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Abstract
Deformable medical image registration plays a crucial role in theoretical research and clinical application. Traditional
methods suffer from low registration accuracy and efficiency. Recent deep learning-based methods have made significant
progresses, especially those weakly supervised by anatomical segmentations. However, the performance still needs further
improvement, especially for images with large deformations. This work proposes a novel deformable image registration
method based on an attention-guided fusion of multi-scale deformation fields. Specifically, we adopt a separately trained
segmentation network to segment the regions of interest to remove the interference from the uninterested areas. Then, we
construct a novel dense registration network to predict the deformation fields of multiple scales and combine them for final
registration through an attention-weighted field fusion process. The proposed contour loss and image structural similarity
index (SSIM) based loss further enhance the model training through regularization. Compared to the state-of-the-art methods
on three benchmark datasets, our method has achieved significant performance improvement in terms of the average Dice
similarity score (DSC), Hausdorff distance (HD), Average symmetric surface distance (ASSD), and Jacobian coefficient
(JAC). For example, the improvements on the SHEN dataset are 0.014, 5.134, 0.559, and 359.936, respectively.

Keywords Deformable image registration · Attention network · Multi-scale feature extraction · Displacement field fusion ·
Anatomical segmentation

1 Introduction

Deformable medical image registration builds an optimal
anatomical alignment between two images and plays a vital
role in helping experts diagnose the disease, follow up
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the diseases’ evolution, and decide the necessary therapies
regarding the patient’s condition [14]. Co-registering MRI
brain images before neuro-morphometry analysis is one
example [17]. One of the two images is the source or moving
image, which is transformed or distorted by the registration
to maximally match the other one, i.e., the target or fixed
image.

Traditional image registration usually applies image
processing techniques such as key points detection, edge
extraction, and region segmentation [24, 44, 45], and
maximizes a predefined similarity measure between the
transformed moving image and the fixed [2]. Unfortunately,
solving such an optimization problem usually yields
an unsatisfactory computation efficiency and registration
accuracy.

In recent years, deep convolutional neural network (CNN)
based methods have made an excellent progress in which
the trained deep convolutional network takes the source and
target image as input, extracts the features, and predicts a
spatial transformation field used to warp the moving image
toward the target. Among these methods, the unsupervised
are the mainstream as they do not need the ground-truth
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transformation field to train the model. Instead, the training
process minimizes a loss function consisting of multiple
constraints such as the pixel-level image similarity between
the fixed and the warped moving [4, 5, 9, 25, 49].

Despite the progress so far, there still exists a large
room to improve, especially when the deformation or
difference between the input two images is large and
complex. The first and last column in Fig. 1 shows
such an example. Generative adversarial network (GAN),
along with extra anatomical segmentation constraint, was
proposed to alleviate the problem [25, 26]. However, GAN-
based network generally suffers from unstable training.
Iterative registration is another attempt that recursively and
progressively warps the moving image toward the fixed
using a small number of networks cascaded such as VTN
[47] and RCINet [49]. However, it is difficult to train such
a recursively structured network and control the number
of the cascades as increasing the number of cascades does
not guarantee the improvement of registration accuracy.
Another issue of this method is the computation efficiency.

Unlike the progressive registration, the large image
difference motivates us to combine the deformation
fields resulting from the image features of different
resolutions or scales. On the other hand, we notice the
harmful interference from the uninterested regions on
the registration accuracy. Most existing methods use the
entire image to calculate the image-related constraints
without differentiating the importance of different areas. For
example, in Fig. 1, the regions of interest are the white areas
in the images, while the rest provides little value for the
registration.

Based on these observations, we propose a novel
attention-guided fusion of multi-scale deformation fields
for deformable medical image registration. Specifically,

instead of using the dense registration model to internally
learn the attention for the regions of interest in the input
image, we propose to use a separate deep CNN to predict
the attention mask, which is then multiplied with the
input to remove the interference areas for subsequent
registration. The dense registration network adopts a U-
Net [30] structure and produces deformation fields of
multiple resolutions. A Deformation Field Spatial Attention
(DFSA) module successively combines the fields of lower
resolutions with those of higher resolutions using learned
attention weights to form the final deformation field. We
enhance the attention prediction and the reconstruction
accuracy of the anatomical encoder-decoder by designing
a new contour loss. Moreover, to improve the texture
and structural similarity after registration, we propose to
incorporate the image structure similarity index (SSIM) [40]
based constraint into the loss function to better guide the
model learning.

We have conducted the experiments on three bench-
mark datasets, and the results have shown a significant
improvement over the state-of-the-art in terms of the aver-
age Dice similarity score (DSC) [12], Hausdorff distance
(HD), Average symmetric surface distance (ASSD), and
Jacobian folding coefficient (JAC) [35]. For example, the
improvements over GRNet on the SHEN dataset are 0.014,
5.134, 0.559, and 359.936, respectively.

In summary, we have made the following major
contributions in this work.

1. We propose a novel attention-guided deformable regis-
tration method based on multi-scale deformation fields
fusion to improve the registration accuracy, especially
for images with large deformations. Specifically, the
predicted attention mask removes the interference from

Fig. 1 The first and last columns
are the moving and fixed images
and the corresponding binary
labels. Registration is to find a
deformation field to transform
the moving image toward the
fixed. The second and third
columns are the warped moving
images from method [26] and
ours
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the uninterested regions of the input images, and the
predicted multiple deformation fields of different scales
are combined using the learned attention weight map.

2. We enhance the reconstruction accuracy of the anatom-
ical encoder-decoder by designing a novel contour loss.

3. To improve the image structure similarity after registra-
tion, we propose to use the image structural similarity
index (SSIM) as a loss term to regularize the model
training.

4. We have conducted the experiments on three bench-
mark datasets, and the results have shown the improve-
ment of registration performance over the state-of-the-
art.

The rest of the paper is organized as follows. Section 2
reviews the related works; Section 3 explains the proposed
registration method and network structure; Section 4
carries out the comparative experiments to demonstrate the
effectiveness of the method, Section 5 discusses the method
and results, and Section 6 concludes the paper.

2 Related work

Deformable image registration is usually formulated as an
optimization problem that uses pixel displacement fields
to represent the spatial transformation and quantifies the
similarity between the warped moving image and the fixed.
Specifically, the optimization can be defined as

φ̂ = argmin
φ

L(φ(Im), If ) + R(φ), (1)

where Im, If are the moving (source) and fixed (target)
image, φ is the deformation (or displacement) field, which
spatially maps each pixel of Im to If , L is a metric
quantifying the alignment quality between the warped
moving φ(Im) and If , and R is a regularization term
that imposes some constraints on the transformation field.
The optimal transformation φ̂ is obtained through the
minimization of (1).

2.1 Image registration based on traditional methods

Traditional deformation registration methods usually extract
image features such as key points, edges and region
segmentations [14, 24, 44, 45] and optimize the predefined
object functions. SimpleElastix by Marstal et al. [27] uses
B-spline transformation to parameterize the deformation
field and minimizes the image difference iteratively.
Similarly, automatic image registration tools SyN [2], ANTs
[3], and FAIR [28] define metrics for transformation space
and alignment quality and iteratively update the parameters
to get the best registration alignment. Intensity-based image
features are used to establish optimal registration of the

source and target images in vivo imaging experiments for
the task of automated detection and tracking of changes in
the specimen [22].

One important thread of registration methods adopt dif-
feomorphic transformation that mathematically is a global
one-to-one smooth and continuous mapping with invertible
derivatives. Widely used heteromorphic parameterization
methods include distance metric mapping [6, 10], DARTEL
[1] and diffeomorphic demons [34].

Traditional registration methods mainly use manually
curated features to optimize the empirically defined metric,
in which the optimization process usually takes a long time
to converge, especially when the parameter space to search
is high dimensional. Therefore, the registration accuracy is
not good enough.

2.2 Image registration based on deep convolutional
neural network

With the success of deep convolution neural networks in
various computer vision tasks, many deep CNN based
methods have been proposed to improve the registration
accuracy and efficiency, in which the trained deep
convolutional network takes the source and target image
as input, extracts the image features and predicts a spatial
transformation for registration.

Among these methods, supervised learning methods
require the ground truth deformation fields to train the
network [16, 29]. The primary issue of these methods is
that it is challenging to obtain the high-quality ground truth
data. On the contrary, unsupervised deep learning methods
are more suitable for practical applications as they train the
CNN networks by minimizing the loss function measuring
the similarity between the fixed and the warped moving
image without the ground truth deformation [23, 31, 35].

In order to improve the registration accuracy, various
methods have proposed to incorporate extra information
about image modalities and anatomical structures into the
registration process. Among these methods, anatomical seg-
mentations have been frequently used. The multi-modal
CNN-based image registration method proposed by Hu
et al. takes advantage of the provided anatomical labels
to infer voxel-level spatial transformation, in which the
anatomical segmentations are directly used to calculate the
label similarity in the training loss [19]. Similarly, Vox-
eMorph [5] leverages auxiliary anatomical segmentations
during training by adding a Dice coefficient [12] loss term
indicating the agreement between the warped moving seg-
mentation and the fixed. Slightly differently, U-ResNet [15]
is a multitask network that can generate a deformation field
and a segmentation at the same time by sharing and learn-
ing the feature representations for both tasks. Global context
information about the anatomical segmentations is extracted
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as one of the loss terms in the training process [26]. Based
on this work, Luo et al. combined the anatomical segmenta-
tions and GAN framework [25].

It is commonly encountered in medical image regis-
tration that the deformation between the input images is
large and complex. It would be challenging for a single-
step prediction to make accurate registrations for these hard
cases. Iterative optimization is a natural option to allevi-
ate this problem. The idea is also widely used in traditional
image registration to optimize the objective function [7,
11]. DLIR [35] and VTN [48] designed a stacked network
structure with a small number of cascades, where DLIR
trained each cascade with the previous stages fixed while
VTN jointly trained all the cascades. However, progressive
registration was applied in neither training process. Zhao
et al.improved the original VTN [48] by considering the iter-
ative registration during the training process [47]. RCINet
[49] extended the idea of cascaded network structure to 2D
medical image registration and improved the performance
using the anatomical segmentations as [26].

2.3 Attentionmechanism and image segmentation

Attention mechanism is widely used in deep learning net-
works for computer vision tasks such as image recognition
and semantic segmentation [33, 43], from the spatial atten-
tion [36, 42], channel attention [18, 37] to self attention
[39, 46]. Spatial attention learns a weight distribution for
each spatial location, channel attention assigns weights
to feature channels, and a self-attention module computes
the response at a position in a sequence or an image by
attending to all other positions. Wang et al. proposed a
transformer-based [13] method for unsupervised image reg-
istration [41] where the deformation fields are learned by
the transformer instead of traditional CNNs. Although the
transformer-based method has achieved promising perfor-
mance in several applications, especially natural language
processing, it requires a large amount of data and computa-
tion to train the model. Instead of internally combining the
attention mechanism and the dense registration network, we
use the separately predicted segmentation as hard attention
to indicate the spatial importance and remove the interfer-
ence from the uninterested regions. Another benefit of doing
this is that we can take advantage of the achievements in
image segmentation.

3Method

In this section, we present the proposed attention-guided
fusion of multi-scale deformation fields for deformable
image registration.

3.1 Registration framework

As discussed in the previous section, we improve the
registration from three aspects, 1) attention prediction
for input image indicating its spatial importance and
removing the interference from the uninterested regions, 2)
combination of deformation fields of multiple scales with
learned attention weights, and 3) better regularization of the
model training by designing new loss terms. Figure 2 shows
the method diagram, which contains two parts.

The upper part is the principle registration network. Let
Im ∈ R2 and If ∈ R2 be the moving and fixed image,
respectively. A separate segmentation module predicts the
binary mask Wa

m and Wa
f for each image, indicating their

regions of interest, e.g., the lung parts. The mask is then
multiplied with the input to remove the uninterested areas
through element-wise multiplication, namely, I c

m = Im ·Wa
m

and I c
f = If · Wa

f . The dense registration network takes
I c
m, and I c

f concatenated on channels as input to produce
the displacement field φ, which is the pixel correspondence
between the moving and fixed image and used by the spatial
transformation network (STN) [20] to generate the warped
moving image φ(Im). The spatial transformation network
is differentiable so that the gradient can be propagated
backward during the training process.

The lower part is active only in the training stage, in
which the anatomical segmentation mask sm is warped and
used to calculate the constraint terms with respect to the
fixed mask sf to regularize the model learning. The loss
function is calculated mainly on the images (Limg) and
anatomical segmentations (Lce and Lae), as shown in Fig. 2.

3.2 Attentionmask prediction

We take the deep CNN model U-Net [30] to predict the
attention weight map in Fig. 2. We make two modifications
to achieve a better balance between efficiency and accuracy.
To speed up the efficiency, we reduce the model parameters
from about 7.7 million to 1.9 million. Secondly, by
default, the model is trained based on cross-entropy. Our
experiments show that the model reports isolated points in
the prediction for some cases. To address this issue, we
add a new loss term to measure the global-level distance of
the predicted binary mask to the ground truth. The loss is
defined on the contour of the objects or organs as

ct (I1, I2) = L2(∇I1, ∇I2), (2)

where I1 and I2 are two binary mask images, L2() is the L2

norm, and ∇ is the Laplacian edge operator [38]. The model
must be trained before starting the primary training process
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Fig. 2 Overview of the attention-guided fusion of multi-scale defor-
mation fields. In the upper part, a separate segmentation module
predicts the binary attention mask for each input to indicate the region
of interest, i.e., the lungs in the images. The attention mask is multi-
plied with the input to remove the uninterested areas. With the cleaned
input images, the trained dense registration network produces the
deformation field (DF), which the spatial transformer network (STN)
uses to warp the moving image. The lower part is active only in the

training process, in which the moving anatomical segmentation mask
is warped and used to calculate the global context distance with respect
to the fixed one. The loss term Limg is defined on the warped moving
image and the fixed, Lce is defined on the warped moving anatomi-
cal segmentation and the corresponding fixed one, Lae is defined on
the low-dimensional vectors of the encoder, and Ldf is defined on the
field itself. The dash lines indicate the loss terms

of Fig. 2. The loss function is written as

L(Ip, It ) = ce(Ip, It ) + λ ct (Ip, It ), (3)

where Ip and It are the predicted and ground truth label
images, ce() is the cross-entropy function, and λ is a weight
factor.

3.3 Anatomical segmentation encoder

In the lower part of Fig. 2, the warped moving anatomical
segmentation and the fixed are input to the encoder to form
low-dimensional representation vectors to calculate their
distance. The low-dimensional representation is learned
through a denoising auto-encoder (DAE), which maps
the input image X to a lower-dimensional vector h =
encoder(X) by the encoder and then reconstructs X by
the decoder X̃ = decoder(h). Training such a model
minimizes the reconstruction error of the input [25, 26, 49].
Similar to the attention segmentation prediction, we add a
contour loss defined in (2) to improve the global shape of
the reconstructed mask. Again, the model should be trained
beforehand. And the loss function is

L(I, I ′) = ce(onehot (I ), onehot (I ′)) + λ ct (I, I ′), (4)

where I and I ′ are the input and reconstructed segmentation
mask, onehot () is the one-hot coding function, ce() is the

cross-entropy function, ct () is the contour loss, and λ is a
weight factor.

3.4 Dense registration network

The dense registration network shown in Fig. 3 contains
multiple branches corresponding to different feature resolu-
tions or scales. Input images are successively down-sampled
with a ratio of 0.5 for branches from top to down to extract
features and produce displacement fields of different scales.
Let DFc

k be the deformation field after the last convolu-
tion and DFa

k be the combined deformation field of the k-th
branch.

We have

DFa
k = DFSA(DFa

k+1) + DFc
k , (5)

where k = 1, 2, 3 is the branch index from top to down and
DFSA() is the displacement field spatial attention module.
Figure 4 shows how the spatial attention weights are applied
to the displacement field. The X and Y channels of the
deformation field DFc

k are processed independently by
the convolution layers to obtain weight masks with values
ranging in [0, 1]. A new deformation field is formed with the
two channels multiplied by the corresponding weight maps.
From (5), we have the following channel-wise addition and
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Fig. 3 Dense registration network. Input images are successively
down-sampled with a ratio of 0.5 for branches from top to down to
extract features and produce displacement fields of different scales.

The Displacement Field Spatial Attention block (DFSA) combines the
displacement field of one branch with that from the adjacent upper
branch. The number of feature channels are shown in the blocks

multiplication

DFa
k .x = DFc

k+1.x · Wk .x + DFc
k .x (6)

DFa
k .y = DFc

k+1.y · Wk .y + DFc
k .y,

where x, y means the X and Y channels.

3.5 Loss function for model training

To train the model in Fig. 2, the entire loss function contains
three parts, i.e., the image similarity Limg , the anatomical
segmentation similarity Las , and the displacement field
smoothness Ldf .

Image Similarity Loss measures the image alignment qual-
ity after registration, namely, the similarity between the

warped moving image φ(Im) and the fixed If . To strengthen
the image similarity, we propose the following intensity-
based and structure-based similarity terms.

Limg = λncc NCC(If , φ(Im)) (7)

+λssim SSIM(If , φ(Im)),

where Im, If are the moving and fixed images, φ is the
displacement field. The normalized cross-correlation NCC

is defined as [4]

NCC(I1, I2) =
∑

x∈Ω (I1(x) − Ī1)(I2(x) − Ī2)
√∑

x∈Ω (I1(x) − Ī1)2
∑

x∈Ω (I2(x) − Ī2)2
, (8)

where x is the coordinate index, Ī1 and Ī2 are the
mean values. NCC measures the degree of pixel-intensity

Fig. 4 Deformation field spatial
attention (DFSA) network. The
X and Y channels of the
deformation field are processed
independently by the
convolution layers to obtain
weight masks with values
ranging in [0, 1]. A new
deformation field is formed with
the two channels multiplied by
the corresponding weight maps.
The numbers in blocks are the
number of feature channels
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similarity between two images. SSIM calculates the
structural similarity index, which is widely used to measure
the perceptual quality of images [40]. Let A and B be the
two images being compared. A window moves pixel-by-
pixel from the top left corner to the bottom right corner of
the image. In each step, the local statistics Θ(Aj , Bj ) index
is calculated within local window j as follows:

θ(Aj , Bj ) = (2 · mAj
mBj

+ C1) · (2 · σAj Bj
+ C2)

(m2
Aj

+ m2
Bj

+ C1)(σ
2
Aj

+ σ 2
Bj

+ C2)
, (9)

where mAj
, mBj

, σAj
, σBj

, σAj Bj
represent the average

intensity of image patchesAj andBj , the standard deviation
of Aj and Bj , and covariance between Aj and Bj ,
respectively. C1 and C2 are two constants of small positive
values introduced to avoid numerical instability. The SSIM
index between images A and B is defined by

SSIM(A, B) =
∑Ns

j=1 W(Aj , Bj )θ(Aj , Bj )
∑Ns

j=1 W(Aj , Bj )
, (10)

where Ns is the number of local windows in the image and
W(Aj , Bj ) is the weights applied to window j [40]. In this
work, we use a Pytorch model (https://github.com/aserdega/
ssim-pytorch) to approximate the SSIM function.

Anatomical Segmentation Loss regularizes the training
process by measuring the distance between the warped
moving segmentation and the fixed one.

Las = λce Lce(sf , φ(sm)) + λae Lae(sf , φ(sm)), (11)

where sm and sf are the moving and the fixed anatomical
segmentation. Lce(sf , φ(sm)) is the classical categorical
cross-entropy defined as

Lce(sf , φ(sm)) = 1

Ω

∑

x∈Ω

ce(onehot (sw
m(x)), onehot (sf (x))), (12)

where sw
m = φ(sm), x is the pixel index, onehot ()

is the one-hot coding function, and ce() is the cross-
entropy. Lae(sf , φ(sm)) is the squared Euclidean distance
between the low-dimensional representation vector of the
segmentations after the encoder in Fig. 2, namely,

Lae(sf , φ(sm)) = ||encoder(φ(sm)) − encoder(sf )||22.
(13)

The total loss function is therefore defined as

L(If , φ(Im)) = −Limg + Las + λdf Ldf , (14)

where Ldf is the field smoothness constraint defined as
the total variation of the displacement field. In (14), λncc,
λssim, λae, λce and λdf are the weight parameters.

4 Experiments

In this section, to demonstrate the effectiveness of the
proposed method, we carry out the experiments on public
datasets and compare its performance to the state-of-the-art
methods, which are two traditional methods SimpleElastic
[27] and SyN [2], and three deep CNN based methods, the
baseline AC-RegNet [26], GRNet [25], and RCINet [49].

4.1 Image datasets and evaluationmetrics

The experiments are conducted in the context of inter-
subject 2D chest X-ray image registration, which is quite
challenging due to the large anatomical variability between
different subjects. Thanks for the preprocessing work by
Lucas et al. [26], we use their released datasets as follows

1. Japanese Standard Digital Image Database (JSRT) [32]:
it contains 247 images with ground truth segmentation
labels. 197 randomly selected samples are used for
training and the rest 50 for testing.

2. Montgomery County X-ray Database (MONT) [8]: it
contains 138 images with ground truth labels. 110
randomly selected images are used for training and the
rest 28 for testing.

3. Shenzhen Hospital X-ray Database (SHEN) [21]:
it contains 550 images with ground truth labels.
Randomly selected 440 samples are used for training
and the rest for testing.

All images from the three datasets have two sizes of 256 ×
256 and 64×64. Images of 64×64 are used for training and
256×256 for testing. In this work, we remove the heart parts
in JSRT images so that all images have only lungs. Different
from the work in [25, 26] where the testing is conducted on
the 200 random pairs formed from the test list, we test all
pairs of the test set.

We evaluate the methods from two perspectives, the
agreement between the warped moving segmentation mask
and the fixed and the quality of the displacement field
itself. The three segmentation similarity metrics are 1)
Dice Similarity Coefficient (DSC), which measures the
overlapping between the segmentations [12], 2) Hausdorff
Distance (HD), which is the maximum distance between
segmentation contours, and 3) Average Symmetric Surface
Distance (ASSD), which is the average distance between the
segmentation contours. DSC value varies between 0 and 1.
HD and ASSD distance have a unit of millimeter. The higher
the DSC value, or the smaller HD or ASSD value, the better
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the registration is. As an indicator of the field smoothness,
the Jacobian folding coefficient (JAC) [35] calculates the
number of folded pixels in the displacement field.

4.2 Implementation details

We train the model of AC-RegNet and GRNet several times
using the released code and parameter settings to get the
best possible model for performance comparison. Before
training our registration model, we first train the attention
model and the anatomical auto-encoder. The weight factor
λ in (3) is set to 1.75 and the λ in (4) is 2.0. To
train the registration network, the weight factors for loss
function (14) are λncc = 1.0, λssim = 1.0, λae = 0.1,
λce = 1.0 and λdf = 3.5. With the parameter settings, we
train the three models for each dataset.

4.3 Results

Table 1 shows the registration performance comparison
among the traditional methods SimpleElastic [27], SyN
[2], deep learning methods RCINet [49], GRNet [25], and
the baseline AC-RegNet [26] in terms of mean DSC, HD,
ASSD, and JAC scores. It should be noticed that the result
of RCINet in the first test is marked with an asterisk sign as

the images used in the original test contain the heart parts,
while for the rest methods, the heart parts are removed. We
still put the result of RCINet for a rough comparison.

From Table 1, we can see that traditional methods
SimpleElastic and SyN have comparable performance, and
our method is consistently better than AC-RegNet, RCINet,
and GRNet in DSC, HD, and ASSD scores. In DSC score,
the improvement over AC-RegNet are 0.970 − 0.953 =
0.017, 0.963 − 0.946 = 0.017 and 0.957 − 0.929 =
0.028 for dataset JSRT, MONT and SHEN respectively.
The improvement over RCINet and GRNet is about one
percentage point. In score HD and ASSD, our method
is also significantly better than AC-RegNet, RCINet, and
GRNet, except that the HD score is comparable to that of
GRNet on the MONT dataset (13.283 vs. 13.385). From the
perspective of displacement field quality, the JAC scores of
our method are substantially better than that of AC-RegNet,
RCINet, and GRNet with a large margin except that the JAC
score of RCINet on MONT is 3. Figure 5 shows several
examples for visual comparison of registration effect, where
the first two columns are the moving images and their labels,
the last two columns are the fixed, column 3 and 4 are the
warped moving images by GRNet [25], and column 5 and
6 are the warped result by our method. Dice scores between
the fixed and the warped moving label are also shown below

Table 1 Registration performance comparison in terms of mean DSC, HD, ASSD, and JAC scores on three datasets among traditional
SimpleElastic [27] and SyN [2], deep learning methods AC-RegNet [26], RCINet [49] and GRNet [25]

Dataset Method DSC HD (mm) ASSD (mm) JAC

JSRT SimpleElastix 0.915 (0.045) 31.408 (15.783) 3.860 (2.071) #

SyN 0.895 (0.058) 26.545 (15.617) 4.468 (2.654) #

AC-RegNet 0.953 (0.012) 22.367 (15.382) 2.195 (0.845) 740.025 (993.758)

RCINet* 0.950 (0.017) 15.865 (7.254) 2.963 (1.106) 329.000 (417.000)

GRNet 0.960 (0.009) 13.432 (8.667) 1.705 (0.447) 508.900 (713.700)

Ours 0.970 (0.005) 9.230 (4.760) 1.244 (0.237) 48.236 (149.108)

MONT SimpleElastix 0.888 (0.086) 31.097 (22.229) 4.301 (3.743) #

SyN 0.842 (0.113) 28.221 (17.701) 5.549 (4.578) #

AC-RegNet 0.946 (0.025) 14.841 (16.170) 2.645 (1.768) 692.614 (1074.659)

RCINet 0.957 (0.031) 19.698(25.684) 2.842 (3.229) 3.000 (17.000)

GRNet 0.952 (0.024) 13.283 (16.070) 1.810 (1.653) 424.700 (820.100)

Ours 0.963 (0.016) 13.385 (16.000) 1.722 (1.600) 263.380 (710.760)

SHEN SimpleElastix 0.908 (0.058) 29.133 (19.261) 3.666 (2.591) #

SyN 0.863 (0.087) 32.915 (19.622) 5.214 (3.487) #

AC-RegNet 0.929 (0.029) 24.518 (16.248) 2.882 (1.396) 887.145 (1080.631)

RCINet 0.942 (0.023) 167.227 (119.669) 26.363 (11.511) 150.000 (312.000)

GRNet 0.943 (0.025) 16.854 (13.616) 2.196 (1.055) 417.400 (750.600)

Ours 0.957 (0.011) 11.720 (9.376) 1.637 (0.536) 57.464 (203.295)

In the first test, the results of RCINet* are slightly different from the rest as the heart parts in the images are not removed. The numbers in the
parenthesis are the standard deviation
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Fig. 5 Example of image registrations. The first two columns are the
moving images and their labels. The last two columns are the fixed.
Column 3 and 4 are the warped moving by GRNet [25] and column

5 and 6 are the warped result by our proposed method. Dice scores
between the fixed and the warped moving label by the two methods
are also shown below the image.s

the images. We can see that the global shape or contour of
the warped moving label images produced by our method
are closer to the fixed.

4.4 Ablation studies

In this section, we examine the contribution of different
components of the proposed method.

4.4.1 Effect of contour loss constraint

In our method, we propose contour loss in (2) to improve the
performance of the attention segmentation network and the
anatomical segmentation auto-encoder. This loss term aims

to enhance the global shape of the predicted segmentation
mask. Table 2 shows that adding the contour loss to the
original slightly improves the prediction accuracy of the
attention segmentation network. Figure 6 shows several
examples, where the first column is the input images, the
second column is the original segmentation using cross-
entropy only, the third column is the prediction with the

Table 2 Improvement of attention segmentation with the contour loss

JSRT MONT SHEN

Cross-entropy only 0.961 0.965 0.951

Add contour loss 0.972 0.971 0.962
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Fig. 6 Example of improved attention segmentation with the contour loss. The first column is the input image, the second column is the original
segmentation, the third column is the prediction with the contour loss, and the last column is the ground truth

contour loss, and the last is the ground truth. With the
contour loss, the predicted segmentation mask has a better
global shape. Similarly, Table 3 and Fig. 7 compares the
reconstruction of the decoder when the contour loss is
added in the training process. In Table 3, the DSC score is
comparable on JSRT and SHEN, and significantly improved
on MONT dataset. In terms of HD and ASSD scores,
the improvement is very substantial, which means that the
global shape of the reconstructed mask becomes much
better.

4.4.2 Effect of SSIM loss constraint

The SSIM loss term in (14) is proposed to improve the
structural similarity of the aligned image after registration.
Figure 8 shows the improvement of the average SSIM
score when SSIM loss is used in the training process. The
SSIM gain is 0.02, 0.013, and 0.01 for the three datasets,
respectively. It should be noted that the SSIM scores are

calculated with the cleaned input images where the attention
mask removes the regions of the uninterested.

4.4.3 Effect of attention segmentation

Table 4 compares the registration performance with or
without the proposed attention segmentation, which aims to

Table 3 Improved reconstruction of the anatomical auto-encoder with
the contour loss

Dataset Method DSC HD ASSD

JSRT Original AC-RegNet 0.955 22.607 2.794

With contour loss 0.956 15.686 2.652

MONT Original AC-RegNet 0.928 38.978 4.718

With contour loss 0.950 18.161 2.962

SHEN Original AC-RegNet 0.962 101.989 17.085

With contour loss 0.968 93.529 14.716
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Fig. 7 Effect of contour loss on anatomical encoder-decoder. The first column is the input image, the second column is the original reconstructed
label image, the third column is the prediction with the contour loss, and the last column is the ground truth

remove the interference from the uninterested areas in the
input images. We can see from Table 4 that using attention
segmentation improves the registration accuracy. Take the
DSC score for instance, using the attention segmentation,
the average DSC improves 0.970− 0.957 = 0.013, 0.963−
0.943 = 0.02, and 0.957 − 0.935 = 0.022 on the JSRT,
MONT, and SHEN datasets respectively. For HD, ASSD,
and JAC scores, the improvement is much more significant.

4.4.4 Effect of multi-scale displacement field fusion

In our proposed method, the dense registration network
combines the displacement fields of multiple scales to
improve the registration accuracy, especially for those
images with large deformations. Figure 9 shows the box
plots of the DSC, HD, ASSD, and JAC scores when
the number of displacement field scales increases from 1
to 4, in which the asterisks are the mean values. From
the figure, we see that on all three datasets, the DSC
increases, and HD, ASSD, and JAC decrease when more and

more displacement fields of different scales are combined.
Especially, the average JAC score shows a consistent trend

Fig. 8 Using the SSIM loss term improves the registration model. The
scores are calculated over the cleaned input images after the attention
segmentation
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Table 4 Comparison of registration with or without attention segmentation

Dataset Method DSC HD ASSD JAC

JSRT No attention 0.957 (0.012) 15.010 (15.010) 1.823 (0.472) 125.859 (247.386)

With attention 0.970 (0.005) 9.230 (4.760) 1.244 (0.237) 48.236 (149.108)

MONT No attention 0.943 (0.031) 17.235 (16.746) 2.183 (1.886) 658.791 (856.494)

With attention 0.963 (0.016) 13.385 (16.000) 1.722 (1.600) 263.380 (710.760)

SHEN No attention 0.935 (0.028) 18.518 (13.408) 2.483 (1.141) 63.923 (213.706)

With attention 0.957 (0.011) 11.720 (9.376) 1.637 (0.536) 57.464 (203.295)

Using the attention segmentation improves the registration performance

with the increase of the number of scales. Figure 10 shows
several examples, where the first and last two columns are
the moving and fixed images and their labels, the third
column is the result when only the topmost branch in Fig. 3
is used for registration. The fourth column is the result
when all four scales of displacement fields are combined.
Visually, we can easily see the improvement in the fourth
column when compared to the third column.

5 Discussion

The major contributions of our proposed method are 1)
the hard attention segmentation to remove the interference
from the uninterested image areas, 2) the dense registration
network based on the weighted fusion of multi-scale
displacement fields, 3) and the loss terms to regularize the
training process for better model learning.

From Table 2 we see that the segmentation prediction
accuracy is relatively high even without our contour
loss, which is the reason that we choose to predict the
attention segmentation mask using a separate model. The
second reason for this external segmentation is that we
prefer to make the main registration network not too
complicated. Adding the contour loss improves the attention

segmentation, especially it helps improve the global shape
and reduce the isolated points as shown in Fig. 6. This
attention segmentation could be further improved if we
use more advanced segmentation networks. However, that
might increase the computation cost.

The dense registration network has a U-Net structure
that can combine the displacement fields of different scales
or resolutions. The maximum number of scales is set to
4 in this work due to the image size of the last scale,
i.e., the fourth branch in Fig. 3. The fusion of multi-scale
displacement fields makes a significant difference as shown
in Figs. 9 and 10.

To improve the training performance, we propose two
new loss terms to regularize the model learning, the contour
loss of (2) and the SSIM loss of (10). The contour loss is
mainly used to train the attention segmentation model and
the anatomical auto-encoder, and the SSIM constraint is
used in the training of the dense registration model. From
the ablation studies, we see the contribution of these loss
constraints. One issue with the multi-term loss function is
the tuning of the weight factors, see (14). We empirically
tune the weight factors on the training dataset as grid search
for the best configuration requires a large number of model
training. We expect to see more improvement if better
tuning of these weight factors is carried out.

Fig. 9 Average registration accuracy with respect to the number of
displacement field scales that are combined. It shows that the regis-
tration performance increases with more scales of displacement fields
combined. On all three datasets, the DSC increases, and HD, ASSD,

and JAC decrease. Especially, the average JAC score shows a consis-
tent trend with the increase of the number of scales. The X-axis is the
number of displacement field scales from top to down in Fig. 3
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Fig. 10 Effect of multi-scale displacement fields fusion. The first two
columns are the moving images and ground truth labels. The last two
columns are the fixed. The third column is the warped labels when
only one scale, i.e., the topmost branch in Fig. 3 is used. The fourth

column is the result when the displacement fields from all branches are
combined. It is evident that combining multi-scale displacement fields
yields better registration results

6 Conclusion

In this work, we have proposed a novel deformable image
registration method based on the attention-guided fusion
of multi-scale displacement fields to improve the image
registration performance, especially for images with large
deformations. Specifically, we propose to adopt a sepa-
rately trained segmentation network to segment the region
of interest, aiming to remove the interference from the
uninterested areas in the image. We design a dense regis-
tration network that can combine the displacement fields of
different scales using learned attention weights for final reg-
istration. To improve the registration performance further,
we propose a contour loss and image structural similar-
ity based loss (SSIM) to regularize the model learning.
Our experimental results on three benchmark datasets have
shown significant improvement in DSC, HD, ASSD, and
JAC metrics when compared to the state-of-the-art meth-
ods. Our method can be directly used in practical medical
image registration used in applications ranging from com-
puter assisted diagnosis to computer aided therapy and
surgery. In our future work, we shall explore more options
to improve the registration performance, such as predict-
ing the velocity field in a diffeomorphic manner instead
of the direct displacement field and designing a more

advanced deep neural network to further improve the qual-
ity of the predicted fields. We will also plan to investigate
the extension of the method for multi-modal medical images
registration, such as MRT-CT and 2D-3D.
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