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Abstract
Accurately estimating the size and density distribution of a crowd from images is of great importance to public safety and
crowd management during the COVID-19 pandemic, but it is very challenging as it is affected by many complex factors,
including perspective distortion and background noise information. In this paper, we propose a novel multi-resolution
collaborative representation framework called the cascaded parallel network (CP-Net), consisting of three parallel scale-
specific branches connected in a cascading mode. In the framework, the three cascaded multi-resolution branches efficiently
capture multi-scale features through their specific receptive fields. Additionally, multi-level feature fusion and information
filtering are performed continuously on each branch to resist noise interference and perspective distortion. Moreover, we
design an information exchange module across independent branches to refine the features extracted by each specific
branch and deal with perspective distortion by using complementary information of multiple resolutions. To further improve
the robustness of the network to scale variance and generate high-quality density maps, we construct a multi-receptive
field fusion module to aggregate multi-scale features more comprehensively. The performance of our proposed CP-Net is
verified on the challenging counting datasets (UCF CC 50, UCF-QNRF, Shanghai Tech A&B, and WorldExpo’10), and the
experimental results demonstrate the superiority of the proposed method.
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1 Introduction

In large public places, such as sporting venues, train stations,
business districts, and tourist attractions, thousands of
people often gather in a fixed area [52]. In extremely dense
crowds, there is so much shoving and jostling that people’s
movements are no longer entirely under their own control,
which is liable to cause safety accidents, resulting in large
casualties and social impacts [21]. To avoid this scenario,
it is necessary to keep the crowd size within a reasonable
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scope by counting the flow of people in advance. In the
early days, the task relied heavily on manpower. However,
it greatly increases the human costs when the crowd size
is large enough [4]. As a consequence, many scholars have
attempted to apply computer vision techniques to crowd
counting, aiming to automatically estimate crowd size in
highly complicated unconstrained scenes.

Initially, the focus was on crowd counting using detection
and regression [19]. Detection-based crowd counting meth-
ods utilize support vector machines (SVMs) and boosting
for sparse crowds. In highly dense crowds, the individu-
als may occlude each other, seriously affecting counting
accuracy. Gradually, regression-based methods that avoid
solving the hard detection problem have become main-
stream and have achieved great improvement. In partic-
ular, density regression-based methods can localize the
crowd in density maps generated by pixel-wise regression.
Then the crowd count is calculated as the integral of the
density map [16].

Motivated by the recent successful use of convolutional
neural networks (CNNs) in semantic segmentation [13, 27]
and visual saliency [31, 50], CNN-based methods [8, 32,
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38, 41] have been introduced to address crowd counting
in dense scenes. Despite many significant achievements,
crowd counting is still limited by several factors, such
as background clutter, heavy occlusions and perspective
distortion. Among them, perspective distortion is the issue
that has aroused the most concern of researchers in recent
literature [10, 15], which embodied similar individuals in
different relative locations that vary greatly in size [17]
(shown in Fig. 1).

To address this problem, numerous methods [5, 10,
37, 51] have concentrated on remedying the scale vari-
ance by employing a multi-column architecture with var-
ious receptive fields. Although these approaches ease the
scale issue to some extent, they are limited by several
drawbacks. First, each branch usually extracts multi-scale
features independently, resulting in discontinuous informa-
tion extraction [24]. Second, due to the structural similarity
of each parallel branch, the extracted features are nearly
similar [20]. Furthermore, as the network deepens, the
scope of the receptive field accumulates from shallow to
deep, easily leading to the loss of spatial details. Similarly,
background information also has a significant impact on
the counting, as some human-shaped noise can easily be
wrongly identified as positive.

Considering the above concerns, we present a novel
multi-resolution collaborative representation framework
called cascaded parallel network (CP-Net). In the cas-
caded parallel framework, the network starts from a simple
front-end module for low-level information extraction and
gradually adds multi-resolution parallel branches sensitive
to multi-scale features to constitute the subsequent three fea-
ture extraction stages. At the back end of each stage, the par-
allel multi-resolution subnetworks mutually exchange infor-
mation, which utilizes the complementary information of
different-scale features to refine the scale-specific features.
Moreover, the feature extraction block constituting each
branch realizes the repeated fusion of features and the inten-
tional suppression of specific channels, which can solve the
continuous change in scale and the interference of back-
ground information. To more fully aggregate multi-scale

features, a multi-receptive field fusion module is designed
at the back end.

In summary, the contributions of our work are fourfold.

(1) We design a cascaded parallel network (CP-Net)
with multi-resolution collaborative representation for
crowd counting to better remedy the continuous scale
variance and filter noise in unconstrained scenes;

(2) We construct a cross-branch information exchange
module to mutually refine the scale-specific features
by utilizing complementary information between
multi-scale features;

(3) We construct a multi-receptive field fusion module at
the back end of the network to further enhance the
robustness to scale variance;

(4) Extensive experiments on four benchmarks demon-
strate the superiority of the proposed CP-Net in crowd
counting.

2 Related work

Crowd counting was regarded as a detection problem
early, while the detection-based methods performed poorly
in crowded scenes. Gradually, regression-based methods
were used for better counting performance. Recently,
density estimation methods based on CNNs have become
mainstream. In this section, we briefly review the work most
relevant to our work, which includes two aspects: multi-
column-based methods and multi-scale fusion methods.

2.1 Multi-column architecture for crowd counting

Most multi-column methods are designed to capture multi-
scale information employing columns of different receptive
fields, and many are designed for multi-task learning. The
pioneering work is the multi-column convolutional neural
network (MCNN) [51], which aims at solving the scale
problem by using three similar branches with different
kernel sizes. Switch-CNN [33] uses three CNN regressors

Fig. 1 One of the most challenging issues in crowd counting is perspective distortion, which is caused by the different distances from each person
to the camera. In addition, such scenes are often accompanied by interfering complex backgrounds
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similar to MCNN and trains a switch classifier to relay the
image patch to the optimal regressor. CrowdNet [1] designs
subnetworks of different depths to simultaneously extract
features of different levels to achieve multi-scale feature
fusion.

Furthermore, the contextual pyramid convolutional neu-
ral network (CP-CNN) [37] utilizes adversarial learning
methods and combines global and local contextual informa-
tion to produce high-quality density maps. The scale-aware
attention network (SAAN) [10] adds a visual-attention
mechanism to the CP-CNN that automatically selects
between global images and local contextual information.
The context-aware network (CANet) [24] employs four
different average pooling branches to extract the context
information of different receptive fields to improve network
performance. MMNet [3] proposes a scale-aware frame-
work that captures scale information through parallel filters
of different sizes and supervises multi-scale fusion using
multi-layer spatial information.

The attention scaling network (ASNet) [17] designs two
subnetworks based on VGG16 [36] to handle the uneven
distribution of crowds. The two subnetworks learn attention
masks and scaling factors to assist in the generation of
high-quality density maps. The perspective crowd counting
network (PCC Net) [6] proposes a three-branch multi-task
architecture in which the density map estimator, density
classifier and fore/background segmentation cooperate to
generate the final density map.

The pyramid-dilated deep convolutional neural network
(PDD-CNN) [42] proposes a pyramid dilated module,
which extracts scale information through parallel convolu-
tion with different dilation rates. Similarly, the self-attention
residual network (SARNet) [26] adopts a multi-scale con-
volutional module, which has a multi-branch structure and
employs dilated convolution of different kernel sizes to
extract differential scale information. Moreover, RGBT-
CC [22] extracts optical information and thermal informa-
tion using two modal-specific branches and aggregates the
multi-modal information using a modal-shared branch.

2.2 Multi-scale fusion for crowd counting

These methods aim to better deal with scale variations
using various multi-scale information fusion schemes.
Some methods combine multi-scale features extracted
from different depths of deep networks to solve the
scale problem. Scale-adaptive CNN (SaCNN) [49] deploys
a single-column CNN, which adapts the feature maps
extracted from layers of different depths to the same sizes
and then combines them to generate the final density map.
Because SaCNN adapts to scale variations by fusing multi-
layer features, it does not bring more parameters to the
model. Based on VGG16, the congested scene recognition

network (CSRnet) [20] first introduces dilated convolution
in the counting field to obtain larger receptive fields. Later,
DUBNet [29] proposes a scalable framework that uses a
ResNet-based front-end network to extract features and
a back-end network composed of dilated convolution to
deliver a larger receptive field. Due to the shortcut structure
in ResNet-50 [9], frequent multi-level feature fusion is
realized in the front-end network.

Other methods deploy multi-branch architectures and
use branches of different receptive fields to obtain multi-
scale information. The scale-aware attention network
(SAAN) [10] simultaneously exploits three subnetworks
to extract multi-scale features and generate attention
maps, and then generates feature maps by combining
global and local attention. The shallow feature based
dense attention network (SDANet) [28] extracts shallow
features through a low-level feature extractor (LFE) and
captures multi-scale information through dense connections
of hierarchical features. Specifically, LFE is composed of
dilated convolution kernels in different receptive fields,
which is a variant of the inception block [39].

With the increasingly successful application of encoder-
decoder networks in computer vision, the scale aggregation
network (SANet) [2] also adopts an encoder-decoder
architecture in which scale aggregation modules based
on the inception block are designed to extract multi-
scale features and a set of transposed convolutions are
employed to restore the resolution of the feature map. The
trellis encoder-decoder network (TEDnet) [16] performs
hierarchical aggregation of features at multiple decoding
stages and promotes multi-scale feature fusion through
dense jumping connections of cross paths.

Moreover, some works, such as the perspective-
aware convolutional neural network (PACNN) [34] and
perspective-guided convolution network (PGCNet) [45],
fuse the multi-scale features using the reconstructed per-
spective map of the scene. The reverse perspective network
(RPNet) [46] distorts the image based on the estimated per-
spective map so that the people in the image have similar
scales. However, due to image deformation, the estimated
location of the crowd is not spatially accurate. Some works,
such as L2SM [44], rescale the input image according to
the predicted density level to deal with the scale problem.
However, the density level is determined according to the
number of people, which cannot accurately represent the
crowd scale.

3 Our approach

In this paper, we propose a cascaded parallel network with
multi-resolution collaborative representation for crowd counting
(detailed in Fig. 2). Specifically, multiple resolution-specific
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Fig. 2 The overall architecture of the Cascaded Parallel Network (CP-
Net) with multi-resolution collaborative representation. B1, B2, and
B3 represent branch1, branch2 and branch3, respectively. The pro-
posed CP-Net can be divided into three parallel branches, which are

connected by MBG and communicate through IEM. The parameters of
convolution are represented as (kernel size)× (kernel size) @ (channel
number)

branches, two information exchange modules and a multi-
receptive field fusion module are incorporated to handle
crowd counting in complex scenes. From the perspective of
network architecture, CP-Net is a grid-shaped network that
can be described in two dimensions: horizontal and vertical.

3.1 Overall of the CP-Net

From the horizontal, CP-Net consists of five stages from
Stage 1 to Stage 5. Stage 1 contains a front-end module
composed of the first seven layers of VGG16, which is
used to extract low-level features of the input image. Each
stage from Stage 2 to Stage 4 contains one or more feature
extraction blocks composed of three Feature Extraction
Units (FEUs). Specifically, due to the well-designed
structure of FEU, feature extraction blocks can realize
multi-level fusion and noise filtering while extracting high-
level features. There are six feature extraction blocks
in total, so eighteen multi-level fusions are conducted.
Moreover, Stages 2 and 3 each contain a Multi-resolution
Branch Generator (MBG) and an Information Exchange
Module (IEM). As a cross-branch bridge, the IEM enables
the features of each branch to receive complementary
information from different resolutions. Stage 5 consists of
two modules: the Multi-Receptive Field Fusion module
(MRFF) and the regression layer, which aims to enhance
the robustness to scale variance and generate high-quality
density maps by fully aggregating multi-scale information.

From the vertical, the proposed CP-Net is divided into
three parallel branches that are connected by MBGs. Specif-
ically, branch 2 is generated by branch 1, and branch 3
is derived from branch 2. Branch 1 maintains the res-
olution of the input feature map, while branch 2 and

branch 3 decrease successively in resolution and length.
Each branch continuously performs multi-level feature
fusion and noise filtering to reduce the adverse effect on
counting. Furthermore, independent branches deliver com-
plementary information through IEM to refine the scale-
specific features. Ultimately, the three parallel branches are
successively merged into the MRFF and regression layer,
and high-quality density maps are output.

3.2 Feature extraction and branch generation

The details of the FEU are shown in Fig. 3. Each FEU
contains a sequence of multiple operations for higher-
level semantic information extraction and noise filtering,
and a skip connection for multi-level information fusion.
Specifically, the sequence consists of a 3 × 3 depthwise
convolution (DWConv), an Information Filtering Module
(IFM) and a 3 × 3 normal convolution. DWConv adopts
channel sparse connections, which convolves each channel
of the input feature map independently without interaction
between channels. [7] proved that different channels in the
feature map contain different feature information, so an
information filtering module inspired by [11] intentionally
follows the DWConv to suppress channels containing more
noise information.

The IFM is implemented as follows. Global average
pooling (GAP) is performed on the input feature map
to transform the global information of each channel into
the corresponding descriptor, followed by a sequence of
operations {FC, ReLU, FC} to learn the interdependencies
between channels, where FC indicates a fully connected
layer. Then, a sigmoid function is employed as a gating
mechanism to generate filtering factors corresponding to
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Fig. 3 Detailed configuration of the Feature Extraction Unit. The combination of DWConv and IFM can effectively filter the background noise,
and the skip connection makes the network more adaptable to scale variations through multi-level fusion

each channel. Finally, selective information filtering can
be realized by multiplying the filtering factor by the
corresponding channel.

Then, a normal 3 × 3 convolution is employed to
fuse the filtered independent channels and further extract
higher-level semantic information. Subsequently, the output
feature map is fused with the input feature map through an
element-wise sum operation to achieve continuous multi-
level feature fusion on a single branch.

Furthermore, we design the MBG to ensure that
each branch has a different resolution and to minimize
information loss. As shown in Fig. 2, the MBG is located at
the front of branch 2 and branch 3 to generate and connect
low-resolution branches. The structure of MBG is detailed
in Fig. 4. We employ a depthwise convolution and max
pooling to downsample the feature map, where the step
of both is 2. Then, the two low-resolution feature maps
are concatenated as the input of the new low-resolution
branch. Since we perform two different downsampling
operations on the original feature map, the number of

channels in the new feature map is doubled compared with
the original feature map, which can effectively alleviate
the information loss caused by downsampling. Moreover,
considering that the two parts of the low-resolution feature
map are obtained independently, we shuffle the channels to
promote the interaction of information between channels,
which is conducive to the subsequent effective fusion
between multi-level features.

3.3 Information exchangemodule

The features of different scales contain rich complemen-
tary information [23], which can be utilized to handle scale
variations. To fully capture the complementarities between
different scales, we design the Information Exchange Mod-
ule (IEM), which performs information exchange across
parallel branches rather than directly fusing features. In this
process, the scale-specific feature map is supplemented by
the different-scale feature maps of other resolution-specific
branches, so that the features contain richer information and

Fig. 4 An illustration of the
Multi-resolution Branch
Generator. Two downsampling
operations are adopted to double
the channels of the newly
generated low-resolution feature
map. Furthermore, channel
shuffling is conducted on the
two spliced independent feature
maps
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Fig. 5 The details of the Information ExchangeModule. FSB andWSB

represent the feature map and its corresponding weight map of Branch
B in Stage S, respectively. fSB and wSB represent the feature map

and its corresponding weight map after downsampling of FSB . F ′
SB

represents the refined feature map after the information exchange

avoid excessive mixing of multi-scale features. We illustrate
the IEM in Fig. 5.

In Stage 3, there are two parallel multi-resolution branches.
First, F31 is subjected to 2 × 2 max pooling to align the
size of F32. Then, the aligned feature map is concatenated
with F32, and the weight map of each channel is generated
through an information exchange function F(x). Next, we
perform an upsampling operation on the generated weight
map to align the size of F31. Subsequently, we multiply the
feature map by the corresponding weight map.

Similarly, there are three parallel branches in Stage 4.
Pool F41 and F42 to the size of F43, and concatenate
the three feature maps. Then, the weight maps generated
by the function F(x) are upsampled to the size of the
corresponding input feature map, and matrix multiplication
is performed. Finally, F ′

41, F ′
42 and F ′

43 are taken as the
inputs for Stage 5.

The information exchange function F(x) is implemented
as follows. The aligned feature maps concatenated together
are followed by a sequence of 1 × 1 convolution, ReLU
function, and 1×1 convolution, where 1×1 convolutions are
employed to gather information from different channels and
resolutions and the ReLU function is employed to eliminate
negative values. Then, after a sigmoid function, the weight
maps are obtained. The formal expression of this process is
as follows.

{W1, . . . , Wn} = S (C2 (R (C1 ({F1, . . . , Fn})))) (1)

where {F1, . . . , Fn} and {W1, . . . , Wn} represent n groups
of aligned multi-scale feature maps and their corresponding
weight maps, respectively. C1 and C2 indicate two 1 ×
1 convolutional layers. S and R represent the sigmoid
function and ReLU function, respectively.

Each weight value on the weight map receives infor-
mation from different scales and different channels. By
multiplying the weight map and feature map of each scale,
the cross-scale and cross-channel information exchange is

realized. The strategy of multi-scale feature communica-
tion adopted in this module allows the continuous exchange
of information across the parallel branches, making the
features extracted from each branch more comprehensive.
Thus, the information exchange module can refine the
resolution-specific features and obtain rich spatial informa-
tion.

3.4 Multi-receptive field fusionmodule

Through the information exchange module, we can acquire
multi-resolution feature maps rich in more complete spatial
and semantic information. To further enhance the robustness
to scale variance, a Multi-Receptive Field Fusion module
(MRFF) is designed to aggregate the refined multi-scale
features, which is illustrated in Fig. 6.

We adopt bilinear interpolation to upsample the low-
resolution feature maps to align the feature maps. In this
process, some redundant information will inevitably be
induced in the feature map. In view of this situation, we
employ three dilated convolutions with different dilation
rates to filter out redundant information and refine the
feature maps. Dilated convolution enlarges the receptive
field without increasing the number of parameters while
maintaining the resolution. The size of the convolution
kernel determines the size of the receptive field by
convolving with the input feature map. The larger the kernel,
the larger the receptive field, but it will also bring more
parameters, which will increase the computational burden.
Dilated convolution can solve this issue well and can be
converted from a normal convolution.

k′ = k + (k − 1) × (d − 1) (2)

where k′ and k are the sizes of the dilated convolution and
normal convolution, respectively, and d denotes the dilation
rate. If d = 1, the dilated convolution is equivalent to the
normal convolution.
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Fig. 6 The details of the
Multi-Receptive Field Fusion
module. “Up” indicates
upsample and the parameters of
convolution are represented as
(kernel size) × (kernel size) @
(channel number)-(dilation rate)

Moreover, instead of simple concatenation or weighted
average fusion, we assign each channel a specific weight
based on its importance in all channels and adaptively
fuse the filtered multi-scale features by multiplying the
weights and the corresponding channels. Here, the weights
are learned by a multi-layer perceptron (MLP) with three
fully connected layers (FC). The first FC is employed for
dimension reduction to reduce the computational burden,
and the last FC is employed for dimension increment to
adapt to the input channels. Before being input into the
MLP, the feature map performs a GAP operation on each
channel, and the weights output from the MLP are activated
by a Sigmoid function. Then, the feature map is fed into the
regression layer to generate the final density map.

3.5 Loss function

Counting methods based on density estimation commonly
use Euclidean distance as the loss function to optimize the
pixel-wise error:

L(Θ) = 1

2b

b∑

i=1

∥∥∥F
(
I i; Θ

)
− Gi

∥∥∥
2

2
(3)

where b is the batch size, I i denotes the input image,
F

(
I i; Θ

)
is the density map generated by CP-Net with

parameters Θ , and Gi is the ground truth. However,
the Euclidean loss ignores the correlation between pixels.
To obtain a higher-quality density map, the Structural
Similarity in Image (SSIM) [43] is introduced into the loss
function to further measure the local consistency of the
density map. The final combined loss function is defined as:

L = LE + λ

(
1 − 1

N

∑

x

SSIM(x)

)
(4)

where LE is the Euclidean distance, N is the total count of
pixels in the density map, and the parameter λ is set to 0.001.

4 Experiments

In this section, we first briefly describe the evaluation metrics
and the implementation details of our experiment. Then, we
summarize the counting datasets used in the experiments
and present the comparison results with state-of-the-art me-
thods. Finally, an ablation study is performed to comprehen-
sively analyze the effectiveness of the proposed CP-Net.

4.1 EvaluationMetrics

To evaluate the counting performance of CP-Net, the widely
used Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) are adopted as evaluation metrics, which are
formulated as follows:

Mae = 1

N

N∑

i=1

∣∣yi − ŷi

∣∣ (5)

RMSE =
√√√√ 1

N

N∑

i=1

∣∣yi − ŷi

∣∣2 (6)

where N denotes the count of test images, yi and ŷi denote
the predicted and ground-truth counts of the i-th test image,
respectively.

Moreover, to measure the gap between the predicted
and ground-truth density maps, the Structural Similarity in
Image (SSIM) and Peak Signal-to-Noise Ratio (PSNR) are
adopted in the experiment.

4.2 Implementation details

Network settings The front-end module consists of the first
seven convolutional layers of the VGG16 with pretrained pa-
rameters. The number of channels in the three branches is set
to 32, 64, and 128. The regression layer is composed of two
3 × 3 convolutional layers with 128 and 64 channels, and a
1×1 convolutional layer for outputting the final density map.
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Data augmentation To augment the training data, we crop
fixed-size image patches at different locations in each image.
Specifically, the clipping sizes of Shanghai Tech Part B and
WorldExpo’10 are 512 × 512 and 512 × 672, respectively,
while those of Shanghai Tech Part A, UCF CC 50 and
UCF-QNRF are 256 × 256. Notably, the complete image is
still fed into our CP-Net during the testing phase. Moreover,
the horizontal flip strategy is also adopted to double the
training data. To generate ground-truth density maps, we
employ a normalized Gaussian kernel to process each point
annotation in the original dataset. The ground-truth count of
each image can be obtained by summing the pixel values in
the ground-truth density map.

Training details Our framework is deployed using
PyTorch [30] and conducted on NVIDIA RTX 3090 GPUs.
During the training phase, CP-Net is trained using the
Adam optimizer [18]. Except for the batch size of World-
Expo’10, which is set to 8, the batch size of other datasets,
such as Shanghai Tech A&B, is set to 4. During the testing
phase, the batch size of datasets with different image reso-
lutions is set to 1. To prevent the model from skipping the
optimal solution during training, we adopt the learning rate
decay to obtain a lower learning rate as the training batch
increases. Specifically, we set the initial learning rate and
the decay rate to 1e-4 and 0.995, respectively, and reduce
the learning rate from epoch 1.

4.3 Comparison with the state-of-the-art methods

We compare our CP-Net with a number of state-of-the-art
methods in terms of both counting accuracy and density map
quality on the four most commonly used and challenging
public crowd counting datasets, including UCF CC 50 [14],
Shanghai Tech A&B [51], UCF-QNRF [15], and World-
Expo’10 [48]. This subsection begins with a brief summary
of each counting dataset, followed by the comparison results
with the SOTA.

4.3.1 Comparison of counting accuracy

Shanghai Tech A&B includes 1,198 challenging images
with 330,165 annotations. The dataset is divided into Part
A and Part B, and the image styles of the two parts are
very different. The images of Part A are randomly selected
from the internet, and their resolutions and crowd densities
vary dramatically. Part B comprises street-view images
from fixed cameras, where the crowds are relatively sparse
compared with Part A. Both Part A and Part B exhibit large
variations in crowd scale, making this dataset one of the
most widely used in crowd counting.

On this dataset, we compare our CP-Net with the
state-of-the-art methods, and Table 1 reports the detailed

comparison results. On part A, our CP-Net achieved
considerably excellent performance. Specifically, CP-Net
obtains the best MAE of 58.5, which is improved by
3.8% compared with the existing best method and achieves
the best RMSE of 95.4, which is improved by 1.5%.
Although the SOTA methods have achieved few errors on
Part B, our CP-Net still improves the counting performance,
achieving the optimal values of MAE and RMSE: 6.7 and
10.6, respectively. The crowd density and style of the two
subdatasets differ greatly, but CP-Net achieves excellent
performance in both, indicating the strong adaptability of
our model to different scenes.

UCF CC 50 includes 50 gray images that cover various
crowd densities in various scenarios, such as concerts,
marathons, and stadiums. This dataset is appropriate for
testing the training performance of the model with a small
batch dataset. We train our CP-Net on the UCF CC 50
dataset and compare it with nine S-O-T-A methods.
According to the criteria developed in [14], a 5-fold cross-
validation is conducted on UCF CC 50. The experimental
data of all the methods are summarized in Table 2. Our CP-
Net achieves the best MAE of 198.2 and the best RMSE
of 283.9, reducing the error by 7.2 and 13.4, respectively,
compared with the second-best. The excellent results prove
the strong ability of our network to deal with extremely
dense scenes.

UCF-QNRF includes 1,535 challenging images with approx-
imately 1.25 million annotations. This dataset contains
images of crowd scenes under various perspectives and den-
sity levels. The average resolution of the images in the

Table 1 Error comparison on the Shanghai Tech A&B dataset. Best
performance is bolded

Methods Part A Part B

MAE RMSE MAE RMSE

MCNN [51] 110.2 173.2 26.4 41.3

CSRNet [20] 68.2 115.0 10.6 16.0

CFF [35] 65.2 109.4 7.2 12.2

TEDnet [16] 64.2 109.1 8.2 12.8

CANet [24] 62.3 100.0 7.8 12.2

DUBNet [29] 64.6 106.8 7.7 12.5

SDANet [28] 63.6 101.8 7.8 10.2

RPNet [46] 61.2 96.9 8.1 11.6

MMNet [3] 60.8 99.0 7.6 11.7

AMRNet [25] 61.6 98.4 7.0 11.0

SARNet [26] 64.4 100.2 8.4 13.4

PDD-CNN [42] 64.7 99.1 8.8 14.3

CP-Net (Ours) 58.5 95.4 6.7 10.6
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dataset is larger relative to most other datasets, resulting in
a wide range in the head size of each person. On the UCF-
QNRF dataset, our CP-Net achieves the best MAE of 91.2
and the best RMSE of 156.6, which are improved by 2.8%
and 1.5%, respectively, compared with the suboptimal ones
(listed in Table 2). The drastic density and scale variations
make this dataset extremely challenging, while our CP-Net
still achieves satisfactory results, which further proves the
strong generalization ability and universality of our method.

WorldExpo’10 consists of 3,980 images with approximately
two hundred thousand annotations randomly selected from
1,132 videos taken by 108 cameras during the 2010
Shanghai World Expo. The training set contains 3,380
images taken from 103 cameras in 103 scenes, and the
testing set contains 600 images taken from 5 cameras in
5 different scenes. The large number of scenarios included
in the dataset makes it a challenging dataset, and it is
often used to verify the cross-scenario counting capability
of the method. As Table 3 lists, CP-Net outperforms
other state-of-the-art methods on the WorldExpo’10 dataset.
More specifically, our CP-Net obtains the lowest counting
errors on three scenes and the optimal average counting
error, demonstrating the powerful cross-scene counting
performance of our CP-Net.

4.3.2 Comparison of density map quality

We compare our CP-Net with nine state-of-the-art methods
to verify the performance of our method in generating
high-quality density maps, and the quantitative comparison
results are detailed in Table 4. It can be seen that our CP-
Net outperforms the nine methods in both PSNR and SSIM,
which shows that our CP-Net is state-of-the-art.

Table 2 Error comparison on the UCF CC 50 and UCF-QNRF
datasets. Best performance is bolded

Methods UCF CC 50 UCF-QNRF

MAE RMSE MAE RMSE

MCNN [51] 377.6 509.1 277 426

CSRNet [20] 266.1 397.5 120.3 208.5

CFF [35] - - 93.8 146.5

TEDnet [16] 249.4 354.5 113 188

DUBNet [29] 243.8 329.3 105.6 180.5

SDANet [28] 227.6 316.4 - -

MMNet [3] 209.7 309.7 104 178

AMSNet [12] 208.4 297.3 101.8 163.2

SARNet [26] 242.3 320.4 - -

PDD-CNN [42] 205.4 311.7 115.3 190.2

CP-Net (Ours) 198.2 283.9 91.2 156.6

Table 3 Mean absolute error comparison on the WorldExpo’10
dataset. Best performance is bolded

Methods WorldExpo’10

S1 S2 S3 S4 S5 Avg

MCNN [51] 3.4 20.6 12.9 13.0 8.1 11.6

CSRNet [20] 2.9 11.5 8.6 16.6 3.4 8.6

SANet [2] 2.6 13.2 9.0 13.3 3.0 8.2

ADMG [40] 4.0 18.1 7.2 12.3 5.7 9.5

TEDNet [16] 2.3 10.1 11.3 13.8 2.6 8.0

PCC Net [6] 1.9 18.3 10.5 13.4 3.4 9.5

RPNet [46] 2.4 10.2 9.7 11.5 3.8 8.2

SARNet [26] 2.5 10.8 8.6 15.2 3.5 7.6

CP-Net (Ours) 2.5 9.9 7.9 11.0 2.6 6.8

MCNN [51], CSRNet [20], CFF [35], and DSSINet [23]
are four representative methods for crowd counting based
on density estimation, which also focus on generating high-
quality density maps. Qualitatively, some density maps
predicted by the above S-O-T-A methods are visualized in
Fig. 7 for a more intuitive comparison. Obviously, compared
with other methods, the density maps generated by our CP-
Net are clearer and more accurate, which is quite close
to the ground truth. The density maps estimated by other
methods contain more noise and are fuzzier. This shows that
our CP-Net can better resist noise interference and generate
high-quality density maps.

Moreover, we also select some representative density
maps from other datasets for visualization in Fig. 8. It
can be clearly seen in the visualized images that our CP-
Net shows excellent density estimation performance in both
extremely congested scenes with thousands of people and
sparse scenes with only a few people. In summary, CP-Net

Table 4 Comparison of density map quality on Shanghai Tech Part A.
Best performance is bolded

Methods Part A

SSIM PSNR

MCNN [51] 0.52 21.40

CP-CNN [37] 0.72 21.72

Switch-CNN [33] 0.67 21.91

PCC Net [6] 0.74 22.78

CSRNet [20] 0.76 23.79

SANet [2] 0.78 23.36

ANF [47] 0.78 24.10

CFF [35] 0.78 25.40

TEDnet [16] 0.83 25.88

CP-Net (Ours) 0.87 27.90
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GT Count：：818

EST Count：686

EST Count：680

EST Count：742

EST Count：796

EST Count：813 EST Count：1081

EST Count：1056

EST Count：1037

EST Count：1032

EST Count：1248

GT Count：1068 GT Count：601

EST Count：678

EST Count：662

EST Count：648

EST Count：620

EST Count：613 EST Count：66

EST Count：62

EST Count：1621

EST Count：1717

EST Count：74 EST Count：1762

EST Count：53 EST Count：1839

EST Count：57 EST Count：1571

GT Count：68 GT Count：1602

Fig. 7 Comparison of results from the proposed CP-Net along with
other state-of-the-art methods. Top Row: Sample images from Shang-
hai Tech Part A. Second Row: Ground truth. Third Row: The results of

MCNN. Fourth Row: The results of CSRNet. Fifth Row: The results
of CFF. Sixth Row: The results of DSSINet. Last Row: The results of
our CP-Net

can not only accurately count crowds, but also accurately
predict the crowd distribution in various scenes.

4.4 Ablation study

In this section, we perform a comprehensive ablation
study on the Shanghai Tech Part A dataset to demonstrate
the impact of different modules and settings on CP-Net
performance. For convenience, we use “CP-Net” and “STA”
to represent our complete method and Shanghai Tech Part
A, respectively. STA covers various scenes, densities and

perspectives, which is quite suitable for ablation studies.
The comparison results are detailed in Tables 5 and 6, with
the best performance highlighted in bold.

4.4.1 The effect of the cascadedmulti-resolution
collaborative structure

Since we introduce three cascaded parallel branches into
the backbone, the impact of multi-resolution branches on
the counting performance is first explored. We build a
“Baseline” by removing the three branches generated from
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GT Count：：1556

GT Count：2071

EST Count：1513

EST Count：2007

GT Count：1556

GT Count：2071

EST Count：1513

EST Count：2007

GT Count：4191

GT Count：3964

EST Count：4097

EST Count：3994

GT Count：4191

GT Count：3964

EST Count：4097

EST Count：3994

GT Count：116

GT Count：97

EST Count：116

EST Count：96

GT Count：116

GT Count：97

EST Count：116

EST Count：96

GT Count：197

GT Count：211

EST Count：197

EST Count：207

GT Count：197

GT Count：211

EST Count：197

EST Count：207

GT Count：1022

GT Count：1208

EST Count：1010

EST Count：1213

Fig. 8 Visualization results of CP-Net on different datasets. The images cover a variety of perspectives, scenes and densities. “EST Count” and
“GT Count” correspond to the estimated count and the ground-truth count, respectively

Stage 1 to Stage 3 and then add branch 1, branch 1, branch
2, and branch 1, branch 2, branch 3 to build “CP-B1”,
“CP-B1&2”, and “CP-B1&2&3”, respectively. It is worth
noting that to control variables, there is no cross-branch

Table 5 Ablation study of different network structure settings on STA
dataset

Methods STA

MAE RMSE

Baseline 83.0 140.3

CP-B1 70.1 115.4

CP-B1&2 65.2 106.6

CP-B1&2&3 62.9 99.8

CP-c32 60.8 96.6

CP-Net 58.5 95.4

information exchange in the three networks and only one
regression layer in Stage 5. Then, we explore the effect of
the channel number of branches with different resolutions
on network performance. Specifically, we employ the

Table 6 Ablation study of the proposed modules on the STA dataset

Methods STA

MAE RMSE

CP-rIF 62.9 103.2

CP-rSK 62.1 101.7

CP-rIE 61.6 100.2

CP-rMF1 66.5 108.6

CP-rMF2 59.7 99.0

CP-Net 58.5 95.4
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DWConv with step 2 instead of MBG for downsampling
and set the number of channels for each branch to 32
(represented as “CP-c32”).

As listed in Table 5, with the continuous addition of
multi-resolution branches, the counting performance of
CP-Net continues to improve. Especially after introducing
branch 1 into the Baseline, the network makes significant
improvements in counting performance. With the gradual
addition of branch 2 and branch 3, the counting performance
of the network is also continuously enhanced. Each branch
maintains a specific-sized resolution, ensuring efficient
extraction of multi-scale features, and the complementarity
between features is also used to refine each other.
Furthermore, CP-c32 is weaker than CP-Net in counting
performance, indicating that our channel number setting is
effective and can retain richer information.

4.4.2 The effect of the feature extraction unit

To explore the influence of different configurations of
feature extraction units on the feature extraction ability of
the network, other conditions being consistent, we remove
the information filtering module and the skip connection
in the FEU. For simplicity, we denote the two networks
formed by the unit that removed the filtering module and
the unit that removed the skip connection as “CP-rIF” and
“CP-rSK”, respectively. As shown in Table 6, the counting
performance of the two networks is significantly reduced
compared with CP-Net. During the three feature extraction
stages, the skip connections in each independent branch
allow abundant details to be retained and continuous multi-
level fusions to be conducted. Moreover, the introduction of
the filtering module can control the information expression
of channels containing different objects and reduce the
negative impact of noise on network performance, which
can be proven by the visualized density maps in Fig. 9.
As shown in the visualization results, CP-rIF without IFM
mistakenly recognizes head-shaped objects as heads, while

Fig. 9 From left to right, the first and second columns are the original
image and the corresponding ground-truth density map, respectively.
The third and fourth columns are the density maps estimated by

CP-rIF and CP-Net, respectively. The image patch in the second row
corresponds to the details highlighted in the first row

CP-Net more accurately distinguishes the foreground and
background. It is worth noting that in the ground truth, a
point annotation is mistakenly labeled in a place where there
is no one (framed in a white box), while our CP-Net avoids
this error.

4.4.3 The effect of the information exchangemodule

To evaluate the effect of the IEM, we remove the IEM
from the backend of Stage 3 and Stage 4 (represented as
“CP-rIE”). Therefore, the three branches extract features
independently without performing information communica-
tion across branches. The quantitative results are shown in
Table 6. The experimental data of CP-rIE (MAE is 61.6 and
RMSE is 100.2) are significantly worse than those of CP-
Net (MAE is 58.5 and RMSE is 95.4) on STA, indicating
that the correlation between parallel branches established by
IEM is conducive to improving the counting performance.
Furthermore, we compare the visualized results to visually
show the effect of IEM on density map quality. As shown
in Fig. 10, after introducing the IEM, the quality of the
density map significantly improved, especially in extremely
dense areas. The IEM breaks the independence between
branches and enables each specific feature map to obtain
complementary information from other resolutions.

4.4.4 The effect of the multi-receptive field fusion module

To validate the advantage of MRFF, other conditions being
equal, we remove the fusion part of the MRFF and only
output the feature map extracted by branch 1 (represented
as “CP-rMF1”). Moreover, we also remove the MLP in
the MRFF to explore the effectiveness of adaptive fusion
(represented as “CP-rMF2”). As shown in Table 6, the
estimation errors of CP-rMF1 are significantly higher than
those of CP-Net on STA, with the MRFF reducing the
error by 8.0. Similarly, the counting performance of CP-
Net with MLP is better than that of CP-rMF2 without MLP.
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Fig. 10 From left to right, the original image, the corresponding ground-truth density map, and the density maps estimated by CP-rIE and CP-Net
are shown successively. The two image patches at the bottom are enlarged versions of the details highlighted in the image

The comparison results indicate that the MRFF can further
improve the robustness of the network and greatly improve
the counting accuracy by aggregating multi-scale features.

5 Conclusion

In this paper, we propose a novel multi-resolution collabora-
tive architecture called CP-Net for accurate crowd counting
and high-quality density map generation. The proposed CP-
Net gradually cascades low-resolution branches in parallel
to ensure the acquisition of multi-scale features. To refine
the resolution-specific features, we introduce an informa-
tion exchange module for cross-branch information commu-
nication. Furthermore, we construct a multi-receptive field
fusion module at the back end of the network to fully aggre-
gate multi-scale features and make the network more robust
to scale variations. Extensive experiments on four bench-
mark datasets have shown that CP-Net is state-of-the-art in
terms of density map quality and crowd counting accuracy.

In the future, we will focus on a loss function more
suitable for extremely congested scenes and further research
on crowd localization and crowd semantic segmentation
via high-quality density maps. In addition, we will extend
CP-Net to other applications, such as cell counting, animal
counting, and vehicle counting.
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