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Abstract
Interval-valued data is an effective way to represent complex information where uncertainty, inaccuracy etc. are involved
in the data space and they are worthy of taking into account. Interval analysis together with neural network has proven
to work well on Euclidean data. However, in real-life scenarios, data follows a much more complex structure and is often
represented as graphs, which is non-Euclidean in nature. Graph Neural Network is a powerful tool to handle graph like data
with countable feature space. So, there is a research gap between the interval-valued data handling approaches and existing
GNN model. No model in GNN literature can handle a graph with interval-valued features and, on the other hand, Multi
Layer Perceptron (MLP) based on interval mathematics can not process the same due to non-Euclidean structure behind the
graph. This article proposes an Interval-Valued Graph Neural Network, a novel GNN model where, for the first time, we
relax the restriction of the feature space being countable without compromising the time complexity of the best performing
GNN model in the literature. Our model is much more general than existing models as any countable set is always a subset of
the universal set Rn, which is uncountable. Here, to deal with interval-valued feature vectors, we propose a new aggregation
scheme of intervals and show its expressive power to capture different interval structures. We validate our theoretical findings
about our model for graph classification task by comparing its performance with those of the state-of-the-art models on
several benchmark and synthetic network datasets.
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1 Introduction

In today’s Data driven era, data is treated as new oil to the
digital economy. This data coming from several real life sce-
nario follow high dimensional and complex structure. Also,
they do not necessarily have a Euclidean structure behind
them and can be represented better as Non-Euclidean data
such as graphs and manifolds. For instance, in the e-commerce
system [39], the interactions between users and products can
be represented as graphs. Additionally, bio-active molecules
and their bio-activity [12] can be modelled as graphical
data. In citation networks [17], papers can be viewed as
nodes of a graph, and the link between different papers via
citation can be modelled as edges of that graph. One of
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the basic differences of this kind of Non-Euclidean spaced
data and Euclidean data is, a straight line joining any two
points in Non-Euclidean space is not necessarily the shortest
path between them as that of in Euclidean space. There-
fore, applying the Artificial Neural Network technique to
solve different tasks on the Non-Euclidean domain is not
that straight forward and has faced several challenges [34].

– Graph data is full of non-uniformity. Each graph consists
of a different number of nodes, and each node in the
graph has a variable number of neighbours. Hence, convo-
lution type operations are not directly applicable here.

– Application of the existing Machine Learning algorithm
is not always possible because instances are not inde-
pendent here. In graphical data, the nodes share con-
nections with other nodes via edges. So, to extract
maximum information about the data while performing
any specified task, it is necessary to capture this inter
dependency among nodes.

To overcome these challenges, Graph Neural Network (GNN)
has emerged as a powerful tool in last few years. The
main idea behind GNN is to find low-dimensional vector
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embedding of nodes in a large graph, which will capture
the structural information of the graph as well as the
feature information of the nodes. This embedding can
further be used to perform various types of prediction and
analytical tasks on graphs using deep learning approaches.
This idea enables us to use the computational capability
of deep learning approaches in approximating most of the
practically valuable functions on graphs. However, previous
works on Graph Neural Network are focused on the graphs,
where the input feature space is countable. Although, it is
not uncommon for data to be recorded as intervals instead of
precise point values in statistics. In general, interval-value
data arises due to two types of situations. Firstly, when
there is an uncertainty involved in the feature space, which
needs to be captured and secondly, when there is a class,
collection or group involved instead of individuals. The
common example of interval valued data includes recording
systolic and diastolic pressure, an individual’s weekly
expense ranger, daily temperature, stock price etc. Also,
an important data types can be treated as interval-valued
data. A potential approach to perform this transformation
is to use visibility algorithm [18], i.e., assigning visibility
range interval in both side (left and right) of a data point.
The traditional approach to analyze the interval-valued data
was to use the midpoint of the interval to a regression
model [2]. Nevertheless, the Center Method (CM) does not
consider the variations of the intervals. To overcome this
drawback, Center-Range Method (CRM) uses two interval-
valued regression models for mid-points and the ranges of
the interval values [28]. However, in general, the mid-points
and half ranges are related, which has not been taken into
account by CRM [1]. Bivariate Center and Range Method
(BCRM) uses two regression models using mid-points and
half-ranges of the intervals, which take care of the effects of
interval widths [3].

All these linear regression models can be used to analyze
data with linear patterns. Also, there are several instances,
where the inter connectivity between the entities is also
important enough to capture. For example, infectious
diseases such as the mumps in UK at country level in
2005 [See Fig. 11] or the global pandemic COVID-19,
the intensity of the disease in an area is highly dependent
on the other areas linked with. The link might be in
the form of people movement, weather patterns such as
wind, geographical connection etc. Also, the daily new
cases over a period of time can be modeled as an interval
with minimum and maximum of new cases. Therefore,
the number of infected in upcoming days or whether the
transportation between two places should be stopped or
not, these problems can be modeled as prediction task on

1Figure source: https://www.newton.ac.uk/files/seminar/20140115093
010001-153908.pdf

graph with interval-valued feature. Our aim is to develop an
appropriate GNN architecture, where the model accepts the
interval valued feature, performs the embedding generation
efficiently and finally, executes the specific task using those
embeddings. Then an interesting question to be asked will
be, why not use two end points of an interval as two separate
features of a node and apply an existing GNN architecture
accepting countable node feature of a graph. Answer to this
question is although neural network has ability to capture
relationship among different node features, interval is a
quantitative measurement, where there is an order and the
difference of two end points is meaningful. Our aim is to
exploit this property of interval and develop an appropriate
GNN architecture, where the model is capable enough to
accept multiple intervals and output a single representation
on its own. This will allow us to consider an interval as a
unit through out the progress of the algorithm and perform
the classification task as a function of the interval valued
feature as well as the structure of the graph. Motivated by
this situation, we introduce a new aggregation function of
intervals, named as agrnew and develop a neural architecture
Interval-valued Graph Neural Network (IV-GNN) to apply
on interval-valued data using MLPs and the newly
developed agrnew as its basic building blocks. Now, we give
a summary of our main contributions here:

1. We introduce a new interval aggregation function
agrnew and precisely discuss its representational power.

2. We identify interval structures that were previously ava-
ilable interval aggregation schemes can not distinguish.

3. We develop a neural-based architecture Interval-Valued
Graph Neural Network (IV-GNN), that can deal with
interval-valued features.

4. We discuss the space and time complexities of
our proposed algorithm and validate our theoretical
findings through performing graph classification tasks
on several datasets.

The rest of the paper is organized as follows. The related
works on Graph Neural Network are reviewed in the
Section 2. We have discussed about necessary basics of
Graph Neural Network, Interval Mathematics and Aggrega-
tion Operator in the Section 3. The proposed framework for
Interval-Valued Graph Neural Network (IV-GNN) is intro-
duced in Section 5. The results of the experimental study are
presented in Section 6, and finally, the concluding remarks
are made in Section 7.

2 Related works

Encouraged by the commercial success of deep learning
approaches in Euclidean structured data, a large number
of methods have been introduced for Non-Euclidean data
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Fig. 1 Left side: Weekly cases of Mumps at county level for 2005 in counties of England and Wales. Right side: Network structure using distances
between county towns

as well [24]. These approaches primarily can be classified
into two categories, namely spectral-based and spatial-based
methods. The basic approach of spectral based GNN is
to introduce filters from the graph signal processing per-
spective on a similar notion of the traditional convolutional
neural network (CNN) [5]. However, due to high com-
putational cost and lack of scalability of spectral-based
approach, a relatively newer field of research, spatial-based
GNN has gained popularity in recent years. These models
can handle large graphs by aggregating feature information
from the neighbouring nodes. We give an overview of a few
models with spatial-based approach here,

1. One of the earliest works in this area, Graph Neural
Network (GNN) [30] recursively updates latent node
representations by exchanging information with the
neighbouring nodes, until equilibrium is reached. The
recurrent function is chosen to be a contraction mapping
to ensure convergence.

2. Gated Graph Neural Networks (GGNN) [9] uses a gated
recurrent unit as the recurrent function and use back-
propagation through time (BPTT) for parameter learn-
ing. Hence, the condition on parameters to converge is
no longer there, which reduces the number of steps.

3. Stochastic Steady-State Embedding (SSE) [10] uses a
recurrent function that takes a weighted average of the
states from previous steps and a new state to ensure the
stability of the algorithm.

4. GraphSage [14] proposes a batch-training algorithm,
which improves scalability for large graphs. It samples

a fixed-sized neighbourhood of a node to aggregate
information.

5. Graph Isomorphism Network GIN [35] is one of the
best performing models reported in the literature. It has
been claimed that both the GIN and WL test are equally
powerful in a graph classification task. It imposes a con-
straint on the functions used in the model to be injec-
tive to achieve the maximum representational power of
a GNN.

6. Higher order Graph Neural Network k-GNN [26] uses
k-dimensional neighbourhood of a node to aggregate
information from these and generate the low-dimen-
sional representation for the mode.

Limitations All of these above discussed GNN-architec-
tures have one limitation in common; that they can not
process feature values, which are not from Euclidean space.
Even the categorical features can also be handled by these
models by converting them to integer data using integer
encoding or one-hot encoding. But, when the feature value
is continuous, to the best of our knowledge, no existing
architecture in GNN literature can process it. However,
there are several instances as mentioned earlier, where it
is more convenient to represent the feature as interval and
treat interval as a single unit throughout the progress of
the algorithm. Therefore, in order to overcome this limita-
tion of the existing GNN model, we aim to design a GNN
model, which not only will accept node feature as intervals,
also will outperform the existing GNN model on count-
able feature space. In this paper, a new interval aggregation
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scheme agrnew has been introduced, satisfying all the nec-
essary properties of a general aggregation function. Then,
we have proposed Interval-Valued Graph Neural Network
(IV-GNN) using agrnew as aggregation operator, which can
handle interval-valued features. We have performed graph
classification tasks on four bioinformatics datasets, two
social network datasets, and six synthetic datasets and have
found that IV-GNN (with the proposed interval aggregation
scheme) performs better than GNNs with various existing
interval aggregation functions. Moreover, we demonstrate
that our proposed model using degenerate interval-valued
features (a special case of the more general IV-GNN model)
outperforms other state-of-the-art approaches, that accept
only countable features, for the graph classification task.

3 Background and definition

This section overviews the Graph Neural Network frame-
work, basics of Interval Mathematics, and Aggregation
Operators.

3.1 Graph neural network

In this sub-section, we formally present the notion of Graph
Neural Networks and the related concepts.

Let G = (V , E) be a graph, where xv is the node feature
vector associated with a node v ∈ V . We want GNN to solve
mainly two kinds of tasks.

– Node Classification Let every node v ∈ V has label yv

associated with it. Then the objective is to get a vector
representation zv for v in Euclidean space such that yv

turns out to be a function of zv , i.e. yv = f (zv).
– Graph Classification Let {G1, ..., GN } be a collection

of graphs, where {y1, ..., yN } is the set of associated
labels of the graphs. Then our aim will be to learn
a Euclidean representation zG for a particular graph
G such that yG turns out to be a function of zG, i.e.
yG = g(zG).

Now we describe the forward propagation algorithm
(Algorithm 1) of any GNN model, which is used to generate
embedding of nodes using graph structure and node features.

In this algorithm, N(v) stands for the neighbourhood of
a vertex v. The main idea of GNN evolves around two func-
tions AGGREGATE(k) and COMBINE(k). AGGREGATE(k)

function is used to accumulate information from the neigh-
bouring nodes, and COMBINE(k) function is used to
update the existing representation vector of a node after (k−
1) iteration with the help of aggregated information from its
neighbours. Here the iteration number stands for how many
hop-neighbourhood of a node we want to consider to get its
representation vector.

For graph classification, we have another function named
READOUT, which will accept the representation of every
node after the final iteration K and predict the graph label.

zG = READOUT ({zv|v ∈ V })

Several AGGREGATE and COMBINE functions have
been proposed in the GNN literature. In the GraphSAGE
architecture [14], the AGGREGATE and COMBINE
functions have been defined as follows,

hk
v = σ(W2.CONCAT (hk−1

v , MAX({ReLU(W1.hk−1
u ),

∀u ∈ N(v)})) (1)

where W1 and W2 are learnable weight matrices, CONCAT
represents vector concatenation. σ is a non linear function.

In Graph Convolution Network [17], the AGGREGATE
and COMBINE function can be defined as,

hk
v = ReLU(W .MEAN{hk−1

u , ∀u ∈ N(v) ∪ {v}}) (2)
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In Graph Isomorphism Network [35], the model uses a sum
aggregator over max or mean aggregator due to its more
discriminative power.

GIN updates existing node representations as,

hk
v = MLP k((1 + εk).hk−1

v + Σu∈N(v)h
k−1
u ) (3)

MLP represents a multi-layer perceptron, and ε can be a
parameter that needs to be learned or assigned as a fixed
scalar. Any spatial-based GNN can be at most as powerful
as WL test [35]. This network is one of those GNN models,
which is equally powerful as the WL test distinguishing a
broad class of graphs effectively and efficiently.

3.2 Interval mathematics

The works discussed so far take care of the situation when
the feature space is countable. Before generalizing this idea
to interval-valued feature space, we introduce the interval
mathematics and properties of any aggregating function.
Note that, if the node feature is from countable space, it can
be considered a degenerate interval, i.e. the start and end
points of the interval are same.

Let us consider U = {[a, b]|0 ≤ a ≤ b ≤ 1} along with
∩0 and ∪0 defined by

[x1, x2] ∩0 [y1, y2] = [min(x1, y1), min(x2, y2)]
[x1, x2] ∪0 [y1, y2] = [max(x1, y1), max(x2, y2)]

(U , ∩0, ∪0) forms a complete lattice. A partially ordered
set is said to be a complete lattice if all subsets have
both a supremum (join) and an infimum (meet). We denote
aggregation operator as agr0 which is based on ∩0.

Now to assign the value of the aggregation so that it takes
care of every individual’s opinions, the aggregated interval
needs to be defined as an interval that lies in the intersection
of everyone’s opinion. If we define the aggregator function
as ∩0 as defined above, then the function is biased towards
the interval with a lower value. Therefore, to overcome this
drawback, in [13], (U , ∩e, ∪e) is defined as a lattice where
the greatest lower bound, ∩e and the least upper bound, ∪e

are defined as follows,

[x1, x2] ∩e [y1, y2] = [max(x1, y1), min(x2, y2)],
if max(x1, y1) ≤ min(x2, y2)

= [min(x2, y2),min(x2, y2)] , otherwise

[x1, x2] ∪e [y1, y2] = [max(x2, y2), max(x2, y2)],
ifx1 = x2, y1 = y2

= [max(x1, y1), max(x2, y2)],
if x1 = x2 < y1 < y2

= [min(x1, y1),max(x2, y2)] , otherwise

(U , ∩e, ∪e) is a complete lattice. We denote aggregation
operator as agre which is based on ∩e.

3.3 Aggregation operators

Any aggregation operator [6] for fixed n ≥ 2 is defined by a
function agr : [[0, 1] × [0, 1]]n → [0, 1] × [0, 1] fulfilling
at least the two following axioms.

– Boundary conditions agr(Imin, Imin, . . . , Imin) =
Imin, agr(Imax, Imax, . . . , Imax) = Imax , where Imin

and Imax are minimal and maximal possible inputs
respectively.

– Monotonic increasing ∀(I1, I2, . . . , In), (J1, J2, . . . ,

Jn) ∈ [[0, 1] × [0, 1]]n such that Ii ≤ Ji, ∀i ∈ N then
agr(I1, I2, . . . , In) ≤ agr(J1, J2, . . . , Jn)

Besides these properties, we want our aggregations to
satisfy two additional axioms.

– Symmetry agr(I1, I2, . . . , In)= agr(Ip(1), Ip(2), . . . ,

Ip(n)) for any permutation p on N
n

– Idempotency agr(I, I, . . . , I )=I , ∀I ∈[0, 1]×[0, 1]

4 Theoretical framework

We introduce a new order relation ⊆new on U such that
(U , ⊆new, ∩new, ∪new) forms a lattice and will give a
comparable study against two previously discussed order
relation.

4.1 Definition

⊆new is a binary relation on U defined as below

[x1, x2] ⊆new [y1, y2] if (y1 < x1) or

(x1 = y1 and x2 ≤ y2).

4.2 Proposition

(U , ⊆new) forms a poset. To show (U , ⊆new) forms a poset,
we have to show the relation ⊆new is reflexive, antisymmet-
ric, and transitive.

– Reflexivity

[x1, x2] ⊆new [x1, x2] as x1 = x1 and x2 ≤ x2

– Antisymmetricity

[x1, x2] ⊆new [y1, y2] =⇒ y1 < x1or

x1 = y1 and x2 ≤ y2....(i)

[y1, y2] ⊆new [x1, x2] =⇒ x1 < y1 or

y1 = x1 and y2 ≤ x2....(ii)

(i) and (ii) imply

x1 = y1 and x2 = y2.
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Hence ,

[x1, x2] = [y1, y2]
– Transitivity can be shown similarly.

4.3 Proposition

(U , ⊆new) forms a lattice. (U , ⊆new) is a lattice where the
greatest lower bound, say ∩new and the least upper bound,
say ∪new are defined as follows,

[x1, x2] ∩new [y1, y2] = [max(x1, y1), min(x2, y2)]
if max(x1, y1) ≤ min(x2, y2)

≤ max(x2, y2) �= 1

= [max(x1, y1), 1], otherwise

[x1, x2] ∪new [y1, y2] = [min(x1, y1), max(x2, y2)]
if max(x2, y2) �= 1

= [min(x1, y2), min(x2, y2)],
otherwise

4.4 Proposition

(U , ⊆new) forms a bounded lattice. For an arbitrary interval
[x, y] ∈ U , we have 0 ≤ x ≤ y ≤ 1. Hence [1, 1] ⊆new

[x, y] ⊆new [0, 1]. We denote aggregation operator as
agrnew, which is based on ∩new.

4.5 Proposition

agrnew satisfies all four conditions of aggregation function.
agrnew satisfies boundary conditions where [1, 1] and [0, 1]
are the minimal and maximal possible inputs respectively.

5 Interval-valued graph neural network
(IV-GNN)

We develop a general GNN model where the feature space
need not be countable. Releasing this constraint on the
feature space, our model can capture the graph’s structural
properties and can extract useful information from interval-
valued features of the nodes. As a result, our proposed
architecture is much more general in nature and to the best
of our knowledge, no existing models of GNN in literature
can accept nodes’ feature, which are intervals.

5.1 AGGREGATE and UPDATE function of IV-GNN

As we have already discussed that spatial-based GNN archi-
tecture has two primary functions, namely AGGREGATE and
COMBINE, we use our newly develop interval aggregation

operator agrnew function to aggregate the neighbouring
nodes’ embedding to extract maximum information out of
it. As shown in the Fig. 2, we develop our model with
aggregation and update function on k-th iteration defined as

hk
v = Φ(hk−1

v , agrnew({hk−1
u : u ∈ N(v)})) (4)

, where Φ is the update function. To choose Φ, we take
the help of the Universal Approximation Theorem [15],
which states that, using the multi-layer feed-forward archi-
tecture in a neural network framework, makes it a univer-
sal approximator of any continuous functions under mild
assumptions on the activation function [23]. However, the
limitation of continuity of the function was released much
later. It has been shown that, a single hidden layer feed-
forward neural network (SLFNNs) can approximate any
real, piece wise continuous function almost uniformly [25].
Therefore, IV-GNN has the updating step as,

hk
v = MLP k(agrnew((1 + εk)hk−1

v , (5)

agrnew{hk−1
u : u ∈ N(v)}))

5.2 Details of updation step

The proposed Interval-Valued Graph Neural Network (IV-
GNN) operates on interval- valued input and output in
order to generate embeddings. As discussed earlier, for
any given node, the newly developed aggregation function
agrnew has been used twice in every updation step. Firstly,
it will accumulate the neighbours’ intervals and express
them as a single interval. And, secondly, it will combine
neighbourhood information with the node’s itself. We have
discussed the agrnew in detail in the previous section. Now,
we give the details of the neural architecture of our model.

5.2.1 Neural architecture of IV-GNN

One of the basic building blocks of our proposed model IV-
GNN is Multi Layer Perceptron (MLP). However, unlike the
commonly used architecture, the MLP used in the proposed
model deals with interval-valued inputs and outputs, but
the weights and biased are single-valued [29]. In order to
understand, we assume that, the MLP has only one hidden
layer with h units.
Let us consider the interval-valued inputs as Xi =
[Xlower

i , X
upper
i ], with i = 1, 2, ..., n. The output of the j -th

hidden unit is the single-value weighted linear combination
of inputs and the bias as follows,

Sj =< S1
j , S2

j >=< wj0 +
n∑

i=1

wji

Xlower
i + X

upper
i

2
,

n∑

i=1

|wji |X
upper
i − Xlower

i

2
>
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Fig. 2 An overview of the proposed framework: IV-GNN

After that, tanh function has been used as activation func-
tion,

Aj = tanh(Sj ) = [tanh(S1
j − S2

j ), tanh(S1
j + S2

j )]
Finally, the output is the linear combination of the hidden
layer output and bias, which is the output of the whole
updation step.

5.3 Graph-level readout function of IV-GNN

The purpose of this graph-level read-out function is to get
embedding of the graph using the embedding of the nodes.
If we want to perform jobs like node classification [22] or
link prediction [8] within a graph then the node embedding
using aggregation and update function at node level are
sufficient.

While selecting the Graph-level READOUT function, we
want to focus on the following aspects.

– We want to use the structural information/node embed-
ding that we have got after every iteration. It may so
happen that the node embedding from an earlier itera-
tion captures more information about the graph rather
than the final iteration.

– The graph-level function should be injective to have our
GNN variant as powerful as WL-test of isomorphism

by distinguishing between different structures/node
features.

Hence, to achieve a skip connection like architecture similar
to Jumping Knowledge [36] and maximal distinguishing
power, we concatenate the SUM of the node embeddings
after every iteration.

zG =CONCAT(SUM({hk
v|v ∈ G})|k = 0, 1, . . . , K) (6)

5.4 Challenging structures for agr0 and agre

The main idea of choosing a powerful aggregator is
to capture and compress the amount of structural and
feature information from the nodes in its aggregated
output value. Also, the aggregator function should be
permutation invariant. That is, the order of the interval
during aggregation should be immaterial. In this context,
agr0 , agre and agrnew, all are satisfying this condition.
In Fig. 3, we have shown the ranking of three aggregation
functions pictorially with respect to their representational
power. We have denoted the root node as the red node and
the adjacent nodes of the root node as the black node whose
features need to be aggregated and combined with the root
node. In Table 1, we have illustrated these facts with the help
of examples.
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Fig. 3 Ranking by expressive
power for agr0, agre, agrnew .
Among these three aggregators,
agrnew has the maximum ability
to capture the structural and
feature related information. One
thing to notice that, the right end
point of an resulting interval
equals to 1expresses the fact that
two aggregating intervals are
non overlapping. agre is equally
powerful as agrnew when two
intervals have
non-nullintersection. agr0
captures the smaller interval
(according to the order relation)
and ignores the other interval

In the Fig. 4a, we have three intervals, I1 = [0.1, 0.2],
I2 = [0.1, 0.3] and I3 = [0.15, 0.3]. We construct two
sets of intervals S1 and S2, where S1 = {I1, I2} and S2 =
{I1, I3}, which need to be aggregated. Now,

agr0(S1) = agr0(S2) = I1

Hence, in this case agr0 fails to capture the desired
information about the intervals. However, agre and agrnew

will give the aggregated intervals as the intersecting sub
intervals.

agre(S1) = agrnew(S1) = [0.1, 0.2]
agre(S2) = agrnew(S2) = [0.15, 0.2]

In Fig. 4b, two sets of intervals need to be aggregated
S3 = {I1, I4} and S4 = {I1, I5}, where I4 = [0.3, 0.4]}
and I5 = [0.2, 0.3]. Here also, agr0 will fail to distinguish
between them.

agr0(S1) = agr0(S2) = I1

But according to definition, agre will give same degenerate
interval [0.2, 0.2] for both S3 and S4. However agrnew can
differentiate between them as it will aggregate and give the
resultant intervals as [0.3, 1] and [0.2, 0.2] for S3 and S4

respectively.

agre(S3) = agre(S4) = [0.2, 0.2]

agrnew(S3) = [0.3, 1],
agrnew(S4) = [0.2, 0.2]
As I1 and I4 are non-intersecting, agrnew will be able to
capture the uncertainty and express it by assigning a broader
interval.

The agre will perform well if the two intervals have a
non-null intersection. So, whenever the node features are

not very diverse, agre will be as powerful as the agrnew

aggregator.

5.5 Model training

To estimate model parameters of IV-GNN, we need to
specify an objective function to optimize. Since the task we
focus on in this work is Graph Classification task, loss is
computed as the sum of the difference between the actual
graph class and the predicted graph class for the graphs in
the dataset.

5.6 Memory and space complexity of training
the embedding generation process of IV-GNN

In order to find the worst case scenario, we assume that
all ||E|| edges are connected to all ||V || nodes of the
graph G. As IV-GNN is a full-batch gradient descent
process, it requires storing all the embeddings found from
the intermediate layers, which requires O(Kn) storage for
one node. Here, K denotes the number of layers and n

denotes the dimension of the embedding space. For the
sake of simplicity, we keep the embedding space dimension
same for every layer. Furthermore, at every layer, a weight
matrix of size n × n is involved, which includes O(Kn2)

Table 1 Comparison between three interval aggregator

Interval 1 Interval 2 agr0 agre agrnew

[0.1, 0.2] [0.1, 0.3] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2]
[0.1, 0.2] [0.15, 0.3] [0.1, 0.2] [0.15, 0.2] [0.15, 0.2]
[0.1, 0.2] [0.3, 0.4] [0.1, 0.2] [0.2, 0.2] [0.2, 1]
[0.1, 0.2] [0.2, 0.3] [0.1, 0.2] [0.2, 0.2] [0.2, 0.2]
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Fig. 4 Examples of interval
structures that agr0 and agre
fail to distinguish. In the left
picture, agr0 is giving same
aggregated interval even though
two sets of intervals are
different. In the right picture,
agr0 and agre, both are unable
to recognise the differences
between the two sets of intervals

storage in total. Therefore, overall IV-GNN has a space-
complexity of O(K||V ||n + Kn2). Now, we illustrate
the time-complexity of our proposed model. As discussed
previously, IV-GNN stores intermediate embeddings of
every node, generated from each lower layer. In contrary
to mini-batch algorithm like GraphSAGE [14], IV-GNN
utilizes those saved embeddings and reuses those in the
upper layer. Therefore, at every layer, previously layers’
embeddings are multiplied with the weight matrix of size
n×n, which includes n2-many multiplications, followed by
some element-wise operations. Therefore, as a whole, for
K many layers and ||V || many nodes, IV-GNN has time
complexity O(K||V ||n2 + K||E||n).

6 Experiments

This section discusses the dataset used for experiments,
and we evaluate our theoretical findings by comparing
the training and test set performances of IV-GNN on the
synthetic and real-life datasets.

6.1 Datasets

We have used six synthetic datasets, four bioinformatics
datasets and two social network datasets to demonstrate the
efficiency of our model.

1. Synthetic Datasets: Our basic idea is to generate ran-
dom graphs with a various number of nodes. Then
based on two topological properties, we give tag and
feature interval to the nodes and classify every graph
in the datasets. The summary statistics of these syn-
thetic datasets are provided in Table 2. The topological
properties are listed below,

– Density The density of a graph is defined as the
ratio of the number of edges and the number of
nodes [19], i.e.,

density(G) = |E|
|V |

where G = (V , E) denotes a graph, V is the set of
nodes and E is the edge set of the graph G. Average
density of the dataset D = {Gi, i = 1, ..., n} can be
calculated as,

avg density =
∑n

i=1 density(Gi)

n

We assign,

Graph class (G) =
{

1, if density (G) < avg density.

0, otherwise.

We assign,

tag(v) =
{

1, if degree (v) < average degree.

0, otherwise.

where average degree is calculated over all nodes
in the dataset (Fig. 5).

Table 2 Statistics of the synthetic datasets

Dataset Size Classes Avg. nodes labels

SYNTHETIC 1 200 200 2 19.94 2

SYNTHETIC 1 1000 1000 2 19.83 2

SYNTHETIC 1 2000 2000 2 19.92 2

SYNTHETIC 2 200 200 2 19.94 23

SYNTHETIC 2 1000 1000 2 19.83 25

SYNTHETIC 2 2000 2000 2 19.92 25
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Fig. 5 Explanation of assigning feature interval to a node. For the node
A, it has two neighbours of degree 3, resulting dmin = dmax = 3.
Hence the feature interval(A) = [dmin, dmax ] = [3, 3]. Similarly, node
F has 4 neighbours of degree 2, 2, 3, 3. Hence dmin and dmax are 2 and
3 respectively. Therefore, feature interval(F ) = [2, 3]

To assign the interval valued feature to a node v,
we follow the following rule,

feature interval(v) =

⎧
⎪⎨

⎪⎩

[dmin, dmax], if|N(v)| > 1

[−1, dmax], if|N(v)| = 1

[−1, 0], otherwise.

where
dmin= min

u∈N(v)
degree(u),

dmax= max
u∈N(v)

degree(u)

We have created three datasets, SYNTHETIC 1
200, SYNTHETIC 1 1000, SYNTHETIC 1 2000,
with 200, 1000, 2000 graphs, respectively, accord-
ing to this construction.

– Average clustering coefficient The clustering
coefficient c(u) of a node u, is a measure of
the likelihood that any two neighbors of u are
connected [21]. Mathematically, the clustering
coefficient of a node u can be formulated as:

c(u) = λ(u)

τ(u)
.

where λ(u) is the number of triangles engaging the
node u. By triangle, we mean complete graph with
three nodes and

τ(u) = degree(u)(degree(u) − 1)

2
,

i.e., the number of triples a node u has.

In other words, the clustering coefficient for
node u is the ratio of the actual number of edges
between two nodes from the neighbours of u and
the maximally possible numbers of edges between
them. The clustering coefficient C(G) of a graph G

is the average of c(u) taken over all the nodes in the
graph, i.e.,

C(G) = 1

n

n∑

i=1

c(ui)

Average clustering coefficient of the dataset D =
{Gi, i = 1, ..., n} can be calculated as,

avg cluster =
∑n

i=1 C(Gi)

n

We assign,

Graph class(G) =
{

1, if C(G) < avg cluster

0, otherwise.

We use node’s degree as its tag.

tag(v) = degree(v)

To assign the interval valued feature to a node v, we
follow the following rule,

feature interval(v) = [cmin, cmax]
where

cmin= min
u∈N(v)

c(u),

cmax= max
u∈N(v)

c(u)

We have created three datasets SYNTHETIC
2 200, SYNTHETIC 2 1000, SYNTHETIC 2
2000 with 200, 1000, 2000 graphs respectively
according to this construction.

2. Bio-informatics datasets: 4 datasets MUTAG, PRO-
TEINS, PTC and NCI1 [37] have been used for our
experiment. The summary statistics of these bioinfor-
matic datasets are provided in Table 3.

– MUTAG consists of 188 graphs which have 7
discrete node labels. Each graph in the dataset
represents a chemical compound [11].

– In the dataset PROTEINS, nodes represent sec-
ondary structure elements (SSEs) and two nodes
share an edge if they appear as adjacent in the
amino-acid sequence. Graph nodes have 3 different
labels such as helix, sheet or turn [4].

– PTC includes 344 chemical compounds that
describes the carciogenicity for male and female
rats having 19 discrete node labels [32].

– NCI1 is a balanced dataset with 4100 nodes with 37
discrete labels, published by the National Cancer
Institute (NCI). It contains chemical compounds,
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Table 3 Statistics of the Bioinformatics datasets used

Dataset Size Classes Avg. nodes labels

MUTAG 188 2 17.9 7

PTC 344 2 25.5 19

PROTEINS 1113 2 39.1 3

NCI1 4110 2 29.8 37

that are found to have the ability to suppress or
inhibit the growth of a panel of human tumor cell
lines [33].

3. Social network datasets: 2 datasets, IMDB-BINARY
and COLLAB [37] have been used for our experiment.
The summary statistics of these datasets are provided in
Table 4.

– Movie Collaboration Dataset: IMDB-BINARY is
a dataset of movie collaboration, wherein in each
graph, nodes represent actors/actresses and two
nodes share an edge if two actors/actresses act in
the same movie. There are two graph classes Action
and Romance genres.

– Scientific collaboration dataset: COLLAB is a
dataset of scientific collaboration, acquired from 3
public collaboration datasets, namely High Energy
Physics, Condensed Matter Physics and Astro
physics [20]. In [31], ego-networks of various
researchers from each field has been generated, and
each graph has a label according to the field of the
researcher. Now the task will be to determine an
ego-collaboration graph’s label of a researcher.

6.2 Performance of IV-GNN

Our goal is to allow the model to capture structural informa-
tion and feature information from the graph. Therefore, we
like to evaluate our model IV-GNN on Graph Classification
task with interval-valued features of the nodes.

6.2.1 Data preparation

To convert the feature values into intervals, we prepare
the data as follows: rather than using the tag of a node

Table 4 Statistics of the Social network datasets used

Dataset Size Classes Avg. nodes labels

IMDBBINARY 1000 2 19.8 -

COLLAB 5000 3 74.5 -

as a node feature, we give a bias of k1 and k2, where k1

and k2 are selected from the normal distribution N(0, 1) to
generate an interval-valued feature for that particular node.
For example, if in a graph, a node has a tag as c, then we
assign [c − k1, c + k2] as its feature interval.

6.2.2 Baselines

We evaluate our IV-GNN by comparing it with other
frameworks with different interval aggregation operators.
As there is no existing model, who can handle interval-
valued features of the nodes, we use existing interval
aggregation operators with same neural architecture as of
IV-GNN, which will show expressive power of agrnew

against that of others experimentally. The details of the
baselines are discussed below.

– agr0-based GNN In this model, we choose agr0

for interval-aggregation and SUM as Graph-Level
READOUT function.

– agre-based GNN In this model, interval-aggregation
operator agre has been used as AGGREGATE func-
tion. Like before, we use SUM as the Graph-Level
READOUT function.

We report the training set performance and test set perfor-
mance in the Fig. 6 and Table 5 respectively.

6.3 Performance with degenerate interval: A special
case of IV-GNN

In order to examine the performance of IV-GNN for
countable features, we compare IV-GNN with respect to the
state-of-the-art approaches which accept countable feature-
value. For this experiment, we treat the exact value of the
feature as a degenerate interval, i.e., we use exact feature
value as same starting and end points of the interval. We
report the training set performance and test set performance
in the Fig. 7 and Table 6 respectively.

6.3.1 Baselines

We compare IV-GNN with three, state-of-the-art GNN
models, as briefly discussed below.

– GraphSage [14]: This uses a sampled neighbourhood
and aggregates information from these to generate the
Euclidean representation of the nodes.

– GCN [17]: This model uses the MEAN-pool of the
information from the neighbouring nodes and then
combines the changes with the existing feature of a
node using a nonlinear function.
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Fig. 6 Training set performance of IV-GNN and less powerful interval valued feature accepting GNNs. X-axis and Y-axis show the epoch number
and the accuracy of training respectively

– GIN [35]: This model uses SUM as its aggregation
function because of its maximal discriminative power
and a nonlinear function as a combine function.

6.4 Parameter settings

For IV-GNN, we adopt the parameter settings based on our
hyperparameter study [see Section 6.7], and details are as
follows

– We have used 5-layers of each GNN block where every
MLP will have 2-layers excluding the input layer.

– Each hidden layer has {32, 128} hidden units. We have
used Batch Normalization in each hidden layer.

– We have used Adam optimizer [16] with the initial
learning rate 0.01 and decay the learning rate by 0.5
after every 50 epochs.

– Input batch size of training is {16, 64}.
– The final layer dropout is 0.5 [38].
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Table 5 Test set classification
accuracies in percentage Dataset agr0-based model agre-based model agrnew-based model IV-GNN

SYNTHETIC 1 200 89.33 ± 0.13 95.00 ± 0.19 98.39 ± 0.24

SYNTHETIC 1 1000 87.82 ± 0.66 89.82 ± 0.42 95.01 ± 0.24

SYNTHETIC 1 2000 81.80 ± 0.40 92.88 ± 0.36 96.05 ± 0.31

SYNTHETIC 2 200 82.98 ± 0.10 92.48 ± 0.89 98.92 ± 0.39

SYNTHETIC 2 1000 83.92 ± 0.55 87.75 ± 0.26 92.10 ± 0.79

SYNTHETIC 2 2000 83.31± 0.19 86.75 ± 0.27 88.54 ± 0.67

MUTAG 85.79 ± 0.04 89.85 ± 0.22 92.37 ± 0.26

PTC 61.10 ± 0.19 63.6 ± 0.23 67.6 ± 0.25

PROTEINS 78.09 ± 0.04 80.7 ± 0.54 83.3 ± 0.06

NCI1 75.6 ± 0.05 77.7 ± 0.03 80.3 ± 0.10

IMDB-B 69.24 ± 0.03 72.41 ± 0.12 72.5 ± 0.16

COLLAB 65.6 ± 0.02 69.4 ± 0.02 71.1 ± 0.16

Fig. 7 Training set performance
of IV-GNN accepting
degenerate interval value and
other countable value feature
accepting GNN. X-axis and
Y-axis show the epoch number
and the accuracy of training
respectively
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Table 6 Test set classification accuracies in percentage

Dataset GraphSAGE GCN GIN IV-GNN

MUTAG 85.4 ± 0.77 82.9 ± 0.66 89.4 ± 0.84 94.7 ± 0.24

PTC 63.3 ± 0.94 66.9 ± 0.19 64.6 ± 0.74 68.5 ± 0.34

PROTEINS 75.8 ± 0.34 76.23 ± 0.14 76.75 ± 0.98 88.1 ± 0.63

NCI1 78.1 ± 0.34 79.2 ± 0.75 82.5 ± 0.11 83.92 ± 0.96

IMDB-B 71.38 ± 0.97 72.41 ± 0.9 74.1 ± 0.2 73.35 ± 0.68

COLLAB - - 80.2 ± 0.53 79.85 ± 0.3

As recommended for GIN, we perform 10-fold cross-
validation with LIB-SVM [7, 37] and perform the experi-
ment for 350 epochs.

6.5 Results

6.5.1 Training set performance

We have already theoretically analyzed the representational
power of our proposed IV-GNN. Now, we validate our theo-
retical findings by comparing training accuracies on various
datasets. Ideally, the architecture, which has stronger rep-
resentational power, should fit the data more accurately,
resulting in better training performance. Training set perfor-
mance gives an idea about how well the model learned from
training data.

Figure 6 shows training curves of IV-GNN and interval-
valued GNN with alternative aggregation functions with
the same hyperparameter settings. In comparison, the GNN
variants, which use less powerful interval aggregator as
AGGREGATE function, cannot learn from many datasets.
The reason behind this observation is, agrnew has more
distinguishing power than agr0 and agre. Between agr0

and agre, agre performs better because as we have seen
theoretically that, with non repetitive feature value, agre is
equally powerful as agrnew.

Figure 7 shows training curves of IV-GNN accepting
degenerate interval valued feature and other state-of-the-
art GNN models, who accept countable valued features.
As we can see, curve of IV-GNN outgrows that of others,
which proves that, IV-GNN learns from the data much better
than other models in most of the cases. In cases of dataset
IMDB-BINARY, GIN captures the dataset slightly better
than IV-GNN. However, our proposed model IV-GNN is
able to beat the other two models quite efficiently.

6.5.2 Test set performance

Now, we compare test set accuracies with respect to dif-
ferent interval aggregation-based GNN model and state-of-
the-art GNN model. We have performed this experiment for
the synthetic as well as real life datasets for 350 epochs and

report the best cross-validation accuracy mean and standard
deviation averaged over the 10 folds after performing each
experiment ten times . In Table 5, we have seen that IV-GNN
can capture graph structures and generalize well in most of
the cases among other variants showing 4% better accuracy
on an average.

In the special case for degenerate intervals, we perform
experiments ten times on real-life datasets only and report
the mean and standard deviation of the accuracies. We could
not perform experiments of GraphSAGE and GCN on the
dataset COLLAB due to memory bound. As we can see
in the Table 6, IV-GNN performs much better than the
other state-of-the-art approaches on four out of six datasets
and achieves a performance gain of 7% on an average. On
the other hand, for the datasets like IMDB-BINARY and
COLLAB, IV-GNN’s accuracy is not strictly the highest
among GNN variants. However, IV-GNN is still comparable
to the best performing GNN because a paired t-test at
significance level 10% does not distinguish IV-GNN from
the best.

6.6 Runtime comparison

We have experimented IV-GNN together with other three
state-of-the-art approaches on five datasets (we could not
include the dataset COLLAB for the experiment as Graph-
SAGE and GCN attain memory bound). As seen in the
Fig. 8, IV-GNN and GIN take comparable amount of time.
As expected from the theoretical findings, IV-GNN and
GIN beat the other two models by utilizing the previ-
ously stored nodes’ embeddings. However, GraphSAGE
could not outperform GCN in these datasets, because the
mini-batch based algorithm works better when the graph
is very large.

Fig. 8 Comparison in runtime of different GNN models
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6.7 Empirical study on hyperparameter setting

We have performed empirical study on various hyperparam-
eters involved in the model and our experimental finding
can be depicted in the Fig. 9.

6.7.1 Effect of different batch size

Batch size means the number of training examples to work
through before updating the internal model parameters. We
have experimented with the batch size {16, 32, 64, 128} and
as we can see that for the relatively smaller dataset as
MUTAG, PTC and PROTEINS, smaller batch size works
better and to learn from the more enormous datasets such
as COLLAB, NCI1 and IMDB-BINARY, larger batch size
performs better. So we take batch size as {16, 64} depending
on the size of the datasets.

6.7.2 Effect of different learning rate

Learning rate is a measure of the step size towards moving
to the minimum of the loss function [27]. A lower learning
rate can slow down the convergence process, while a
too high learning rate may jump over the minima and
oscillates. Based on the experimental result, we find that
between {0.1, 0.01, 0.001}, 0.01 gives maximum accuracy
for IV-GNN.

6.7.3 Effect of different hidden dimension

We have experimented with the different number of units
in the hidden layer of the MLP, such as {16, 32, 64, 128}.
Here also, smaller hidden dimension works well for smaller
datasets as larger hidden dimension may cause underfitting.
So, we take 32 as a hidden dimension for the bioinformatics

Fig. 9 Empirical study on hyper-parameter setting. X-axis and Y-axis show the name of the dataset and the accuracy of training respectively
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dataset. On the other hand, for the social network datasets,
hidden dimension 128 captures the structures efficiently.

6.7.4 Effect of different graph level readout function

We have experimented two different Graph level Readout
functions Sum and Average. As shown in the figure, Sum

performs much better than the function Average, which
establishes the fact that Sum have better representational
capacity than Average

6.7.5 Effect of different number of GNN layers

We have tried our model with three different number of
GNN layers (including the input layer), such as {3, 5, 7}.
As we can see from the output, using 5 GNN layers in our
model gives the best performance than others.

6.7.6 Effect of different division of datasets

We have divided the datasets in three way as shown in the
figure and found out that using 81%, 9% and 10% of the
datasets fortraining, validation and testing respectively fits
best for most of the datasets.

7 Conclusion

This paper developed a new interval aggregation scheme,
having much better discriminative power than existing
aggregation function. Using this newly developed aggre-
gation operator as AGGREGATE function, we develop
a Graph Neural Network based architecture IV-GNN,
which relaxes the condition on the feature space of
being countable. Despite of being much more general in
nature, the proposed method far outperforms the state-
of-the-art approaches on several synthetic and real-life
datasets(comparable results for IMDB-BINARY and COL-
LAB). Incidentally, the aggregation function, proposed in
this work, is not continuous. Therefore, there may arise
some situations where a slight change in aggregating inter-
vals may bring significant change in the resultant interval,
which is not expected. In future, we would like to apply this
architecture to perform different graph-related tasks such
as node classification, link prediction etc. Also, there are
architectures having summarizing ability of a continuous
data such as LSTM. We would like to include the interval-
valued feature as a summarized embedding and investigate
quality of the performance on graph classification task.
Another exciting direction for future work is exploring dif-
ferent interval aggregation according to the demand of the
situation. As application of our proposed model IV-GNN,
an interesting area of research will be to perform prediction

task on network time series data, where the node features
are present in terms of time series data.

Acknowledgements We want to acknowledge support from J.C.Bose
Fellowship[SB/S1/JCB-033/2016 to S.B.] by the DST, Govt. of India.
Also, we would like to thank Dr. Monidipa Das and Dr. Monalisa Pal
for their valuable comments.

References

1. Ahn J, Peng M, Park C, Jeon Y (2012) A resampling approach
for interval-valued data regression. Statistical Analysis and Data
Mining: The ASA Data Science Journal 5(4):336–348

2. Billard L, Diday E (2000) Regression analysis for interval-
valued data. In: Data analysis, classification, and related methods,
pp 369–374. Springer

3. Billard L, Diday E (2006) Symbolic data analysis: Conceptual
statistics and data mining John Wiley

4. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan S, Smola
AJ, Kriegel HP (2005) Protein function prediction via graph
kernels. Bioinformatics 21(suppl 1):i47–i56

5. Bui KHN, Cho J, Yi H (2021) Spatial-temporal graph neural
network for traffic forecasting: an overview and open research
issues. Appl Intell, pp 1–12
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