashion MNIST pattern
recognition. (a) Recognition accuracy (solid) and mean cross-entropy
loss (MCEL) (dotted) as a function of number of training epochs with

100 and 30 neurons in the hidden layers. (b) Recognition accuracy
(red) and MCEL (blue) as a function of neurons in the hidden layer.
Confusion matrices for (c) 100 and (d) 30 neurones in the hidden layer

K. Udaya Mohanan et al.6296

our SVD method on other datasets, we have applied our
proposed method on two more datasets – fashion MNIST
and Street View House Numbers (SVHN) Datasets [48, 49].
fashion MNIST dataset is similar to the MNIST dataset
except for the type of images being classified. The dataset
contains greyscale images (28×28) of fashion articles which
are to be classified into 10 output classes. However, the
SVHN dataset consists of RGB images of 32×32 resolution
consisting of real word images of house numbers from
Google Street View images. The dataset is to be classified
into 10 output classes corresponding to the images of the
digits at the center of the house number. Figure 6a shows the
application of the proposed method in reducing the number
of neurons in the hidden layer from 100 down to 30 neurons
for fashion MNIST pattern recognition tasks. It is observed
that, as the number of neurons decreases from 100 down
to 30, there is only a marginal drop in test accuracy from
88.67% to 86.73%. Similarly, the MCEL shows only a small
drop by the scheme with reduced models. Here, it is evident

that the SVD method succeeds in removing redundant
neurons from the hidden layer without an appreciable
drop in network performances. Also, the variation in test
accuracy (%) with the number of neurons in the hidden layer
depicted in Fig. 6b reveals that the model performance is not
improved with further decrease in neuron number below a
cut-off value of 30. The confusion matrices shown in Fig. 6c
and d correspond to the SLFNs with 100 and 30 neurons in
the hidden layer, respectively. It is shown that the lowering
of model complexity depending on application of the SVD
method has not affected the capability of the model to make
distinctions among the various output classes. Figure 7a
shows the SVHN digit recognition accuracy and MCEL
as a function of number of training epochs with 100 and
48 neurons in the hidden layer. As compared with the test
results from MNIST and fashion MNIST datasets, one from
the SVHN dataset show large fluctuations in both accuracy
and MCEL over the training process. The saturated accuracy
value is lower than those obtained from the previous MNIST

0 20 40 60 80 100 120
0

20

40

60

80

100 Hidden Neurons
48 Hidden Neurons

Ac
cu

ra
cy

(%
)

Epochs
0.5

1.0

1.5

2.0

2.5

M
ea

n
C

ro
ss

-E
nt

ro
py

Lo
ss

0 20 40 60 80 100

30

45

60

75

90

Ac
cu

ra
cy

(%
)

Neurons

0.9

1.2

1.5

1.8

2.1

M
ea

n
C

ro
ss

-E
nt

ro
py

Lo
ss

Ta
rg

et
La

be
l

Ta
rg

et
La

be
l

lebaLdetciderPlebaLdetciderP

)b()a(

(c) (d)
Fig. 7 Application of the proposed method to SVHN digit recognition.
(a) Recognition accuracy (solid) and mean cross-entropy loss (MCEL)
(dotted) as a function of number of training epochs with 100 and 48

neurons in the hidden layer. (b) Recognition accuracy (red) and MCEL
(blue) as a function of neurons in the hidden layer. Confusion matrices
for (c) 100 and (d) 48 neurons in the hidden layer

Optimization of the structural complexity of artificial neural network... 6297

and fashion MNIST tests while the saturated MCEL is larger
than them. This is largely due to the increased complexity in
the SVHN dataset which considers the RGB compositions
in an image. However, it is noticeable that the SVD method
has not considerably affected the SLFN performance while
reducing the number of neurons in the hidden layer. Test
accuracy is depicted as a function of number of neurons
in Fig. 7b, which validates that the system accuracy is
maintained with the reduced number of neurons. However,
there is a significant degradation in performance with less
than 48 neurons. The confusion matrices with the original
100 neurons and those in a reduced number, 48, are depicted
in Fig. 7c and d, respectively, in which a noticeable off-
diagonal contribution is not observed. It is revealed that
the optimally minimized SLFN architecture is capable of
separating the output classes with confidence.

4.2 Performance comparison with previous studies

In order to make the distinction of the main purpose
and performances of the methodology in this work, we
have made comparisons between recent works and ours.
Although several different algorithms have been reported in
the literature related with optimization of neural network
architectures, most of them have not focused on energy
and area efficiency, but rather on expressive power with
possibly complicated approximation function that can be
obtained by the algorithm, toward a higher accuracy [50].
This is different from the main purpose of this work,
the reduction of complexity in physical interconnection
inside a hardware neural network architecture. Relatively
similar topic was dealt in another literature [51], for a
study on effects of neural network depth (number of hidden
layers, not that of neurons in the single hidden layer as
in this work) on the expressive power of the network.
The focus is mainly made on the result of exponential
increase in width, number of neurons in a hidden layer,
in sacrifice of the reduction in depth, which does not
provide any guideline or algorithmic approach for energy
and area efficient hardware design of a neural network
architecture. As compared with those reported without
considerations in the hardware aspects, our methodology
attempts to provide a practical algorithm for width reduction
of an SLFN from a hardware application perspective. We
have specifically chosen SLFN for our simulations due
to the current research interest in these neural network
architectures towards neuromorphic computing applications
[52, 53]. In literature, the most widely used method for
network optimization is the pruning technique in which
the parameters of an existing network are systematically
removed [54]. In general, the pruning technique starts with
a pre-trained network, and then, removes the redundant
parameters and repeats the training while maintaining a

Ta
bl
e
1

C
om

pa
ri

so
n

be
tw

ee
n

m
et

ho
ds

in
th

e
ex

is
tin

g
re

po
rt

s
an

d
in

th
is

w
or

k

R
ef

er
en

ce
N

et
w

or
k

ar
ch

ite
ct

ur
e

M
et

ho
do

lo
gy

H
ig

hl
ig

ht
s

C
om

pa
ri

so
n

W
en

,e
ta

l.(
20

20
)

[3
4]

R
ec

ur
re

nt
ne

ur
al

ne
tw

or
k

St
ru

ct
ur

ed
pr

un
in

g
m

et
ho

d
20

tim
es

sp
ee

du
p

on
Pe

nn
T

re
eB

an
k

da
ta

se
t

H
ig

h
co

m
pl

ex
ity

fo
r

ha
rd

w
ar

e
re

al
iz

at
io

n

Y
eo

m
,e

ta
l.(

20
21

)
[3

5]
C

on
vo

lu
tio

na
ln

eu
ra

ln
et

w
or

k
L

ay
er

-w
is

e
re

le
va

nc
e

pr
op

ag
at

io
n

pr
un

-
in

g
m

et
ho

d
W

or
ks

on
pr

e-
tr

ai
ne

d
m

od
el

s
lik

e
V

G
G

-
16

an
d

R
es

N
et

-1
8

R
at

he
r

in
ef

fi
ci

en
t

co
m

pu
ta

tio
n;

sp
ee

d
is

no
tc

on
si

de
re

d

Fl
or

op
ou

lo
s,

et
al

.(
20

19
)

[3
6]

Fu
lly

co
nn

ec
te

d,
C

on
vo

lu
tio

na
l

ne
ur

al
ne

tw
or

ks
C

om
pl

et
e

ve
ct

or
qu

an
tiz

at
io

n
15

-2
0

tim
es

m
od

el
co

m
pr

es
si

on
fo

r
M

N
IS

T
da

ta
se

t
C

om
pu

ta
tio

na
lly

ex
pe

ns
iv

e
im

pl
em

en
ta

tio
n

Sw
am

in
at

ha
n,

et
al

.(
20

20
)

[5
6]

C
on

vo
lu

tio
na

ln
eu

ra
ln

et
w

or
k

Sp
ar

se
lo

w
ra

nk
m

et
ho

d
B

et
te

r
co

m
pr

es
si

on
as

co
m

pa
re

d
to

tr
un

ca
te

d
SV

D
m

od
el

s
A

dd
iti

on
al

pr
un

in
g

an
d

sp
ar

si
fi

-
ca

tio
n

re
qu

ir
ed

G
uo

,e
ta

l.(
20

19
)

[5
8]

C
on

vo
lu

tio
na

ln
eu

ra
ln

et
w

or
k

L
ow

ra
nk

&
sp

ar
se

le
ar

ni
ng

fr
am

ew
or

k
C

om
pr

es
se

s
V

G
G

N
et

to
3.

14
%

fo
r

C
IF

A
R

-1
0

da
ta

se
t

H
ig

h
al

go
ri

th
m

co
m

pl
ex

ity
;

pu
re

ly
so

ft
w

ar
e;

ha
rd

w
ar

e
re

al
iz

at
io

n
no

tc
on

si
de

re
d

T
hi

s
w

or
k

SL
FN

SV
D

tr
un

ca
te

d
w

ith
ha

rd
w

ar
e

co
ns

id
er

a-
tio

ns
W

id
th

re
du

ct
io

n
of

58
%

in
M

N
IS

T
da

ta
se

t
H

ar
dw

ar
e

re
al

is
tic

im
pl

em
en

ta
-

tio
n

w
ith

co
ns

id
er

at
io

n
of

pr
ac

-
tic

al
w

ei
gh

t
le

ve
ls

re
al

iz
ed

by
sy

na
pt

ic
de

vi
ce

s;
sm

al
le

r
ar

ra
y

si
ze

an
d

ov
er

he
ad

ci
rc

ui
tr

y
fo

r
th

e
in

te
gr

at
ed

ch
ip

fa
br

ic
at

io
n

K. Udaya Mohanan et al.6298

similar model performance as the original unpruned model.
A major drawback of some of the pruning techniques
reported in literature is the nature of sparse neural network
generated due to the removal of parameters. These pruned
networks slow down the computation due to the uneven
nature of memory access. The more structured pruning
models also suffer from issues of pruning convergence,
scheduling, and fine tuning. Recently, F. E. Fernandes Jr.
et al., proposed the evolution strategy for the elimination
of redundant filters from convolutional layers to reduce the
computational complexity of the model [33]. Although the
deep pruning with evolution strategy demonstrates plausible
capabilities in terms of model compression and network
performances, the algorithm introduces a major limitation
as the method requires a population of individual CNN
models of the same size to initiate the pruning process.
Similarly, S. K. Yeom et al. proposed a layer-wise relevance
propagation (LRP) method to compute the relevance scores
for pruning the network. The authors identify a major
drawback in their algorithm that the reduced network
may not always be the smallest possible network and
is strongly dependent on the chosen LRP variant [34].
H. Zhou et al. adopted a hierarchical pruning scheme
using a self-organizing fuzzy neural network for nonlinear
system modelling in industrial applications. Although the
method is successful for non-linear system modelling, its
applications is limited to fuzzy neural networks [55]. From
a practical viewpoint, pruning adopted in these cases can
effectively remove the neurons without considerable loss in
accuracy in a given network fixed in the hardware sense
but cannot contribute to the minimizing of network size
from the initial design level for hardware realization. In
comparison, a major achievement of our methodology is
the reduction of the network model to the possible smallest
representation for hardware realization. Another method
for network optimization is the low-rank factorization
technique [56]. Our approach is essentially based on this
strategy but the optimization procedures are based on
realistic hardware-oriented constraints in determining the
reduced rank, unlike the existing one that is rather purely
mathematical and can be suitable for software neural
network, without deep considerations on synaptic device
characteristics and number of neuron circuits. An existing
technique is the network quantization approach where the
number of bits needed to represent individual network
parameters is reduced or quantized [36, 57]. Quantization is
also applied to activations which saves additional memory
allotments. A combination of low-rank compression and
post-processing pruning strategy was recently reported [58].
However, the adapted algorithm is highly complex and
optimised mainly for software-based implementation. In
Table 1, network architecture, methodology, highlights,
and comparisons are summarized in comparison between

the methodology in this work and the previously reported
approaches for reducing the complexity of neural networks.
Although the existing methods demonstrate plausible
performances for network compression and high test
accuracy, most of them are not free from the concerns
about computational costs and additional overheads for
hardware implementation: all these methodologies have
been developed from software perspectives and have no
realistic hardware-sense constraints. Hence, their hardware
implementation would require additional neuron circuitry
and very-large-scale crossbar array fabrication, both of
which require time, cost, area, and energy in realization
and operation. In comparison, in short, our proposed
methodology has been developed specifically from a
hardware point of view with requirements of minimal
number of synaptic devices and neuron circuits. The
reduced rank approximation is simple and effective from the
neuromorphic hardware realization perspective.

4.3 Synaptic transistor-based weight initialization

In order to evaluate the performance of our proposed
method on hardware neuromorphic systems, we used a
core-shell dual gate nanowire transistor as a synaptic
device. Further details regarding the device and its synaptic
capabilities has been summarised in our recent publication
[28]. We have extracted the synaptic weights from the
potentiation/depression characteristics of the device to
initialise the neural network weights. The synaptic weights
from the device have been chosen to form 2, 4, 8, 16, and
32 weight levels from the device. As discussed before in
Section 3.1, these weight levels have been chosen based
on practical hardware considerations. The neural network
corresponding to each of these weight levels has been
trained and optimised in a similar manner as explained in
Algorithm 1. The initial network was trained using 100
neurons in the hidden layer whereas the optimised network
(γ = 0.99) after the application of the proposed method
yielded 15 neurons in the hidden layer. Figure 8a shows
the variation of classification accuracy and MCEL function
as a function of the training epochs using 32-level device
weights. It is evident from the figure that with the reduction
in neurons there is no observable drop in the accuracy of the
model. The reduction in number of neurons in the hidden
layer is extremely significant from a hardware perspective
since the CMOS implementation of neuronal circuits [3–
5, 59, 60] require large capacitors for spike integration
and pulse generation circuits which make these circuits
bulky and consume more power. Due to the reduction in
number of neurons in the hidden layer, the total number
of synapses has also decreased from 79,400 to 11,910;
which is highly advantageous for device fabrication. From a
hardware perspective, such a reduction in the total number

Optimization of the structural complexity of artificial neural network... 6299

(a) (b)

(c)
Fig. 8 Training with MNIST images. (a) Training accuracy (%) and
mean cross-entropy loss as a function of the number of training epochs
for 100 & 15 neurons in the hidden layer with 32 weight levels from a
synaptic transistor device. (b) Test accuracy (%) variation with neurons

for various device weight levels. (c) 3D surface plot of the accuracy
variation as a function of number of neurons in the hidden layer at
different number of synaptic weight levels

Predicted Label Predicted Label

Ta
rg

et
 L

ab
el

Ta
rg

et
 L

ab
el

(a) (b)
Fig. 9 Confusion matrix for the MNIST test data using 32 device weight levels for (a) 100 and (b) 15 neurons in the hidden layer

K. Udaya Mohanan et al.6300

of synapses has a major advantage in terms of the synapse
array space requirements and circuit integration density. The
variation of test accuracy with the number of neurons in
the hidden layer for various device weight levels is shown
in Fig. 8b. We can observe that for all the weight levels,
the test accuracy does not increase significantly beyond
15 neurons in the hidden layer. Additional neurons in the
hidden layer are redundant in practice and do not contribute
to the improvement of the model in terms of accuracy and
generalization. The dependence of the accuracy on both
the weight levels and neurons is shown in Fig. 8c, from
which it is clear that the accuracy surface is a plane almost
parallel to the space spanned by weight levels and neurons
in the hidden layer beyond a threshold number of 15. The
class separability of the reduced model based on 32 weight

levels has been compared with the initial model using the
confusion matrix. The matrices for 100 and 15 neurons in
the hidden layer are quite similar and there are no major off-
diagonal elements which indicate the model capability to
distinguish the output classes even with a reduced number
of neurons in the hidden layer as demonstrated in Fig. 9a
and b. We have also evaluated the performance of the SVD
method on fashion MNIST and SVHN datasets similar to
the evaluation done in Section 4.1. Figure 10a & b show
the accuracies in fashion MNIST image recognition as a
function of number of training epochs and that of neurons
in the hidden layer. It is explicitly shown in Fig. 10a that
the application of SVD has reduced the number of neurons
in the hidden layer down to 25 from the original value of
100 without a significant accuracy drop for training with

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

(%
)

Epochs

 100 Hidden Nodes
 25 Hidden Nodes

0

2

4

6

8

10

M
ea

n
C

ro
ss

-E
nt

ro
py

 L
os

s

0 20 40 60 80 100
76

78

80

82

84

86

88

 2 levels
 4 levels
 8 levels
 16 levels
 32 levelsAc

cu
ra

cy
(%

)

Nodes

0 50 100
0

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy

(%
)

Epochs

 100 Hidden Nodes
 40 Hidden Nodes

0

2

4

6

8

10

M
ea

n
C

ro
ss

-E
nt

ro
py

 L
os

s

(a) (b)

(c) (d)

0 20 40 60 80 100

40

50

60

70

80

Ac
cu

ra
cy

(%
)

Nodes

 2 levels
 4 levels
 8 levels
 16 levels
 32 levels

Fig. 10 Training with fashion MNIST and SVHN images. (a) Training
accuracy and MCEL as a function of number of training epochs with
100 and 25 neurons in the hidden layer for fashion MNIST training.
(b) Training accuracy as a function of number of neurons at different
numbers of synaptic weights for fashion MNIST training. (c) Training

accuracy and MCEL as a function of number of training epochs with
100 and 40 neurons in the hidden layer for SVHN training. (d) Train-
ing accuracy as a function of number of neurons at different numbers
of synaptic weights for SVHN training

Optimization of the structural complexity of artificial neural network... 6301

Ta
bl
e
2

C
om

pu
ta

tio
na

lc
om

pl
ex

ity
co

m
pa

ri
so

n Im
pl

em
en

ta
tio

n
D

at
as

et
N

um
be

r
of

ne
ur

on
s

in
th

e
hi

dd
en

la
ye

r
N

um
be

r
of

sy
na

pt
ic

de
vi

ce
s

C
on

ve
nt

io
na

lM
od

el
(u

nc
om

pr
es

se
d)

Fu
lly

so
ft

w
ar

e
M

N
IS

T
10

0
79

,4
00

fa
sh

io
n

M
N

IS
T

10
0

79
,4

00

SV
H

N
10

0
30

8,
20

0

H
ar

dw
ar

e
w

ith
sy

na
pt

ic
de

vi
ce

s
M

N
IS

T
10

0
79

,4
00

fa
sh

io
n

M
N

IS
T

10
0

79
,4

00

Pr
op

os
ed

m
od

el
(S

V
D

)
Fu

lly
so

ft
w

ar
e

M
N

IS
T

42
33

,3
50

fa
sh

io
n

M
N

IS
T

30
23

,8
20

SV
H

N
15

11
,9

10

H
ar

dw
ar

e
w

ith
sy

na
pt

ic
de

vi
ce

s
M

N
IS

T
15

11
,9

10

fa
sh

io
n

M
N

IS
T

25
19

,8
50

SV
H

N
40

12
3,

28
0

fashion MNIST images. In Fig. 10b, the number of weights
realized in a synaptic device is varied from binary to 32
levels and it is observed that it might be desirable to adopt
multi-level synaptic device with no less than 4 levels for
coping with SVD application. Figure 10c and d depict the
accuracies in SVHN image recognition as a function of
number of training epochs and that of neurons in the hidden
layer. The application of SVD has an effect of reducing the
number of neurons in the hidden layer down to 40 from
the original value of 100 without experiencing a notable
accuracy drop as shown in Fig. 10c. Also, it is revealed from
Fig. 10d that multi-level synaptic device with 4 or more
weights should be prepared for obtaining a high enough
system accuracy. Reduction of the number of neurons is
an advantage in terms of hardware implementation of a
SLFN for saving area in realizing the neuromorphic chip.
It is essential to figure out the optimally minimum number
of neuron circuits maintaining the system accuracy, and
thus, the proposed SVD method would be effective in
reducing the model complexity and realizing area and
power-efficient SLFN hardware. Table 2 summarises the
reduction in computational parameters (number of synaptic
weights) of the proposed model in comparison to the
conventional (uncompressed) model. It is notable in Table 2
that both number of neurons in the hidden layer and
number of synaptic devices are considerably reduced across
different datasets for both software and hardware synaptic
weight based implementations. Hence, the proposed SVD
method is quite effective in reducing the model complexity
and hence the resultant electrical circuitry for hardware
realisation of the SLFN can be simplified considerably for
practical neuromorphic chip realisation.

5 Conclusion

We have proposed a hardware realistic approach for
determining the optimized number of neurons in the
hidden layer in a SLFN. The methodology was applied to
SLFN based on software (near-continuous) and hardware
(discrete) synaptic weights. The application of the proposed
method to MNIST dataset with hardware synaptic weights
resulted in the reduction of neurons in the hidden layer to
15 from an initial value of 100. We have further verified
the class separability of the reduced neuron models to be
consistent with the initial model. The proposed method was
further extended to fashion MNIST and SVHN datasets
where the method was found effective in reducing the
model complexity. The method also shines light on the
mathematics of the hidden layer activation space. The
simple and intuitive nature of the methodology makes it
easily extendable for dealing with complicated networks
with a large number of hidden layers and neurons.

K. Udaya Mohanan et al.6302

Acknowledgements This research was supported by National R&D
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science and ICT (MSIT)
(2021M3F3A2A01037927) and was also supported by the Gachon
University Research Fund of 2019 (GCU-2019-0364).

Declarations

Conflict of Interests The authors declare that the research was
conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Ryu JH, Kim B, Hussain F, Ismail M, Mahata C, Oh T, Imran
M, Min KK, Kim TH, Yang BD, Cho S, Park BG, Kim Y,
Kim S (2020) Zinc tin oxide synaptic device for neuromorphic
engineering. IEEE Access 8:130678–130686. https://doi.org/10.
1109/ACCESS.2020.3005303

2. Cho S (2022) Volatile and nonvolatile memory devices for neu-
romorphic and processing-in-memory applications. J Semicond
Technol Sci 22(1):30–46. https://doi.org/10.5573/JSTS.2022.22.1.
30

3. Sourikopoulos I, Hedayat S, Loyez C, Danneville F, Hoel V,
Mercier E, Cappy A (2017) A 4-fJ/Spike artificial neuron in 65
nm CMOS technology. Front Neurosci 11:123. https://doi.org/10.
3389/fnins.2017.00123

4. Bayat FM, Prezioso M, Chakrabarti B, Nili H, Kataeva I, Strukov
D (2018) Implementation of multilayer perceptron network with
highly uniform passive memristive crossbar circuits. Nat Commun
9(1):2331. https://doi.org/10.1038/s41467-018-04482-4

5. Lee JJ, Park J, Kwon MW, Hwang S, Kim H, Park BG
(2018) Integrated neuron circuit for implementing neuromorphic
system with synaptic device. Solid State Electron 140:34–40.
https://doi.org/10.1016/j.sse.2017.10.012

6. Kim MH, Cho S, Park BG (2021) Nanoscale wedge resistive-
switching synaptic device and experimental verification of vector-
matrix multiplication for hardware neuromorphic application. Jpn
J Appl Phys 60(5):050905. https://doi.org/10.35848/1347-4065/
abf4a0

7. Goodfellow I, Bengio Y, Courville A (2016) Deep learning (MIT
Press)

8. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J,
Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo
B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD,
Risk WP, Manohar R, Modha DS (2014) A million spiking-neuron
integrated circuit with a scalable communication network and
interface. Science 345(6197):668–673. https://doi.org/10.1126/
science.1254642

9. Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran
AR, Bussat JM, Alvarez-Icaza R, Arthur JV, Merolla PA, Boahen
K (2014) Neurogrid: a mixed-analog-digital multichip system
for large-scale neural simulations. Proc IEEE 102(5):699–716.
https://doi.org/10.1109/JPROC.2014.2313565

10. Neckar A, Fok S, Benjamin BV, Stewart TC, Oza NN, Voelker
AR, Eliasmith C, Manohar R, Boahen K (2019) Braindrop:
a mixed-signal neuromorphic architecture with a dynamical
systems-based programming model. Proc IEEE 107(1):144–164.
https://doi.org/10.1109/JPROC.2018.2881432

11. Schemmel J, Brüderle D, Grübl A., Hock M, Meier K, Millner
S (2010) A wafer-scale neuromorphic hardware system for large-
scale neural modeling. In: Proceedings of 2010 IEEE international
symposium on circuits and systems, pp 1947–1950

12. Brown A, Furber S (2009) Biologically-inspired massively-
parallel architectures - computing beyond a million processors. In:
2010 10th International conference on application of concurrency
to system design ieee computer society, Los Alamitos, CA, USA,
pp 3–12. https://doi.org/10.1109/ACSD.2009.17

13. Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sum-
islawska D, Indiveri G (2015) A reconfigurable on-line learning
spiking neuromorphic processor comprising 256 neurons and
128K synapses. Front Neurosci 9:141. 10.3389/fnins.2015.00141

14. Ma D, Shen J, Gu Z, Zhang M, Zhu X, Xu X, Xu Q, Shen Y, Pan G
(2017) Darwin: a neuromorphic hardware co-processor based on
spiking neural networks. J Syst Archit 77:43–51. https://doi.org/
10.1016/j.sysarc.2017.01.003

Optimization of the structural complexity of artificial neural network... 6303

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2020.3005303
https://doi.org/10.1109/ACCESS.2020.3005303
https://doi.org/10.5573/JSTS.2022.22.1.30
https://doi.org/10.5573/JSTS.2022.22.1.30
https://doi.org/10.3389/fnins.2017.00123
https://doi.org/10.3389/fnins.2017.00123
https://doi.org/10.1038/s41467-018-04482-4
https://doi.org/10.1016/j.sse.2017.10.012
https://doi.org/10.35848/1347-4065/abf4a0
https://doi.org/10.35848/1347-4065/abf4a0
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/ACSD.2009.17
https://doi.org/10.1016/j.sysarc.2017.01.003
https://doi.org/10.1016/j.sysarc.2017.01.003

15. Thakur CS, Molin JL, Cauwenberghs G, Indiveri G, Kumar K,
Qiao N, Schemmel J, Wang R, Chicca E, Olson Hasler J, Seo JS,
Yu S, Cao Y, Schaik AV, Etienne-Cummings R (2018) Large-scale
neuromorphic spiking array processors: a quest to mimic the brain.
Front Neurosci 12:891. https://doi.org/10.3389/fnins.2018.00891

16. Seo YT, Kwon D, Noh Y, Lee S, Park MK, Woo SY, Park BG,
Lee JH (2021) 3-D And-type flash memory architecture with high-
ı̂ gate dielectric for high-density synaptic devices. IEEE Trans
Electron Devices 68(8):3801–3806. https://doi.org/10.1109/TED.
2021.3089450

17. Bang S, Kim MH, Kim TH, Lee DK, Kim S, Cho S, Park BG
(2018) Gradual switching and self-rectifying characteristics of
Cu/α-IGZO/p+-Si RRAM for synaptic device application. Solid
State Electron 150:60–65. https://doi.org/10.1016/j.sse.2018.10.0
03

18. Ielmini D (2018) Brain-inspired computing with resistive switch-
ing memory (RRAM): Devices, synapses and neural networks.
Microelectron Eng 190:44–53. https://doi.org/10.1016/j.mee.
2018.01.009

19. Lee DK, Kim MH, Kim TH, Bang S, Choi YJ, Kim S, Cho
S, Park BG (2019) Synaptic behaviors of HfO2 ReRAM by
pulse frequency modulation. Solid State Electron 154:31–35.
https://doi.org/10.1016/j.sse.2019.02.008

20. Rasheed U, Ryu H, Mahata C, Khalil RMA, Imran M, Rana AM,
Kousar F, Kim B, Kim Y, Cho S, Hussain F, Kim S (2021)
Resistive switching characteristics and theoretical simulation of
a Pt/a-Ta2O5/TiN synaptic device for neuromorphic applications.
J Alloys Compd 877:160204. https://doi.org/10.1016/j.jallcom.
2021.160204

21. Ambrogio S, Ciocchini N, Laudato M, Milo V, Pirovano A,
Fantini P, Ielmini D (2016) Unsupervised learning by spike timing
dependent plasticity in phase change memory (PCM) synapses.
Front Neurosci, vol 10, (56), https://doi.org/10.3389/fnins.2016.
00056

22. Yan M, Zhu Q, Wang S, Ren Y, Feng G, Liu L, Peng H,
He Y, Wang J, Zhou P, Meng X, Tang X, Chu J, Dkhil B,
Tian B, Duan C (2021) Ferroelectric synaptic transistor network
for associative memory. Adv Electron Mater 7(4):2001276.
https://doi.org/10.1002/aelm.202001276

23. Shi Y, Oh S, Huang Z, Lu X, Kang SH, Kuzum D (2020) Perfor-
mance prospects of deeply scaled spin-transfer torque magnetic
random-access memory for in-memory computing. IEEE Electron
Device Lett 41(7):1126–1129. https://doi.org/10.1109/LED.2020.
2995819

24. Pal SK, Pramanik A, Maiti J, Mitra P (2021) Deep learning in
multi-object detection and tracking: state of the art. Appl Intell
51(9):6400–6429. https://doi.org/10.1007/s10489-021-02293-7

25. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,
Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with
convolutions. In: IEEE conference on computer vision and pattern
recognition (CVPR), pp 1–9. https://doi.org/10.1109/CVPR.2015.
7298594

26. Simonyan K, Zisserman A (2015) Very deep convolutional
networks for large-scale image recognition

27. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for
image recognition

28. Ansari MHR, Kannan UM, Cho S (2021) Core-shell dual-
gate nanowire charge-trap memory for synaptic operations for
neuromorphic applications. Nanomaterials 11(7):1773

29. Arai M (1993) Bounds on the number of hidden units in
binary-valued three-layer neural networks. Neural Netw 6(6):855.
https://doi.org/10.1016/S0893-6080(05)80130-3

30. Tamura S, Tateishi M (1997) Capabilities of a four-layered
feedforward neural network: four layers versus three. IEEE Trans
Neural Netw 8(2):251. https://doi.org/10.1109/72.557662

31. Fujita O (1998) Statistical estimation of the number of hidden
units for feedforward neural networks. Neural Netw 11(5):851.
https://doi.org/10.1016/S0893-6080(98)00043-4

32. Teoh EJ, Tan KC, Xiang C (2006) Estimating the number of
hidden neurons in a feedforward network using the singular
value decomposition. IEEE Trans Neural Netw 17(6):1623–1629.
https://doi.org/10.1109/TNN.2006.880582

33. Fernandes FEJ, Yen GG (2021) Pruning deep convolutional neural
networks architectures with evolution strategy. Inf Sci 552:29–47.
https://doi.org/10.1016/j.ins.2020.11.009

34. Wen L, Zhang X, Bai H, Xu Z (2020) Structured pruning of
recurrent neural networks through neuron selection. Neural Netw
123:134–141

35. Yeom SK, Seegerer P, Lapuschkin S, Binder A, Wiedemann
S, Müller K. R., Samek W (2021) Pruning by explaining: a
novel criterion for deep neural network pruning. Pattern Recogn
115:107899. https://doi.org/10.1016/j.patcog.2021.107899

36. Floropoulos N, Tefas A (2019) Complete vector quantization of
feedforward neural networks. Neurocomputing 367:55–63

37. Pal C, Pankaj S, Akram W, Acharyya A, Biswas D (2018)
Modified Huffman based compression methodology for deep
neural network implementation on resource constrained mobile
platforms. IEEE Int Symp Circuits Syst (ISCAS), pp 1–5,
https://doi.org/10.1109/ISCAS.2018.8351234

38. Mellor J, Turner J, Storkey A, Crowley EJ (2021) Neural
architecture search without training. In: Meila M, Zhang T (eds)
Proceedings of the 38th international conference on machine
learning, proceedings of machine learning research, vol 39,
pp 7588–7598

39. Yu E, Cho S, Roy K, Park BG (2020) A quantum-well charge-
trap synaptic transistor with highly linear weight tunability. IEEE
J Electron Devices Soc 8:834–840. https://doi.org/10.1109/JEDS.
2020.3011409

40. Kwon MW, Baek MH, Hwang S, Park K, Jang T, Kim T, Lee
J, Cho S, Park BG (2018) Integrate-and-fire neuron circuit using
positive feedback field effect transistor for low power operation. J
Appl Phys 124(15):152107. https://doi.org/10.1063/1.5031929

41. Bartolozzi C, Benosman R, Boahen K, Cauwenberghs G,
Delbrück T, Indiveri G, Liu SC, Furber S, Imam N, Linares-
Barranco B, Serrano-Gotarredona T, Meier K, Posch C, Valle M
(2016) Neuromorphic systems, Wiley encyclopedia of electrical
and electronics engineering. Wiley, pp 1–22, https://doi.org/10.
1002/047134608X.W8328

42. Blum A, Hopcroft J, Kannan R (2020) Foundations of data sci-
ence (Cambridge University Press), https://doi.org/10.1017/97811
08755528

43. Stewart GW (1973) Error and perturbation bounds for subspaces
associated with certain eigenvalue problems. SIAM Rev 15(4):727

44. Teoh EJ, Tan KC, Xiang C (2006) Estimating the number of
hidden neurons in a feedforward network using the singular
value decomposition. IEEE Trans Neural Netw 17(6):1623.
https://doi.org/10.1109/TNN.2006.880582

45. Marti D, Rigotti M, Seok M, Fusi S (2016) Energy-efficient
neuromorphic classifiers. Neural Comput 28(10):2011–2044

46. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324. https://doi.org/10.1109/5.726791

47. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G,
Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf
A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative
style, high-performance deep learning library. In: Wallach H,
Larochelle H, Beygelzimer A, D’Alché-Buc F, Fox E, Garnett
R (eds) Advances in neural information processing systems 32,
pp 8024–8035,(Curran Associates, Inc.)

K. Udaya Mohanan et al.6304

https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.1109/TED.2021.3089450
https://doi.org/10.1109/TED.2021.3089450
https://doi.org/10.1016/j.sse.2018.10.003
https://doi.org/10.1016/j.sse.2018.10.003
https://doi.org/10.1016/j.mee.2018.01.009
https://doi.org/10.1016/j.mee.2018.01.009
https://doi.org/10.1016/j.sse.2019.02.008
https://doi.org/10.1016/j.jallcom.2021.160204
https://doi.org/10.1016/j.jallcom.2021.160204
https://doi.org/10.3389/fnins.2016.00056
https://doi.org/10.3389/fnins.2016.00056
https://doi.org/10.1002/aelm.202001276
https://doi.org/10.1109/LED.2020.2995819
https://doi.org/10.1109/LED.2020.2995819
https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1016/S0893-6080(05)80130-3
https://doi.org/10.1109/72.557662
https://doi.org/10.1016/S0893-6080(98)00043-4
https://doi.org/10.1109/TNN.2006.880582
https://doi.org/10.1016/j.ins.2020.11.009
https://doi.org/10.1016/j.patcog.2021.107899
https://doi.org/10.1109/ISCAS.2018.8351234
https://doi.org/10.1109/JEDS.2020.3011409
https://doi.org/10.1109/JEDS.2020.3011409
https://doi.org/10.1063/1.5031929
https://doi.org/10.1002/047134608X.W8328
https://doi.org/10.1002/047134608X.W8328
https://doi.org/10.1017/9781108755528
https://doi.org/10.1017/9781108755528
https://doi.org/10.1109/TNN.2006.880582
https://doi.org/10.1109/5.726791

48. Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a novel
image dataset for benchmarking machine learning

49. Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY
(2011) Reading digits in natural images with unsupervised feature
learning. In: NIPS workshop on deep learning and unsupervised
feature learning 2011

50. Cohen N, Sharir O, Shashua A (2016) On the Expressive Power
of Deep Learning: A Tensor Analysis. In: Feldman V, Rakhlin
A, Shamir O (eds) 29th Annual conference on learning theory,
proceedings of machine learning research, vol 49, pp 698–728,
PMLR, Columbia University, New York

51. Yarotsky D (2017) Error bounds for approximations with deep
ReLU networks. Neural Netw 94:103. https://doi.org/10.1016/j.
neunet.2017.07.002

52. Subbulakshmi Radhakrishnan S, Sebastian A, Oberoi A, Das
S, Das S (2021) A biomimetic neural encoder for spiking
neural network. Nat Commun 12(1):2143. https://doi.org/10.1038/
s41467-021-22332-8

53. Yan Z, Chen J, Hu R, Huang T, Chen Y, Wen S (2020) Training
memristor-based multilayer neuromorphic networks with SGD,
momentum and adaptive learning rates. Neural Netw 128:142–149

54. Mohammed MF, Lim CP (2017) A new hyperbox selection rule
and a pruning strategy for the enhanced fuzzy minâmax neural
network. Neural Netw 86:69–79

55. Zhou H, Zhang Y, Duan W, Zhao H (2020) Nonlinear systems
modelling based on self-organizing fuzzy neural network with
hierarchical pruning scheme. Appl Soft Comput 106516:95.
https://doi.org/10.1016/j.asoc.2020.106516

56. Swaminathan S, Garg D, Kannan R, Andres F (2020) Sparse
low rank factorization for deep neural network compression.
Neurocomputing 398:185–196

57. Huang C, Liu P, Fang L (2021) MXQN: mixed quanti-
zation for reducing bit-width of weights and activations in
deep convolutional neural networks. Appl Intell 51(7):4561.
https://doi.org/10.1007/s10489-020-02109-0

58. Guo K, Xie X, Xu X, Xing X (2019) Compressing by learning in a
low-rank and sparse decomposition form. IEEE Access 7:150823.
https://doi.org/10.1109/ACCESS.2019.2947846

59. Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-
power spiking neurons and bistable synapses with spike-timing
dependent plasticity. IEEE Trans Neural Netw 17(1):211–221.
https://doi.org/10.1109/TNN.2005.860850

60. Wu X, Saxena V, Zhu K, Balagopal S (2015) A CMOS spiking
neuron for brain-inspired neural networks with resistive synapses
and in situ learning. IEEE Trans Circuits Syst II: Express Br
62(11):1088–1092. https://doi.org/10.1109/TCSII.2015.2456372

61. Yu E, Cho S, Roy K, Park BG (2020) A quantum-well charge-
trap synaptic transistor with highly linear weight tunability. IEEE
J Electron Devices Soc 8:834–840. https://doi.org/10.1109/JEDS.
2020.3011409

62. Cho Y, Lee JY, Yu E, Han JH, Baek MH, Cho S, Park BG (2019)
Design and characterization of semi-floating-gate synaptic tran-
sistor. Micromachines 10(1). https://doi.org/10.3390/mi10010032

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Kannan Udaya Mohanan
received his Ph.D. degree in
applied physics from Indian
Institute of Technology (IIT)
Hyderabad, India, in 2019.
He worked as a Senior Project
Scientist at IIT Delhi, India,
during 2019–2021, where he
mainly worked on the devel-
opment of resistive-switching
devices with low-power oper-
ation. He is currently working
as an Assistant Professor at
the Department of Electronic
Engineering, Gachon Univer-
sity, Seongnam, Republic of

Korea. His current research focuses on novel electron devices and effi-
cient algorithms for hardware realization of neuromorphic computing
architecture.

Seongjae Cho received the
B.S. and the Ph.D. degrees
in electrical engineering from
Seoul National University,
Seoul, Republic of Korea, in
2004 and 2010, respectively.
He worked as an Exchange
Researcher at the National
Institute of Advanced Indus-
trial Science and Technology
(AIST), Tsukuba, Japan, in
2009. Also, he worked as a
Postdoctoral Researcher at
Seoul National University in
2010 and at Stanford Univer-
sity, CA, USA, from 2010 to

2013. He joined the Department of Electronic Engineering, Gachon
University, Seongnam, Republic of Korea, in 2013, where he is
currently working as an Associate Professor. His current research
interests include emerging memory technologies, advanced nanoscale
CMOS devices, group-IV photonic devices, memory cells for neu-
romorphic and memory-centric processor technologies. He received
the Haedong Young Engineer Award from the Institute of Electronics
and Information Engineers (IEIE) of Korea in 2011 and the Minister
Award for Semiconductor Fundamentals Innovation from the Korean
Ministry of Science and ICT in 2021.

Optimization of the structural complexity of artificial neural network... 6305

https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.1016/j.neunet.2017.07.002
https://doi.org/10.1038/s41467-021-22332-8
https://doi.org/10.1038/s41467-021-22332-8
https://doi.org/10.1016/j.asoc.2020.106516
https://doi.org/10.1007/s10489-020-02109-0
https://doi.org/10.1109/ACCESS.2019.2947846
https://doi.org/10.1109/TNN.2005.860850
https://doi.org/10.1109/TCSII.2015.2456372
https://doi.org/10.1109/JEDS.2020.3011409
https://doi.org/10.1109/JEDS.2020.3011409
https://doi.org/10.3390/mi10010032

Byung-Gook Park received
the B.S. and the M.S. degrees
in electronic engineering from
Seoul National University in
1982 and 1984, respectively,
and the Ph.D. degree in elec-
trical engineering from Stan-
ford University, Stanford, CA,
in 1990. From 1990 to 1993,
he was with AT&T Bell Labo-
ratories, where he contributed
to the development of 0.1-m
CMOS and its characteriza-
tion. From 1993 to 1994, he
was with Texas Instruments,
developing 0.25-m CMOS. In

1994, he joined Seoul National University. He led the Inter-university
Semiconductor Research Center (ISRC), Seoul National University, as
the Director from 2008 to 2010. He received Best Teacher Award from
Seoul National University in 1997, Education Award from College of
Engineering, Seoul National University in 2006, Haedong Academic
Research Award from IEIE in 2008, the Minister Award for Nano
Research Innovation from the Korean Ministry of Science, ICT and
Future Planning in 2013. He is an IEIE Life Member, Member of the
National Academy of Engineering of Korea, and IEEE Fellow. He
received the Greatest National Award from the Ministry of Science and
ICT in 2022 for his incessant contributions in semiconductor science
and technology.

K. Udaya Mohanan et al.6306

	Optimization of the structural complexity of artificial neural network...
	Abstract
	Introduction
	Motivation
	Literature review
	Contribution

	Mathematical preliminaries
	Reducing the over-estimated rank n
	Determination of g

	Results & discussion
	Software-based weight initialization
	Performance comparison with previous studies
	Synaptic transistor-based weight initialization

	Conclusion
	Declarations
	References

