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Abstract
This work focuses on the optimization of the structural complexity of a single-layer feedforward neural network (SLFN) for
neuromorphic hardware implementation. The singular value decomposition (SVD) method is used for the determination of
the effective number of neurons in the hidden layer for Modified National Institute of Standards and Technology (MNIST)
dataset classification. The proposed method is also verified on a SLFN using weights derived from a synaptic transistor
device. The effectiveness of this methodology in estimating the reduced number of neurons in the hidden layer makes this
method highly useful in optimizing complex neural network architectures for their hardware realization.

Keywords Neural networks · Hardware neuromorphic systems · Synaptic device · Neuron circuits · Hidden layer ·
Pattern recognition · Singular value decomposition (SVD)

1 Introduction

Capability of the human brain to process data in a parallel
and energy-efficient architecture is driven by its huge net-
work of ∼ 1011 neurons and ∼ 1015 synapses. The bio-
logical neuron is the fundamental processing unit inside
the brain. A neuron consists of a cell body which is called
as the soma to which the axons and dendrites are attached
(Fig. 1a). The neuron receives information through the
dendrites from the pre-synaptic neuron and the information
is passed on to the post-synaptic neuron through the axon
using action potentials. These signals arrive at the junction
between two adjacent neurons which are referred to as the
synaptic cleft. These synapses are capable of processing
and memorizing the information signal. The connection
strength between the two adjacent neurons is determined
by the synaptic weight. Analogous to the biological neural
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network, researchers have tried to develop hardware neuro-
morphic systems [1, 2] which emulate the working of the
human brain. These are purely electrical circuits composed
of neuron circuitry [3–5] and the associated synaptic array
elements. Such a bio-inspired approach can overcome sev-
eral of the shortcomings of current computer architectures
which require large amount of data transfer between the
processing and memory units leading to an increased energy
expenditure and computational times. Currently, software-
based neural network designs are also in much demand due
to their capability to solve data-intensive computational
tasks like face recognition, self-driving cars, and big data
analytics. A feedforward neural network (Fig. 1b) is an
artificial neural network (ANN) which is capable of solving
several tasks like pattern recognition, prediction, and func-
tion approximation. These artificial neural networks are
modelled on the biological neural circuitry and are primar-
ily composed of neurons and synapses. While the synapses
are responsible for the storage of information called as
the ‘weights’, the neurons implement the processing capa-
bilities of the network using vector matrix multiplication
(VMM) [6] followed by input summation and threshold
firing. Non-linear mathematical functions called ‘activation
functions’ are used for determining the output of the neu-
rons from the integrated input signals. The rectified linear
unit (ReLU) [7] function is a popular choice for the neuron
activation function because of its similarity to biological
neurons in zeroing the negative weight values. In an ANN,
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Fig. 1 Schematics of (a)
biological neuron and (b)
single-layer feed forward neural
network (SLFN)
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these series processes of summing the inputs and com-
puting the VMM followed by the non-linear activation of
the neurons are carried forward from the input to the next
hidden layer and finally to the output neurons. This process
is referred to as the “feedforward” process, and hence, the
name of the network is usually called as “feed-forward neu-
ral network”. Once the output values are obtained from the
final layer neurons, they are compared with the actual values
and the difference between the two values is computed using
a loss function. The mean cross-entropy loss (MCEL) func-
tion is a commonly-used loss function in classification tasks
which compare the predicted and actual probabilities of the
output. The gradient of the loss function is then computed

(referred to as “stochastic gradient descent”) with respect to
the weights of each layer and the weights are updated based
on the direction of steepest decrease of the gradients. This
backward propagation of the errors from the final output
layer to the initial layers is called the “back-propagation”
method. The “learning rate” determines the magnitude by
which the weights are updated at every back-propagation step.
A complete cycle of feedforward and backpropagation is
computed over a batch of input images called the batch size. For
a typical pattern recognition task, the whole dataset is divided
into several smaller batches of images with equal batch sizes
for the ANN training. Once the training process is carried
out over an entire dataset, it is referred to as one “epoch”
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of training. The same procedure is followed several times
through multiple epochs until the mean accuracy and MCEL
function converges to a satisfactory value. An ANN net-
work can have multiple layers of neurons between its input
and output neurons, depending on the complexity of the
problem at hand. A single-layer feedforward neural network
(SLFN) is an ANN with a single hidden layer of neurons
and is the most commonly used ANN for pattern recog-
nition tasks. Such a neural network can easily be adopted
into a hardware synaptic array along with neuron circuits
for the realization of hardware neuromorphic system.
Hence, optimizing the structural complexity of feedfor-
ward neural networks is highly important from a hardware
perspective.

1.1 Motivation

There has been a consistent effort from engineers to realise
neuromorphic architecture in hardware sense. Neuromor-
phic hardware design pursues an in-memory computing
with highly energy-efficient parallel processing capability
in the end. Realizing the artificial neural network through
complementary metal-oxide-semiconductor (CMOS) inte-
grated circuits is the first step in this direction. IBM’s
TrueNorth chip has been one of the first major break-
throughs in this respect [8]. This chip encompasses 256
million synapses and 1 million integrate-and-fire (IF) neu-
rons fabricated using the 40-nm-node CMOS technology.
Similarly, Intel’s Loihi chip was fabricated with 130 million
synapses and 131,072 neurons utilizing 14-nm-node CMOS
technology. Both chips support the high capacity and accel-
erated learning in the specifically designed neuromorphic
semiconductor chip. Several other neuromorphic chips have
been reported: Neurogrid [9], Braindrop [10], BrainScales
[11], SpiNNaker [12], ROLLS [13], Darwin [14], Dynap-
SEL [15] etc. Synaptic transistors construct the core of
these neuromorphic chips wherein the weight information
is stored. Unlike software-based weight initialization, the
synaptic devices can only have limited number of conduc-
tance values (weights). More recently, the synaptic devices
are realized by a single memory device including charge-
trap flash (CTF) memory [16], resistive-switching random-
access memory (RRAM) [6, 17–20], phase-change random-
access memory (PRAM) [21], ferroelectric random-access
memory (FRAM) [22], and magnetic random-access mem-
ory (MRAM) [23] for increasing the synapse array density
and minimizing the power consumption, departing from the
conventional synapses made up of circuits or several elec-
tron devices. Also, many of today’s state-of-the-art deep
learning models such as Inception v1, VGG-19, ResNet,
and others contain huge number of neurons with millions
of parameters [24–27]. These are extremely hard to imple-
ment in the hardware due to the limitations with array size

constraints (chip compactness) and manufacturing cost. For
the widespread adoption of these models in the neuromor-
phic hardware, their model size needs to be reduced and
optimized with the hardware constraints (see Fig. 2). It is
in this context that we have verified our current method-
ology for the optimized SLFN design using the weights
extracted from a synaptic transistor device [28]. To the best
of our knowledge, this is the first work focusing on the opti-
mization of SLFN for implementation of the specifically
designed artificial intelligence chip.

1.2 Literature review

A major reason for the structural complexity of a neural
network is the number of neurons in the hidden layer used
for training the data. Several research groups have attempted
to reduce the structural complexity of neural networks.
The seminal work by Arai resulted in a hyperplane-
based algorithm for estimating the hidden neuron number
and found that I − 1 hidden units are sufficient for I

learning patterns [29]. Later, Tamura and Tateishi proposed
a method to determine the number of hidden neurons using
information criteria [30]. Similarly, Fujita et al., statistically
estimated the hidden neuron number with the advantage of
fast learning [31]. The required neuron number is given
by Nh = K log ||PcZ||/logS, where S is defined as the
number of candidates which are arbitrarily searched for
optimised hidden neurons and c is the acceptable error
limit. E. J. Teoh et al. used an SVD-based approach to
estimate the number of hidden neurons in a feed-forward
network [32]. But the method was empirical in nature with
results shown on small datasets only. Pruning is another
well-known method for reducing neural network size by
removing structural parameters based on the relevance
scores. Recently, F.E Fernandes et al. used a filter-pruning
strategy followed by fine tuning to reduce the size of
some popular models like ResNets, DenseNets etc [33].
There have also been several other strategies adapted
for pruning and is the most widely used method for
model compression [34, 35]. However, the method often
requires several iterations and fine-tuning making it hard
to adapt to hardware implementations. There have also
been several advanced techniques like quantization [36],
Huffman encoding [37], and neural architecture search
(NAS) for determining the optimal neural network size
[38]. However, most of these algorithms are developed for
efficient implementation on software using the conventional
von Neumann hardware architecture. They require high
computing power using advanced hardware such as GPU
or cloud-based computational units. A major limitation of
such methods is encountered in their implementation for
neuromorphic hardware where these algorithms have never
been tested with realistic physical constraints.

K. Udaya Mohanan et al.6290



Fig. 2 Schematic showing the
optimization of an SLFN using
SVD method. In the hardware
sense, the synaptic weights can
be obtained from a single
memory component, for
example, a 4-terminal synaptic
transistor [28, 61, 62] whereas
the neurons in the hidden layer
are to be realized by relatively
bulky CMOS circuits which
consume large area and energy
[40]. The inset shows a neuron
circuit consisting of two n-type
metal-oxide-semiconductor
field-effect transistors
(NMOSFETs) and passive
devices (Cmem: membrane
capacitor, Vmem: membrane
potential). Adapted from [41]
with permission from Wiley
Books. The SVD approach is
highly practical in optimizing
the hardware neural network
from the design level
determining the number of
neuron circuits and the size of
synapse array
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1.3 Contribution

The main goal of this work is to optimise the structural
complexity of a SLFN for hardware realisation. We propose
the use of SVD method for determining the optimized
number of neurons in the hidden layer for a SLFN. SVD
is a comparably simpler method and require much less
iterations to identify the lowest possible model size within
an acceptable error limit. Unlike other reported algorithms,
we have verified our methodology by incorporating
physically reliable weight values from a core-shell dual-
gate (CSDG) nanowire transistor [28] device for identifying
the convergence criterion. Such a device-based verification
is important from a hardware perspective. Through the
device-based weights and weight level variations, we have
taken into account the hardware limitations like limited
range of device conductance values and device non-linearity
considerations while defining the convergence criterion for
determining the reduced number of neurons. To the best
of our knowledge, this is the first work focusing on the
optimization of SLFN for hardware implementation. We
believe that this is a very important step in realizing compact
neural networks for hardware realization.

2Mathematical preliminaries

We consider a general SLFN consisting of J input neurons,
n neurons in the hidden layer, and O output neurons.
The SLFN is trained using a set of T training images
X ∈ {X1, X2, ..., XT }. The activation function used is the
rectified linear unit (ReLU) function. The trained model is
then used to recognize a set of M test images. The activation
matrix is given by the matrix K such that K ∈ R

M×n.The
rows of K can be considered as M data points in an n

dimensional space since K is an M × n matrix. From a
hardware perspective, realization of such an SLFN would
require synaptic devices like resistive-switching random-
access memory [17], charge-trap flash memory [16], field-
effect transistor [39], phase-change memory [21] for the
storage of weight values cooperating with CMOS neuron
circuits [40, 41]. Essentially, the synaptic devices utilize
their electrical conductance states as the equivalent weight
values and the neuron circuits are operated based on the
behavior of the activation function. Although the majority
of area and power efficiencies are determined by the
high-density synaptic device array in the hardware neural
network, while a synaptic device can be realized by a
single electron device with very high scalability reaching
down to nanometer dimension, a neuron is implemented
in the form of complementary metal-oxide-semiconductor
(CMOS) integrated circuit based on plural passive and

active components, and thus, requires relatively larger area
and power consumption compared with a single synapse.
For this reason, the mathematical approach is focused
on reducing the number of neurons, which has not been
seriously considered in the conventional purely software-
oriented artificial intelligence approach. Hence, optimally
minimizing the number of neurons in the hidden layer
should be one of the major concerns for the neuromorphic
hardware implementation. In the current work, we use the
SVD method to reduce the size of the activation matrix
K without compromising on the prediction capabilities of
the network. This is done by determining the best-fitting
lower dimensional subspace for the set of M data points.
For the activation matrix K; sL1 , sL2 , sL3 , ...., sLn are the left
singular vectors; sR1 , sR2, sR3 , .., sRn are the right singular
vectors and σ1, σ2, σ3, . . . , σn are the singular values. The
left singular vectors:

sLi = 1
σi
KsRi (1)

where the coordinates of σisLi are the projections of rows
of K onto sRi . Essentially, the singular vectors are the
orthonormal basis for the lower-dimensional subspaces and
the singular values are the projections of the M data points
onto these subspaces.

The SVD of the matrix K is the factorization of the
matrix into the product of three separate matrices SL ∈
R

M×M, β ∈ R
M×n, and SR ∈ R

n×n such that:

K = SLβSR
T (2)

where SL =

⎡
⎢⎢⎢⎢⎣

sL11 . . . sL1M

. . .

. . .

. . .
sLM1 . . . sLMM

⎤
⎥⎥⎥⎥⎦

M×M

,

SR =

⎡
⎢⎢⎢⎢⎣

sR11 . . . sR1n

. . .

. . .

. . .
sRn1 . . . sRnn

⎤
⎥⎥⎥⎥⎦

n×n

and β =

⎡
⎢⎢⎢⎢⎣

σ1 0 . . 0
0 . .
. σn .
. . .
0 . . . σM

⎤
⎥⎥⎥⎥⎦

M×n

The columns of SL and SR are the left and right singular
vectors of the K matrix, respectively, and are orthonormal to
each other. β is a diagonal matrix with n non-zero diagonal
elements arranged such that σ1 ≥ σ2 ≥ σ3, . . . ≥ σn ≥ 0.
Further, σn+1 = σn+2 = ..... = σM = 0. Here, the matrix
K can be expressed as K = ∑n

i=1 σisLisRi
T which can be

proved by the following theorem [42]:

Theorem 1 For an M × n matrix K , with right
singular vectors sR1 , sR2 , sR3 , .., sRn; left singular vectors

K. Udaya Mohanan et al.6292



sL1 , sL2 , sL3 , ...., sLn and corresponding singular values
σ1, σ2, σ3, . . . , σn:

K =
n∑

i=1

σisLisRi
T (3)

Proof We see that multiplying the left-hand side of (3),
i.e, matrix K with sRj yields σj sLj (from (1)). Similarly,
multiplying the right-hand side of (3), i.e,

∑n
i=1 σisLisRi

T

with sRj yields σj sLj since sRi are orthogonal to each other
and sRi

T × sRi = I where I is the identity matrix.

KsRj = σj sLj =
n∑

i=1

σisLisRi
TsRj (4)

Any two matrices A and B are equal if Ax = Bx for all
vectors x. Hence, from (4),

K =
n∑

i=1

σisLisRi
T

3 Reducing the over-estimated rank n

Most often, the number of neurons in the hidden layer
taken into account for the SLFN training is highly over-
estimated. Such an over-estimation leads to additional neu-
ronal circuitry in physical cross-bar array implementations,
which can be avoided by determining the reduced rank.
Hence, the reduction of the over-estimated rank n is highly
significant from a CMOS manufacturing perspective. In
the mathematical sense, the over-estimation of neurons in
the hidden layer of SLFN leads to the creation of addi-
tional hyperplanes in the hidden layer activation space. Such
hyperplanes are essentially parallel planes to the linearly
independent basis vectors of the space. An intuitive way of
dealing with this problem was put forward by G.W. Stewart,
where the excess neurons are considered as “contamina-
tions” to the original matrix [43]. Now, the problem reduces
to the determination of the reduced rank g of the hidden-
layer activation matrix from the over-estimated matrix with
n neurons. The sum of squares of all the entries in a matrix
is given by the Frobenius norm of the matrix.

||K||F =
√∑

j,i

k2
j,i (5)

For any row, kj of matrix K , we can show that
∑M

j=1

∣∣kj

∣∣2 =∑n
i=1σi

2 [42]. Hence from (5), we have:

||K||F 2 =
n∑

i=1

σi
2 (6)

Thus, the square of the norm of the activation matrix is equal
to the sum of the squares of the singular values of K . If we
assume E as the “contamination matrix” which accounts for
the excess neurons in the K matrix, then from (6),

σ 2
g+1 + σ 2

g+2 + . . . + σ 2
n ≤ ||E||2F (7)

Therefore, if σg is sufficiently large in comparison to E,
then SVD can provide a reasonable approximation of the
subspace spanned by the hidden-layer activation matrix.

3.1 Determination of g

Several different criteria have been previously suggested for
the determination of g [44]. within a threshold value γ such
that the “spectral energy” of K matrix is retained. We use
the convergence criterion for g based on the spectral energy
approximation as shown below:
g∑

i=1

σ 2
i /

n∑
i=1

σ 2
i ≥ γ (8)

γ has been mostly determined by visual inspection based
on the problem in previous works. Although γ originates
from the spectral energy equation in (8), it has actual
physical significance when dealing with real hardware-
based systems. γ has a direct dependence on the final
accuracy of the trained model and hence the determination
of γ should take into account the device considerations
like the number of stable weights attainable by the synaptic
device. Unlike the near-continuous weights available for a
software based artificial neural network, realistic hardware
implementations can only have a finite number of stable
conductance levels [45] which can be utilized for the
synaptic array fabrication. Such practical considerations
are extremely important in the determination of γ since
the activation matrix output might alter significantly with
a finite-weight network and so does the convergence
criterion for the SVD method. Hence, we have taken into
consideration the various practical weight levels ranging
from 2, 4, 8, 16, and 32 levels for the application of the SVD
method in optimizing the number of neurons in the hidden
layer.

4 Results & discussion

The proposed method was applied to the Modified National
Institute of Standards and Technology database (MNIST)
dataset using two types of weight initializations. In the
first case, weights were randomly initialised using a purely
software-based randomization technique. In the second
case, we have utilised discrete synaptic weights extracted
from a core-shell dual-gate nanowire synaptic transistor
[28].
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4.1 Software-based weight initialization

The MNIST dataset consists of hand-written digits of
60,000 training images and 10,000 test images [46]. The
images correspond to digits from “0” to “9” with nearly
uniform distribution among all the 10-digit classes. Every
image is in grayscale format with a resolution of 28 × 28
pixels. Before training, the input data was normalized to
a range of [0, 1], and then, reshaped to form a column
matrix of 784 rows. The normalized data is then fed to a
SLFN with 784 input neurons, 100 neurons in the hidden
layer, and 10 output neurons. All the simulations were
performed using PyTorch open source package [47]. The
input data are trained for 100 epochs within which the
mean classification error was reduced to a stable value. The

detailed flowchart and algorithm used for optimization of
the SLFN are shown in Fig. 3 and Algorithm 1, respectively.
Briefly, the training of the SLFN for the input data is
initialized using a large estimate for the neurons in the
hidden layer, say 100. The model is then trained for all
the images in the training dataset using the rectified linear
unit (ReLU) as the non-linear activation function for the
SLFN. The back-propagation algorithm is implemented
using the stochastic gradient descent algorithm. From the
trained model, the accuracy is determined using the test
dataset. The SVD of the hidden layer activation output is
then computed and the β matrix is found. Using a γ value
of 0.97, a reduced rank value of 42 is determined for g such
that the singular value σg satisfies the threshold criterion in
(8). The SLFN training procedure is then repeated for 42

Fig. 3 Flowchart describing the
execution of the proposed SVD
algorithm

Initialize Model,
Start training

Testing on trained model

Compute hidden layer 
activation matrix, K

Apply SVD on K,
Find β
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Yes
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neurons in the hidden layer. Figure 4a shows the variation
of digit recognition accuracy with the number of epochs for
the network with both 100 and 42 neurons in the hidden
layer. We obtained a maximum test accuracy of 97.65% for
100 neurons in the hidden layer and 97.15% for 42 neurons
in the hidden layer. From this, it is evident that the test
accuracy does not increase appreciably with the addition
of neurons beyond 42 in the hidden layer. Similarly, the
decrease of MCEL function also follows a similar trend for
both 100 and 42 neurons in the hidden layer. The accuracy
and the loss function do not vary significantly beyond
42 neurons in the hidden layer since this is the reduced
rank representation of the activation matrix space. Further
addition of neurons results in the creation of redundant
neurons which adversely affects the network since it adds
only to the structural complexity of the network leading to
increased computational time.

The variation of test accuracy and MCEL function as
a function of the number of neurons in the hidden layer

is shown in Fig. 4b. It is observed from the figure that
the accuracy does not increase considerably beyond 42
neurons in the hidden layer. As discussed before, the
determination of a lower bound for γ is crucial for practical
implementation of the SVD method for rank reduction.
Figure 4c and d show the dependences of accuracy and
MCEL function on the value of γ . We can infer that a value
of 0.9 is a safe choice for the lower bound on γ since the
percentage loss in accuracy between γ = 1 and γ = 0.9
is below 2.3%. Similarly, the MCEL function also does not
increase significantly until about γ = 0.9.

Apart from the recognition accuracy, an important
performance metric of a neural network model is its
capability to predict all the output classes with a similar
level of confidence. The confusion matrix (see Fig. 5) can
be used to measure the overall prediction capabilities of
a model. It is a square matrix which compares the true
output values with that predicted by the model. The diagonal
elements represent the cases where the predicted output

(a) (b)

(c) (d)
Fig. 4 MNIST digit recognition accuracy (%) and mean cross-entropy loss as a function of (a) number of training epochs for 100 and 42 neurons
in the hidden layer. (b) Test accuracy (%) and MCEL variation with neurons. (c) Accuracy and (d) mean cross-entropy loss variation with gamma
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Fig. 5 Confusion matrix for the MNIST test data for (a) 100 and (b) 42 neurons in the hidden layer

is same as the true output. All the off-diagonal elements
represent the faulty predictions made by the model. From
Fig. 5a and b we see that our trained model is showing a
high degree of predictability for all the classes even with

a reduced number of neurons. This indicates that the SVD
method has reduced the effective ranks of the activation
matrix without compromising the class separability in
model prediction. In order to evaluate the performance of
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Fig. 6 Application of the proposed method to fashion MNIST pattern
recognition. (a) Recognition accuracy (solid) and mean cross-entropy
loss (MCEL) (dotted) as a function of number of training epochs with

100 and 30 neurons in the hidden layers. (b) Recognition accuracy
(red) and MCEL (blue) as a function of neurons in the hidden layer.
Confusion matrices for (c) 100 and (d) 30 neurones in the hidden layer
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our SVD method on other datasets, we have applied our
proposed method on two more datasets – fashion MNIST
and Street View House Numbers (SVHN) Datasets [48, 49].
fashion MNIST dataset is similar to the MNIST dataset
except for the type of images being classified. The dataset
contains greyscale images (28×28) of fashion articles which
are to be classified into 10 output classes. However, the
SVHN dataset consists of RGB images of 32×32 resolution
consisting of real word images of house numbers from
Google Street View images. The dataset is to be classified
into 10 output classes corresponding to the images of the
digits at the center of the house number. Figure 6a shows the
application of the proposed method in reducing the number
of neurons in the hidden layer from 100 down to 30 neurons
for fashion MNIST pattern recognition tasks. It is observed
that, as the number of neurons decreases from 100 down
to 30, there is only a marginal drop in test accuracy from
88.67% to 86.73%. Similarly, the MCEL shows only a small
drop by the scheme with reduced models. Here, it is evident

that the SVD method succeeds in removing redundant
neurons from the hidden layer without an appreciable
drop in network performances. Also, the variation in test
accuracy (%) with the number of neurons in the hidden layer
depicted in Fig. 6b reveals that the model performance is not
improved with further decrease in neuron number below a
cut-off value of 30. The confusion matrices shown in Fig. 6c
and d correspond to the SLFNs with 100 and 30 neurons in
the hidden layer, respectively. It is shown that the lowering
of model complexity depending on application of the SVD
method has not affected the capability of the model to make
distinctions among the various output classes. Figure 7a
shows the SVHN digit recognition accuracy and MCEL
as a function of number of training epochs with 100 and
48 neurons in the hidden layer. As compared with the test
results from MNIST and fashion MNIST datasets, one from
the SVHN dataset show large fluctuations in both accuracy
and MCEL over the training process. The saturated accuracy
value is lower than those obtained from the previous MNIST
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Fig. 7 Application of the proposed method to SVHN digit recognition.
(a) Recognition accuracy (solid) and mean cross-entropy loss (MCEL)
(dotted) as a function of number of training epochs with 100 and 48

neurons in the hidden layer. (b) Recognition accuracy (red) and MCEL
(blue) as a function of neurons in the hidden layer. Confusion matrices
for (c) 100 and (d) 48 neurons in the hidden layer
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and fashion MNIST tests while the saturated MCEL is larger
than them. This is largely due to the increased complexity in
the SVHN dataset which considers the RGB compositions
in an image. However, it is noticeable that the SVD method
has not considerably affected the SLFN performance while
reducing the number of neurons in the hidden layer. Test
accuracy is depicted as a function of number of neurons
in Fig. 7b, which validates that the system accuracy is
maintained with the reduced number of neurons. However,
there is a significant degradation in performance with less
than 48 neurons. The confusion matrices with the original
100 neurons and those in a reduced number, 48, are depicted
in Fig. 7c and d, respectively, in which a noticeable off-
diagonal contribution is not observed. It is revealed that
the optimally minimized SLFN architecture is capable of
separating the output classes with confidence.

4.2 Performance comparison with previous studies

In order to make the distinction of the main purpose
and performances of the methodology in this work, we
have made comparisons between recent works and ours.
Although several different algorithms have been reported in
the literature related with optimization of neural network
architectures, most of them have not focused on energy
and area efficiency, but rather on expressive power with
possibly complicated approximation function that can be
obtained by the algorithm, toward a higher accuracy [50].
This is different from the main purpose of this work,
the reduction of complexity in physical interconnection
inside a hardware neural network architecture. Relatively
similar topic was dealt in another literature [51], for a
study on effects of neural network depth (number of hidden
layers, not that of neurons in the single hidden layer as
in this work) on the expressive power of the network.
The focus is mainly made on the result of exponential
increase in width, number of neurons in a hidden layer,
in sacrifice of the reduction in depth, which does not
provide any guideline or algorithmic approach for energy
and area efficient hardware design of a neural network
architecture. As compared with those reported without
considerations in the hardware aspects, our methodology
attempts to provide a practical algorithm for width reduction
of an SLFN from a hardware application perspective. We
have specifically chosen SLFN for our simulations due
to the current research interest in these neural network
architectures towards neuromorphic computing applications
[52, 53]. In literature, the most widely used method for
network optimization is the pruning technique in which
the parameters of an existing network are systematically
removed [54]. In general, the pruning technique starts with
a pre-trained network, and then, removes the redundant
parameters and repeats the training while maintaining a
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similar model performance as the original unpruned model.
A major drawback of some of the pruning techniques
reported in literature is the nature of sparse neural network
generated due to the removal of parameters. These pruned
networks slow down the computation due to the uneven
nature of memory access. The more structured pruning
models also suffer from issues of pruning convergence,
scheduling, and fine tuning. Recently, F. E. Fernandes Jr.
et al., proposed the evolution strategy for the elimination
of redundant filters from convolutional layers to reduce the
computational complexity of the model [33]. Although the
deep pruning with evolution strategy demonstrates plausible
capabilities in terms of model compression and network
performances, the algorithm introduces a major limitation
as the method requires a population of individual CNN
models of the same size to initiate the pruning process.
Similarly, S. K. Yeom et al. proposed a layer-wise relevance
propagation (LRP) method to compute the relevance scores
for pruning the network. The authors identify a major
drawback in their algorithm that the reduced network
may not always be the smallest possible network and
is strongly dependent on the chosen LRP variant [34].
H. Zhou et al. adopted a hierarchical pruning scheme
using a self-organizing fuzzy neural network for nonlinear
system modelling in industrial applications. Although the
method is successful for non-linear system modelling, its
applications is limited to fuzzy neural networks [55]. From
a practical viewpoint, pruning adopted in these cases can
effectively remove the neurons without considerable loss in
accuracy in a given network fixed in the hardware sense
but cannot contribute to the minimizing of network size
from the initial design level for hardware realization. In
comparison, a major achievement of our methodology is
the reduction of the network model to the possible smallest
representation for hardware realization. Another method
for network optimization is the low-rank factorization
technique [56]. Our approach is essentially based on this
strategy but the optimization procedures are based on
realistic hardware-oriented constraints in determining the
reduced rank, unlike the existing one that is rather purely
mathematical and can be suitable for software neural
network, without deep considerations on synaptic device
characteristics and number of neuron circuits. An existing
technique is the network quantization approach where the
number of bits needed to represent individual network
parameters is reduced or quantized [36, 57]. Quantization is
also applied to activations which saves additional memory
allotments. A combination of low-rank compression and
post-processing pruning strategy was recently reported [58].
However, the adapted algorithm is highly complex and
optimised mainly for software-based implementation. In
Table 1, network architecture, methodology, highlights,
and comparisons are summarized in comparison between

the methodology in this work and the previously reported
approaches for reducing the complexity of neural networks.
Although the existing methods demonstrate plausible
performances for network compression and high test
accuracy, most of them are not free from the concerns
about computational costs and additional overheads for
hardware implementation: all these methodologies have
been developed from software perspectives and have no
realistic hardware-sense constraints. Hence, their hardware
implementation would require additional neuron circuitry
and very-large-scale crossbar array fabrication, both of
which require time, cost, area, and energy in realization
and operation. In comparison, in short, our proposed
methodology has been developed specifically from a
hardware point of view with requirements of minimal
number of synaptic devices and neuron circuits. The
reduced rank approximation is simple and effective from the
neuromorphic hardware realization perspective.

4.3 Synaptic transistor-based weight initialization

In order to evaluate the performance of our proposed
method on hardware neuromorphic systems, we used a
core-shell dual gate nanowire transistor as a synaptic
device. Further details regarding the device and its synaptic
capabilities has been summarised in our recent publication
[28]. We have extracted the synaptic weights from the
potentiation/depression characteristics of the device to
initialise the neural network weights. The synaptic weights
from the device have been chosen to form 2, 4, 8, 16, and
32 weight levels from the device. As discussed before in
Section 3.1, these weight levels have been chosen based
on practical hardware considerations. The neural network
corresponding to each of these weight levels has been
trained and optimised in a similar manner as explained in
Algorithm 1. The initial network was trained using 100
neurons in the hidden layer whereas the optimised network
(γ = 0.99) after the application of the proposed method
yielded 15 neurons in the hidden layer. Figure 8a shows
the variation of classification accuracy and MCEL function
as a function of the training epochs using 32-level device
weights. It is evident from the figure that with the reduction
in neurons there is no observable drop in the accuracy of the
model. The reduction in number of neurons in the hidden
layer is extremely significant from a hardware perspective
since the CMOS implementation of neuronal circuits [3–
5, 59, 60] require large capacitors for spike integration
and pulse generation circuits which make these circuits
bulky and consume more power. Due to the reduction in
number of neurons in the hidden layer, the total number
of synapses has also decreased from 79,400 to 11,910;
which is highly advantageous for device fabrication. From a
hardware perspective, such a reduction in the total number
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(a) (b)

(c)
Fig. 8 Training with MNIST images. (a) Training accuracy (%) and
mean cross-entropy loss as a function of the number of training epochs
for 100 & 15 neurons in the hidden layer with 32 weight levels from a
synaptic transistor device. (b) Test accuracy (%) variation with neurons

for various device weight levels. (c) 3D surface plot of the accuracy
variation as a function of number of neurons in the hidden layer at
different number of synaptic weight levels

Predicted Label Predicted Label

Ta
rg

et
 L

ab
el

Ta
rg

et
 L

ab
el

(a) (b)
Fig. 9 Confusion matrix for the MNIST test data using 32 device weight levels for (a) 100 and (b) 15 neurons in the hidden layer
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of synapses has a major advantage in terms of the synapse
array space requirements and circuit integration density. The
variation of test accuracy with the number of neurons in
the hidden layer for various device weight levels is shown
in Fig. 8b. We can observe that for all the weight levels,
the test accuracy does not increase significantly beyond
15 neurons in the hidden layer. Additional neurons in the
hidden layer are redundant in practice and do not contribute
to the improvement of the model in terms of accuracy and
generalization. The dependence of the accuracy on both
the weight levels and neurons is shown in Fig. 8c, from
which it is clear that the accuracy surface is a plane almost
parallel to the space spanned by weight levels and neurons
in the hidden layer beyond a threshold number of 15. The
class separability of the reduced model based on 32 weight

levels has been compared with the initial model using the
confusion matrix. The matrices for 100 and 15 neurons in
the hidden layer are quite similar and there are no major off-
diagonal elements which indicate the model capability to
distinguish the output classes even with a reduced number
of neurons in the hidden layer as demonstrated in Fig. 9a
and b. We have also evaluated the performance of the SVD
method on fashion MNIST and SVHN datasets similar to
the evaluation done in Section 4.1. Figure 10a & b show
the accuracies in fashion MNIST image recognition as a
function of number of training epochs and that of neurons
in the hidden layer. It is explicitly shown in Fig. 10a that
the application of SVD has reduced the number of neurons
in the hidden layer down to 25 from the original value of
100 without a significant accuracy drop for training with

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

(%
)

Epochs

 100 Hidden Nodes
 25 Hidden Nodes

0

2

4

6

8

10

M
ea

n 
C

ro
ss

-E
nt

ro
py

 L
os

s

0 20 40 60 80 100
76

78

80

82

84

86

88

 2 levels
 4 levels
 8 levels
 16 levels
 32 levelsAc

cu
ra

cy
(%

)

Nodes

0 50 100
0

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy

(%
)

Epochs

 100 Hidden Nodes
 40 Hidden Nodes

0

2

4

6

8

10

M
ea

n 
C

ro
ss

-E
nt

ro
py

 L
os

s

(a) (b)

(c) (d)

0 20 40 60 80 100

40

50

60

70

80

Ac
cu

ra
cy

(%
)

Nodes

 2 levels
 4 levels
 8 levels
 16 levels
 32 levels

Fig. 10 Training with fashion MNIST and SVHN images. (a) Training
accuracy and MCEL as a function of number of training epochs with
100 and 25 neurons in the hidden layer for fashion MNIST training.
(b) Training accuracy as a function of number of neurons at different
numbers of synaptic weights for fashion MNIST training. (c) Training

accuracy and MCEL as a function of number of training epochs with
100 and 40 neurons in the hidden layer for SVHN training. (d) Train-
ing accuracy as a function of number of neurons at different numbers
of synaptic weights for SVHN training
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fashion MNIST images. In Fig. 10b, the number of weights
realized in a synaptic device is varied from binary to 32
levels and it is observed that it might be desirable to adopt
multi-level synaptic device with no less than 4 levels for
coping with SVD application. Figure 10c and d depict the
accuracies in SVHN image recognition as a function of
number of training epochs and that of neurons in the hidden
layer. The application of SVD has an effect of reducing the
number of neurons in the hidden layer down to 40 from
the original value of 100 without experiencing a notable
accuracy drop as shown in Fig. 10c. Also, it is revealed from
Fig. 10d that multi-level synaptic device with 4 or more
weights should be prepared for obtaining a high enough
system accuracy. Reduction of the number of neurons is
an advantage in terms of hardware implementation of a
SLFN for saving area in realizing the neuromorphic chip.
It is essential to figure out the optimally minimum number
of neuron circuits maintaining the system accuracy, and
thus, the proposed SVD method would be effective in
reducing the model complexity and realizing area and
power-efficient SLFN hardware. Table 2 summarises the
reduction in computational parameters (number of synaptic
weights) of the proposed model in comparison to the
conventional (uncompressed) model. It is notable in Table 2
that both number of neurons in the hidden layer and
number of synaptic devices are considerably reduced across
different datasets for both software and hardware synaptic
weight based implementations. Hence, the proposed SVD
method is quite effective in reducing the model complexity
and hence the resultant electrical circuitry for hardware
realisation of the SLFN can be simplified considerably for
practical neuromorphic chip realisation.

5 Conclusion

We have proposed a hardware realistic approach for
determining the optimized number of neurons in the
hidden layer in a SLFN. The methodology was applied to
SLFN based on software (near-continuous) and hardware
(discrete) synaptic weights. The application of the proposed
method to MNIST dataset with hardware synaptic weights
resulted in the reduction of neurons in the hidden layer to
15 from an initial value of 100. We have further verified
the class separability of the reduced neuron models to be
consistent with the initial model. The proposed method was
further extended to fashion MNIST and SVHN datasets
where the method was found effective in reducing the
model complexity. The method also shines light on the
mathematics of the hidden layer activation space. The
simple and intuitive nature of the methodology makes it
easily extendable for dealing with complicated networks
with a large number of hidden layers and neurons.
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