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Abstract
Automatic anomaly detection is a crucial task in video surveillance system intensively used for public safety and others.
The present system adopts a spatial branch and a temporal branch in a unified network that exploits both spatial and
temporal information effectively. The network has a residual autoencoder architecture, consisting of a deep convolutional
neural network-based encoder and a multi-stage channel attention-based decoder, trained in an unsupervised manner. The
temporal shift method is used for exploiting the temporal feature, whereas the contextual dependency is extracted by channel
attention modules. System performance is evaluated using three standard benchmark datasets. Result suggests that our
network outperforms the state-of-the-art methods, achieving 97.4% for UCSD Ped2, 86.7% for CUHK Avenue, and 73.6%
for ShanghaiTech dataset in term of Area Under Curve, respectively.

Keywords Anomaly detection · Residual autoencoder · Channel attention · Temporal shift · Anomaly video datasets ·
Unsupervised learning

1 Introduction

Anomaly detection in video surveillance is a popular
research area in computer vision because of its diverse
applications, such as traffic accident detection, criminal
activity detection, or detecting illegal activities. And yet,
detecting an abnormal activity among the vast normal
situations is challenging. The first challenge is to collect and
label all types of abnormal events since the frequency of
normal events dominates that of abnormal events and often
the abnormal parts are rare. The second challenge is their
uncertain characteristic of abnormal events. For instance,
an activity is regarded as anomalous in one context, but
it can be a normal activity in the another case. When a
pedestrian crosses the street in a crosswalk, the event is
considered as a normal activity. However, the same activity
is considered as abnormal when there is no crosswalk.
Moreover, given that it is time-consuming and inefficient
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to watch and analyse the massive amounts of surveillance
videos by human, an automatic anomaly detection system
is essential for analysing and detecting abnormal events in
surveillance videos.

As the goal of frame-level anomaly detection in videos
is to identify the frames that contain different spatial
and motion information, an anomaly detection model that
has been trained using only normal samples (or frames)
to learn a generic distribution of normal events cannot
represent unseen events or activities which are considered as
anomalies. However, abnormal frames can be distinguished
using the reconstruction/prediction error between the
ground truth sample and the reconstructed/predicted output
while testing.

In video anomaly detection, motion information is one
of the most important criteria by which one can make a
decision whether it is normal or abnormal. Some existing
approaches use a two-stream network [7, 14, 15] for anomaly
detection, including a spatial stream and a temporal stream.
The former learns the spatial structure of input frames while
the latter leverages the optical flow between neighboring
frames. However, the extraction of optical flow costs an
extra computational power. Another approach uses a recur-
rent neural network, such as a variational LSTM [16, 22, 38]
to model temporal motion information, although the model
becomes too complex as the number of the stacked layer is
increased [33, 35].
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In machine learning, attention is a technique that imitates
human cognitive attention, enhancing a part of input, such as
an object, but neglecting the remaining parts. In the anomaly
detection area, [39] showed that attention selectively applied
to the foreground area, wherein dynamic objects were
moving, enhanced the performance while neglecting the
static background area.

To handle these issues, we introduce an Attention-based
Spatio-Temporal NETwork (ASTNet)1, which has an archi-
tecture of autoencoder for the efficient anomaly detection
task. The proposed network aims to exploit both spatial
and temporal features efficiently within a unified man-
ner. So that, the extracted features by a Deep Convolu-
tional Neural Network (DCNN) are fed into two parallel
branches to exploit both spatial structures and motion fea-
tures. Then, the spatio-temporal features are again fed into
a decoder to predict the future frame. Contrast to the figure-
ground separated application of attention [39], we propose
a cascade attention model where a channel attention module
is inserted at each layer of the decoder to better exploit the
channel relationship of the features. The main contributions
of our work can be summarized as follows:

– We propose an attention-based residual autoencoder for
video anomaly detection, which encodes both spatial
and temporal information in a unified way.

– The temporal shift is applied to model temporal
information, since it provides high performance with a
low computational cost.

– The channel attention is applied to exploit channel
dependency in a cascade type within the decoder to
predict the future frame more efficiently.

– Our model outperforms state-of-the-art performance on
three standard benchmark datasets, even without using
any optical flow detector.

The rest of this paper is organized as follows. An
overview of related work is discussed in Section 2. Section 3
describes our proposed method. Detailed experiment results
and discussions are given in Section 4. Finally, Section 5
concludes this paper.

2 Related work

Recently, anomaly detection has been attracted a lot of atten-
tions of the researchers. There are roughly two representative
approaches in the video anomaly detection: the reconstruction-
based method and the prediction-based method.

Reconstruction-based method. With this, a model is
trained to reconstruct the input frame. The most popular

1https://vt-le.github.io/astnet/

model among many is the autoencoder architecture, consist-
ing of an encoder and a decoder: the former compresses the
input into a lower-dimensional feature representation, and
the latter reconstructs the output from the compressed rep-
resentation as close to the input frame as possible. Then,
the reconstruction error is used to distinguish the abnor-
mal event from the normal ones since the normal events
have the smaller errors, whereas the abnormal event has the
bigger one.

To extract the appearance feature as well as the motion
feature from the video input, some approaches [28, 30]
learnt the normal events by using an autoencoder architec-
ture, which utilised both the stacked convolutional neural
network layers to learn the spatial structure and a stacked
convolutional LSTM to learn the temporal representation.
In some case [28], a human observer was used for valida-
tion as a continuous learning. Recently continual learning
has been applied for video anomaly detection to deal with
the forgetting problem happening while training deep neural
networks. Doshi and Yilmaz [6] use a deep learning model
to extract feature embedding for input video frames. A set of
nominal feature vectors is stored in a memory module using
the k-nearest-neighbors. This process is trained in multiple
session for continual learning.

A two-stream model [14] was often used to capture
both the appearance and motion information. Such a model
typically had an architecture that included an autoencoder
and a discriminator. The anomaly scores of the two streams
were combined for more accurate decision. Similarly, Li
et al. [15] introduced a two-stream network to encode
the appearance and motion of normal events in videos.
Each stream of the network included two spatio-temporal
autoencoders using 3D video cuboids as input. The 3D
video cuboids were stacked from multiple patches which
were partitioned at the same location in continuous frames.
To overcome the high computational cost of optical flow,
Chang et al. [2] used two autoencoders to separately exploit
spatial and temporal information of videos. The spatial
autoencoder encoded the scenes and objects while the
temporal one captured the movement information of the
objects. Fang et al. [8] proposed a multi-encoder single-
decoder model to encode both motion and content cues. The
network had a motion encoder and two content encoders.
The outputs of these encoders were concatenated and
reconstructed by a decoder.

A 3D convolutional neural network had the capability for
learning both spatial and temporal information correspond-
ing to appearance and movement, respectively, in videos.
Deepak et al. [4] showed that an encoder with a convolu-
tional LSTM layer processed spatial information whereas
a decoder captured temporal one. Recently, a deep autoen-
coder had been used to reconstruct the input. For instance,
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[1] introduced a probabilistic model using an autoregres-
sive process to estimate the density in the latent vector,
that was extracted by an encoder. In addition, [10] recon-
structed the input using an autoencoder with a memory
module. The memory contents were learnt during the train-
ing phase, and the model reconstructed a testing input using
the memory, which was learnt from the normal samples.
As a result, an abnormal event produced a large reconstruc-
tion error. On the other hand, [13] proposed a three-stage
method, which required the less computational cost. The
authors substituted the autoencoder with a single-hidden-
layer feedforward neural network, that reconstructed the
input frames by minimizing the reconstruction error with a
less computation time.

The sparse coding-based anomaly detection approaches
[25, 38] were to detect anomalies using a learnt event dictio-
nary. In such a case, the normal events were reconstructed
from a learnt dictionary with a small reconstruction error,
while the abnormal event would lead to a large recon-
struction error. Within this context, [25] proposed a sparse
coding based deep neural network using the stacked recur-
rent neural networks to optimize the sparse coefficients,
while [38] introduced an optimization network based on a
novel LSTM network. A fast sparse coding network [32]
adopted a two-stream neural network to extract the spatio-
temporal features as it was a lightweight network to learn a
normal event dictionary.

Prediction-based method. This approach utilises a few
previous frames in predicting whether the future frame
would be normal or abnormal. The basic assumption is
that the normal event is predictable whereas the abnor-
mal one is unpredictable [20]. The frame prediction
approaches usually exploit both appearance and move-
ment information of the given video since the input con-
tains several consecutive frames, which include motion
features.

Generative Adversarial Network (GAN), consisting of a
generator and a discriminator, is one of the most popular
network recently, and it can be used to generate the next
frame for the video anomaly detection task. For instance,
[20] used the U-Net as the generator in predicting the
next frame and a patch discriminator was adopted to
distinguish the frames generated by the generator. Zhou
et al. [39] used the similar network architecture, wherein
U-Net was employed as a generator and a patch network
as a discriminator, was used to predict the future frame.
Moreover, an attention-driven loss was used to deal with
the imbalance problem between the foreground object and
the static background typically appeared in the anomaly
detection videos. Similarly, [36] integrated the segmentation
map into the PSNR (Peak Signal to Noise Ratio) to assign
different weights to the background and the foreground.

They also proposed the patch-level loss in their prediction
model to improve the quality of the foreground object.
In addition, [16] used a generative model to predict the
future frame. In this case, however, the original U-Net of
the generator was replaced by a spatio-temporal U-Net,
which was added three ConvLSTM layers in the middle
of the U-Net to model temporal information. Lu et al.
[22] combined variational autoencoder and ConvLSTM to
predict the future frame. The ConvLSTM was used to
represent the recurrent relationship among frames in the
given video. Doshi and Yasin [5] predicted whether the
future frame would be normal or abnormal using a GAN. In
this case, an object detection system had been used to extract
the location and the appearance feature. The reconstruction
errors and extracted information of objects were computed
using a statistical module to detect the anomalies.

Hybrid method. Tang et al. [29] combined a future frame
prediction approach with a reconstruction approach to
exploit advantages of the above mentioned methods.
Two blocks of U-Net were connected in series: the first
block was for predicting whether the future frame was
normal or abnormal and the second for reconstructing
the frame. On the other hand, [27] used dynamic
skeleton features for video anomaly detection. The
skeletal movements were decomposed into global body
movement and local body posture, and then fed into
two recurrent encoder-decoder network branches that
were employed to reconstruct their own input and
predict the future frame. Chang et al. [3] adopted a
two-stream network that exploited spatial and temporal
information. In the first stream, an autoencoder encoded
spatial information while a motion autoencoder predicted
RGB difference between the first and the last frame
to obtain motion information in the second stream
instead of computing optical flow with an expensive
computation. On the other hand, object based multi-
task learning [9] jointed three self-supervised and one
knowledge distillation for anomaly detection in video.
In each frame, object detection was carried out with a
pre-trained detector. A sequence of detected objects from
consecutive frames was fed into a 3D CNN and four 2D
prediction heads to detect anomalous events.

Although two-stream network and 3D CNN has proved
the capability to model motion information without com-
puting optical flow, such improvement comes with the
high computational cost. In this study, we propose a sim-
ple autoencoder architecture which includes an encoder to
extract feature from input video frames and a decoder to
generate the future frame in an unsupervised fashion since
the training videos contain only the normal events. The
temporal information is exploited by an effective tempo-
ral shift method which is inserted into the network at zero
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computation and zero parameters [19]. In [39], an attention
map is learned to force the model focus on the foreground
rather than the background. However, the attention is effec-
tive with single scene dataset, such as UCSD Ped 2, CUHK
Avenue. To tackle the multi scene dataset problem such
as ShanghaiTech, we propose a channel attention-based
decoder which focus on important objects automatically
while predicting the future frame.

3Method

In this section, we present our framework for video anomaly
detection in detail. As mentioned before, abnormal events
are very rare in real-world scenarios. Therefore, it is
difficult to collect and label training data that cover all
types of anomalies. To deal with this problem, we propose
an unsupervised learning method for detecting abnormal
events in video.

2D CNN [1, 10] has been used for diverse video anomaly
detection tasks and yet it cannot represent the temporal
features very well. To handle this problem, some approaches
[28, 30] combine a 2D CNN and a temporally recurrent
network such as convolutional LSTM. Such a combination
aims to propagate temporal information across frames.
Nevertheless, the more layers the model has, the more
complex the model is. Another type of method that tries to
capture both spatial and temporal information from videos
would be 3D CNN [4] with which both spatial and temporal
features can be learnt although it takes lots of effort to train
the network. A few recent state-of-the-art methods [2, 14,
15] adopt a two-stream neural network, which consists of
a spatial stream and a temporal stream. The spatial stream
exploits the appearance features while the flow stream
captures the motion information, and yet the computation of
optical flow is rather expensive.

Problem statement. We propose a network for video
anomaly detection using the future frame prediction
approach. The input of the network is a sequence of
frames in a video and the network tries to predict the
future frame [20]. Given several consecutive frames
I = {I1, I2, ..., It }, the predicted frame is Ît+1 and the
ground truth frame of the predicted one is It+1. Then,
the anomaly score can be calculated using the difference
between the predicted frame Ît+1 and the ground truth
one It+1.

3.1 Network architecture

The overall structure of the proposed model is shown in
Fig. 1 and it has the autoencoder architecture, consisting
of an encoder and a decoder. The former is for capturing

both appearance and motion information of the input video
frames, and the latter is for predicting the future frame using
the extracted spatio-temporal features with the encoder.

Encoder. From a given sequence of t frames, the high-
level features can be extracted by using a deep and wide
convolutional neural network, i.e. WiderResnet [34]. In
order to exploit both spatial and temporal information of
video frames, the last feature map obtained from the deep
convolutional neural network is then passed through two
branches, as illustrated in Fig. 1. In the temporal branch,
temporal shift is applied to model temporal features over
several input frames (Section 3.2), while the extracted
features of input frames are concatenated to maintain the
spatial information in the spatial branch (Section 3.3).
Then, the outputs of two branches are combined using an
element-wise sum and fed into the decoder to predict the
corresponding future frame.

Decoder. The output of the encoder is then used as input
of the decoder. The combined features are passed through
the decoder to restore the details and the spatial resolu-
tion of the predicted frame. Each layer of the decoder is a
sequence of blocks, including deconvolution, batch nor-
malization, and Rectified Linear Unit (ReLU) activation
function. To exploit the channel relationship of features,
the channel attention is applied after each deconvolution
block, described in Section 3.4. In addition, the out-
put features of the channel attention are concatenated
with the corresponding low-level features extracted by
the deep convolutional neural network that have the same
spatial resolution. The combined features are used in the
next step. Then, they are deconvolved to upsample the
features back to the input frame resolution.

3.2 Temporal branch

The temporal shift process [19] has been used in the video
understanding area. In the present work, we would like to
utilize the temporal shifting technique to exploit temporal
information in the video anomaly detection task. The shift
operation is performed along the temporal dimension. Some
part of the channels is shifted to the next frame while
keeping the remaining part, as illustrated in Fig. 2. Then, the
feature of the current frame is combined with the feature of
the previous one. For the given input feature maps Ftem ∈
R

N×T ×C×H×W , the output features are computed as:

F′
tem = Shif t (Ftem), (1)

where Shif t refers to the shift operation. In Fig. 2, input
features consist of four frames T = {t1, t2, t3, t4}. Part of the
channels of the current frame is shifted to the next frame.
Note that part of the channels of frame t2 is replaced by the
part of a channel of frame t1.
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Fig. 1 The overall architecture of our network for video anomaly
detection. Initially, a sequence of input video frames is fed into a
DCNN to extract features. Then, the extracted visual features are
passed through two branches to exploit further spatial information as
well as temporal one respectively. The spatial and temporal features are

combined and passed through three deconvolutional layers to generate
a future video frame. Note that a Channel Attention (CA) is applied
at each deconvolutional layer to exploit the channel dependency of the
features in a cascade type to enhance the network performance

Fig. 2 The temporal shift. Given
the feature map F, the output
feature F′ is obtained by
applying a temporal shift to
exploit the temporal
information. As illustrated, the
features of different frames are
described as different colors in
each column. Part of the channel
of frame t1 (blue) is shifted to
the next frame t2 (green)
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3.3 Spatial branch

In the spatial branch, the extracted features obtained from
the deep convolutional neural network are aggregated across
frames. To reduce computation complexity, we apply a 1×1
convolution on the combined features to reduce the number
of channels since the aggregated features contain a large
number of channels.

The features of the temporal and spatial branches are
combined as follows:

F = Ftem + Fspa (2)

where Ftem and Fspa denote the output features of the
temporal and spatial branches respectively.

3.4 Channel attention

In order to exploit channel dependency of the feature, chan-
nel attention [12, 31, 37] has been used in many fields.
For instance, ‘Squeeze-and-Exciation’ [12] adopts global
average pooling while CBAM [31] takes average-pooling
and max-pooling in obtaining the channel-wise statistics.
In our channel attention module, two convolutional layers
are chosen like [37] instead of two fully-connected layers
[12, 31].

After each deconvolutional layer, we apply channel
attention for the feature map F ∈ R

C×H×W . The output
feature F′ is computed as follows:

F′ = F ⊗ s(F), (3)

where s(F) refers to the channel attention, and ⊗ denotes
element-wise product.

Channel Attention. The output of each deconvolutional
layer is given as an input feature map F ∈ R

C×H×W of
the channel attention module. In order to exploit channel
dependency, a global average pooling is applied to the
feature F [12, 37]. The output of the global average
pooling is a vector v having C values. Then, a 1 ×
1 convolution is applied to reduce the dimension with
a reduction ratio r , followed by a rectified linear unit
(ReLU) activation function δ and the second 1 × 1
convolution with the channel dimension is recovered.

s(F) = σ(W2δ(W1v)), (4)

where W1 ∈ R
C/r×C and W2 ∈ R

C×C/r , and σ denotes
the sigmoid function.

Residual channel attention block. It is found that the
residual channel attention block can provide better result
than the channel attention especially when training with
large datasets, such as Avenue or ShanghaiTech dataset.
In the residual channel attention block, the channel
attention is located after two 3 × 3 convolution layers
just before the residual connection. A ReLU activation

is placed between two convolutional layers as shown in
Fig. 3. Given the input feature map F ∈ R

C×H×W , the
residual channel attention block is computed as:

F′ = F ⊕ (X ⊗ s(X)), (5)

where F and F′ are the input and output feature map,
respectively, and s(X) refers to the channel attention. X
is obtained by:

X = W2δ(W1F), (6)

where δ denotes the ReLU activation function. W1 and
W2 are the weight sets of the two convolutional layers.

3.5 Objective function

The goal of our network is to predict the future frame
Ît+1 from a sequence of input frames {I1, I2, ..., It }. Since
each frame consists of many pixels and each pixel has an
intensity, the constraints for intensity and its gradient can
be the important factors in minimizing the prediction error.
Thus, the similarity of all pixels in RGB space can be
ensured by an intensity constraint that compares every pixel
value between the predicted frame and the ground-truth
frame as follows:

Lint (I, Î ) =
∥
∥
∥I − Î

∥
∥
∥

2

2
(7)

To deal with potential blur occurring while adopting l2
distance, a gradient constraint is added to obtain a sharper
video frame. The loss function computes the difference
between absolute gradients along two spatial dimensions as
follows:

Lgra(I, Î ) =
∑

i,j

∥
∥
∥|Îi,j − Îi−1,j | − |Ii,j − Ii−1,j |

∥
∥
∥
1

+
∥
∥
∥|Îi,j − Îi,j−1| − |Ii,j − Ii,j−1|

∥
∥
∥
1

(8)

To measure Structural Similarity (SSIM), Multi-Scale
Structural Similarity (MS-SSIM) is used [22, 23]. Note

Fig. 3 Residual channel attention block. The input features are passed
through two 3 × 3 convolution layers with a ReLU activation in
between before the channel attention is applied
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that MS-SSIM has been proposed initially for the image
quality assessment at different resolutions. The combination
of loss functions including intensity, gradient, and multi-scale
structural similarity constraint is given as follows:

Lcon(I, Î ) = αLint (I, Î )+βLgra(I, Î )+γLmss(I, Î ), (9)

where α, β, and γ are three coefficients that balance the
weights between the losses.

3.6 Anomaly detection

To detect anomaly, we use anomaly score S(t), which is
used to measure the difference between the ground truth
frame I and the predicted frame Î . Since the Peak Signal to
Noise Ratio (PSNR) is widely used in assessing the image
quality, the quality of a predicted frame is calculated as
follows:

PSNR(I, Î ) = 10log10
[max

Î
]2

1
N

∑N
i=1(Ii − Îi )2

(10)

where N denotes the number of rows and columns in a
frame (the number of pixels), [max

Î
] is the maximum value

of Î . The higher value of PSNR indicates that the frame has
a higher quality. In other words, the difference between the
ground truth frame and the predicted frame is small.

Following [20], the PSNR of all frames in each test
video is normalized to the range [0,1], and we compute the
anomaly score S(t) for each frame by using the following
formula:

S(t) = PSNRt − min(PSNR)

max(PSNR) − min(PSNR)
(11)

wheremin(PSNR) andmax(PSNR) denote the minimum
and the maximum PSNR values in the given video sequence,
respectively. The anomaly score of a predicted frame indi-
cates whether the frame is normal or abnormal with a given
threshold.

4 Experimental evaluation

4.1 Datasets

Performance evaluation was carried out using three bench-
mark datasets such as UCSD Pedestrian dataset [26],
CUHK Avenue dataset [21] and ShanghaiTech dataset [24].
Figure 4 shows the sample cases of them. In each dataset,
the training set contains only normal videos, whereas the
test set contains both normal and abnormal frames. In each
test video, the ground truth annotation includes a binary
flag per frame, indicating whether a frame contains anomaly

event or not. So that, label 0 is the normal frame and label 1
is the abnormal frame.

UCSD Dataset. The UCSD dataset had two subsets,
namely Ped1 and Ped2, which were recorded at two
different outdoor locations. The former had a resolution
of 158 × 238 and the latter a resolution of 240 ×
360. Pedestrians walked across the camera. Such normal
events were used for training. The abnormal events in this
dataset were defined by the appearances of a car, a biker,
a skater or a wheelchair. Following the work of [5, 10],
Ped1 had been excluded from our experiments because
of its lower resolution. Ped2 contained 16 training videos
and 12 test videos, corresponding to 2550 frames for
training and 2010 for testing, respectively.

CUHK Avenue dataset. This dataset consisted of 16
training and 21 test videos, corresponding to 15,328
frames and 15,324 frames, respectively. The resolution of
each video frame was 360 × 640 pixels. There were 47
abnormal events, such as throwing objects, loitering, and
running across the gate.

ShanghaiTech Campus dataset. The ShanghaiTech
Campus dataset was one of the most challenging datasets
for video anomaly detection, containing 130 abnormal
events. The dataset had 330 training and 107 test videos
from 13 different scenes with various lighting conditions
and camera angles. It had 317,398 frames and each frame
had a resolution of 480 × 856 pixels. The dataset was
split into 274,515 training frames and 42,883 test frames.

4.2 Parameter and implementation

Each video frame was resized as 224 × 288 for Ped2,
192 × 320 for CUHK Avenue, and 192 × 288 pixels for
ShanghaiTech, respectively. The intensity of each frame
was normalized in the range of [−1, 1] before being fed
into the model. The learning rate was set as 2e-4 initially
and decreased to 1e-4 at epoch 60 for Ped2, 50 for
Avenue, and 30 for ShanghaiTech, respectively. The Adam
optimizer was adopted for training our network. To reduce
computation complexity, we utilized the penultimate feature
map instead of the last one extracted by a deep convolutional
neural network in the encoder when training Avenue and
ShanghaiTech datasets. After choosing a sequence of five
video frames randomly from the training set, the first four
frames among them were used as input, and the fifth frame
was used as the ground truth frame. Then, the ground truth
frame was compared with the predicted frame obtained from
the model in calculating the anomaly score.

Evaluation metric. Following the prior work [20, 39],
the frame-level area under the curve (AUC) was used
in evaluating the performance of our proposed network.
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Fig. 4 Examples of normal (the top row) and abnormal (the bottom row) frames in the UCSD Ped2, CUHK and Shanghaitech datasets,
respectively. The abnormal object is denoted by a red boxes, such as a man riding a bicycle (d), throwing a bag, and riding a motorbike

The AUC was obtained by computing the area under
the receiver operating characteristic (ROC) with varying
threshold values for the abnormal scores. A higher AUC
value indicated better anomaly detection performance.

4.3 Ablation study

4.3.1 Performance evaluation of processing units
in the network

Given that our network contains three major processing units
such as spatial processing, temporal processing and atten-
tion, an ablation study was carried out in order to evaluate
their effectiveness in terms of performance. Table 1 shows
result for the combinations of three components. First,
when the temporal processing and the attention module
are excluded, the network has the spatial processing unit.
Secondly, the effectiveness of both spatial and temporal
features without the channel attention module in the decoder
is shown in the second row of Table 1. Thirdly, only spatial
features are used as input of the decoder to estimate the
capability of channel attention, which aims to exploit the

attention across channels. Finally, the performance of the
whole network is shown in the bottom row.

The AUC performance (%) of proposed network using
WiderResnet38 [34] as backbone with different combina-
tion of componets on UCSD Ped2, CUHK Avenue, and
ShanghaiTech datasets is shown in Table 1. The perfor-
mance of the baseline, which contains only spatial features,
was improved by combining it with other components
such as temporal and attention. For instance, the channel
attention component improved the performance of the net-
work significantly. Notice that the network using both
spatio-temporal features and channel attention achieved
the highest performance, reaching 97.4% for UCSD Ped2,
86.7% for CUHK Avenue and 73.6% for ShanghaiTech
datasets, respectively, confirming that the combination of
spatial and temporal branches provided more information
for encoding the input frames, and the channel attention
module played a vital role in restoring the future frame well.

In particular, the ROC curves for UCSD Ped2 dataset are
shown in Fig. 5, wherein the red and orange curves denote
the ROC curves of the method using spatial and spatio-
temporal features, respectively. The green one denotes that

Table 1 Comparison between different processing units in the proposed network in term of AUC (%) on UCSD Ped2, CUHK Avenue and
ShanghaiTech datasets. When the spatial and temporal processing unit are combined with the channel attention unit, the system performs best

Backbone Spatial Temporal Attention UCSD Ped2 CUHK Avenue ShanghaiTech

WiderResNet � – – 96.5 84.6 71.6

� � – 96.6 85.3 72.5

� – � 96.9 85.7 72.4

� � � 97.4 86.7 73.6

The bold entries show the best results
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Fig. 5 Frame-level ROC curves for three benchmark datasets

of proposed method using spatial features in the encoder
and channel attention modules in the decoder. The black one
denotes the ROC curve of the proposed approach, which
includes spatial and temporal branches in the encoder and
efficient channel attention in the decoder, reaching 97.4%
for UCSD Ped2 dataset.

4.3.2 Evaluation of deep convolutional neural networks
as backbone

To show the effectiveness of our network architecture, this
section describes the performance of the proposed net-
work with different deep convolutional neural networks as
a backbone in Table 2. The network architecture is kept
unchanged and only the backbone is replaced by different
deep convolutional neural networks. The proposed network
with different backbones except ResNet-50 outperforms
the baseline method [20] for UCSD Ped2 and Shang-
haiTech datasets, suggesting that the proposed method can
achieve high performance using different features that are
extracted by different deep convolutional neural networks
as a backbone.

For instance, our network using WiderResNet38 [34] as
a backbone gives the best performance for UCSD Ped2,
CUHK Avenue and ShanghaiTech datasets, achieving the
AUC of 97.4%, 86.7% and 73.6%, respectively. It also
achieves 96.7% using SE-ResNext-101 as a backbone [12]
for UCSD Ped2, and 73.5% using SE-ResNext-50 [12] as a
backbone for ShanghaiTech, respectively.

Figure 5b and c show the frame-level ROC curves using
different deep neural networks as a backbone for CUHK
Avenue and ShanghaiTech dataset, respectively. The blue
line denotes ROC for ResNet-50 whereas the orange lines
for ResNet-101. The ROC curves of the for SE-ResNext-50
and SE-ResNext-101 have green and red lines, respectively.
The black line is the ROC curve for WiderResNet38 as a
backbone.

4.4 Comparison with state-of-the-art

Table 3 compares our approach with the recent state-of-
the-art methods for three standard anomaly datasets. These
methods are categorized into three groups, such as the
reconstruction-based methods, the prediction-based methods,
and the hybrid methods. Among them, our method achieves
the best performance for UCSD Ped2, CUHK Avenue
and ShanghaiTech dataset, reaching the AUC of 97.4%,
86.7% and 73.6%, respectively. Note that the frame-level
AUCs of our method are higher than that of the frame
prediction-based anomaly detection baseline [20] about 2%
for UCSD Ped2 and approximately 1% for CUHK Avenue
and ShanghaiTech Campus datasets, suggesting that our
network outperforms most of the recent anomaly detection
methods in term of AUC performance. The ShanghaiTech
dataset is challenging because it is a large-scale dataset,
including over 270K training frames and 42K test frames.
Since it contains a large amount of data having diverse types
of normal and abnormal events, its performance is relatively
lower than those of other datasets.
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Table 2 Comparison of the
proposed network with
different deep convolutional
neural networks as backbone in
term of AUC (%). The
proposed network using
WiderResnet38 [34] as
backbone achieves the best
performance

Method Backbone UCSD Ped2 CUHK Avenue ShanghaiTech

Proposed method ResNet-50 [11] 95.1 83.3 71.9

ResNet-101 [11] 95.8 82.2 72.7

SE-ResNext-50 [12] 96.1 84.8 73.5

SE-ResNext-101 [12] 96.7 84.3 73.0

WiderResNet38 [34] 97.4 86.7 73.6

The bold entries show the best results

Table 3 Comparison with
recent state-of-the-art methods
for video anomaly detection in
terms of AUC (%) on three
benchmark datasets. The
proposed network uses
WiderResnet38 [34] as a
backbone

Methods UCSD Ped2 CUHK Avenue ShanghaiTech

Hybrid Tang et al. [29] 96.3 85.1 73.0

Morais et al. [27] - 86.3 73.4

Reconstruction Wei et al. [30] 89.5 79.7 67.2

Nawaratne et al. [28] 91.1 76.8 –

Li et al. [14] 91.6 84.2 –

Luo et al. [25] 92.2 83.5 69.6

Gong et al. [10] 94.1 83.3 71.2

Zhou et al. [38] 94.9 86.1 –

Abati et al. [1] 95.4 – 72.5

Hu et al. [13] 95.9 84.2 –

Wu et al. [32] 92.8 85.5 –

Li et al. [15] 92.9 83.5 –

Fan et al. [7] 92.2 83.4 –

Fang et al. [8] 95.6 86.3 73.2

Chang et al. [2] 96.5 86.0 73.3

Deepak et al. [4] 83.0 82.0 –

Prediction Liu et al. [20] 95.4 85.1 72.8

Li et al. [16] 96.5 84.5 –

Lu et al. [22] 96.0 85.7 –

Zhou et al. [39] 96.0 86.0 –

Yang et al. [36] 95.9 85.9 73.5

Doshi et al. [5] 97.2 86.4 70.9

Ours 97.4 86.7 73.6

The bold entries show the best results

Fig. 6 Anomaly score of the test
video 02 in the UCSD Ped2
dataset. The red rectangles
denote the abnormal objects
(riding bicycle) in the frames.
Note that the anomaly score
drawn as a blue line is increased
as the abnormal object appears
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Fig. 7 Anomaly score of the test video 02 in the CUHK Avenue
dataset. The three pink areas indicate the ground truths for appear-
ing anomalous object. The red rectangles denote the abnormal running

objects. The anomaly score is drawn as a blue line that is increased
whenever the abnormal object is moving in front of the building. Note
that the third abnormal event comes from the shaking camera

The overall shape of our proposed network is an autoen-
coder, consisting of encoder and decoder. In the encoder,
the temporal branch is to model the temporal information
by applying the effective temporal shift method which does
not add any extra parameters and the shift operation is per-
formed at zero computation [19]. As mention in Section 3.3,
a 1 × 1 convolution is the main operation in the spatial
branch to reduce the dimension of the aggregated features.
On the other hand, channel attention uses small extra param-
eters and computation [31]. As shown in Fig. 3, a channel
attention module includes a global average pooling, two
2D convolutions, a rectified linear unit activate and a sig-
moid function. The proposed architecture appears to be an
effective approach for anomaly detection in videos.

4.5 Visualization

4.5.1 Anomaly score

Figures 6, 7 and 8 show how anomaly score can be visu-
alized along video frames for three anomaly datasets. Note
that the anomaly score drawn as a blue line in each figure
changes rapidly between the normal and the abnormal event,
indicating that our network is able to distinguish the spo-
radically occurring abnormal events among the vast normal
ones within a given video. Figure 6 shows how the anomaly
score varies for the normal and abnormal events occurring
in the test video 02 of the UCSD Ped2 dataset. The first
two frames show only the walking pedestrians, whereas the
remaining two frames contain a bicycle rider among these
pedestrians. Notice that the anomaly score increases dramat-
ically when the rider appears within the frame and the score
maintains high level until he disappears.

Figure 7 visualizes how the anomaly score changes as
a running man appears in front of a building from the test
video 02 of the CUHK Avenue dataset. Three abnormal
events are shown: The first two abnormal events record the
man running, and the third event come from the shacking of
the camera. The anomaly score rises steeply when the man
appears and then decrease sharply when he steps out of the

frame. A noticeable fact is that the anomaly scores of the
third event shows the highest score presumably because the
camera shake event affects the whole frame.

The anomaly score and some key frames of the test
video 01 0063 of the ShanghaiTech dataset are visualized
in Fig. 8. Two normal frames contain a few pedestrians
on the walkway, while the abnormal event has a bicycle
rider. The anomaly score increases rapidly when a bicyclist
comes into the scene, whereas the score decreases as the
rider disappears, confirming that our network is able to
distinguish the abnormal frame from the vast normal frames.

4.5.2 Network visualization

In this section, the visualizations2 of UCSD Ped2 and
ShanghaiTech Campus datasets are shown in Figs. 9 and
10, respectively. Each figure visualizes a sample of normal
event on the left column and an abnormal event on the right
column. The ground truth frames of events are shown on
the first row of each figure. The extracted features obtained
from DCNN are fed to the spatial and temporal branches.
The spatio-temporal features are visualized on the second
row. In addition, channel attention [31] is applied to focus
on some objects among others, visualizing as the attention
maps on the third row. Given that prediction error can be
measured as the difference between the predicted frame
and its ground truth frame, our network is designed to
produce a smaller prediction error for the normal frame,
whereas a larger prediction error for the abnormal frame.
Following [36, 39], the prediction errors for UCSD Ped2,
and ShanghaiTech datasets are visualized at the last row of
Figs. 9 and 10, respectively.

In Fig. 9, the ground truth samples of a normal and
abnormal events (a, b) are shown on the first row and the
corresponding spatio-temporal maps (c, d) are visualized on
the second row. In the attention map (f), the cyclist appears
to be salient among the pedestrians. On the bottom row,
the prediction error around the cyclist is bigger than those

2The demo video can be found at https://youtu.be/XOzXwKVKX-Y
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Fig. 8 Anomaly score of the test video 01 0063 in the ShanghaiTech dataset. The pink area indicates the ground truth. The red rectangle denotes
the abnormal riding object

Fig. 9 Network visualization for
the UCSD Ped2 dataset. The
normal and abnormal samples
are shown on the left and the
right column. From top to
bottom, the ground truth frames
(a, b), the spatio-temporal maps
(c, d), the attention maps (e, f),
and the prediction errors (g, h)
are shown, respectively. Note
that the attention map has half
the resolution of input video
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Fig. 10 Network visualization
for the ShanghaiTech Campus
dataset. The normal case is
shown on the left column and
the abnormal one is shown on
the right column. From top to
bottom, the ground truth frames
(a, b), the spatio-temporal maps
(c, d), the attention maps (e, f)
and the prediction errors (g, h)
are shown, respectively. Note
that the attention map has half
the resolution of input video

around pedestrians in the abnormal case (h) since the model
has been trained with normal frames.

A similar observation can be made for ShanghaiTech
dataset as shown in Fig. 10, wherein the cyclist is also
seen as an abnormal object. The spatio-temporal maps (c,
d) corresponding to the ground truth frames (a, b) of the
normal and abnormal events are shown in the second row.
On the third row, attention of the network is distributed
within the normal frame, whereas it is focused around the
cyclist within the abnormal frame. The difference between
the ground truth and the predicted frames is illustrated as
prediction error in the bottom row. Similar to the above case,
the prediction error of the normal frame (g) is minimal,
whereas the riding cyclist as an abnormal event produces a
large prediction error around him as shown in (h).

5 Conclusion and future work

This study presents a new video anomaly detection frame-
work that has an attention-based residual autoencoder
architecture. The proposed network is based on unsuper-
vised learning and it exploits both spatial and tempo-
ral information in a unified network. The temporal shift
is developed for the effective temporal feature extraction.
In addition, the channel attention mechanism is utilized to
exploit the channel relationship of features, which signifi-
cantly helps the model learn more effectively. Experiments
on three anomaly benchmark datasets show that our net-
work outperforms the state-of-the-art methods. The ablation
study shows that not only the spatio-temporal circuits in
encoder but also the cascade type application of channel
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attention in decoder have been very effective in improving
the system performance. Moreover, the proposed network
architecture works well in 2D data and may be generaliz-
able to 3D data for real-world engineering applications [17,
18]. We look forward to applying this framework for the
practical surveillance systems.
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