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Abstract
Incomplete Multi-View Clustering (IMVC) attempts to give an optimal clustering solution for incomplete multi-view data
that suffer from missing instances in certain views. However, most existing IMVC methods still have various drawbacks
in practical applications, such as arbitrary incomplete scenarios cannot be handled; the computational cost is relatively
high; most valuable nonlinear relations among samples are often ignored; complementary information among views is not
sufficiently exploited. To address the above issues, in this paper, we present a novel and flexible unified graph learning
framework, called Multiple Kernel-based Anchor Graph coupled low-rank Tensor learning for Incomplete Multi-View
Clustering (MKAGT IMVC), whose goal is to adaptively learn the optimal unified similarity matrix from all incomplete
views. Specifically, according to the characteristics of incomplete multi-view data, MKAGT IMVC innovatively improves
an anchor selection strategy. Then, a novel cross-view anchor graph fusion mechanism is introduced to construct multiple
fused complete anchor graphs, which captures more the intra-view and inter-view nonlinear relations. Moreover, a graph
learning model combining low-rank tensor constraint and consensus graph constraint is developed, where all fused complete
anchor graphs are regarded as prior knowledge to initialize this model. Extensive experiments conducted on eight incomplete
multi-view datasets clearly show that our method delivers superior performance relative to some state-of-the-art methods in
terms of clustering ability and time-consuming.

Keywords Incomplete multi-view clustering · Anchor graph · Multiple kernel · Low-rank tensor constraint ·
Consensus graph constraint

1 Introduction

In many practical applications, since the information of
data is usually collected from various sensors or diverse
processing methods, this data characterized by multiple
perspectives is regarded as multi-view data in machine
learning communities [1]. For instance, a specific piece
of news can be reported simultaneously by multiple news
organizations [2]; an image can be described with multiple
visual features, such as GIST, PHOG, LBP, etc. [3].
Generally speaking, multi-view data is more comprehensive
than an individual view because multiple views contain
complementary and consistent information between views
[4]. Thus, this means that making efficient use of
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information between views can elevate the performance of
various machine learning.

Multi-View Clustering (MVC) which can more accu-
rately partition the sample data into corresponding groups
by efficiently utilizing the complementarity and consistency
information among multiple views, has become an impor-
tant research topic due to the wide application of multi-view
data. Most available literature reports may be roughly clas-
sified into three types based on the involved technologies,
including matrix factorization-based methods [5, 6], graph-
based methods [7–12], and deep learning-based methods
[13, 14]. It should be noted that the aforementioned MVC
methods usually need to be satisfied with a basic assumption
that all instances are fully observed in each view. In many
real-world applications, however, each view may lose some
instances due to various reasons, such as human error or
sensor failure. For example, as for a document, the texts and
images are usually regarded as two views, while some doc-
uments may be missing texts or images [15]; the magnetic
resonance images and blood test results can both be used
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to diagnose diseases, while some patients may have only
one of them [16]. Thus, these data are generally referred
to as incomplete multi-view data. The missing instances
not only lead to a significant decrease in the information
quality of each view but also make it more difficult to
mine the information of complementarity and consistency
between views. These factors make the conventional MVC
methods unavoidably significantly degrade or even fail for
mining the incomplete multi-view data, especially data with
a large sample incomplete rate [17]. Since incomplete multi-
view data is important and complex, Incomplete Multi-View
Clustering (IMVC) has received widespread attention in
recent years. To address above issues, a variety of IMVC
methods have been proposed under different theoretical
frameworks [18]. Roughly speaking, in terms of the tech-
niques involved, exiting IMVC methods can be categorized
into three categories: matrix factorization-based methods,
deep learning-based methods, and graph-based methods.

The matrix factorization-based methods [17, 19, 20]
aim to learn the optimal low-dimensional consistency
representation directly from multiple incomplete views
via the matrix factorization technique. For example, as
a pioneering work dealing with missing instances in
all views, Li et al. [17] proposed Partial multi-View
Clustering (PVC), which adopts non-negative matrix
factorization (NMF) and l1 norm regularization to learn
the potentially consistent representation from two views.
Unfortunately, PVC can only handle the incomplete multi-
view data of two views and ignores the difference in the
quality of the information of each view. By combining
weighted semi-NMF and l2,1 norm regularization, Hu and
Chen [19] further introduced Doubly Aligned Incomplete
Multi-view Clustering (DAIMC) to learn the optimal
unified latent feature matrix from all views. Nevertheless,
DAIMC fails to explore the underlying relations between
instances in each view. Wen et al. [20] provided a more
effective and flexible IMVC framework, called Generalized
Incomplete Multi-view Clustering with Flexible Locality
Structure Diffusion (GIMC FLSD), which integrates the
local structure preserving and the individual representation
learning to obtain the optimal consistent representation.
The original data generally presents the nonlinear structure,
while GIMC FLSD directly encodes these data in a linear
space, resulting in failure to capture more nonlinear
relations among samples.

The deep learning-based methods [21–26] build a deep
neural network to adaptively learn the optimal consistent
representation in nonlinear space. For example, inspired by
the idea of Generative Adversarial Networks (GAN), [21–
23] leverage the common representation generated by GAN
to infer the missing data and learn the optimal consistent
representation simultaneously. Lin et al. [24] adopted
contrastive learning and dual prediction mechanism to

mutually boost the consistency learning and data recovery.
However, the above deep methods require a large number
of aligned samples that appear in all views to guarantee
good performance. To further improve the effectiveness
and flexibility of deep method, [25] and [26] integrate the
view-specific encoders, graph embedding, fusion layer, and
view-specific decoders into a joint pre-training network to
deal with the incomplete multi-view data. Nevertheless, the
above two methods cannot directly execute the clustering
task in an end-to-end manner.

The graph-based methods [15, 16, 27–34] focus on
finding the optimal fusion graph from different graphs
calculated by all views, where these graphs cover the rela-
tionships among all samples. According to the different ini-
tialization construction strategies of the graph, we roughly
summarize them as the available instance-based method,
imputation-based method, and anchor-based method. From
the perspective of the available instance-based method, [15]
and [16] directly use the available instances of each view
to construct a low-dimensional similarity graph and exploit
the index matrix recording the index information for the
corresponding view to restore the low-dimensional similar-
ity graph to a complete similarity graph. Then the complete
similarity graph is integrated into the optimization frame-
work of consistent representation learning. However, this
kind of method generally has a high computational cost,
limiting their practical applications. As the representative
imputation-based methods, [27–31] impute each incomplete
graph and learn the optimal consensus clustering matrix
simultaneously. To further explore the hidden information
and interpretability of the missing views, Wen et al. [32]
proposed IMVTSC-MVI that recovers the missing instances
rather than the missing graph. However, the imputation-
based method may introduce noise, which cannot guarantee
the improvement of clustering performance. As for the
anchor-based method, recent references [33] and [34] pro-
posed to select samples appearing in all views as anchor
points which are used to build the anchor graph of the
corresponding view. Although the above two methods can
reduce the computational complexity, especially on large-
scale dataset, they require a certain amount of samples that
appear in all views, which makes them inflexible.

To sum up, although most of the aforementioned
methods have obtained state-of-the-art performances on
incomplete multi-view clustering tasks, they still have
following several limitations in practical applications. First,
many methods are inflexible, only suitable for special
incomplete scenarios, and usually have relatively high
computational cost. Second, the underlying and significant
nonlinear relations among samples are ignored. Third, the
complementary information among all views has not been
sufficiently exploited. To address these issues discussed
above, in this article, we propose a novel and flexible
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unified graph learning framework, called Multiple Kernel-
based Anchor Graph coupled low-rank Tensor learning
for Incomplete Multi-View Clustering (MKAGT IMVC).
Specifically, as shown in Fig. 1, MKAGT IMVC mainly
includes the following three key steps. Firstly, we adopt
the improved DAS to efficiently generate a batch of
representative anchor points from incomplete multi-view
data. The selected anchor points are exploited to build a
complete anchor graph for each view and directly coalesces
all complete anchor graphs to form the fused complete
anchor graph, which can greatly increase the flexibility to
deal with any incomplete situations and effectively reduce
computational cost. Secondly, under the cross-view anchor
graph fusion mechanism, given multiple pre-defined kernel
functions, the proposed method can obtain a corresponding
number of fused complete anchor graphs which record a
large number of valuable nonlinear relationships among
samples. Thirdly, we develop a graph learning model based
on subspace representation, in which all the previous fused
complete anchor graphs are regarded as prior knowledge to
initialize this model. To guarantee that the complementary
and consistent information of multiple views is fully
explored, low-rank tensor constraint and consensus graph
constraint are jointly imposed on this graph learning model.
Therefore, MKAGT IMVC has the potential to adaptively
learn the optimal unified similarity matrix by solving
the above-mentioned graph learning model through the
Alternating Direction Method of Multiplier (ADMM).

The main contributions and novelty of this article are
listed as follows:

1. We innovatively exploit a simple and efficient anchor
selection approach to generate a batch of representative
anchors from incomplete multi-view data, where these
anchors are used to construct view-wise complete
anchor graphs.

2. Instead of combining view-wise similarity graphs via
imputing missing samples, we provide a novel cross-
view anchor graph fusion paradigm to construct the
fused complete anchor graph as prior knowledge for
incomplete multi-view data, where the anchor graph
fusion mechanism not only well captures more non-
linear relations between samples, but also adequately
excavates the intra-view and inter-view information.

3. We present a novel and effective unified graph learning
framework (MKAGT IMVC) that incorporates some
prior knowledge into the subspace representation
based graph learning model for incomplete multi-view
clustering, where the prior knowledge can be used as
the initial input for the model. Moreover, this model
integrates low-rank tensor constraint and consensus
graph constraint to ensure the optimal unified similarity
matrix.

4. We conduct extensive experiments that clearly show
our algorithm delivers superior performance relative to
some state-of-the-art methods in terms of clustering
ability and time-consuming.

2 Notations and related works

In this section, we first introduce the notations used
throughout this paper. Then, we briefly analyze several
closely related works of the proposed method.

2.1 Notations

In this paper, we use italic lowercase letters, bold italic
lowercase letters, bold italic capital letters, and bold
calligraphy letters to denote scalars, vectors, matrices, and
tensors, respectively (i.e., a, a, A, A). We denote I ∈
R

n×n as the identity matrix with an compatible size. We
denote 1 as the all-one vector with an appropriate length.
For convenience, we give some basic notations and their
descriptions in Table 1.

2.2 Related works

2.2.1 Anchor-based Partial Multi-view Clustering (APMC)

APMC [33] utilizes anchor points to construct intra-view
and inter-view similarity to address the IMVC problem.
Specifically, APMC mainly consists of two steps, i.e.,
constructing the fused similarity graph by anchor points
and obtaining the cluster indicators via spectral clustering.
APMC first selects the common instances showing in all
views to build an instance-to-anchor graph for each view
and then integrates all instance-to-anchor graphs to create
the unified similarity matrix S. Then, APMC conducts

Table 1 Basic notations and their descriptions

Notations Descriptions

A, a, a matrix, vector, scalar

A ∈ R
n1×n2×n3 three-order tensor

A(k) = A(:, :, k) the k-th frontal slice of tensor A
Af = fft(A , [ ], 3) fast Fourier transform along the third dimension

A ∗ B the t-product between tensor A and tensor B
‖A‖� the nuclear norm of tensor A
‖A‖F , ‖A‖1 Frobenius norm and l1−norm of the matrix A

‖A‖∞, ‖A‖∗ infinity norm and nuclear norm of the matrix A

AT , AT , aT the transpose of tensor A, matrix A, and vector a

T r(A) the track of the matrix A

rank(A) the rank of the matrix A
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spectral clustering on the unified similarity matrix S. The
model of spectral clustering is written as:

max
F T F=I

T r(F T SF ), (1)

whereF ∈ R
n×c and c is the cluster indicator matrix and the

number of clusters, respectively. Since the unified similarity
matrix S has the property of the anchor graph, the cluster
indicator matrix F can be derived by performing Singular
Value Decomposition [34]. Finally, APMC executes k-
means on F to get the clustering results. More details can
be found in [33].

Although APMC can reduce the computational complex-
ity, especially on the large-scale dataset, it requires a certain
amount of samples that appear in all views, which makes
them inflexible. In addition, performing spectral clustering
directly on the unified similarity matrix S cannot guarantee
adaptively obtaining optimal clustering results.

2.2.2 Low-rank representation basedmulti-view subspace
clustering

For this paper, in fields of low-rank representation (LRR)
based multi-view subspace clustering, we mainly refer to
the graph learning based methods that learn a unified graph
from multiple views by imposing a variety of different
constraints, e.g., low-rank constraint, sparse constraint, and
consensus constraint, etc. Consequently, given a multi-view
dataset {X(v) ∈ R

dv×n}Vv=1, the general framework of LRR
based multi-view subspace clustering can be formulated as
follows [35, 36]:

min
S(v),E(v),S∗

⎧
⎪⎪⎨

⎪⎪⎩

V∑

v=1
‖S(v)‖∗ + α

V∑

v=1
�(E(v))

+β
V∑

v=1
Cons(S(v), S∗)

⎫
⎪⎪⎬

⎪⎪⎭

s.t . X(v) = X(v)S(v) + E(v),

S(v) � 0, diag(S(v)) = 0, (S(v))T 1 = 1,

(2)

where α > 0 and β > 0 are the trade-off parameters
designed to balance the value of the corresponding term,
E(v) ∈ R

dv×n denotes the reconstruction error matrix in
the v-th view, S(v) ∈ R

n×n and S∗ ∈ R
n×n denotes

the subspace representation matrix in the v-th view and
the consistent representation among multiple subspace
representation matrices, respectively. When S(v) is imposed
the following constraints: S(v) � 0, diag(S(v)) =
0, (S(v))T 1 = 1, S(v) can be regarded as similarity matrix
reflecting the distance among instances [36]. ‖S(v)‖∗ is
the regularization term used low-rank representation which
can best capture the intrinsic geometric structures in v-
th view. �(E(v)) simulates different noises with various
norm constraints, e.g., ‖E(v)‖1, ‖E(v)‖2,1, and ‖E(v)‖2F .
Cons(S(v), S∗) is a function which learn the consistent

representation S∗ from multiple view-specific subspace
representations S(v).

However, there are several drawbacks in the model of (2)
to some extent. Firstly, this model requires that all views are
complete. In other words, the entries of all input samples
should be fully observed from multiple views. Secondly, the
real-world datasets usually show the nonlinear structure. Yet
the subspace representation matrices are directly encoded
on the linear space in this model, which makes the model
unable to handle nonlinear data well. Thirdly, this model
cannot effectively learn the complementary information
from all the views to improve the clustering performance.

3 Preliminaries

3.1 Problem definition

As incomplete multi-view data, each sample not only is
characterized by multiple views, but also usually suffers
from missing some views. To facilitate the discussion, We
define “instance” as the feature representation of samples
in corresponding views. Assume that we are given a dataset
X = {X(1), X(2), · · · , X(V )} with V views, where the v−th
view is denoted as X(v) = [x(v)

1 , x
(v)
2 , · · · , x

(v)
n ] ∈ R

dv×n

composed of available and missing instances. x
(v)
i ∈ R

dv

is denoted as the i-th instance in the v-th view. Similarly,
Y (v) ∈ R

dv×nv and y
(v)
i ∈ R

dv are denoted as the available
instances matrix and the i-th available instance in the v-th
view, respectively. n and nv separately stands for the number
of samples and available instances in the v-th view. dv is the
dimensionality of the feature representation in the v-th view.
c represents the number of clusters.

3.2 Tensor nuclear norm

For our method, the tensor nuclear norm is the key compo-
nent to improve the clustering performance. Therefore, it is
necessary to introduce the related definitions to help under-
stand the concept of the tensor nuclear norm. We denote
I ∈ R

n1×n1×n3 as the identity tensor whose first frontal
slice is an identity matrix of size n1 × n1 and the remaining
frontal slices are zero. The transpose of A ∈ R

n1×n2×n3 is
AT ∈ R

n2×n1×n3 . A tensor A ∈ R
n1×n1×n3 is orthogonal

which satisfies AT ∗ A = A ∗ AT = I . More details of
the tensor nuclear norm can be found in [37, 38].

3.2.1 Tensor Singular Value Decomposition (t-SVD)

Given a tensor A ∈ R
n1×n2×n3 . The tensor Singular Value

Decomposition (t-SVD) ofA is defined as:

A = U ∗ S ∗ VT , (3)
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where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogonal
tensor, S ∈ R

n1×n2×n3 is an f-diagonal tensor whose every
frontal slice is a diagonal matrix.

3.2.2 t-SVD based Tensor Nuclear Norm (t-SVD-TNN)

For the tensor A ∈ R
n1×n2×n3 . The t-SVD based Tensor

Nuclear Norm (t-SVD-TNN) of A, denoted as ‖A‖�, is
defined as:

‖A‖� =
n3∑

k=1

‖A(k)
f ‖∗ =

n3∑

k=1

min(n1,n2)∑

i=1

| S(k)
f (i, i) |, (4)

where
∑n3

k=1 ‖A(k)
f ‖∗ denotes the sum of singular values

of entire the frontal slices of Af , S(k)
f can be obtained

by performing Singular Value Decomposition on A(k)
f , i.e.,

A(k)
f = U (k)

f ∗S(k)
f ∗V(k)T

f , and S(k)
f (i, i) is the i-th singular

value ofA(k)
f .

4 The proposedmethod

In this section, we elaborate a novel approach, termed
Multiple Kernel-based Anchor Graph coupled low-rank
Tensor learning for Incomplete Multi-View Clustering
(MKAGT IMVC), which effectively learns the consis-
tent representation from missing views. Specifically,
MKAGT IMVC mainly consists of three key steps, i.e.,
generating anchor points for each missing view, construct-
ing multiple fused complete anchor graphs, and developing
the representation-based graph learning model. The gen-
eral framework of our MKAGT IMVC method is shown
in Fig. 1.

4.1 Anchor selection of incompletemulti-view data

Recently, some research findings [12, 33, 34, 39] suggest
that the performance of multi-view clustering can be
effectively improved by adopting the anchor-based strategy
to construct the anchor graphs, where these anchor graphs
are regarded as the prior knowledge that can be used as
the initial input for multi-view learning. In general, for
multi-view data, there are two frequently used methods
for anchor selection, i.e., random policy and k-means
policy. The random policy adopts random sampling to
select a fraction of samples from multi-view data as anchor
points. Although the random policy is simple and efficient,
it cannot guarantee that the selected anchor points are
significantly representative, which leads to great instability
in the final results. By contrast, the k-means policy makes
the clustering centroids as anchor points, which are more
representative than random selection. Specifically, it first

concatenates the features of all views as a joint feature,
and then k-means is performed on the joint feature to
get the joint centroids of the clustering. Finally, The
multiple groups of centroids, which are obtained through
splitting the joint centroids by views, are regarded as the
anchor points of each view [39]. However, k-means is
sensitive to the initialization of origin centroids, resulting
in instability like the random sampling. To eliminate the
drawback, the k-means requires numerous independent
iterative calculations. Intuitively, samples belonging to the
same cluster usually have similar feature representations,
while the samples not in the same cluster have significant
differences in feature representations. Based on this
motivation, Li et al. [12] proposed an anchor selection
strategy, called directly alternate sampling method (DAS)
that makes a compromise between the efficiency of the
random policy and the certainty of the k-means policy.
The original intention of DAS is to conduct the anchor
selection strategy after concatenating the features of all
views in the complete multi-view data. However, when
a large number of instances are missing in some views,
adopting the manner of concatenating first and then anchor
points selection causes DAS to inevitably degenerate or
even fail. For incomplete multi-view data, the work in [33,
34] proposed to regard the samples appearing in all views as
anchor points. Unfortunately, samples appearing in all views
are often rare or non-existent. Considering an assumption of
multi-view clustering that the cluster structure of all views
should be analogous [36]. Inspired by this motivation, we
extend the DAS method and apply it to the incomplete
multi-view data. To be specific, for all views, we first obtain
the available instance matrix Y (v) ∈ R

dv×nv by removing
the missing instances in X(v) ∈ R

dv×n. Then, we can
calculate the v-th intuitive score s(v) ∈ R

nv according to the
following formula:

s
(v)
i =

dv∑

j=1

T ra(Y
(v)
ij ), (5)

where T ra(·) denotes a non-negative operation for an
instance, which each element in the feature representation
subtract the smallest element. The motivation of (5) is
that the feature representation of instances belonging to
the same cluster usually has relatively small differences
than the instances not in the same cluster. Therefore, we
can get this information naturally, that is, instances of the
same cluster have similar scores calculated by summing the
feature values. To this end, we choose anchor points based
on the scores of each instance for all views. Definitely, we
pick the instance with the largest score as the initial anchor
point in the v-th view according to the following formula:

argmax
i

s
(v)
i , (6)
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Fig. 1 General framework of our MKAGT IMVC method. MKAGT IMVC focuses on adaptively learning the optimal unified similarity matrix
from all incomplete views

In order to ensure the anchor points cover all the clusters as
much as possible, it is necessary to update the scores in an
alternate manner, so that the anchor points can be obtained
alternately from each cluster when selecting the anchor
points. Therefore, we first standardize the score of every
instance by dividing the largest score. The standardized
expression is as follows:

s
(v)
i ← s

(v)
i

max(s(v))
, (i = 1, 2, · · · , nv), (7)

Consequently, the score of the currently selected instance is
scaled into 1.

We pick the anchor points under the following principle,
that is, select the instance with the largest score as the
anchor point. Therefore, the following two key guidelines
need to be satisfied to achieve the optimal anchor point
selection. Firstly, we need to set the score of the selected
instances to zero to avoid repeated selection. Second, By
diminishing the extremely low or high scores and fairly
exaggerating the medial scores, to ensure that the next
anchor point and the currently selected anchor point are
from as different clusters as possible [12]. To this end, the
expression that updates the score can be defined as the
following formula:

s
(v)
i ← s

(v)
i (1 − s

(v)
i ), (8)
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This linear computation is performed lv times to get lv
anchor points for corresponding view, where lv is usually
greater than the desired cluster number c. Finally, we can
obtain the anchor point sets {U (v)}Vv=1 from all views, where

U (v) = [u(v)
1 , u

(v)
2 , · · · , u

(v)
lv

] ∈ R
dv×lv .

4.2 Construction of multiple kernel-based fused
complete anchor graphs

Inspired of the kernel trick of multi-view clustering methods
[9, 40, 41], the nonlinear samples in the original sample
space can be transformed into a high-order feature space
with a linear subspace structure by adopting the kernel
methods, where the linear subspace structure plays critical
roles for addressing the clustering problem. Specifically,
for the v-th view, given the available instance matrix
Y (v) ∈ R

dv×nv and the anchor matrix U (v) ∈ R
dv×lv .

Furthermore, the kernel pool composed of m kernel
functions {K(p)(·)}mp=1 is given advance. By considering all
views and these predefined kernel functions, the similarity
between the i-th available instance y

(v)
i and the j -th anchor

point u(v)
j can be expressed as follows:

K(p)(y
(v)
i , u

(v)
j ) = (φ(p)(y

(v)
i ))T φ(p)(u

(v)
j ), (9)

where K(p)(·) is the p-th predefined kernel function and
φ(p)(·) is the corresponding mapping function without
defined explicitly, which maps the instances from original
space to the high-order feature space.

Moreover, under differently predefined kernel functions,
by calculating the similarity between the available instances
and anchor points in each view, we can obtain the element
of truncated anchor graph which can be defined as the
following formula [33]:

Z̄
(pv)

ij = K(p)(y
(v)
i , u

(v)
j )

∑
k∈�v

K(p)(y
(v)
i , u

(v)
k )

, ∀j ∈ �v, (10)

where �v ⊂ {1, 2, · · · , lv} denotes an index set of k nearest

neighbors of y
(v)
i in U (v) for the v-th view, Z̄

(pv) ∈ R
nv×lv

denotes the truncated anchor graph calculated by the p-th
kernel function in the v-th view.

Once we get the truncated anchor graph Z̄
(pv)

, according

to [42], the anchor graph W̄
(pv)

between all available
instances can be approximated as follows:

W̄
(pv) = Z̄

(pv)
(�̄

(pv)
)−1(Z̄

(pv)
)T , (11)

where �̄
(pv) = diag((Z̄

(pv)
)T 1) ∈ R

lv×lv is the diagonal

matrix, W̄
(pv) ∈ R

nv×nv is an anchor graph calculated with
the available instances of the v-th view by the p-th kernel
function.

The original incomplete multi-view dataset {X(v) ∈
R

dv×n}Vv=1 contains available instances and missing

instances in each view. However, the anchor graph W̄
(pv)

in (11) just reflects the relationships between available
instances in each view. Moreover, the number of available
instances in each view is inconsistent. As a result, it is
impossible to directly fuse the multiple views, especially
when the number of missing instances is large. To address
these issues, some methods adopt imputation strategy to
recover the missing graph or instances in each view [27–
32], which may bring noise and make it impossible to obtain
optimal results. Different from these methods, we exploit

the index matrix H (v) ∈ R
n×nv to adjust W̄

(pv)
to a com-

plete anchor graph W (pv) ∈ R
n×n with the same number

and order as the original dataset. Thus W (pv) can be defined
as follows:

W (pv) = H (v)W̄
(pv)

(H (v))T , (12)

where W (pv) is a complete anchor graph which connects
all instances including the available instances and missing
instances in the v-th view. H (v) ∈ R

n×nv is an index matrix
which summarizes the available and missing information
in the v-th view. Specifically, the elements of index matrix
H (v) can be expressed as the following formula:

H
(v)
ij =

{
1, if x

(v)
i is the available instance y

(v)
j

0, otherwise.
(13)

For an incomplete multi-view dataset, there is a significant
imbalance in the number of available instances per sample,
especially when the number of views is large. For example,
some samples appear in all views, and some only appear in
one view. Therefore, by directly fusing all views to construct
the fused complete anchor graph

∑V
v=1 W (pv), there is a

problem that the representation scales of all samples are
different in the affine space. To this end, after obtaining
the fused complete anchor graph, we divide the feature
representation of each sample by the number of available
instances of the corresponding sample to ensure that each
sample has the same representation scale in the affine space.
Then, the fused complete anchor graph W (p) ∈ R

n×n can
be defined as the following formula:

W (p) = A−1(

V∑

v=1

W (pv)), (14)

where A = diag(h) ∈ R
n×n is the diagonal matrix,

h = [h1, h2, · · · , hn] ∈ R
n records the number of available

instances for all samples. Specifically, h can be expressed
as follows:

h =
V∑

v=1

nv∑

j=1

H
(v)
·j , (15)

where H
(v)
·j is the j -th column vector of index matrix H (v)

in the v-th view.
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4.3 Construction of unified graph learningmodel

4.3.1 Low-Rank tensor basedmulti-view representation
learning

For incomplete multi-view dataset, m fused complete
anchor graphs {W (p)}mp=1 can be constructed through m

different kernel functions. Then, we regard these fused
complete anchor graphs as prior knowledge that can
be incorporated into the low-rank representation based
subspace clustering model in (2). However, this model
cannot effectively capture and propagate the complementary
information among all views to improve the clustering
performance. Borrowing the idea of the t-SVD based tensor
nuclear norm [43], we utilize low-rank tensor constraint
to extend the matrix nuclear norm. Specifically, we first
construct a similarity graph tensor S ∈ R

n×n×m by stacking
m candidate similarity graphs {S(p)}mp=1, where the tensor
can be learned by imposing a variety of different constraints,
e.g., low-rank tensor constraint, sparse constraint, subspace
representation constraint, etc. Then, by performing the
rotation operation of the similarity graph tensor, we can
better explore the complementary information between
these candidate similarity graphs [43]. Therefore, this
learning model can be written as:

min{
S(p),E(p)

}m

p=1

λ1
m∑

p=1
‖E(p)‖1 + ‖S‖�

s.t . W (p) = W (p)S(p) + E(p),

S = ϕ(S(1), S(2), · · · , S(m)),

S(p) � 0, diag(S(p))= 0, S(p)1 = 1,

(16)

where λ1 > 0 is the trade-off parameter; W (p) ∈ R
n×n

is a fused complete anchor graph calculated by the p-
th kernel function, in which this matrix indicates feature
representation of all samples in the affine space; S(p) ∈
R

n×n denotes the corresponding candidate similarity graph;
E(p) ∈ R

n×n represents the corresponding reconstruction
error matrix; ϕ(·) is an operator to stack all candidate
similarity graphs {S(p)}mp=1 into a third-order tensor S ∈
R

n×n×m; S(p) � 0, diag(S(p)) = 0, (S(p))1 = 1 ensures
that S(p) has the graph properties reflecting the similarity
among all samples.

4.3.2 Consensus representation learning

Generally, the multi-view learning model can achieve great
success compared to the single view, mainly from the
following two principles [18]: (1) the complementary prin-
ciple, which means that multi-view data contains comple-
mentary information, in other words, different views can
describe the data in distinct perspectives; (2) the consensus
principle, which means that all views in the multi-view data

have the analogous cluster structure. However, the model
in (16) ignores the consensus principle, which may lead to
the trivial solution. Inspired by this motivation, we develop
the following consensus representation based multi-view
learning model for improving the clustering performance:

min{
S(p)

}m

p=1

m∑

p=1

‖S(p) − 1

m

m∑

r=1

S(r)‖2F (17)

where 1
m

∑m
r=1 S(r) is regarded as the consensus represen-

tation by averaging all the candidate similarity graphs.

4.3.3 Objective function of MKAGT IMVC

To sum up, for incomplete multi-view data, we jointly
conduct the low-rank tensor representation based multi-
view subspace learning model in (16) and the consensus
representation based multi-view learning model in (17)
within one unified model, which ensured that the final
model not only satisfies the two principles of multi-
view learning but also makes the all candidate similarity
graphs {S(p)}mp=1 much more close to the optimal subspace
structure. Hence, the objective function of MKAGT IMVC
is formulated as follows:

min{
S(p),E(p)

}m

p=1

⎛

⎜
⎜
⎝

λ1
m∑

p=1
‖E(p)‖1 + ‖S‖�

+λ2
m∑

p=1
‖S(p) − 1

m

m∑

r=1
S(r)‖2F

⎞

⎟
⎟
⎠

s.t . W (p) = W (p)S(p) + E(p),

S(p) � 0, diag(S(p)) = 0, S(p)1 = 1,
S = ϕ(S(1), S(2), · · · , S(m)),

(18)

where λ1 and λ2 are the trade-off parameters involved
to balance the corresponding term. In this final objective
function, the first term is the sparsity constraint of
the reconstruction error matrix conducted l1-norm; the
second term is the low-rank tensor constraint of the
similarity graph tensor, which not only effectively captures
the complementary information but also guarantees that
each candidate similarity graph has the optimal low-rank
subspace structure; the third term is the consensus constraint
on the candidate similarity graphs, which minimizes the
disagreement of the cluster structure of all candidate
similarity graphs.

4.4 Optimization of proposedmethod

It is intractable to directly achieve the analytical solu-
tion of the final model in (18) since it is a jointly non-
convex problem [44] to multiple unknown variables. There-
fore, we adopt alternating direction method of multipliers
(ADMM) to solve this optimization problem. Following the
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principle of ADMM, we introduce several auxiliary vari-
ables

{
G(p)

}m
p=1 and a constraint G = S to make the

objective function separable. Then, we can reformulate (18)
as follows:

min
�

⎛

⎜
⎜
⎝

λ1
m∑

p=1
‖E(p)‖1 + ‖G‖�

+λ2
m∑

p=1
‖S(p) − 1

m

m∑

r=1
S(r)‖2F

⎞

⎟
⎟
⎠

s.t . W (p) = W (p)S(p) + E(p),

S(p) � 0, diag(S(p)) = 0, S(p)1 = 1,
S = ϕ(S(1), S(2), · · · , S(m)),

G = ϕ(G(1), G(2), · · · , G(m)), S(p) = G(p),

(19)

where � = {
S(p), E(p), G(p)

}m
p=1 represents a collection

of all variables to be optimized.
Moreover, the augmented Lagrangian function of (19)

can be defined as follows:

L(�) = min
�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1
m∑

p=1
‖E(p)‖1 + ‖G‖�

+λ2
m∑

p=1
‖S(p) − 1

m

m∑

r=1
S(r)‖2F

+ μ
2

m∑

p=1
‖W (p) − W (p)S(p) − E(p) + B(p)

μ
‖2F

+ μ
2

m∑

p=1
‖S(p) − G(p) + C(p)

μ
‖2F

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (20)

where
{
B(p) ∈ R

n×n
}m
p=1 and

{
C(p) ∈ R

n×n
}m
p=1 represent

the Lagrange multipliers, μ > 0 is actually the penalty
parameter. Then, under the ADMM framework, we can
calculate each variable by iteratively solving the following
corresponding sub-problems.

Step 1. Update
{
S(p)

}m
p=1: When the other variables

are fixed and the terms unrelated to S(p) are
removed, the optimization for each candidate
similarity graph S(p) which is independent can be
reformulated to the following sub-problem:

min
S(p)

⎛

⎜
⎜
⎜
⎝

λ2‖S(p) − 1
m

m∑

r=1
S(r)‖2F

+ μ
2 ‖W (p) − W (p)S(p) − E(p) + B(p)

μ
‖2F

+ μ
2 ‖S(p) − G(p) + C(p)

μ
‖2F

⎞

⎟
⎟
⎟
⎠

s.t . S(p) � 0, diag(S(p)) = 0, S(p)1 = 1

(21)

By taking the partial derivative of (21) with
respect to S(p) and setting it to zero, we can get
the closed-form solution as follows:

Ŝ
(p) =

(
2λ2(m−1)2

m2 I + μI + μ(W (p))T W (p)
)−1

(

2λ2(m−1)
m2

m∑

r=1, r 	=p

S(r) + μG(p) − C(p) + Q(p)

)

,
(22)

where Q(p) = (W (p))T (μ(W (p) −E(p))+B(p)).

Then, we can project Ŝ
(p)

into a constrained

space. The optimal solution of S(p) can be
achieved through the following problem:

S(p) = arg min
S(p)�0, diag(S(p))=0, S(p)1=1

‖S(p) − Ŝ
(p)‖2F .

(23)

Finally, the problem (23) can be solved by an
efficiently iterative algorithm presented in [32,
45]:

S
(p)

(i,j) =
⎧
⎨

⎩

0, i = j
(
Ŝ

(p)

(i,j) + η
(p)
i

)

+ , i 	= j
(24)

where (·)+ is a function to preserve the non-
negative elements and transform the negative
elements into zero. η(p)

i is calculated as:

η
(p)
i = 1

n − 1
− 1

n − 1

n∑

j=1, j 	=i

Ŝ
(p)

(i,j). (25)

Step 2. Update
{
G(p)

}m
p=1: When the other variables

are fixed and the terms unrelated to G(p)

are removed, the optimization for the auxiliary
variables

{
G(p)

}m
p=1 can be reformulated to the

following sub-problem:
{
G(p)

}m

p=1
= arg min

{
G(p)

}m

p=1

‖G‖� + μ

2

m∑

p=1

‖S(p) − G(p) + C(p)

μ
‖2F .

(26)

It is obvious to find that
{
G(p)

}m
p=1,

{
S(p)

}m
p=1

and
{
C(p)

}m
p=1 can be transformed into the tensor

G ∈ R
n×n×m, S ∈ R

n×n×m and C ∈ R
n×n×m,

respectively. Therefore, problem (26) is equivalent
to the following problem:

G = arg min
G

‖G‖� + μ

2
‖F − G‖2F , (27)

where F = S + C/μ. According to [43],
we first rotate G from size n × n × m to
n × m × n. Through the rotation operation, the
proposed model will benefit in three aspects. First
of all, in each frontal slice, all samples can be
represented by view-specific self-representation
coefficients in the Fourier domain. Secondly,
since each frontal slice considers the information
among all samples and all views, the proposed
model can be more effective to capture the
complementary information. The third advantage
is that the tensor rotation can significantly reduce
the computational complexity while performing
t-SVD-TNN in the Fourier domain [43].
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The minimization problem (27) has the closed-
form solution achieved through the tensor tubal-
shrinkage operator [32, 46]:

G = 
μ̃(F) = U ∗ 
μ̃(Q) ∗ VT , (28)

where μ̃ = n/μ, F = U ∗ Q ∗ VT is achieved
by t-SVD operation [47]. 
μ̃(Q) = Q∗J , where
J ∈ R

n×m×n is an f-diagonal tensor whose each
diagonal element in the Fourier domain is defined

as Jf (i, i, k) = max
(
1 − μ̃

/
Q(k)

f (i, i), 0
)
.

Step 3. Update
{
E(p)

}m
p=1: When the other variables are

fixed and the terms unrelated to E(p) are removed,
the optimization for each reconstruction error
matrix E(p) can be reformulated to the following
sub-problem:

min
E(p)

λ1‖E(p)‖1+ μ

2
‖W (p)−W (p)S(p)−E(p)+ B(p)

μ
‖2F .
(29)

Problem (29) has a closed-from solution as
follows:

E(p) = �λ1/μ(W (p) − W (p)S(p) + B(p)

μ
), (30)

where � is the shrinkage operator [48].
Step 4. Update ADMM variables: The Lagrange multi-

pliers
{
B(p)

}m
p=1,

{
C(p)

}m
p=1 and penalty parame-

ter μ can be updated as follows:

B(p) = B(p) + μ(W (p) − W (p)S(p) − E(p))

C(p) = C(p) + μ(S(p) − G(p))

μ = min(ρμ, μmax),

(31)

where ρ and μmax are the constants involved
ADMM.

In each iteration, the error of algorithm can be obtained
as follows:

error = max

( ∥
∥ψ
(
ϕ(M(p))

)∥
∥∞ , p = 1, · · · , m∥

∥ψ
(
ϕ(N (p))

)∥
∥∞ , p = 1, · · · , m

)

,

(32)

where M(p) = W (p) − W (p)S(p) − E(p) and N (p) =
S(p)−G(p), ϕ(·) stacks all matrices into a third-order tensor,
ψ(·) converts the tensor to a vector. Then, the convergence
condition of algorithm can be formulated as follows:

abs(error(t−1) − error(t)) < ε, (t > 1) (33)

where t denotes the t-th iteration, ε is a pre-defined
threshold value.

The optimization procedure can be terminated when
it is satisfied with the convergence condition (33). After

obtaining the optimal similarity graphs {S(p)}mp=1, we
use the following formula to achieve the optimal unified
similarity matrix S∗.

S∗ = 1

m

m∑

p=1

(S(p) + (S(p))T )/2, (34)

Then, MKAGT IMVC performs the spectral clustering on
the optimal unified similarity matrix S∗ to get the clustering
results. Finally, the optimization steps of MKAGT IMVC is
described in Algorithm 1.

4.5 Theoretical convergence analysis

As in the optimization process described in Section 4.4,
we can observe that the objective function as formulated
by (20) can be separated into three convex sub-problems.
Obviously, each sub-problem can find the optimal solution
with respect to the corresponding variable. This means that
the loss of objective function as formulated by (20) is
also monotonically decreasing in the process of alternately
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updating all variables. That is, the convergence of the
problem (20) can be guaranteed after some iteration steps.

4.6 Computational complexity analysis

As shown in Algorithm 1, the computational complexity
of the proposed MKAGT IMVC mainly consists of three
stages, i.e., generating anchor points set, constructing
multiple fused complete anchor graphs, solving the jointly
objective function iteratively.

In the first stage, we adopt DAS to generate lv anchor
points in the available instances of each incomplete view,
which needs to perform lv iterations, where each iteration is
required to execute a linear operation in an nv dimensional
score vector. So, the computational complexity of this stage
is O(lvnv) for each view.

In the second stage, we need to construct the truncated
anchor graph with (10) and the complete anchor graph
with (12), where the main computational complexity is
O(nvlvdv) and O(nn2v + n2nv) respectively. Considering
that nv 
 n, lv 
 n and dv 
 n for large-scale
incomplete multi-view data, the computational complexity
of the fused complete anchor graph with (14) in this
stage can be approximated as O(

∑V
v=1(mn2nv)) under m

predefined kernel functions.
In the third stage, the joint optimization comprises

four key steps, such as solving the following variables{
S(p)

}m
p=1,

{
G(p)

}m
p=1,

{
E(p)

}m
p=1,

{
B(p)

}m
p=1,

{
C(p)

}m
p=1,

and μ, respectively. In step 1, for updating
{
S(p)

}m
p=1,

the major computational complexity is the matrix inverse
operation in (22), which requires O(mn3). In step 2, for
updating

{
G(p)

}m
p=1, we need to perform the following

core operations, such as FFT, t-SVD, and inverse FFT. For
a tensor G ∈ R

n×m×n, the corresponding computational
complexity of these operations is about O(mn2log(n)),
O(m2n2), and O(mn2log(n)) [40]. Therefore, the total
computational complexity of this step is O(mn2log(n) +
m2n2). In step 3, for updating

{
E(p)

}m
p=1, the main

computational complexity is the matrix multiplication
operation in (30), whose computational complexity is
O(mn3). In step 4, for update ADMM variables, i.e.,{
B(p)

}m
p=1,

{
C(p)

}m
p=1, and μ, they also mainly contain the

matrix addition and multiplication operations in (31), and
the computational complexity is O(mn3).

According to the above analysis, the total
computational complexity of the three stages is
O
(∑V

v=1(lvnv + mn2nv) + t (3mn3 + mn2log(n) + m2n2)
)
, where

t denotes the number of iterations of the optimization
process in the third stage. After the solver converges, we
conduct spectral clustering on the optimal unified similar-
ity matrix S∗, whose computational complexity is usually
O(n3). Moreover, considering that nv 
 n, lv 
 n, and

V, m, t are usually small in reality. Therefore, the main
computational complexity of Algorithm 1 is actuallyO(n3).

5 Experiments and analyses

In this section, we aim to comprehensively evaluate
the effectiveness and the superiority of our method
(MKAGT IMVC) through conducting extensive experi-
ments on various benchmark multi-view datasets. Specif-
ically, we compare with some state-of-the-art incomplete
multi-view clustering methods in terms of clustering per-
formance and computational efficiency. In addition, we
experimentally explore the anchor selection strategy, kernel
selection strategy, parameter sensitivity, and convergence
property to verify the stability of MKAGT IMVC. All the
experiments are implemented in the MATLAB R2016a and
run on a Windows 10 PC machine with Intel(R) Xeon(R)
W-2123 CPU @ 3.60-GHz and 32-GB RAM.

5.1 Experimental settings

5.1.1 Description of datasets and incomplete multi-view
data construction

We adopt eight widely used real-world multi-view datasets
to validate the superiority of the proposed MKAGT IMVC.
Table 2 summarizes the important statistical information
of these datasets, where the first three are naturally
incomplete and the last five are complete. We briefly give
the descriptions of these datasets as follows.

1. 3 Sources Dataset1 (3Sources): 3Sources is a naturally
incomplete multi-view text dataset. It consists of
416 distinct news stories annotated with six topical
areas, which were reported from three well-known
online news organizations, i.e., BBC, Guardian, and
Reuters. Of these stories, 53 are reported in one
news organizations, 194 are reported in two news
organizatios, and 169 appear in all three news
organizations. The sample incomplete rate of this
dataset is 59.38%.

2. BBCSport Dataset2 (BBCSport) : BBCSport is a
naturally incomplete synthetic multi-view text dataset
[2]. It consists of 737 sport news articles from the
BBC Sport website, where each article was split into
two related segments of text and categorized into five
topical areas. Of these articles, 193 are reported in one
segment and 544 are reported in two segments. The
sample incomplete rate of this dataset is 26.19%.

1http://erdos.ucd.ie/datasets/3sources.html
2http://mlg.ucd.ie/datasets/segment.html
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3. BBC Dataset3 (BBC) : BBC is a naturally incomplete
synthetic multi-view text dataset [2]. It consists of
2225 stories from the BBC news website, where each
story was split into four related segments of text and
categorized into five topical areas. Of these stories, 213
are reported in one segment, 744 are reported in two
segments, 583 are reported in three segments, and 685
are reported in four segments. The sample incomplete
rate of this dataset is 69.21%.

4. Caltech101-7 Image Dataset4 (Caltech7): Caltech7 is
a complete multi-view image dataset [49]. It is a subset
of the frequently used Caltech101 consisting of 1474
images, where each image is represented by six kinds
of features [50]. Caltech7 is composed of seven object
categories, i.e., Windsor-Chairs, Stop-Sign, Snoopy,
Motorbikes, Garfield, Face, and Dolla-Bills.

5. Multiple Features handwritten numerals Dataset5

(Mfeat):Mfeat is a complete multi-view image dataset.
It consists of 2000 handwritten numerals (‘0’–‘9’) from
the UCI repository, where each handwritten numeral is
described by six feature sets [51]. Mfeat is categorized
into ten groups, and each group has 200 samples.

6. UC Merced Land Use Dataset6 (LandUse-21):
LandUse-21 is a complete multi-view image dataset. It
consists of 2100 land use images selected from aerial
orthoimage [52]. where each image is represented by
three kinds of features i.e., GIST, PHOG, and LBP [3].
LandUse-21 contains 21 categories, and each category
has 100 images.

7. 15-Scene Image Dataset7 (Scene-15): Scene-15 is a
complete multi-view image dataset. It consists of 4485
images with indoor and outdoor environments [53],
where each image is described by three kinds of features
i.e., GIST, PHOG, and LBP [3]. Scene-15 contains 15
natural scene categories, each of which has 200 to 400
images.

8. Handwritten digit 2 sources Dataset8 (Hdigit):
Hdigit is a complete multi-view image dataset. It
consists of 10000 handwritten digits (‘0’–‘9’) collected
from two sources, i.e., MNIST and USPS [11]. Hdigit
is categorized into ten groups, and each group has 1000
samples.

Incomplete Multi-view Data Construction: In our
experiments, since the 3Sources, BBCSport, and BBC

3http://mlg.ucd.ie/datasets/segment.html
4http://www.vision.caltech.edu/Image Datasets/Caltech101/
5http://archive.ics.uci.edu/ml/datasets/Multiple+Features
6http://weegee.vision.ucmerced.edu/datasets/landuse.html
7https://figshare.com/articles/dataset/15-Scene Image Dataset/
7007177
8https://cs.nyu.edu/∼roweis/data.html
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datasets are naturally incomplete multi-view datasets,
we directly conduct various comparative experiments on
these three incomplete multi-view datasets. For the other
five complete multi-view datasets, we first randomly
select ξ% samples in each dataset as incomplete samples
which suffer from missing instances in some views.
Then, under such condition that each sample can observe
a specific value in at least one view, we randomly gen-
erate a binary vector b = (b1, b2, · · · , bV ) for each
incomplete sample, where if bi = 0, we set the instance
feature in the i-th view of the sample to 0. In this way, we
construct five incomplete multi-view datasets, each with
different sample incomplete rates ξ% (ξ = 70, 90, 100),
to fully assess the effectiveness of the proposed
method, where ξ = 100 means that all samples are
incomplete.

5.1.2 Compared Methods

To comprehensively evaluate the clustering performance
of the proposed MKAGT IMVC, we compare it with
the following some state-of-the-art incomplete multi-view
clustering methods.

1. Best Single View (BSV) [54]: This method populates
missing instances with the mean value of the available
instances on each view. Then, BSV performs standard
spectral clustering [55] on all views independently and
reports the best result.

2. Concat [54]: This method performs standard spectral
clustering on the long dimension features for the final
clustering result, where the long dimension features
are generated through concatenating the features of all
views.

3. DAIMC [19]: This method learns a unified feature
matrix from all views through combining weighted
semi-nonnegative Matrix Factorization and L2,1-Norm
regularized regression. Then, DAIMC performs k-
means on the unified feature matrix to get the final
clustering result.

4. PIC [30]: This method converts the instance-value
missing into similarity-value missing on each view.
Then, PIC learns a consistent Laplacian matrix by
adopting the spectral perturbation theory to balance
all views. Lastly, PIC performs standard spectral
clustering on the consistent Laplacian matrix for the
final clustering result.

5. MKKM-IK-MKC [27]: This method develops a uni-
fied learning framework, which jointly optimizes the
multiple kernel imputation and consistent represen-
tation learning to achieve better clustering. Then,
MKKM-IK-MKC performs k-means on the consistent
representation to get the final clustering result.

6. IMSC AGL [15]: This method designs a joint opti-
mization framework, which integrates the optimal sim-
ilarity graph construction for each view and consistent
representation learning for all views. Then, IMSC AGL
performs k-means on the consistent representation to
get the final clustering result.

7. AGC IMC [31]: This method develops a unified learn-
ing framework, which combines incomplete graphs
recovering and consistent representation learning to
obtain the optimal consistent representation. Then,
AGC IMC performs k-means on the optimal consistent
representation to get the final clustering result.

8. GIMC FLSD [20]: This method develops a matrix fac-
torization model, which integrates individual represen-
tation learning for each view and consensus represen-
tation learning for all views. Meanwhile, GIMC FLSD
imposes adaptively weighted learning on the model
to obtain the optimal consistent representation. Lastly,
GIMC FLSD performs k-means on the optimal consis-
tent representation to get the final clustering result.

9. APMC [33]: This method uses the common samples
showing all views as anchors to construct the fused
similarity matrix. Then, APMC performs standard
spectral clustering on the fused similarity matrix for the
final clustering result.

10. IMVTSC-MVI [32]: This method develops a low-
rank representation framework to well recover missing
instances appearing in the certain view and learn the
optimal similarity graph from all views simultaneously,
where the framework is imposed multiple constraints.
Then, IMVTSC-MVI performs standard spectral clus-
tering on the optimal similarity graph for the final
clustering result.

For all comparison methods, we get the available source
codes from the corresponding author’s homepage. To make
the experiments more fair and conclusive, we run the
source codes of comparison methods either using the default
parameter values or tuning them as suggested according
to the original paper to obtain the best performances. For
example, the number of nearest neighbors in the relevant
comparison methods is either the default value of the source
codes or 10% of the total sample of each dataset.

For the proposed MKAGT IMVC, we first adopt three
commonly used kernel function to construct the view-wise
truncated anchor graphs, which are defined as follows:

1. Radial Basis Function (RBF) Kernel:

K(y, u) = exp
(
−γ ‖y − u‖2

)
, (35)

2. Cosine Similarity Kernel [56]:

K(y, u) = 1 − yT u

‖y‖‖u‖ , (36)
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3. Radial Basis Function (RBF) Chi-Square Kernel [57]:

K(y, u) = exp

(

−γ (
1

2

d∑

i=1

(yi − ui)
2

(yi + ui)
)

)

. (37)

Without loss of generality, the parameter γ is set to 1 in (35)
of the RBF Kernel of and (37) of the RBF Chi-Square Ker-
nel. Furthermore, We empirically set the number of nearest
neighbors k = c for creating the view-wise truncated anchor
graphs, where the c is the number of clusters of the raw data.
For the 3Sources dataset, we set the parameters of the pro-
posed MKAGT IMVC to λ1 = 0.001 and λ2 = 0.1 in joint
learning model. Meanwhile, for other datasets with differ-
ent sample incomplete rates, we set these two parameters
as λ1 = 0.001 and λ2 = 1. According to (43), we empiri-
cally set the proportion of anchors of 3Sources, BBCSport,
BBC, Caltech7, Mfeat, LandUse-21, Scene-15, and Hdigit
datasets to entire available instances of the corresponding
dataset as η = {0.58, 0.8, 0.1, 1, 0.4, 1, 0.5, 0.2},
separately, where these multi-view datasets have different
sample incomplete rates.

Since the k-means is sensitive to the setting of the initial
centroid, we perform k-means 20 times for each experiment
to eliminate the influence of random initialization, where
the maximum number of iterations of k-means is set to
1000. Meanwhile, we randomly generate five different
incomplete patterns with the same sample incomplete rate
in an above manner and perform all comparison methods on
such five patterns to record the average values with standard
deviations. Since the use of different data preprocessing
schemes and parameter ranges, some results may deviate
from the corresponding published information.

5.1.3 Evaluation metrics

Without loss of generality, we adopt three commonly
used evaluation metrics to fully assess the performance of
different methods as shown in [10]: Clustering Accuracy
(ACC), Normalized Mutual Information (NMI), and Purity.
These evaluation metrics are calculated in a predetermined
formula with clustering labels of all samples and the
ground-truth labels of the dataset. For the three metrics, a
higher value indicates a better performance. Specifically, the
three metrics are defined as follows.

The first metric is ACC which measures clustering
accuracy.

ACC =
∑n

i=1 δ(li , map(ci))

n
(38)

where li and ci denote the provided ground-truth label and
the obtained cluster label of the i-th sample, separately; n is
the number of samples; δ is the Dirac delta function

δ(x, y) =
{
1, if x = y

0, otherwise.
(39)

and map(ci) is the optimal permutation mapping function
which arranges the cluster label ci to match the ground-truth
label li via using the Kuhn-Munkres algorithm.

The second evaluation metric is NMI which assess the
quality of the obtained clusters.

NMI(C, L) = MI(C, L)√
E(C)E(L)

(40)

where the set C = {c1, c2, · · · , cc} and the set L =
{l1, l2, · · · , lc} denote the obtained clusters using clustering
methods and the provided ground-truth clusters, separately;
the constant c is the number of clusters of the raw data;
MI(C, L) denotes the mutual information between C and
L; E(C) and E(L) denote the entropy of C and L,
separately.

Let ni denotes the number of samples in the obtained
cluster ci (1 � i � c) using clustering methods; and nj

denotes the number of samples belonging to the provided
ground-truth cluster lj (1 � j � c). Then, NMI is rewritten
as

NMI =
∑c

i=1
∑c

j=1 ni,j log (
n·ni,j

ni ·nj
)

√
(
∑c

i=1 ni log
ni

n
)(
∑c

j=1 nj log
nj

n
)

(41)

where ni,j denotes the number of samples in the common
parts of ci and lj .

The third evaluation metric is Purity which calculates the
percentage of correct labels to evaluate the effectiveness of
the clustering method.

Purity = 1

n

c∑

i=1

max
1�j�c

| ci ∩ lj | (42)

5.2 Clustering results and analysis

To evaluate the effectiveness and superiority of the proposed
MKAGT IMVC, we adopt a variety of incomplete multi-
view clustering methods to conduct a series of comparative
experiments on eight incomplete multi-view datasets,
including three naturally incomplete datasets and five
randomly constructed incomplete datasets. Tables 3 and 4
present the clustering results of all comparison methods on
multi-view datasets with different sample incomplete rates
mentioned above in terms of ACC, NMI, Purity, and CPU
running time, respectively. In addition, the CPU running
time measurement refers to starting from the original
features of the input multi-view dataset and ending with at
output of the cluster label. From these experimental results,
we can make the following observations:

1. BSV and Concat perform worse than the other
incomplete multi-view clustering approaches in terms

3700 S. Wang et al.
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of ACC, NMI, Purity in most incomplete situations
of these datasets. BSV simply populates missing
instances with the same mean values on corresponding
views, which will cause the missing instances in the
corresponding view to be split into the same cluster.
Meanwhile, by directly concatenating the features of
all views into one long dimension feature, Concat may
generate too much redundant information, which is
the main reason for poor clustering results. Thus, the
experimental results demonstrate that it is noteworthy
to explore the relationships between multiple views to
improve the clustering performance.

2. We can see that the proposed MKAGT IMVC method
can handle arbitrary incomplete multi-view datasets,
such as the three naturally incomplete multi-view
datasets in Table 3, and the five randomly constructed
incomplete multi-view datasets in Table 4, where
each dataset has three sample incomplete rates 70%,
90%, and 100%, respectively. Obviously, on most
above incomplete multi-view datasets, we can observe
that MKAGT IMVC significantly outperforms all the
comparison methods in terms of ACC, NMI, Purity.
For example, from Tables 3 and 4, MKAGT IMVC
obtains the three clustering performance metrics on
the BBCSport, BBC, and Mfeat datasets, respectively,
all of which are very close to 100%. From Table 4,
we can observe that the experimental results of the
proposed method and all the compared methods are
relatively low in terms of ACC, NMI, and Purity on the
LandUse-21 and Scene-15 datasets. The main reason is
that LandUse-21 and Scene-15 are more complex than
other datasets, especially their number of clusters is 21
and 15, respectively, which is much more than other
datasets. This brings great challenges to the learning
process of all methods in fitting the spatial distribution
of the data. Nevertheless, the proposed MKAGT IMVC
method exceeds the second best method with
70%/90%/100% sample incomplete rates in terms
of ACC, NMI, and Purity as about 14%/22%/17%,
18%/27%/21%, and 13%/23%/16% on the LandUse-
21 dataset, 31%/32%/30%, 36%/38%/36%, and
25%/27%/24% on the Scene-15 dataset. On the Hdigit
dataset, the proposed MKAGT IMVC method exceeds
the second best method with 90%/100% sample incom-
plete rates in terms of ACC, NMI, and Purity as about
15%/8%/13% and 50%/33%/48%. The main reason is
that the proposed MKAGT IMVC method can learn an
optimal unified similarity matrix from multiple views
by simultaneously considering the three key steps: (1)
generate significantly representative anchor points; (2)
construct multiple fused complete anchor graphs with
various kernel functions; (3) develop an effective sub-
space representation based graph learning model which

3701Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering



Ta
bl
e
4

T
he

cl
us
te
ri
ng

pe
rf
or
m
an
ce

(m
ea
n%

±
st
d%

)
an
d
C
PU

ru
nn
in
g
tim

e
(s
ec
.)
(m

ea
n

±
st
d)

of
th
e
pr
op
os
ed

M
K
A
G
T
IM

V
C
m
et
ho
d
ar
e
co
m
pa
re
d
w
ith

th
e
co
m
pa
ri
so
n
m
et
ho
ds

on
th
e
C
al
te
ch
7,

M
fe
at
,L

an
dU

se
-2
1,

Sc
en
e-
15
,a
nd

H
di
gi
td

at
as
et
s,
w
he
re

ea
ch

da
ta
se
th

as
th
re
e

sa
m
pl
e
in
co
m
pl
et
e
ra
te
s,

70
%
,
90
%
,
an
d
10
0%

re
sp
ec
tiv

el
y.

B
ol
d
nu
m
be
rs

de
no
te

th
e
be
st

re
su
lts
.‘
-’
in
di
ca
te
s
th
at
th
e
m
et
ho
d
ca
nn
ot

be
ru
n
on

th
e
co
rr
es
po
nd
in
g
da
ta
se
t

In
co
m
pl
et
e
ra
te

70
%

90
%

10
0%

D
at
as
et

M
et
ho
d

\M
et
ri
c

A
C
C

N
M
I

Pu
ri
ty

C
PU

tim
e

A
C
C

N
M
I

Pu
ri
ty

C
PU

tim
e

A
C
C

N
M
I

Pu
ri
ty

C
PU

tim
e

C
al
te
ch
7

B
SV

37
.5
8

±
3.
54

9.
31

±
4.
07

61
.6
6

±
4.
31

43
.4
4

±
4.
23

37
.0
6

±
6.
62

16
.1
9

±
9.
81

63
.9
2

±
6.
00

36
.4
5

±
9.
44

41
.1
5

±
7.
00

21
.6
6

±
8.
77

63
.4
7

±
5.
67

25
.3
3

±
12
.2
0

C
on
ca
t

32
.3
9

±
10
.0
0

8.
49

±
5.
05

60
.6
2

±
5.
00

82
.8
3

±
16
.7
9

33
.8
1

±
0.
84

15
.5
8

±
0.
78

67
.8
3

±
0.
36

65
.2
9

±
0.
21

32
.6
2

±
4.
50

13
.6
6

±
0.
95

66
.4
5

±
0.
65

60
.4
6

±
0.
39

IM
SC

A
G
L

36
.7
6

±
1.
01

44
.4
6

±
1.
11

81
.1
1

±
1.
00

60
7.
38

±
54
.2
0

36
.8
1

±
2.
36

43
.6
8

±
3.
80

80
.7
6

±
2.
39

51
5.
17

±
0.
81

37
.0
7

±
3.
22

42
.4
8

±
1.
24

81
.2
1

±
0.
59

47
8.
35

±
7.
93

G
IM

C
FL

SD
36
.5
5

±
0.
93

33
.8
4

±
1.
24

77
.8
8

±
1.
96

52
.7
7

±
0.
64

37
.4
8

±
1.
42

32
.7
0

±
1.
58

77
.5
0

±
2.
52

41
.8
6

±
1.
67

35
.9
7

±
1.
75

27
.6
3

±
3.
19

74
.4
2

±
1.
28

38
.4
4

±
0.
35

D
A
IM

C
41
.8
5

±
3.
36

47
.6
2

±
3.
61

83
.3
5

±
1.
12

10
0.
62

±
1.
59

38
.6
3

±
4.
03

45
.8
7

±
3.
00

82
.9
2

±
0.
74

10
4.
33

±
3.
42

40
.1
6

±
6.
17

44
.1
3

±
1.
62

82
.0
4

±
0.
91

10
6.
78

±
2.
16

M
K
K
M
-I
K
-M

K
C

37
.2
2

±
1.
12

34
.6
1

±
2.
02

75
.9
2

±
0.
91

48
.9
7

±
1.
57

38
.6
6

±
1.
12

33
.9
9

±
2.
11

75
.4
8

±
0.
76

54
.0
8

±
1.
61

37
.6
7

±
1.
53

34
.2
9

±
1.
89

75
.5
1

±
0.
82

52
.3
4

±
0.
21

PI
C

48
.3
3

±
5.
07

49
.1
3

±
2.
46

83
.6
8

±
0.
92

45
.6
5

±
0.
56

42
.6
7

±
7.
46

47
.6
3

±
2.
02

82
.9
9

±
0.
85

48
.4
9

±
0.
50

40
.7
9

±
6.
54

45
.9
2

±
1.
57

81
.3
8

±
0.
84

46
.2
2

±
0.
48

A
G
C

IM
C

63
.7
9

±
3.
98

56
.9
7

±
3.
66

85
.9
4

±
1.
34

40
7.
11

±
11
.8
9

59
.8
4

±
2.
96

53
.8
0

±
2.
32

84
.0
8

±
0.
79

35
6.
49

±
19
.5
7

65
.4
7

±
1.
68

54
.8
1

±
4.
39

85
.3
9

±
1.
41

35
1.
62

±
13
.5
6

IM
V
T
SC

-M
V
I

63
.5
5

±
4.
03

64
.0
1

±
3.
31

89
.0
1

±
1.
54

21
4.
10

±
0.
71

61
.9
5

±
3.
91

62
.3
2

±
2.
08

88
.5
2

±
1.
08

24
8.
54

±
3.
87

61
.8
7

±
5.
38

65
.1
9

±
3.
60

90
.2
3

±
2.
18

24
4.
89

±
2.
83

M
K
A
G
T
IM

V
C

61
.0
3

±
2.
65

71
.8
0

±
0.
85

90
.9
6

±
0.
19

11
9.
77

±
16
.3
3

59
.7
3

±
3.
32

69
.8
1

±
2.
86

90
.0
9

±
1.
35

11
1.
43

±
13
.1
5

60
.8
8

±
1.
97

70
.8
1

±
0.
92

90
.8
4

±
0.
05

96
.7
1

±
17
.4
1

M
fe
at

B
SV

25
.8
4

±
8.
31

16
.1
1

±
9.
91

27
.0
7

±
8.
37

33
.8
7

±
14
.7
3

29
.5
2

±
17
.3
9

23
.0
2

±
20
.7
8

31
.2
9

±
17
.9
2

33
.7
3

±
13
.4
0

29
.5
9

±
7.
06

21
.5
3

±
7.
35

30
.5
9

±
6.
84

30
.6
0

±
14
.3
0

C
on
ca
t

16
.5
1

±
1.
33

4.
96

±
2.
11

17
.4
2

±
1.
65

61
.1
2

±
7.
31

18
.9
7

±
2.
88

10
.6
0

±
6.
14

19
.5
4

±
2.
86

33
.2
9

±
15
.6
6

18
.2
4

±
1.
40

8.
91

±
3.
23

18
.8
1

±
1.
49

26
.6
1

±
12
.1
1

G
IM

C
FL

SD
25
.7
0

±
1.
17

30
.5
6

±
1.
33

27
.2
2

±
0.
72

27
.4
0

±
2.
24

26
.4
4

±
1.
78

29
.5
3

±
4.
14

28
.4
3

±
2.
05

24
.6
3

±
0.
53

26
.6
1

±
1.
10

24
.9
3

±
2.
13

27
.8
3

±
1.
51

23
.1
2

±
0.
53

M
K
K
M
-I
K
-M

K
C

50
.3
7

±
2.
11

47
.7
5

±
1.
45

52
.1
4

±
1.
44

10
8.
39

±
1.
35

47
.4
4

±
1.
47

45
.5
0

±
1.
56

49
.9
9

±
1.
47

11
3.
40

±
2.
30

46
.4
9

±
2.
24

43
.6
4

±
1.
48

48
.8
5

±
1.
78

10
6.
46

±
3.
68

D
A
IM

C
74
.0
1

±
10
.9
1

65
.1
2

±
8.
94

74
.1
0

±
10
.8
1

41
.8
5

±
1.
41

67
.2
4

±
5.
04

58
.9
1

±
3.
38

67
.5
0

±
4.
86

45
.9
0

±
1.
32

65
.1
0

±
5.
34

57
.3
8

±
2.
18

66
.3
0

±
4.
46

48
.3
5

±
2.
89

A
G
C

IM
C

84
.2
5

±
2.
05

88
.0
4

±
1.
21

86
.9
1

±
0.
51

71
1.
19

±
83
.9
6

83
.5
5

±
4.
40

87
.2
4

±
2.
37

84
.7
8

±
4.
35

55
1.
99

±
33
.2
7

83
.2
9

±
4.
96

85
.7
5

±
1.
86

84
.0
1

±
3.
92

60
4.
08

±
14
.7
1

PI
C

84
.3
7

±
1.
25

76
.6
1

±
1.
00

84
.3
7

±
1.
25

11
0.
98

±
0.
56

85
.5
9

±
2.
05

75
.9
1

±
2.
21

85
.5
9

±
2.
05

10
6.
55

±
6.
08

85
.3
3

±
1.
65

74
.5
0

±
1.
16

85
.3
3

±
1.
65

11
1.
63

±
0.
50

IM
SC

A
G
L

87
.4
6

±
1.
85

77
.9
4

±
1.
53

87
.4
6

±
1.
85

14
29
.1
9

±
18
.9
3

85
.7
1

±
1.
72

75
.6
2

±
1.
35

85
.7
1

±
1.
72

12
99

.7
5

±
22
.0
8

83
.0
1

±
2.
41

71
.7
5

±
2.
40

83
.0
1

±
2.
41

12
52
.9
4

±
91
.8
0

IM
V
T
SC

-M
V
I

98
.5
8

±
0.
14

96
.6
1

±
0.
30

98
.5
8

±
0.
14

31
2.
91

±
0.
73

99
.2
3

±
0.
12

98
.0
5

±
0.
24

99
.2
3

±
0.
12

35
9.
86

±
1.
67

99
.6
1

±
0.
13

98
.9
9

±
0.
34

99
.6
1

±
0.
13

34
2.
33

±
1.
65

M
K
A
G
T
IM

V
C

99
.9
6

±
0.
02

99
.8
9

±
0.
06

99
.9
6

±
0.
02

11
7.
04

±
5.
41

99
.9
4

±
0.
07

99
.8
4

±
0.
18

99
.9
4

±
0.
07

11
4.
08

±
5.
85

99
.9
2

±
0.
03

99
.7
8

±
0.
07

99
.9
2

±
0.
03

11
2.
39

±
5.
80

L
an
dU

se
-2
1

B
SV

13
.8
1

±
3.
02

13
.0
1

±
2.
91

14
.8
5

±
3.
29

89
.8
0

±
19
.8
1

15
.8
7

±
3.
11

15
.6
3

±
4.
43

17
.2
6

±
3.
52

69
.8
7

±
2.
00

17
.6
8

±
1.
76

18
.3
3

±
2.
73

18
.8
2

±
2.
01

72
.0
2

±
5.
98

C
on
ca
t

9.
29

±
0.
57

4.
32

±
0.
42

9.
73

±
0.
54

92
.1
8

±
8.
63

9.
06

±
0.
58

3.
91

±
0.
58

9.
44

±
0.
66

66
.0
0

±
1.
68

9.
19

±
0.
39

4.
00

±
0.
51

9.
69

±
0.
40

67
.6
6

±
3.
08

D
A
IM

C
16
.4
1

±
1.
25

15
.4
0

±
1.
76

18
.1
5

±
1.
87

25
.7
6

±
0.
17

13
.6
2

±
1.
08

12
.3
2

±
2.
08

15
.0
1

±
1.
48

25
.4
6

±
0.
10

13
.2
6

±
0.
84

11
.4
1

±
1.
38

14
.8
2

±
0.
90

25
.5
5

±
0.
07

A
G
C

IM
C

18
.3
0

±
1.
06

28
.1
1

±
1.
38

22
.3
0

±
0.
98

26
2.
86

±
2.
35

16
.5
0

±
1.
90

25
.3
9

±
1.
98

19
.9
6

±
1.
54

25
2.
45

±
5.
22

16
.7
6

±
2.
95

24
.7
9

±
2.
71

19
.7
0

±
3.
13

26
7.
55

±
5.
17

G
IM

C
FL

SD
18
.5
3

±
0.
48

22
.4
1

±
0.
89

22
.3
8

±
0.
38

34
.2
9

±
0.
69

18
.0
0

±
0.
90

21
.7
4

±
0.
62

21
.7
0

±
0.
55

31
.6
9

±
0.
23

18
.1
2

±
1.
27

21
.2
8

±
0.
92

21
.4
4

±
1.
01

29
.1
7

±
0.
10

A
PM

C
20
.4
1

±
0.
85

22
.9
8

±
0.
59

23
.4
8

±
0.
69

5.
63

±
0.
17

18
.4
3

±
0.
49

18
.8
8

±
0.
52

20
.3
1

±
0.
68

5.
52

±
0.
50

16
.4
2

±
0.
27

16
.7
4

±
0.
92

18
.2
5

±
0.
72

6.
62

±
0.
54

M
K
K
M
-I
K
-M

K
C

19
.2
8

±
0.
82

20
.3
1

±
1.
12

21
.5
0

±
0.
83

12
6.
69

±
0.
81

18
.4
8

±
1.
06

19
.3
5

±
0.
95

21
.0
3

±
1.
04

13
2.
39

±
0.
33

18
.2
4

±
0.
90

18
.4
5

±
0.
69

20
.9
4

±
0.
91

64
.6
4

±
0.
28

PI
C

21
.6
3

±
0.
46

23
.3
8

±
0.
59

24
.1
8

±
0.
43

32
.2
6

±
0.
17

18
.5
3

±
0.
54

19
.3
4

±
0.
63

20
.9
0

±
0.
48

29
.6
3

±
0.
28

17
.3
0

±
0.
87

18
.0
0

±
1.
04

19
.2
6

±
0.
87

32
.3
9

±
0.
26

IM
SC

A
G
L

20
.9
6

±
0.
37

21
.5
6

±
0.
42

22
.8
1

±
0.
52

81
9.
70

±
4.
26

20
.1
8

±
0.
80

20
.0
2

±
0.
83

22
.1
0

±
0.
83

76
5.
25

±
6.
63

18
.5
3

±
0.
59

18
.0
4

±
0.
69

20
.6
6

±
0.
73

76
5.
88

±
61
.3
4

IM
V
T
SC

-M
V
I

24
.2
2

±
0.
69

24
.6
4

±
0.
38

25
.8
1

±
0.
91

18
7.
94

±
0.
53

20
.6
8

±
0.
43

21
.0
2

±
0.
53

22
.2
8

±
0.
64

22
0.
00

±
6.
40

19
.6
8

±
0.
62

19
.7
1

±
0.
98

21
.5
9

±
0.
70

21
0.
48

±
6.
90

M
K
A
G
T
IM

V
C

38
.1
1

±
4.
10

46
.8
2

±
5.
24

42
.6
3

±
4.
66

16
0.
73

±
18
.9
9

38
.4
5

±
1.
40

48
.1
3

±
0.
98

43
.5
2

±
1.
18

14
4.
62

±
8.
53

32
.7
8

±
4.
77

42
.1
4

±
6.
12

37
.4
2

±
4.
41

15
1.
68

±
15
.4
1

3702 S. Wang et al.



Ta
bl
e
4

(c
on
tin

ue
d)

In
co
m
pl
et
e
ra
te

70
%

90
%

10
0%

D
at
as
et

M
et
ho
d

\M
et
ri
c

A
C
C

N
M
I

Pu
ri
ty

C
PU

tim
e

A
C
C

N
M
I

Pu
ri
ty

C
PU

tim
e

A
C
C

N
M
I

Pu
ri
ty

C
PU

tim
e

Sc
en
e-
15

B
SV

12
.5
7

±
0.
71

6.
23

±
0.
71

14
.1
9

±
0.
94

15
3.
19

±
9.
77

13
.2
6

±
1.
22

6.
10

±
1.
63

14
.9
7

±
1.
67

14
0.
79

±
8.
69

13
.3
1

±
1.
53

7.
56

±
2.
00

15
.2
4

±
1.
50

13
1.
72

±
9.
65

C
on
ca
t

10
.4
7

±
1.
14

2.
22

±
0.
85

11
.6
3

±
1.
01

16
9.
62

±
43
.2
6

12
.7
0

±
1.
62

7.
10

±
4.
27

14
.6
4

±
2.
36

70
.1
7

±
49
.0
4

13
.0
6

±
2.
05

8.
17

±
4.
92

15
.6
5

±
3.
10

71
.3
1

±
52
.4
1

D
A
IM

C
23
.8
4

±
1.
85

18
.9
4

±
0.
94

26
.3
1

±
1.
78

10
0.
39

±
0.
40

18
.3
7

±
1.
71

13
.2
5

±
1.
42

21
.0
1

±
1.
94

98
.3
1

±
2.
19

19
.2
2

±
2.
15

13
.8
9

±
2.
46

21
.7
3

±
2.
20

98
.9
9

±
0.
74

A
PM

C
30
.4
7

±
1.
15

26
.8
1

±
0.
70

32
.7
1

±
1.
21

35
.8
3

±
0.
35

22
.7
5

±
0.
46

22
.7
0

±
0.
67

26
.3
0

±
0.
60

31
.2
0

±
2.
53

20
.5
5

±
1.
37

19
.4
5

±
0.
42

23
.5
3

±
0.
43

31
.2
9

±
1.
60

PI
C

29
.6
8

±
1.
47

26
.3
8

±
0.
57

33
.9
4

±
0.
65

27
2.
80

±
1.
20

23
.8
1

±
1.
17

22
.8
9

±
1.
31

28
.2
7

±
1.
50

26
1.
59

±
3.
36

23
.1
5

±
0.
71

22
.4
0

±
0.
49

27
.6
6

±
0.
51

27
4.
75

±
0.
57

IM
V
T
SC

-M
V
I

28
.0
0

±
1.
74

23
.3
2

±
1.
27

30
.0
9

±
1.
04

10
28
.4
7

±
3.
71

24
.6
3

±
0.
99

21
.5
2

±
0.
88

27
.1
0

±
1.
00

11
55
.3
8

±
4.
57

23
.7
9

±
1.
46

21
.4
1

±
0.
92

25
.9
6

±
1.
00

11
64
.0
7

±
4.
53

M
K
K
M
-I
K
-M

K
C

28
.8
3

±
1.
14

25
.4
9

±
0.
40

31
.0
4

±
1.
11

28
3.
11

±
64
.6
4

26
.9
8

±
0.
74

23
.4
6

±
0.
44

30
.2
6

±
0.
52

88
2.
48

±
1.
09

24
.3
3

±
0.
40

21
.1
8

±
0.
91

28
.4
1

±
0.
98

43
4.
00

±
7.
20

G
IM

C
FL

SD
33
.1
7

±
1.
42

30
.1
8

±
0.
52

35
.2
9

±
0.
79

23
8.
37

±
1.
29

30
.5
5

±
0.
23

28
.1
0

±
0.
38

32
.7
3

±
0.
58

22
1.
51

±
1.
57

28
.6
9

±
0.
41

27
.1
7

±
0.
88

31
.0
3

±
0.
80

18
9.
23

±
7.
81

A
G
C

IM
C

29
.3
8

±
1.
33

31
.4
3

±
0.
87

34
.1
0

±
1.
41

14
91
.5
4

±
6.
65

30
.8
2

±
1.
05

30
.2
8

±
0.
82

33
.3
6

±
0.
75

13
51
.2
8

±
7.
40

27
.7
0

±
0.
93

28
.0
4

±
0.
93

30
.8
5

±
0.
46

15
90
.6
1

±
13

4.
75

IM
SC

A
G
L

34
.0
1

±
1.
18

30
.9
5

±
0.
34

38
.0
8

±
0.
87

83
56
.3
9

±
16
2.
12

32
.2
0

±
1.
02

28
.2
7

±
0.
36

35
.9
1

±
0.
75

70
23
.6
2

±
17
8.
54

29
.8
4

±
1.
16

26
.6
1

±
0.
76

33
.1
9

±
1.
26

69
75
.4
5

±
82
.6
0

M
K
A
G
T
IM

V
C

65
.3
1

±
12
.5
5

62
.9
2

±
12
.9
4

68
.0
7

±
12
.3
2

11
35

.1
7

±
24

2.
71

68
.6
1

±
4.
13

66
.7
1

±
3.
47

71
.2
8

±
3.
07

82
0.
27

±
10

1.
86

54
.7
5

±
14
.2
9

53
.4
3

±
15
.6
3

57
.6
0

±
14
.4
1

11
21
.3
9

±
21
6.
73

H
di
gi
t

B
SV

15
.8
5

±
0.
89

4.
66

±
0.
78

17
.4
1

±
0.
93

37
2.
57

±
17
.9
3

15
.4
3

±
1.
30

5.
89

±
1.
58

17
.5
6

±
1.
85

10
24

.0
2

±
35
.7
1

15
.8
9

±
1.
79

7.
23

±
3.
13

18
.0
8

±
1.
58

10
33
.4
8

±
36
.8
4

C
on
ca
t

14
.1
8

±
0.
52

2.
86

±
0.
85

15
.4
7

±
0.
62

15
91
.0
6

±
7.
97

31
.1
4

±
6.
83

23
.8
0

±
9.
57

31
.8
7

±
6.
72

15
14
.3
6

±
33
.3
8

13
.9
7

±
3.
25

2.
81

±
3.
09

14
.5
3

±
3.
39

16
67
.4
3

±
93
.5
8

A
PM

C
42
.2
0

±
0.
68

33
.2
9

±
0.
51

43
.0
2

±
0.
38

14
3.
03

±
0.
85

32
.8
2

±
1.
59

27
.4
2

±
0.
67

34
.8
5

±
0.
88

78
.3
3

±
0.
31

-
-

-
-

D
A
IM

C
44
.8
1

±
2.
40

34
.9
4

±
1.
31

45
.9
7

±
2.
08

45
9.
16

±
17
.2
1

34
.7
5

±
0.
66

28
.5
0

±
0.
51

37
.3
3

±
0.
65

46
1.
30

±
56
.2
8

33
.3
1

±
2.
16

27
.4
5

±
1.
22

35
.8
2

±
2.
32

42
9.
57

±
24
.4
6

PI
C

48
.8
5

±
1.
21

42
.8
2

±
0.
85

48
.9
8

±
1.
28

15
19
.1
9

±
15
.4
9

38
.1
0

±
0.
31

34
.3
2

±
0.
53

38
.3
1

±
0.
37

14
52

.4
7

±
13
.0
0

36
.3
9

±
1.
35

33
.0
8

±
1.
37

37
.3
7

±
2.
22

14
87
.6
7

±
22
.7
0

IM
V
T
SC

-M
V
I

51
.7
4

±
0.
36

46
.3
7

±
0.
88

52
.6
9

±
0.
49

55
94
.8
2

±
43
.7
3

39
.4
7

±
0.
61

35
.4
7

±
0.
32

40
.9
7

±
0.
54

58
70
.1
8

±
16
3.
87

37
.9
5

±
1.
87

36
.0
7

±
1.
54

40
.5
2

±
0.
71

58
17
.0
7

±
36
.3
2

IM
SC

A
G
L

56
.1
2

±
3.
55

47
.5
6

±
1.
37

57
.7
4

±
2.
50

54
16
2.
77

±
10

04
.9
2

40
.0
4

±
3.
17

30
.7
2

±
2.
70

44
.3
1

±
2.
15

51
10

6.
35

±
77
6.
00

30
.0
2

±
3.
15

21
.3
3

±
3.
13

32
.1
9

±
3.
21

45
56
7.
64

±
19
7.
34

G
IM

C
FL

SD
63
.3
5

±
3.
51

51
.8
9

±
1.
21

63
.8
8

±
2.
38

16
71
.8
4

±
21
.1
3

46
.8
1

±
1.
62

39
.3
0

±
1.
04

49
.1
7

±
0.
63

14
45
.7
8

±
9.
69

32
.5
5

±
0.
81

29
.2
7

±
1.
10

35
.7
8

±
1.
44

12
50
.1
2

±
15
9.
92

M
K
K
M
-I
K
-M

K
C

66
.8
9

±
5.
20

53
.1
3

±
2.
18

68
.3
7

±
3.
67

17
76
.7
7

±
15

0.
40

54
.4
6

±
2.
65

42
.9
8

±
1.
69

57
.5
7

±
3.
03

22
55

.6
4

±
12
0.
99

34
.4
1

±
0.
29

29
.6
5

±
0.
53

38
.0
5

±
0.
25

26
4.
87

±
21
.8
8

A
G
C

IM
C

95
.1
2

±
0.
18

88
.5
5

±
0.
43

95
.1
2

±
0.
18

64
45

.0
7

±
26
7.
38

79
.8
0

±
1.
85

78
.2
5

±
1.
14

81
.4
4

±
1.
91

62
67

.0
5

±
16
9.
78

42
.1
0

±
0.
43

50
.6
8

±
0.
77

44
.7
8

±
0.
55

61
39

.1
4

±
94
.2
2

M
K
A
G
T
IM

V
C

87
.1
4

±
8.
74

78
.1
7

±
10
.5
9

87
.6
8

±
7.
89

77
92
.7
3

±
35

74
.5
4

94
.2
2

±
0.
24

86
.5
3

±
0.
34

94
.2
2

±
0.
24

66
45

.5
7

±
42
6.
34

92
.4
6

±
0.
40

83
.5
5

±
0.
69

92
.4
6

±
0.
40

47
95

.4
5

±
56
9.
02

3703Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering



integrates low-rank tensor constraint and consensus
graph constraint.

3. The experimental results in terms of CPU running time
are shown in Tables 3 and 4, we can observe that as the
number of samples increases, the running time of all
methods will increase significantly, especially on the
Scene-15 and Hdigit datasets. Obviously, the CPU run-
ning time of APMC is much less than all comparison
methods in most incomplete situations, especially on
the large-scale datasets (i.e., Hdigit). The main reason
is that APMC adopts the strategy of generating anchor
points to construct the similarity graph, and its opti-
mization process is a non-iterative learning algorithm.
This proves that the anchor point strategy can effec-
tively improve the operating efficiency of the incom-
plete multi-view clustering method. However, the clus-
tering performance of APMC in terms of ACC, NMI,
and Purity is not very good compared to other competi-
tors, and it cannot handle datasets with sample incom-
plete rate of 100%, or datasets with more than 3 views.
For the proposed MKAGT IMVC method, under the
condition of ensuring the best clustering performance
in terms of ACC, NMI, and Purity, the CPU running
time is much less than some state-of-the-art competi-
tors (i.e., IMSC AGL, AGC IMC, and IMVTSC-MVI)
in most scenarios, which validates the superior per-
formance of the proposed MKAGT IMVC method in
terms of clustering ability and time-consuming.

4. From Table 4, we can observe that the standard devi-
ation values got by the proposed MKAGT IMVC
method in terms of ACC, NMI, Purity are larger than
other competitors on the Secne-15 dataset with sam-
ple incomplete rate of 70% and 100%, and the Hdigit
dataset with sample incomplete rate of 70%. This is
mainly because that the generated anchor points are
not representative or the number is not enough in some
random incomplete patterns with the same sample
incomplete rate. In addition, it can be observed that
as the sample incomplete rate increases, the clustering
performance of all comparison methods in terms of
ACC, NMI, Purity commonly decreases. However,
the proposed MKAGT IMVC method still maintains
stable performance in terms of ACC, NMI, Purity
in most cases, especially on the large-scale datasets
(i.e., Hdigit). The main reason is that the proposed
MKAGT IMVC method selects enough and represen-
tative instances as the anchor points for view-wise to
construct anchor graphs.

5.3 Effect of anchor selection

We explore the effect of anchor selection on the clustering
performance of the proposed MKAGT IMVC methods by

discussing the two core issues, that is, what differences
will be made when MKAGT IMVC adopts different anchor
strategies and different number of anchors. Since the current
anchor point selected by DAS and the next anchor point
is not the same cluster with high probability, we assume
that the anchor points selected within c times are evenly
distributed in c clusters. To this end, the number of anchors
can be obtained by the following expression:

lanchorNum = ceil
(
min

(
f loor(

nY

c
)
)× η

)
× c (43)

where nY records the number of available instances in
each view, c denotes the number of clusters, η denotes the
proportion of anchors to the available instances, f loor(·)
rounds each element to the nearest integer less than or equal
to that element, ceil(·) rounds each element to the nearest
integer greater than or equal to that element.

The effect of different anchor strategies on the clustering
performance of the proposed MKAGT IMVC method is
presented in Table 5. We adopt four anchor selection
strategies, including the widely used k-means policy, the
random policy, the manner of common instances appearing
in all views, and the improved DAS for incomplete multi-
view data, where the number of anchor points of DAS is
the same as random policy. From the experimental results,
we can observe that the DAS has relatively stable clustering
performance in terms of ACC, NMI, and Purity compared
to the other three strategies. In addition, DAS not only has
a significant lead in clustering performance on the medium-
size datasets (i.e., Scene-15) but also its CPU running time is
much less than the random strategy with the same number of
anchor points. The main reason is that DAS can efficiently
select a sufficient number of the most representative anchor
points from the incomplete multi-view datasets. Therefore,
the improved DAS for incomplete multi-view data is the
most suitable for the anchor point selection in the proposed
MKAGT IMVC method.

The effect of different number anchor points on the
clustering performance of the proposed MKAGT IMVC
method is shown in Fig. 2. From the experimental results,
we can observe that the start values of the clustering
performance curves for ACC and NMI have relatively large
values among all reported values. The overall trend of
clustering performance curves keeps rising steadily with
the increase of the number of anchor points on small-
size datasets (i.e., BBCSport, Caltech7, BBC). Meanwhile,
on the medium-size dataset (i.e., Scene-15), the clustering
performance curves fluctuate up and down within a certain
range as the number of anchor points increases. Whereas, it
can be observed empirically that the proportion of anchors
to the available instances η is within 0.5 and the optimal
clustering performance can be obtained. Moreover, we can
find that as the number of anchor points increases, the
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Table 5 The clustering performance (mean% ± std%) and CPU run-
ning time (sec.) (mean ± std) of the proposed MKAGT IMVCmethod
equipped with different anchor selection strategies on the BBCSport,

BBC, Caltech7, and Scene-15 datasets, where the sample incomplete
rates of Caltech7 and Scene-15 are 90%. Bold numbers denote the best
results

Dataset Anchor strategy \ Metric ACC NMI Purity CPU time

BBCSport K-means 35.01 ± 0.00 12.42 ± 0.00 40.98 ± 0.00 7.16 ± 0.00

Common 99.46 ± 0.00 97.91 ± 0.00 99.46 ± 0.00 35.39 ± 0.00

Random 99.73 ± 0.00 98.90 ± 0.00 99.73 ± 0.00 33.42 ± 0.00

DAS 99.73 ± 0.00 99.01 ± 0.00 99.73 ± 0.00 34.33 ± 0.00

BBC K-means 27.51 ± 0.00 4.02 ± 0.00 30.70 ± 0.00 90.36 ± 0.00

Common 94.56 ± 0.00 86.65 ± 0.00 94.56 ± 0.00 358.13 ± 0.00

Random 99.15 ± 0.00 96.85 ± 0.00 99.15 ± 0.00 188.15 ± 0.00

DAS 99.01 ± 0.00 96.32 ± 0.00 99.01 ± 0.00 193.59 ± 0.00

Caltech7 K-means 28.87 ± 2.25 5.28 ± 4.26 56.54 ± 2.68 115.08 ± 0.35

Common 49.50 ± 2.71 62.91 ± 0.67 87.25 ± 0.32 62.94 ± 6.59

Random 61.93 ± 4.59 72.48 ± 2.90 91.95 ± 1.65 100.73 ± 3.86

DAS 59.73 ± 3.32 69.81 ± 2.86 90.09 ± 1.35 111.43 ± 13.15

Scene-15 K-means 13.24 ± 0.39 9.29 ± 0.92 15.84 ± 0.60 515.55 ± 27.81

Common 59.26 ± 14.04 55.95 ± 13.41 62.21 ± 13.79 963.54 ± 263.58

Random 47.76 ± 1.32 41.40 ± 1.29 49.77 ± 2.00 1433.83 ± 40.90

DAS 68.61 ± 4.13 66.71 ± 3.47 71.28 ± 3.07 820.27 ± 101.86

overall trend of the CPU running time curve shows a rapid
rise. Therefore, for small-size datasets, we should maximize
the number of anchor points, find the best number of anchor
points in the direction of η � 0.5, while for medium-size or
large-size datasets, we can look for the optimal number of
anchors in the direction of η � 0.5.

5.4 Effect of kernel selection

To investigate the effect of the combination of different
predefined kernel functions on the clustering performance
of the proposed MKAGT IMVC method, as shown in
Table 6, we adopt three predefined kernel functions,
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Fig. 2 The clustering performance and CPU running time of the proposed MKAGT IMVC method with the varying number of anchor points on
the BBCSport, BBC, Caltech7, and Scene-15 datasets, where the sample incomplete rates of Caltech7 and Scene-15 are 90%
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Table 6 The clustering performance (mean% ± std%) and CPU run-
ning time (sec.) (mean ± std) of the proposed MKAGT IMVCmethod
equipped with different kernel selection strategies on the BBCSport,

BBC, Caltech7, and Scene-15 datasets, where the sample incomplete
rates of Caltech7 and Scene-15 are 90%. Bold numbers denote the best
results

Dataset Kernel strategy \ Metric ACC NMI Purity CPU time

BBCSport 2 RBF Kernels 99.32 ± 0.00 97.54 ± 0.00 99.32 ± 0.00 10.68 ± 0.00

2 RBF Chi-Square Kernels 31.89 ± 0.00 1.19 ± 0.00 35.96 ± 0.00 61.31 ± 0.00

3 RBF Kernels 99.86 ± 0.00 99.44 ± 0.00 99.86 ± 0.00 14.18 ± 0.00

3 RBF Chi-Square Kernels 91.99 ± 0.00 80.82 ± 0.00 91.99 ± 0.00 82.35 ± 0.00

4 RBF Kernels 99.59 ± 0.00 98.47 ± 0.00 99.59 ± 0.00 17.53 ± 0.00

4 RBF Chi-Square Kernels 93.89 ± 0.00 85.13 ± 0.00 93.89 ± 0.00 107.69 ± 0.00

the proposed multiple Kernels 99.73 ± 0.00 99.01 ± 0.00 99.73 ± 0.00 34.33 ± 0.00

BBC 2 RBF Kernels 98.52 ± 0.00 94.79 ± 0.00 98.52 ± 0.00 103.02 ± 0.00

2 RBF Chi-Square Kernels 36.31 ± 0.00 23.70 ± 0.00 37.08 ± 0.00 261.86 ± 0.00

3 RBF Kernels 99.06 ± 0.00 96.52 ± 0.00 99.06 ± 0.00 147.81 ± 0.00

3 RBF Chi-Square Kernels 43.28 ± 0.00 33.29 ± 0.00 47.91 ± 0.00 358.98 ± 0.00

4 RBF Kernels 99.19 ± 0.00 96.88 ± 0.00 99.19 ± 0.00 184.06 ± 0.00

4 RBF Chi-Square Kernels 64.58 ± 0.00 64.31 ± 0.00 74.02 ± 0.00 475.15 ± 0.00

the proposed multiple Kernels 99.01 ± 0.00 96.32 ± 0.00 99.01 ± 0.00 193.59 ± 0.00

Caltech7 2 RBF Kernels 59.04 ± 1.87 69.46 ± 1.25 90.27 ± 0.32 47.03 ± 7.29

2 RBF Chi-Square Kernels 56.11 ± 4.99 66.55 ± 5.28 89.27 ± 2.28 92.76 ± 4.03

3 RBF Kernels 58.21 ± 2.26 69.29 ± 2.83 90.00 ± 1.38 78.53 ± 13.04

3 RBF Chi-Square Kernels 61.21 ± 4.60 70.00 ± 2.60 90.14 ± 1.31 131.51 ± 25.84

4 RBF Kernels 58.75 ± 4.59 68.57 ± 2.69 89.82 ± 1.26 112.39 ± 32.36

4 RBF Chi-Square Kernels 56.02 ± 2.18 66.15 ± 1.75 88.13 ± 1.10 219.52 ± 32.32

the proposed multiple Kernels 59.73 ± 3.32 69.81 ± 2.86 90.09 ± 1.35 111.43 ± 13.15

Scene-15 2 RBF Kernels 43.61 ± 13.10 40.82 ± 12.74 46.95 ± 13.13 828.26 ± 139.48

2 RBF Chi-Square Kernels 55.87 ± 15.27 55.41 ± 16.01 58.60 ± 15.24 759.33 ± 248.76

3 RBF Kernels 50.95 ± 17.49 48.69 ± 17.07 53.99 ± 17.12 1091.97 ± 197.65

3 RBF Chi-Square Kernels 55.34 ± 18.31 54.71 ± 17.76 58.66 ± 17.22 1075.95 ± 181.83

4 RBF Kernels 28.50 ± 1.42 24.44 ± 1.07 31.04 ± 1.44 1772.48 ± 61.97

4 RBF Chi-Square Kernels 29.79 ± 0.72 28.00 ± 1.44 32.86 ± 0.92 1706.98 ± 29.51

the proposed multiple Kernels 68.61 ± 4.13 66.71 ± 3.47 71.28 ± 3.07 820.27 ± 101.86

including RBF Kernel, Cosine Similarity Kernel, and RBF
Chi-Square Kernel, to form seven combinations to conduct
comparative experiments on four incomplete multi-view
datasets. For the kernel parameter γ setting of a certain
competitive combination, according to the number of
kernel functions in the combination, the corresponding
values are selected from the set {10, 1, 0.1, 0.01} in
turn. From the experimental results, we can observe that
the proposed combination of multiple kernels performs
robustly on the clustering performance in terms of ACC,
NMI, and Purity than other comparative combinations,
especially on the medium-size datasets. For example, in
the Scene-15 dataset, the proposed combination not only
obtains the optimal clustering performance but also its CPU
running time is much less than most other comparison
combinations. The main reason is that when we fuse
multiple incomplete views, using multiple predefined kernel

functions of different properties to construct multiple fused
complete anchor graphs, the proposed MKAGT IMVC
method not only sufficiently mines the intra-view and inter-
view information but also well captures more nonlinear
relations between samples. Therefore, these demonstrate
that the proposed MKAGT IMVC method adopts a variety
of predefined kernel functions with different kernel spaces,
which can improve the effectiveness, robustness, and
efficiency of the clustering results.

5.5 Parameter sensitivity analysis

There are two tunable parameters λ1 and λ2 in our
final objective function as formulated by (18). In the
following, we conduct some experiments to explore
the influence of different parameter combinations on
clustering performance. As shown in Fig. 3, we present
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Fig. 3 ACC (%) versus
parameters λ1 and λ2 of the
proposed MKAGT IMVC
method on the BBCSport, BBC,
Caltech7, and Scene-15 datasets,
where the sample incomplete
rates of Caltech7 and Scene-15
are 90%

Fig. 4 The objective function
value versus the number of
iterations of the proposed
MKAGT IMVC method on the
BBCSport, BBC, Caltech7, and
Scene-15 datasets, where the
sample incomplete rates of
Caltech7 and Scene-15 are 90%
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the clustering performance in terms of ACC in different
combinations of the two trade-off parameters λ1 and λ2
on the BBCSport, BBC, Caltech7, and Scene-15 datasets,
where λ1 and λ2 are both derived from {1e − 4, 1e −
3, 1e − 2, 1e − 1, 1e0, 1e1, 1e2, 1e3, 1e4}.
From the experimental results, we can observe that the
proposed MKAGT IMVC method is a little sensitive to
parameters λ1 and λ2, but in most cases, setting the two
parameters to λ1 = 0.001 and λ2 = 1 can guarantee
the best clustering performance. Obviously, the optimal
value of parameter λ2 is several orders of magnitude
larger than the optimal value of parameter λ1. This is
reasonable since λ2 is used to adjust the proportion of
the diversity term in (18), where the diversity term mainly
refers to the complementary and consistent information
of multiple views. These experiments further demonstrate
that our method can effectively capture complementary
and consistent information between views from multi-view
datasets to improve clustering performance.

5.6 Empirical convergence analysis

In Section 4.5, we analyze the convergence property of
the proposed MKAGT IMVC method theoretically. In the
following, we conduct some experiments to further analyze
its convergence property. As shown in Fig. 4, we report the
results of the convergence experiment on four incomplete
multi-view datasets. The experiment results show that the
objective function values decrease monotonically and go
stable within 20 iterations in all cases. These experiments
further demonstrate that the proposed MKAGT IMVC
method has excellent convergence.

6 Conclusion

While recently proposed incomplete multi-view clustering
methods have achieved advanced performance, they still
have several limitations to some extent, such as inflexibility
and relatively high computational cost; neglecting valuable
nonlinear relations among samples; failure to sufficiently
explore complementary information among views; etc. This
paper develops a novel and flexible unified graph learning
framework called MKAGT IMVC for addressing the
above drawbacks. MKAGT IMVC first extends an anchor
selection approach that can simply and effectively generate
a bundle of representative anchor points. Then, based on
the selected anchor points and pre-defined kernel functions,
multiple fused complete anchor graphs are constructed
to capture more valuable nonlinear relations. Moreover,
MKAGT IMVC develops a graph learning model that
integrates low-rank tensor constraint and consensus graph
constraint, where all fused complete anchor graphs are

regarded as prior knowledge to initialize this model. These
key steps make our method distinct yet superior to most
methods. Extensive experiments clearly show that our
method outperforms most state-of-the-art competitors in
terms of clustering ability and time-consuming. In the
future, we plan to further study how to adaptively select the
number of anchors, rather than experimental assessments.
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