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Abstract
The success of crowdsourcing projects relies critically on motivating a crowd to contribute. One particularly effective
method for incentivising participants to perform tasks is to run contests where participants compete against each other for
rewards. However, there are numerous ways to implement such contests in specific projects, that vary in how performance
is evaluated, how participants are rewarded, and the sizes of the prizes. Also, the best way to implement contests in a
particular project is still an open challenge, as the effectiveness of each contest implementation (henceforth, incentive) is
unknown in advance. Hence, in a crowdsourcing project, a practical approach to maximise the overall utility of the requester
(which can be measured by the total number of completed tasks or the quality of the task submissions) is to choose a
set of incentives suggested by previous studies from the literature or from the requester’s experience. Then, an effective
mechanism can be applied to automatically select appropriate incentives from this set over different time intervals so as to
maximise the cumulative utility within a given financial budget and a time limit. To this end, we present a novel approach
to this incentive selection problem. Specifically, we formalise it as an online decision making problem, where each action
corresponds to offering a specific incentive. After that, we detail and evaluate a novel algorithm, HAIS, to solve the incentive
selection problem efficiently and adaptively. In theory, in the case that all the estimates in HAIS (except the estimates of the
effectiveness of each incentive) are correct, we show that the algorithm achieves the regret bound of O(

√
B/c), where B

denotes the financial budget and c is the average cost of the incentives. In experiments, the performance of HAIS is about
93% (up to 98%) of the optimal solution and about 9% (up to 40%) better than state-of-the-art algorithms in a broad range
of settings, which vary in budget sizes, time limits, numbers of incentives, values of the standard deviation of the incentives’
utilities, and group sizes of the contests (i.e., the numbers of participants in a contest).
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1 Introduction

Crowdsourcing has emerged as an efficient approach for
obtaining solutions to a wide variety of problems by
engaging a large number of Internet users from many
places in the world [2–7]. Crowdsourcing is attractive to
organisations and companies not only because it provides
cheap labour, but also because it helps to solve problems
quickly and effectively [8–10]. To cope with this increased
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number of crowdsourcing campaigns and the desire to
run them quickly, there is growing interest in building
autonomous agents to run crowdsourcing projects [11–21].

A key challenge in these settings is that the success
of crowdsourcing projects relies critically on motivating a
crowd to contribute [2, 10, 22]. Given this, contests1 have
been shown to be an efficient approach in these projects to
motivate a crowd, as they are effective and cheap. Actually,
by rewarding participants in a contest, task requesters do
not necessarily have to pay for every task completed as
in other types of financial rewarding schemes, such as

1We use the term contest in a broad sense to refer to any situation in
which participants exert effort to submit tasks for prizes, which are
provided based on relative performance. The prizes can be tangible
rewards, points, or positions on a leaderboard. Thus, all-pay auctions,
lotteries, and leaderboards are considered contests for the purpose of
this paper.
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paying for performance [23] or using bonuses [24, 25].
Indeed, they have to pay mainly for a certain number of
participants, e.g., the top two who have completed the most
tasks or the top participant who has completed the tasks
with the highest quality. 99 Designs (www.99designs.com),
TopCoder (www.topcoder.com), and Taskcn (www.taskcn.
com) are some well-known crowdsourcing platforms that
use contests to attract participants.

Nevertheless, the effectiveness of the contests is likely to
be different between crowdsourcing projects based on spe-
cific properties of those projects, such as the project purpose
(e.g., building data for scientific studies or collecting data
for a company), the task nature (e.g., interesting or boring),
or the participant community (e.g., the extent to which they
are in contact with each other or the extent to which the
information of a participant is exposed to the others in the
community). These differences reflect the fact that partici-
pants have different motivations [26–28]. Additionally, the
implementation of the contests can make a significant dif-
ference in performance [29]. In more detail, each contest has
a certain number of parameters, such as the base pay-
ment (a fixed payment for every participant), the group size
(the maximum number of participants in a contest) and the
amount of prize money for the best participant. For ease of
presentation, we refer to a contest corresponding to specific
parameter values as an incentive.2

Furthermore, currently on many crowdsourcing platforms
such as Amazon Mechanical Turk (www.mturk.com), appen
(https://appen.com/), and Clickworker (www.clickworker.
com), the requesters can manage the tasks (e.g., creating a
task with descriptions or uploading related data for a task)
and the submissions (e.g., downloading the submissions
from the participants or sending bonuses to participants
with high quality submissions) in an autonomous manner
using a programmable Application Programming Interface
(API). This makes it possible to build autonomous agents to
monitor and adaptively switch incentives when appropriate.
Indeed, it is inconvenient or practically impossible in many
cases to switch between incentives manually to identify

2We can see that two incentives can be different in the parameters or
the parameter values For example, we might have the following three
incentives. Incentive 1 corresponds to contests where the base payment
(the first parameter) is £1.00, the group size (the second parameter) is
10, and the amount of prize money for the best participant (the third
parameter) is £5.00. Incentive 2 is the same as incentive 1 except the
base payment is £1.50. Incentive 3 is the same as incentive 1 except
it has one more parameter, the amount of prize money for the second
participant is £5.00. In this example, incentives 1 and 2 have the same
parameters but correspond to different values of the parameters. Also,
incentive 3 has one parameter more than incentives 1 and 2.

Although the incentives focused on in this paper relate to contests,
the problem stated and the algorithms discussed can be used with
any other types of incentive in the literature, such as paying for
performance or using bonus payments. Hence, to keep the problem
general, we use the term incentives instead of contests.

the best one. Therefore, finding an appropriate way for
an autonomous agent to select an effective incentive in a
crowdsourcing project is a key problem. We refer to this as
the incentive selection problem (ISP) [1, 20].

As mentioned above, the effectiveness of the incentives
in a specific crowdsourcing project is unknown in advance.
Thus, in order to utilise the most effective one (i.e., exploit),
the agent has to try each incentive several times to evaluate
its respective effectiveness (i.e., explore). Given this need
to balance exploitation and exploration, budgeted multi-
armed bandits (budgeted MABs) are a suitable approach for
this problem [30, 31]. In more detail, this approach models
the problem as a machine with k arms (corresponding to
k incentives), pulling an arm (providing the corresponding
incentive to a group of participants) incurs a fixed cost
(attached to the arm) and delivers a utility (e.g., the number
of tasks completed) drawn from an unknown stochastic
distribution. The objective in a budgeted MAB problem is
to find a pulling policy (how many times each arm is pulled
at each time step) that maximises the expected total utility
within a given budget (e.g., £500).

A number of algorithms have been proposed to solve
the budgeted MAB problem [18, 30–32]. However, these
algorithms are not designed to work with the time budget
(i.e., the deadline) of the ISP. Moreover, they do not consider
the group-based nature of the incentives we consider here
(i.e., contests); that is, after pulling an arm, we receive
the performance of all the individuals in the corresponding
contest group (i.e., a number of data points) rather than
only the overall performance of the whole group (i.e., one
data point). Thus, as we will show in Section 6, they
are not efficient when dealing with the ISP. To illustrate
the importance of the group-based nature, consider the
two cases when the group size is 5 (i.e., 5 participants
per contest) and 20 respectively. Current MAB algorithms
would not treat these cases differently. However, the latter
clearly provides us with more information on each pull
(as it has more samples, i.e., participants). As a result,
the second case requires fewer pulls of exploration in
order to achieve the same level of understanding of the
participants’ performance (e.g., after 5 pulls of an arm in the
second case, we have effectively sampled the performance
of 100 individuals, but would require 20 pulls of an arm
in the first case to reach that sample size). Hence, it is
necessary to consider the group-based nature to determine
the appropriate numbers of pulls for the arms. This is a
non-trivial extension that requires new bandit algorithms.

In order to address this gap, in this paper we introduce an
algorithm to deal with the ISP. The ultimate purpose of this
work is to build an autonomous agent that can automatically
and effectively select the right incentives, so that we can
easily deploy projects on crowdsourcing platforms by using
the provided APIs. To this end, our main contributions are:
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(1) We formalise the ISP and then introduce HAIS, a
novel adaptive algorithm to solve the ISP effectively
by utilising the limited financial and time budgets
while considering the group-based nature of the
incentives. Specifically, HAIS is designed to have
(a) a better exploration-exploitation strategy together
with (b) an efficient way of using the time budget in
the exploitation phase, and (c) an effective approach
for spending more of the budget on highly effective
incentives in the exploration phase.

(2) We theoretically show that in the case all estimates con-
ducted in HAIS (except the estimates of the incentives’
effectiveness) are correct, the algorithm benefits from
a regret bound of O(

√
B/c), where B denotes the

financial budget and c is average cost of the incentives.
(3) We empirically demonstrate in synthetic environments

that HAIS is more effective compared to the state-of-
the-art approaches in an extensive series of simula-
tions. Specifically, the performance of HAIS is about
93% (up to 98%) of the optimal solution and about 9%
(up to 40%) better than state-of-the-art benchmarks.

The paper is organised as follows: next we discuss related
work in Section 2. We then describe the ISP as a batched
2d-budgeted group-based MAB problem in Section 3. After
that, we introduce HAIS in Section 4. We present a
theoretical analysis of the algorithm by inspecting its regret
bound in Section 5 and we conduct an empirical evaluation
of the algorithm by running simulations in Section 6. We
conclude in Section 7.

2 Related work

Much work has taken a game-theoretic approach to
investigate the optimal (or efficient) design of contests in
general and crowdsourcing contests in particular. Such work
often tries to answer the questions of how to distribute the
prizes (number of prizes and their values) in contests [33–
41]. However, applying this body of research to building
efficient contests for real-world crowdsourcing projects
is still challenging since (1) these studies are based on
the rationality assumption 3, whereas real participants in
crowdsourcing might be partly rational or indeed irrational,
as they might lack information, knowledge, or time; and
(2) the studies do not consider other factors related to
the participants’ intrinsic motivation that might affect their
behaviour, such as the project purpose, the task nature, or
the participant community, as described in Section 1.

An alternative approach to deal with providing appro-
priate incentives is to design incentives that are thought

3The assumption is that the human participants act in a fully rational
manner.

to be effective based on previous studies and then empiri-
cally select the most effective one. Specifically, the above-
mentioned studies can be used to design several contest
implementations (i.e., candidate incentives). Other relevant
studies in psychology, sociology, or computer science (e.g.,
[23, 26, 27, 42, 43]) can also be used for this task as
they help us better understand possible interactions between
the factors (e.g., the incentives, the level of autonomy and
interestingness of the tasks, or the purpose of the projects)
related to motivations of the participants. Then, based on the
proposed candidates, an adaptive approach can be used to
identify the most effective candidate efficiently.

Following this direction, as noted in Section 1, multi-
armed bandits (MABs)(mab) are a promising approach.
Some algorithms are shown to be robust in many cases, such
as Exp3 [44] and Thompson Sampling [45]. Yet, as
they do not consider the time and financial budgets, these
algorithms cannot be used to solve the ISP. For example,
with Exp3 and Thompson Sampling, in a time period,
they draw an arm based on estimated probabilistic models
corresponding to the arms. This is effective when the
time budget is much larger than the number of arms.
However, this is often not the case in the ISP. Therefore,
budgeted MABs (MABs where the overall budget is limited,
[30])(budgeted-mab) are a better approach. A number of
studies considering budgeted MABs have been conducted.
Specifically, the (financial) budget-limited MAB was first
introduced by [30], where the number of times an arm
can be pulled (in both exploration and exploitation phases)
is constrained by a single budget B (without a deadline).
Their algorithm ( Budget-limited ε-first, or ε-
first for short) spends εB (where ε is specified in
advance, e.g., 0.3) for sequentially pulling the arms in the
exploration phase and (1 − ε)B for pulling the arms with
the highest estimated outcomes in the exploitation phase.
[18] consider the uniform pulling approach of ε-first and
argue that it might be inefficient in some cases when some
ineffective arms can easily be identified and eliminated.
From this argument, they develop three algorithms with
three different approaches for eliminating the ineffective
arms (l-split, PEEF, and SOAAv). Simulations on the
trust problem of a supply chain 4 show these algorithms
are effective, especially SOAAv with its adaptive approach.
Taking a different approach, [31] use the idea of upper-
confidence bounds from [46] to build an algorithm called
Fractional KUBE, or fKUBE for short, that combines
exploration and exploitation in one process.

However, as we will show in Section 6, the algorithms
developed by [30, 31] and [18] are not efficient when dealing

4In this problem, a supplier can be considered as a node in a tree and
each supplier faces a different MAB problem of choosing the most
trustworthy sub suppliers.
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with the ISP. First, regarding the group-based nature of the
incentives (i.e., arms), the performance of these algorithms
can vary significantly in different group sizes (i.e., the
number of participants in a contest). For example, with ε-
first, in the exploration phase, it pulls the arms evenly
with a given budget, so the arms with smaller group sizes
are explored less than larger group sizes. Indeed, as the
total number of participants in each arm is the group size
of the arm times the number of times this arm is pulled,
when the arms are pulled the same number of times, the arm
with a smaller group size has fewer participants. This will
affect its performance when the group sizes of the best arms
are small compared to those of the worst arms, as the best
arms will be pulled less than the others in the exploration
phase. Second, regarding the time limit, as they are designed
to work with an unlimited deadline, their performance
can drop significantly when running under strict time
constraints. For example, with fKUBE, as it spends only one
round to obtain initial estimates of the arms’ effectiveness,
when the deadline is tight, pulling the current best arm
once in a period is too slow to identify the real best
arm before the deadline. Third, regarding the exploration-
exploitation balance, they do not have an effective and
adaptive mechanism for distributing the financial budget
across the two phases. For instance, with ε-first, it is
not easy to specify an appropriate value for ε in advance,
when there is little information about the performance
of participants in the projects. Also, when differences
in the effectiveness of the incentives are low (i.e., it
is difficult to differentiate the incentives’ effectiveness),
the elimination mechanism of SOAAv might not be
effective and the exploitation-exploration process of fKUBE
might be slow in identifying the best arm. Despite these
shortcomings, each algorithm also has its own strength,
thus they are still good candidates for the ISP. Therefore,
we implement these algorithms (with some modifications
for the time constraint, when possible) to not only
evaluate their performance but also to benchmark our new
algorithm.

The work of [32] approaches budgeted MABs more
generally by dealing with multi-dimensional bandits (each
dimension corresponds to a resource, such as financial
budget or time budget). However, their algorithms (PDBwK
and BalanceBwK) cannot be applied to the ISP because
the resources in their model cannot be shared, whereas in the
ISP, the time can be shared, i.e., pulling one or more arms
several times (providing one or more incentives to several
groups) can happen in a given time period. Recently, [12]
have attempted to use MABs to deal with the ISP. However,
their model is difficult to use in practice, as they do not
consider the time constraint (i.e., the tasks are provided one
by one) and their algorithms are not adaptive (i.e., they
require tuning appropriate situation-specific parameters).

Finally, [47] approach the incentive problem (finding an
efficient way to incentivise participants so as to maximise
the overall utility of the requesters) by combining the clas-
sical principal-agent model and MABs. In particular, they
formalise the incentive problem as a multiple-round pro-
cess. In each round, one participant (i.e., worker) completes
a task based on a contract designed in advance by the
requester. From the performance of the participants so far,
their algorithm (AgnosticZooming) helps the requester
adaptively adjust the contracts to be used in a round so
that the requester’s utility is maximised. Each potential con-
tract is treated as an arm in their algorithm. However, they
only consider financial incentives in the form of monotone
contracts where the outcomes are not lower with higher
payments. This prevents the algorithm from being used
effectively in crowdsourcing projects where the motivation
for participation is not only money, but can be human capi-
tal advancement or community identification [48]. In these
projects, the outcomes might not be proportional to pay-
ments [27, 43]. This might affect the performance of their
algorithm in crowdsourcing projects whose time budgets are
critical, as it takes a long time to identify a good contract.

Our preliminary work on the ISP [20] focuses on the case
where candidate incentives are many (compared to the budget)
and there exist correlations between the incentives. Specif-
ically, as presented in Section 1, some candidate incentives
might have the same parameters but the values of the param-
eters are different, so their performance is likely to be cor-
related. In fact, these incentives are chosen from the same
incentive method (thus they have the same parameters) but
are different in the way the method is implemented (i.e., dif-
ferent values of the parameters). Here, an incentive method
can be any incentive in the literature, such as paying for
performance, using bonuses, or using contests. Also, corre-
lations between incentives means that the difference in the
effectiveness between two adjacent incentives (i.e., the val-
ues of their parameters are slightly different) is assumed to
be small. Indeed, it is likely that when the parameter values of
an incentive method change slightly, the effectiveness of the
corresponding incentives also changes gradually [42, 49].

In the paper, correlated incentives are grouped into
clusters. Also, the proposed model is for the ISP where we
have no or very little prior knowledge about the performance
of participants in the project of interest and the budget for
the project is large compared to the chosen incentives.

Although the algorithm proposed (BOIS) is shown to solve
the ISP effectively, in reality, many crowdsourcing projects
do not have such large budgets. Also, in some projects, we
might have good prior knowledge about participant perfor-
mance, so in each cluster, we can continue choosing some
candidate incentives with a high confidence that they are
good. In some other projects, the budgets are not large
enough (compared to the chosen candidate incentives).
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Thus, we need to continue choosing some incentives in each
cluster so that after exploring the incentives, we have suf-
ficient budget to exploit the best incentive explored. BOIS
is not effective in these projects, since the incentives are
not correlated. This is because BOIS focuses more on the
correlations to quickly identify the best incentive in each
cluster. So, when there are only a small number of can-
didate incentives in each cluster, the algorithm does not
have a good exploration-exploitation balance compared to
the algorithm proposed in this paper (HAIS). Generally,
in these projects, BOIS is somewhat similar to Stepped
fKUBE.5 More specifically, Stepped fKUBE spends the
first period obtaining initial estimates of the incentives.
Then, it spreads a certain portion (specified by ε2) of the
residual budget across the next periods (except the last one)
to apply the best incentive so far (identified by their upper
confidence bounds). After that, in the last period, it sim-
ply applies the best incentive with the remaining budget. As
will be shown in Section 6.3, HAIS outperforms Stepped
fKUBE in these projects.

3 The incentive selection problem

In this section, we first describe the incentive selection
problem (ISP). Then, we formalise it as a batched 2d-
budgeted group-based MAB problem.

Suppose a requester wants to run a crowdsourcing project.
The objective is typically to maximise the requester’s
overall utility with a given budget before a given time.
We can include task quantity, task quality, task completion
time, or some subset of them in the utility function.6 For

5The Stepped fKUBE algorithm will be presented in detail in
Section 6.1.
6A note when choosing an aspect to be included in the metric is that it
should not only measure the effectiveness of contest implementations
(i.e., incentives) appropriately, but it should also be possible to evaluate
the effectiveness easily and ideally in an automatic manner. That is
because after deploying a contest of a specific implementation in a
period of time, the effectiveness of this implementation should be
calculated quickly before deploying another contest (to another group
of participants) in the next period. One example of such tasks is
drawing an evacuation route from a building to the nearest road as
described in [29] and the corresponding metric is the number of valid
evacuation routes completed. A valid evacuation route can be simply
defined as the one that really connects a building to a road. This can
be done automatically by checking if the route starts somewhere inside
the outline of the building and ends at a road. We can manage a higher
level of quality by defining a valid evacuation route as one that really
connects a building through an entrance to a road with a walkway or
an open space. However, to do this, we have to spend more time on
manually validating submitted routes. We can do this by, for example,
majority voting. In detail, we can ask some other participants to check
if a route is valid or not and then choose the decision from the majority.
This can be done in the form of another task. So, the total time will be
expanded significantly.

example, [25] consider the quantity and quality of the tasks.
To achieve this objective, we spend the available budget
on providing incentives to encourage participants (referred
to as users) to perform tasks. The incentives can be in the
form of contests or individual-based (i.e., non-contests).
They can be different in terms of the number of users in
a contest (note that with individual-based incentives, this
value is always one), the performance evaluation method, or
the prize distribution. Since the effectiveness of incentives
is usually unknown in advance, we are interested in finding
an efficient means of selecting candidate incentives (i.e.,
exploring their effectiveness and then exploiting the most
effective one) to maximise the requester’s utility. We refer
to this as the incentive selection problem (ISP).

Formally, let I = {1, 2, . . . , I } denote a set of incentives
that are being considered for use in a crowdsourcing project.
Each incentive has a group size (the number of users in a
group that is offered this incentive) and a cost (of offering
the incentive to a group of users). The cost of each incentive
is deterministic. For example, there may be 3 incentives.
Incentive 1 can be contests of five users, where the base
payment is £0.50 and the prize for the best user (who
performs the most tasks in a contest) is £2.50. That means
this incentive has 5 as the group size and £5.00 as the
cost (£2.50 for the base payments and £2.50 for the prize).
Incentive 2 is almost the same as incentive 1, but the base
payment and the prize for the best user are £0.70 and £1.50.
Similarly, incentive 3 can also be contests, whereby there
are ten users in a contest, the base payment is £0.50, the
prize for the best user is £1.50, and the prize for the second
best one is £1.00.

The number of incentives (I ) also corresponds to the
number of arms in a MAB problem. Pulling arm i

corresponds to offering incentive i to a group of gi (referred
to as group size) users in a specific time period (or period
for short, e.g., five hours or one day). The periods do not
overlap and are denoted by t = 1, 2, . . .. Each incentive
can be applied to different groups in the same or different
periods. We can only start period t (i.e., applying incentives
to other groups in period t) when all groups in period t − 1
are finished. To illustrate this, Fig. 1 shows an example
where three incentives are applied to various groups over
five periods (corresponding to days here). On the first day
(t = 1), we apply incentive 1 to four groups, incentive 2 to
two groups, and incentive 3 to three groups. Here, the group
sizes of incentives 1, 2, and 3 are 2, 4, and 4 respectively.

Let N=
{
n

(t)
i | t = 1, 2, . . . ; i = 1, . . . , I

}
denote a pol-

icy of applying the incentives (or applying policy for short),
where n

(t)
i is the number of times incentive i is applied in

period t (i.e., incentive i is offered to n
(t)
i different groups).

For instance, in the example shown in Fig. 1, n
(1)
1 = 4,

n
(1)
2 = 2, and n

(1)
3 = 3. Applying incentive i incurs a fixed

9208



Efficient and adaptive incentive selection for crowdsourcing contests

Fig. 1 An example of an
applying policy where I = 3,
g1 = 2, g2 = 4, g3 = 4, and
T = 5 (days)

cost of ci and enjoys a utility which is drawn independently
from a fixed unknown distribution with an unknown mean
(i.e., expectation or expected value) μi . Let r

(t)
i be the total

utility of applying incentive i n
(t)
i times in period t . Note

that r
(t)
i is the total utility of users in all groups of incentive

i in period t . The objective is to find an applying policy that
maximises the expectation of the overall utility with a given
financial budget B and time budget T :

max
T∑

t=1

I∑
i=1

n
(t)
i μi subject to

T∑
t=1

I∑
i=1

n
(t)
i ci ≤ B.

From the definition above, we can see that the ISP is a
batched 2d-budgeted group-based MAB. Indeed, in each
period, each arm can be pulled several times (i.e., an
incentive can be offered to different groups) and multiple
arms can be pulled (i.e., several incentives can be offered).
Hence, there is batched in the name. Also, the pullings are
constrained by a financial budget B (a dimension) and a
time budget T (another dimension). Thus, the problem is
2d-budgeted, where “d” means “dimension”. Moreover, one
characteristic that makes the ISP different from other MAB
models studied in the literature is the group-based nature of
the arms. For ease of presentation, in some places, when it
does not lead to confusion between the two types of budget,
we use budget for the financial one.

Also in this work, we only consider the contests where
the submissions of all users (not only the best user) in
a contest are useful to the requester. In other words, the
utility is additive. This assumption prevents the model
being applied in projects where the requesters only consider
the best submission in every contest. Yet, this normally
happens in design contests. For example in crowdsourcing
systems for design tasks such as 99 Designs (99designs.
com), Design Crowd (www.designcrowd.com), and Crowd
Spring (www.crowdspring.com), only the best submissions
are used, the other submissions are discarded. However in
microtask crowdsourcing projects, for example, every task
completed is typically useful to the requesters [29, 50].

Thus, although the assumption may limit the applications of
the model, it is reasonable in many crowdsourcing projects.

4 The HAIS algorithm

Here we introduce Hoeffding-based Adaptive
Incentive Selection (henceforth, HAIS), an adap-
tive algorithm for the ISP. HAIS uses several heuristics7

(as will be presented in Section 4.5) to help solve the ISP
effectively.

However, we first detail how the algorithm and the
benchmarks measure the effectiveness of the incentives
(Section 4.1). We then briefly present Hoeffding’s inequal-
ity and discuss how we will utilise this inequality when
dealing with the ISP (Section 4.2). After that, we give an
overview of the algorithm (Subsection 4.3). Finally, we
detail how HAIS is built and how it acts in the exploration
(Sections 4.4 and 4.5) and exploitation (Sections 4.6 and
4.7) phases.

4.1 Measuring the effectiveness of the incentives

To measure the effectiveness of the incentives, we use
density (i.e., the utility-cost ratio) [30], as it reflects the
average utility (i.e., reward in the context of MABs)
obtained per cost unit. The density of incentive i is defined
as δi = μi/ci , where ci is the cost of applying the incentive
once and μi is the mean utility. However, as the real
densities of the incentives are unknown a priori, we have to

7HAIS is not a metaheuristics algorithm, since it is designed to deal
with the ISP specifically, while a metaheuristics algorithm should
provide a generic framework to solve many different problems such
as simulated annealing, tabu search, or genetic algorithms [51].
HAIS has exploration and exploitation concepts which are similar
to diversification and intensification as in metaheuristics algorithms.
However, the exploration-exploitation trade-off in HAIS is inherently
from the MAB problem itself, which is to identify the best arms.
This is different from the diversification-intensification balance in
metaheuristics, which is to find the best solution in the combinatorial
search space.
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estimate them. Right after period t , the estimate of incentive
i’s density is:

d
(t)
i = μ̂

(t)
i /ci, (1)

where μ̂
(t)
i = (1/m

(t)
i )

∑t
j=1 r

(j)
i is the current estimate of

incentive i’s mean utility (m(t)
i = ∑t

j=1 n
(j)
i is the number

of times incentive i has been applied until the end of period
t). With all algorithms examined in this work, each arm will
be pulled at least once in period 1 and the estimates will be
conducted from period 2. So, in (1), m(t)

i > 0 ∀i = 1, . . . , I .

To keep the presentation simple, we use the best (worst)
incentive to denote the incentive with the highest (lowest)
estimate, as opposed to the real best (worst) incentive. Also,
we use the estimate of an incentive instead of the estimate
of an incentive’s density (or effectiveness).

4.2 The Hoeffding’s inequality

In general, this inequality is used to determine the number
of samples needed to obtain a certain level of confidence
for a confidence interval around the expected value of

Fig. 2 An example of running
HAIS where I = 3, g1 = 4,
g2 = 2, g3 = 2, T = 5 (days),
B = £80, c1 = £4, c2 = £2,
c3 = £2, ε1 = 0.4, ε2 = 0.5,
U1 = 8, incentive 2 is the real
best incentive, incentive 3 is the
real worst
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the samples. In particular, let Y1, . . . , Yn be independent
random variables with Yi ∈ [ymin, ymax] for all i, where
−∞ < ymin ≤ ymax < +∞. Then, Hoeffding’s inequality
[52] states that:

P(Ȳ − E[Ȳ ] ≥ γ )≤ exp

( −2nγ 2

(ymax − ymin)
2

)
and (2)

P(Ȳ − E[Ȳ ] ≤ −γ )≤ exp

( −2nγ 2

(ymax − ymin)
2

)
, (3)

for all γ ≥ 0, where Ȳ = 1
n

∑n
i=1 Yi and E[Ȳ ] is the

expected value of Ȳ (Fig. 2).
Applying this to the ISP, we can determine the number

of sampled users needed in particular incentives to obtain
good estimates of the incentives. And hence, we can identify
the best incentive with high enough confidence, i.e., greater
than or equal to a certain level of confidence which is
specified in advance (e.g., 50%). We call this confidence
level Lh (h for Hoeffding). We choose Hoeffding’s
inequality as it helps us identify the appropriate numbers
of times the incentives should be applied in the exploration
phase dynamically based on the estimates of the incentives
so far. Concretely, the inequality is applied to determine the
number of additional users needed on each incentive and
then based on the group size of the incentive to identify the
number of times the corresponding incentive is applied.

For example, in a crowdsourcing project, there are
two incentives which have the group sizes of 10 and 5
respectively. And suppose the chosen value of Lh is 50%
(i.e., the confidence level of identifying the best incentive
after applying the incentives so that each incentive has the
target number of sampled users is 50%). In order to obtain
initial estimates, the target number of sampled users in each
incentive is at least 30 (a parameter which is chosen in
advance8). Thus, in the first period, incentive 1 is applied
three times (to have 3 * 10 = 30 sampled users) and incentive
2 is applied six times (to have 6 * 5 = 30 sampled users).
Then, after applying Hoeffding’s inequality, suppose the
result suggests that to obtain a confidence level of Lh =
50% in being sure that the current best incentive is the real
best one, each incentive needs to have at least 60 sampled
users.9 Since currently incentive 1 (with group size of 10)
already has 30 sampled users, it needs 30 more. That means
we need to apply this incentive three more times. Similarly,
as incentive 2 (with group size of 5) already has 30 sampled
users, we need to apply this incentive six times to have 30
more.

8This parameter (which is called U1) will be presented in detail in
Section 4.3.
9This number (which is called U2, shown in (15)) is the result of
applying Hoeffding’s inequality, which will be presented in detail in
Section 4.5.

In terms of the value of Lh, it should be chosen to be high
enough (e.g., 50%, rather than only 10%), so that the current
best incentive is likely to be a highly effective incentive.
However, it should not be too high, as the algorithm might
spend the budget on applying less effective incentives. The
advantage of using the predefined parameter Lh is that
we could choose a fixed value for it (e.g., 50%) in all
crowdsourcing projects. With each project, based on Lh and
the estimates of the incentives so far, HAIS will adaptively
identify an appropriate number of sampled users needed on
each incentive.

4.3 Algorithm overview

HAIS splits the application of the incentives into two
phases: exploration and exploitation. In the first phase,
it has two steps: sampling and Hoeffding. In the second
phase, it also has two steps: stepped exploitation and pure
exploitation. We next provide an overview of HAIS over
the four steps following an illustrative example of how the
algorithm works over these steps. The diagram in Fig. 3
shows the connections between the steps in the full process
of the algorithm.

The sampling step is conducted in the first period. The
purpose of this step is to obtain initial estimates of the
incentives in order to apply Hoeffding’s inequality in the
next period. Specifically, in this step, HAIS applies the
incentives so that each incentive has a minimum number
of sampled users. This number, which is referred to as U1,
is specified in advance. U1 should be large enough (e.g.,
20) to obtain significant estimates of the incentives. Yet,
it should not be too large to take up a large portion of
the budget, e.g., 200. After that, the algorithm eliminates
clearly ineffective incentives by comparing the confidence
intervals of the estimates. Concretely, an incentive i will
be eliminated if there exists another incentive j whose
lower bound of the confidence interval is larger than the
upper bound of the confidence interval of this incentive
(i.e., d

(1)
i,upper < d

(1)
j,lower ). Eliminated incentives will not

be applied in the Hoeffding step. Beside the estimates of
the incentives, to calculate the corresponding confidence
intervals, we need to set a value for the level of confidence.
This value is a predefined parameter for the algorithm which
is referred to as Le (e means elimination) 10 , e.g., 95%.

In the second period, HAIS applies Hoeffding’s inequal-
ity as described in Section 4.2 to have better estimates of the
incentives, preparing for exploitation after that. One issue
that might occur in the exploration phase is that, as the per-
formance of users in each incentive is stochastic, the number
of sampled users suggested by Hoeffding’s inequality can

10 HAIS uses eight predefined parameters which are shown in Table 2.
Section 6.2.2 presents how HAIS chooses values for these parameters.
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Fig. 3 High-level overview of
the HAIS algorithm. See
Algorithm 2 for details of the
input, output, predefined
parameters, steps 1–4, and
decisions a–b. “Time is up” in
(b) means all provided (Ts )
periods for stepped exploitation
have been used

be very large in some cases and this might use up a large
portion of B. This is ineffective since although it better
estimates the incentives, it does not have much budget left
to exploit the best incentives explored. Thus, we adapt the
idea from ε-first of using a limited financial budget for
exploration (specified by a predefined parameter which is
referred to as ε1 ∈ (0, 1)). This budget bound for explo-
ration (i.e., ε1B) is applied to both sampling and Hoeffding
steps. Although both HAIS and ε-first use the same
parameter ε1, they have different purposes. In ε-first, ε1

is used to identify the budget for exploration. So, it should
be changed appropriately based on specific situations. In
particular, with ε-first, in projects where the financial
budget is large, we should choose small values of ε1, such
as 0.02, to prevent spending a large proportion of the bud-
get on exploring the incentives. And in projects where the
financial budgets are small, we should choose large values
of ε1, such as 0.1, to have sufficient budget to explore. In
contrast to this, HAIS uses Lh as the main parameter to
control the budget for exploration. Lh (as mentioned in Sub-
Section 4.2), is the level of confidence to identify the best
incentive. HAIS only uses ε1 as an upper bound for the bud-
get for exploration. Hence, the parameter ε1 in HAIS can
be chosen intuitively, such as 0.1, and it does not have to be
changed in different projects.

In the next periods (except the last one), it conducts
stepped exploitation, which takes advantage of the remain-
ing periods to exploit effectively. More specifically, it splits
the residual budget (b) into two parts based on a predefined
ε2 ∈ (0, 1) (e.g., 0.5 to have two equal parts) 10. Then, it dis-
tributes the first part, ε2b, equally across Ts periods, where
Ts + 1 is the remaining periods including the last one.

In each of these Ts periods, HAIS applies ε-greedy
[53] with the given budget (ε2b/Ts). Specifically, with a
predefined εgreedy ∈ [0, 1), it applies a random incentive
with probability εgreedy and the current best incentive with
probability 1−εgreedy , followed by an update to the estimate
of the incentive applied. Here, the parameter εgreedy is to
control the level of exploration in this step. The reason for
using ε-greedy in this step is that, although the algorithm
is focusing on exploiting the best incentives explored so
far, it can continue doing some more exploration with other
incentives. This prevents ignoring the best incentive which
has a low estimate after the Hoeffding step. The second part,
(1 − ε2)b, is spent in the last period to purely exploit the
best incentives, that is to apply the best incentives with the
residual budget. Figure 3 shows a high-level overview of
HAIS, which shows the above-mentioned four steps in the
whole process of the algorithm. Also, a simplified version
of the algorithm is presented in Algorithm 1.
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To illustrate the algorithm, Fig. 2 shows an example of
how HAIS acts in a simple case. In the first period of
the example (day 1), incentives 2 and 3 are applied four
times, while incentive 1 is applied only twice, to have
enough U1 = 8 users (Fig. 2a(1)). Note that the numbers
chosen in this example (e.g., U1 or gi) are for illustrative
purposes only. After this period, the estimate of incentive 3
is significantly lower than that of incentive 1, i.e., d(1)

3,upper <

d
(1)
2,lower (Fig. 2b(1)). Incentive 3 is therefore eliminated.

Hence, in the Hoeffding step conducted in period 2, HAIS
decides to apply incentives 1 and 2, so that it has an
additional 4 users for each incentive with an expectation to
differentiate the incentives’ effectiveness with at least Lh =
50% confidence (Fig. 2a(2)). After the exploration phase, the
estimate of incentive 2 (29) is higher than that of incentive
1 (20) (Fig. 2b(2)). Thus, incentive 2 is applied in the third
period (day 3), followed by an update to this incentive’s
estimate. Note that, on day 3, incentives 1 and 3 were
not applied (Fig. 2b(3)). In the next period (day 4), as the
estimate of incentive 1 (30) still appears to be the highest,
HAIS just applies this incentive with the given budget (£12).
In the last period, it applies the best incentive (incentive

2) 12 times with the remaining budget £24 (Fig. 2a(5) and
Fig. 2b(5)).

To summarise, the key novelty of HAIS is that it
combines three techniques that together result in an adaptive
and efficient way to balance exploration and exploitation.

First, it uses Hoeffding’s inequality to identify how much
exploration is sufficient to find the real best incentive with a
certain level of confidence. This allows HAIS to adaptively
distribute the budget for exploration without tuning any
situation-specific parameters.

Second, the algorithm applies each incentive several
times in the first round to obtain initial estimates of the
densities of the incentives, together with using confidence
intervals to eliminate clearly ineffective incentives after this
period.

Third, it makes use of the time budget to continue
exploring while exploiting the incentives by spreading the
residual budget across the remaining periods.

In the following subsections, details of the four steps
will be discussed. The explanations will be linked to the
corresponding parts of the pseudocode of HAIS shown in
Algorithm 2.
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4.4 The sampling step

As discussed above, the objective of this step is twofold:
to obtain initial estimates of the incentives and to preclude
clearly ineffective incentives from being used in the next

step (Hoeffding). Regarding the implementation of this step,
it first determines a target number of users that should be
sampled on each incentive after this step (i.e., after the first
period), u1 (Line 3). If the budget is large enough, this
number can be set to U1 (the expected number of sampled
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users in the sampling step). However, as discussed in the
previous subsection, when the budget to have U1 users
sampled on each incentive exceeds the maximum budget for
exploration ε1B, u1 will be set to a smaller value so that the
budget to have u1 users sampled on each incentive is about
ε1B. If this happens, the Hoeffding step will be skipped as
the budget for exploration is exceeded. Since the group sizes
of the incentives are different, we approximate the limited
number of users corresponding to this budget bound by
dividing ε1B by the total cost of one user on each incentive,
which is

∑I
i=1 ci/gi (gi is the group size of incentive i). The

purpose of the budget bound for exploration is to prevent
spending too much budget on exploration. So, with this
purpose in mind, the actual cost for exploring does not need
to be strictly within the bound. This means it can be slightly
more than this number. Given this, the above-mentioned
approximation is acceptable.

Based on the target number of users u1 and the group
size of each incentive gi , the number of times each incentive
should be applied is calculated by rounding the division
u1/gi to the nearest integer (Line 5). Then the incentive
is applied (Line 5) followed by an update on the estimate
of this incentive (Line 6) and an update on the confidence
interval of the incentive’s estimate (Line 7). The confidence

interval of incentive i’s estimate
(
d

(1)
i,lower , d

(1)
i,upper

)
is:

d
(1)
i ± ze

s
(1)
i√
n

∗(1)
i

. (4)

In this equation,

– t = 1 as the calculation is at the end of the first period;
– ze is the critical value (z-value) corresponding to the

confidence level Le;
– n

∗(1)
i = n

(1)
i gi is the number of sampled users of

incentive i at the end of the first period;

– s
(1)
i = 1

c∗
i

√√√√∑n
∗(1)
i

u=1

(
r
(1)
i,u −r̄

(1)
i

)2

n
∗(1)
i −1

is the estimate of the

standard deviation of incentive i’s density at the end of
period 1; where c∗

i = ci/gi is the average cost of a user

in incentive i, r
(1)
i,u is the utility created by the uth user

in incentive i in period 1, and r̄
(1)
i = ∑n

∗(1)
i

u=1 r
(1)
i,u /n

∗(1)
i

is the average of the utility received from all users in
incentive i at the end of period 1.

Finally, based on the confidence intervals of the
estimates, HAIS determines the set of incentives to be
applied in the Hoeffding step, A (Line 8). The incentives
that belong to A are referred to as active incentives.
The others are eliminated and will not be applied in the
Hoeffding step. Although the eliminated incentives will not
be applied in the Hoeffding step, these incentives can be

applied afterwards (Line 16). This helps us ensure we do
not miss the real best incentive which is eliminated in the
first period because of a low estimate compared to other
incentives.

4.5 The Hoeffding step

We now describe how HAIS uses Hoeffding’s inequality to
calculate the number of times each active incentive should
be applied in the subsequent period so that a level of
confidence of at least Lh can be obtained in identifying the
real best incentive.

Let X
(t)
i,1, . . . , X

(t)

i,u
(t)
i

denote the utility per cost unit of u
(t)
i

sampled users in incentive i from the beginning until the
end of period t . The second value of each subscript denotes
a specific sampled user. For example, X

(t)
i,5 is the utility per

cost unit of the 5th sampled user. They can be considered
as u

(t)
i random variables whose values are bounded in

[βmin
i , βmax

i ]. According to Hoeffding’s inequality, we have:

P(X̄
(t)
i − δi ≥ γ ) ≤ exp

(
−2u

(t)
i γ 2/β2

i

)
and (5)

P(X̄
(t)
i − δi ≤ −γ ) ≤ exp

(
−2u

(t)
i γ 2/β2

i

)
, (6)

where γ > 0, βi = βmax
i −βmin

i , and X̄
(t)
i = 1

u
(t)
i

∑u
(t)
i

u=1 X
(t)
i,u.

From (5) and (6), we have:

P(X̄
(t)
i − δi < γ ) ≥ 1 − exp

(
−2u

(t)
i γ 2/β2

i

)
and (7)

P(X̄
(t)
i − δi > −γ ) ≥ 1 − exp

(
−2u

(t)
i γ 2/β2

i

)
. (8)

Applying (7) to the worst (active) incentive i1
11, the

resulting confidence level that X̄
(t)
i1

− δi1 < γi1 is l
(t)
1 =

1 − exp
(
−2u

(t)
i1

γ 2
i1
/β2

i1

)
, or:

γi1 = βi1

√√√√√ ln
(

1/(1 − l
(t)
1 )
)

2u
(t)
i1

. (9)

Similarly, applying (8) to the best incentive i2
11, the

resulting confidence level that X̄
(t)
i2

− δi2 > −γi2 is:

γi2 = βi2

√√√√√ ln
(

1/(1 − l
(t)
2 )
)

2u
(t)
i2

. (10)

To differentiate the effectiveness of the two incentives,
the confidence intervals γi1 and γi2 must be small enough

11 To keep the presentation simple, we use i1 and i2 to denote the
worst and best incentives respectively at the end of period t instead

of i
(t)
1 and i

(t)
2 . These incentives are identified by i1

def= i
(t)
1 =

arg mini∈A:ci≤b(t)

{
d

(t)
i

}
and i2

def= i
(t)
2 = arg maxi∈A:ci≤b(t)

{
d

(t)
i

}
,

where b(t) is the residual budget after finishing period t .
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compared to the distance between the expected values of the
two incentives’ densities:

γi1 + γi2 ≤ δi2 − δi1 . (11)

This is illustrated in Fig. 4. The intuition about finding
the real best incentive by comparing the best and worst
incentives is that the purpose of the exploration phase is
to quickly identify an incentive which has a high density
(compared to others), not the real best incentive. Then,
in the exploitation phase, the algorithm can gradually
find the real best incentive with higher confidence by
continuously updating the incentives’ estimates. In contrast,
if it focuses on finding the real best incentive in the
exploration phase (by comparing the best incentive to the
second best incentive, for example), it is likely to apply the
incentives more. This means it would waste the budget on
the less effective incentives. From (9), (10), and (11), we
have:

βi1

√√√√√ ln
(

1/(1 − l
(t)
1 )
)

2u
(t)
i1

+βi2

√√√√√ ln
(

1/(1 − l
(t)
2 )
)

2u
(t)
i2

≤ δi2 −δi1 .

(12)

We assume that (X̄
(t)
i1

− δi1 < γi1) and (X̄
(t)
i2

− δi2 > −γi2)

are two independent events. This is acceptable because we
can prevent a user from participating in more than one group
in a period. Thus, the performance of users in different
incentives are unrelated to each other. In more detail, in
crowdsourcing platforms such as Amazon Mechanical Turk,
Clickworker, or Figure Eight, the number of users is large.
And, when submitting new tasks we can easily filter out the
users who already participated in the project (by using the
provided APIs). Even with crowdsourcing projects whose
potential number of users is not large or it is difficult to
re-recruit users, a small number of users recruited more
than once is not likely to change the result significantly.
However, a larger number of these might do and hence
is not considered in this work. Therefore, the confidence
level of both these events occurring is l

(t)
1 l

(t)
2 . To keep our

analysis simple, we choose the same confidence level in

(9) and (10), i.e., l
(t)
1 = l

(t)
2

def= √
Lh (where t = 2).

Additionally, despite the fact that the numbers of users on

the worst and best active incentives after period 1 (u(t)
i1

and

u
(t)
i2

) might be different (because of different group sizes),
the target number of sampled users to obtain in this step (i.e.,
until the end of period 2) is expected to be the same (i.e.,

u
(2)
i1

= u
(2)
i2

def= u(2)). Thus, from (12) we have:

u(2) ≥ ln
(
1/(1 − √

Lh)
) (

βi1 + βi2

)2

2
(
δi2 − δi1

)2
def= U2. (13)

Since δi (∀i = 1, . . . , I ), βi1 , and βi2 are unknown in
advance, we use the estimates after the sampling step to
approximate these values:

δi ≈ d
(1)
i ,

βi1 ≈ b(1)
i1

def= max
1≤u≤u

(1)
i1

{
X

(1)
i1,u

}
− min

1≤u≤u
(1)
i1

{
X

(1)
i1,u

}
, and

βi2 ≈ b(1)
i2

def= max
1≤u≤u

(1)
i2

{
X

(1)
i2,u

}
− min

1≤u≤u
(1)
i2

{
X

(1)
i2,u

}
.

(14)

Therefore, from (13) we have:

U2 ≈
ln
(
1/(1 − √

Lh)
) (

b(1)
i1

+ b(1)
i2

)2

2
(
d

(1)
i2

− d
(1)
i1

)2
. (15)

Similar to the sampling step, this step is also constrained
by the budget bound ε1B. Hence, HAIS uses the approach
applied in the sampling step to deal with this (Line 10) by
approximating the maximum number of users based on the
total cost of applying the active incentives (

∑
i∈A ci/gi).

Based on the new target number of sampled users u2, each
active incentive will be applied followed by an update to its
estimate (Lines 13–15).

4.6 The stepped exploitation step

An important benefit of HAIS is that it can consider
stopping sooner, i.e., using fewer periods (e.g., 7 days) than
the time budget (e.g., 10 days). Actually, the algorithm will
stop stepped exploiting when it reaches a certain level of
confidence which is referred to as Ls (s is short for stepped
exploitation). Ls can be set in advance as a predefined

Fig. 4 Illustration for (11)
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parameter, as it is independent of the actual estimates of
the incentives when the algorithm is running. Ls should be
set close to 1 (e.g., 90% or 95%) so that we have a high
confidence that in the last period (period T ) the current best
incentive is the best one. The confidence level in finding the
real best incentive at the end of period t can be calculated
from (12). To keep the algorithm simple, we choose the
same confidence level l

(t)
1 = l

(t)
2 = √

lt (where t > 2).
Moreover, we also approximate δi (∀i = 1, . . . , I ), βi1 , and
βi2 with the estimates so far:

δi ≈ d
(t)
i , βi1 ≈ b(t)

i1
, and βi2 ≈ b(t)

i2
. (16)

Thus, from (12), we have the maximum confidence level in
finding the real best incentive at the end of period t :

l(t) ≈

⎛
⎜⎜⎜⎝1 − exp

⎛
⎜⎜⎜⎝− 2(d

(t)
i2

− d
(t)
i1

)2

(
b(t)
i1

/

√
u

(t)
i1

+ b(t)
i2

/

√
u

(t)
i2

)2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

2

.

(17)

Equation (17) is used before each period in the stepped
exploitation step (Lines 17 and 23). to decide whether to
continue stepped exploiting or not (the third condition in
Line 19).

Additional information can also be used together with the
condition about Ls to consider stopping stepped exploiting
sooner. Specifically, we can use the number of consecutive
periods that the current best incentive has been applied.
We refer to this as Ns (a predefined parameter). If in this
step, an incentive has been applied consecutively in the last
Ns (e.g., 10) periods, this incentive is highly likely to be
the real best one. Thus, we can immediately move to the
last step (pure exploitation), even if the confidence is still
less than Ls because the number of sampled users is not
large enough. Therefore, HAIS also uses this information
(the fourth condition in Line 19) to decide when to stop
stepped exploiting. In this condition, ns

(t)
i is the number of

consecutive periods that incentive i has been applied at the
end of period t .

4.7 The pure exploitation step

In the last period, HAIS exploits the incentives (with
the residual budget) by using the density ordered greedy
approach described in [30], as it is simple and efficient. It
is referred to as pure exploiting in this work. In detail, it
applies the best incentive as many times as it can without
exceeding the residual budget. With the remaining budget, it
applies the next best incentive, whose cost is not larger than
the budget, in the same manner. Note that the incentives to
be applied in this step can be the ones which were eliminated
after the sampling step (when the residual budget is not

enough to apply any other active incentive). This continues
until the budget is not enough to apply any other incentives.

5 A regret bound for HAIS

In this section, we provide a regret bound for the HAIS
algorithm. In the development of HAIS, there are several
estimates and heuristics (such as (11), (14) and (16)). Hence,
in order to analyse the regret bound of the algorithm we
assume all these estimates are correct. Also, without loss of
generality, we assume that incentive 1 is the best incentive,
i.e., the incentive with the highest density. We consider a
normalised version of the ISP where the cost of pulling
each incentive is the same, and the mean utility of each
incentive will be changed accordingly. We adjust the mean
values of all incentives so that the incentives have the same
cost c = 1

I

∑I
i=1 ci but the density of each incentive is

still unchanged. Specifically, in the normalised ISP each
incentive i (with mean μi and cost ci) will have the adjusted
mean μ̃i = μic/ci and the normalised cost c. Thus, the best
incentive is now the one with the highest adjusted mean,
which is μ̃1. We find a regret bound by measuring the
performance of HAIS against the best incentive:

RegretT (μ̃1) =
T∑

t=1

I∑
i=1

n
(t)
i μ̃1 −

T∑
t=1

I∑
i=1

n
(t)
i μ̃i (18)

We have the following theorem:

Theorem 1 Let the agent follow the HAIS algorithm. Then,
the regret of the agent can be bounded by

RegretT (μ̃1) ≤
⎛
⎝

I ′∑
i=1

log(ε)βi
2

−2γ ∗gi

⎞
⎠ μ̃1 −

I ′∑
i=1

log(ε)βi
2

−2γ ∗gi

μ̃i

+
⎛
⎝

I∑
i=I ′+1

[
u1

gi

]⎞
⎠ μ̃1 −

I∑
i=I ′+1

[
u1

gi

]
μ̃i + bs1,2

cj

γ ∗,

(19)

where u1 = min

{
U1,

ε1B∑I
i=1 ci/gi

}
, I ′ is the number of active

incentives after the sampling step, γ ∗ is the upper bound
of the mean’s estimate difference in the Hoeffding step with
(1 − ε) certainty, bs1,2 is the residual budget after steps 1
and 2. Furthermore, if γ ∗ is chosen as

γ ∗ =

√√√√ log(ε)
−2

∑I ′
i=1

β2
i

gi
(μ̃1 − μ̃i)c

B
, (20)

then the regret of the agent will be

RegretT (μ̃1) = O(
√

B/c). (21)

Proof The full proof is given in Appendix A.
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Remark 1 From the regret bound in Theorem 1, the regret
of HAIS will depend on the parameter γ ∗. If γ ∗ is chosen
optimally as shown in Theorem 1, then HAIS is a no-
regret algorithm with the regret bound depending linearly
on the square root of the number of times each incentive
is applied, which is

√
B/c. Intuitively, in the cases when

the financial budget B is large, HAIS allows the agent to
explore sufficiently every incentive in steps 1 and 2, thus
the agent can exploit the best incentive in steps 3 and 4 with
high probability. In the cases where T is large, by using
ε−greedy in the stepped exploitation step, our algorithm
can guarantee to find the best incentive by the property
of ε−greedy [46]. However, in the cases of the ISP, T

tends to be small. Thus, applying normal bandit algorithms
cannot provide an efficient regret bound. Instead, HAIS can
maintain the state-of-the-art regret bound while adapting
efficiently to the cases of the ISP where the time budget T

is small.

6 Experimental evaluation

To systematically evaluate the performance of HAIS, we
use simulations in a wide range of controlled settings.
Our aim in so doing is to ascertain the key determinants
of performance and how they relate to one another.
This is a necessary pre-cursor to real-world deployment.
This initial evaluation cannot be undertaken in a real
crowdsourcing project as we would have to deploy the
project multiple times with different financial budgets, time
budgets, number of incentives, and group sizes. Even then
we could not guarantee that we have explored the main cases
in a comprehensive fashion. In the following, we present
the benchmarks (Section 6.1), the experimental settings
(Section 6.2), and then discuss the corresponding results
(Section 6.3).

6.1 Benchmarks

As the state-of-the-art algorithms discussed in Section 2 are
not specifically designed to deal with the time constraints
of the ISP, we make a number of modifications to these
algorithms.

(1) ε-first: This algorithm [30] spends ε1B (where ε1

is specified in advance) in the first period to explore
by applying the incentives evenly until this budget is
exceeded [30]. Then, it spends the subsequent period
purely exploiting the best incentives with the residual
budget, i.e., (1 − ε1)B as mentioned in Section 4.7.
The purpose of running this algorithm in addition to
Stepped ε-first (as described below) is to see
how effective the stepped exploitation step is.

(2) Stepped ε-first (or sε-first for short): This
algorithm is a modified version of ε-first that is
designed to run more effectively under a time limit.
ε-first does not make use of the time budget to
exploit effectively, as after the exploration phase, the
best incentive might not be the real best one, and
this may only be discovered by further exploration.
Thus, we apply the stepped exploitation of HAIS to
this algorithm to make use of the periods before the
deadline to conduct a more effective exploitation (i.e.,
exploitation together with further exploration). Like
HAIS, it spends the last period purely exploiting. An
illustration of how this algorithm works is presented in
Appendix B.

(3) Stepped fKUBE (or sfKUBE for short): This
algorithm [31] applies all the incentives once to
obtain initial estimates of the incentives. This can
be considered as an initial exploration step. Then,
it applies stepped and pure exploitation techniques
as per HAIS. The only difference is that Stepped
fKUBE uses the upper confidence bounds (UCBs) of
the estimates instead of the estimates that HAIS uses.
The UCB of incentive i’s estimate is:

d
∗(t)
i = μ̂

(t)
i

ci

+ rmin + (rmax − rmin)

√
(2 ln u(t))/u

(t)
i

ci

.

(22)

In each period before the last period, it applies
the incentive with the highest UCB once followed
by an update to the estimate of this incentive.(ucb)
In (22), u(t) = ∑I

i=1 u
(t)
i is the total number of

users in all incentives until the end of period t and
rmin (rmax) is the minimum (maximum) density of
the incentives, which is specified in Table 1. We
will discuss this table in Section 6.2.1. In this step
(stepped exploitation), by using the UCBs of the
estimates, fKUBE integrates further exploration into
the exploitation phase. In fact, as the estimates are
uncertain, instead of looking at the estimate of an
incentive based only on the current estimate of its
expected utility and the cost (μ̂(t)

i /ci), it also considers

the uncertainty of the estimate

(√
(2 ln u(t))/u

(t)
i

)
.

More specifically, when an incentive is applied, this
square root term (representing the uncertainty of
this incentive’s estimate) will decrease. Therefore,
regarding this term, the incentives which are applied
less (hence, are more uncertain) have more opportunity
to be applied in the next period.12 Finally, in the last
period, Stepped fKUBE purely exploits.

12See [53]for more discussion on UCBs.
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(4) Survival of the Above Average (SOAAv):
This algorithm [18] applies different incentives from
round to round. In each round, it applies the incentives
that have estimates above (1 + ξ) times the average of
incentives’ estimates in the previous period once. The
predefined parameter ξ is to help adjust the threshold
to eliminate incentives after each period. That means,
it only applies the incentives whose estimates are
greater than this threshold. If ξ = 0, the threshold
is the average of the estimates of the incentives. Note
that, an eliminated incentive in period i can become
active again in period j (j > i) if at the end of
period j −1, its estimate is above the threshold. It then
updates these incentives’ estimates. This happens until
the financial budget is exceeded. In the last period, it
conducts pure exploitation as in HAIS to exhaust the
residual budget.

(5) Exp3: This algorithm [44] maintains a weighted list
where each item corresponds to an incentive. The
weights are used to randomly choose an incentive
in the next periods. After applying an incentive
and receiving a utility, the algorithm updates the
weight of this incentive based on the received utility.
More specifically, at the beginning the weights of
the incentives (w(1)

i ) are all 1. In the first period,
the algorithm applies each incentive once to obtain
initial estimates of the incentives. Then, it updates the
weights of all the incentives. The way Exp3 updates
the weights at the end of period 1 is the same as in the
other periods before the deadline, which is shown in
(24). In period t = 2, . . . , T − 1, the probability of
choosing incentive i (i = 1, . . . , I ) is:

p
(t)
i = (1 − γ )

w
(t)
i∑I

j=1 w
(t)
j

+ γ

I
, (23)

where γ ∈ (0, 1] is a predefined parameter to specify
the level of exploration to be used. Specifically, when
γ = 1, the first term on the right hand side of (23) is 0.
Hence, the algorithm ignores the incentives’ weights
(i.e., it completely explores). When γ is closer to 0,

this term is greater. That means, the probability of
choosing an incentive is based more on its weight (i.e.,
more exploitation). At the end of period t , the received
utility (r(t)

i ) will be used to update the weights of the
incentives to prepare for the next period:

w
(t+1)
j =

⎧⎪⎨
⎪⎩

w
(t)
j exp

(
γ

Icj p
(t)
j

· r
(t)
j −rmin

rmax−rmin

)
, if j = i

w
(t)
j , otherwise

,

(24)

where rmin (rmax) is the minimum (maximum) density
of the incentives, which is specified in Table 1. In
the last period, Exp3 conducts pure exploration as in
HAIS.

(6) Optimal: It simply applies the real best incentive all
the time. To do so, we have to know the utility means
μi (∀i = 1, . . . , I ) in advance, which are unknowable
in our practice. Thus, it is unachievable for real-world
development.

6.2 Simulation settings

To evaluate the performance of the algorithms we run
simulations in seven different settings where the indepen-
dent variables are financial budget, time budget, number of
incentives, standard deviation of the incentives’ utilities, and
maximum group size. Regarding the latter, we run three set-
tings and in each setting, we draw the group size of each
incentive in each simulation from a discrete uniform distri-
bution from 1 to the maximum group size. We will describe
these three settings later in the section.

The simulations in these seven settings help us compare
the algorithms in terms of performance (i.e., the average
density). Based on these simulations, we cannot readily
see why one algorithm performs better (or worse) than
the others. Therefore, we run other simulations on a
representative case so that we can better understand the
behaviour of each algorithm (other cases give broadly the
same outcomes). Specifically, based on the simulations, we

Table 1 Ranges for Randomisation of the Parameters in the Simulations. All the values are integers and uniformly distributed

Parameter Symbol Min value Max value Unit

Number of incentives I 2 20 Incentives

Group sizes gi 1 50 Users

Real densities δi 60 90 Utility13 per £

Utility means μi 60 90 –

Utility stand deviations σi 0.2μi 0.6μi –

Financial budget B 10 100 Times of the round cost

Time budget T 2 30 Periods
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want to examine how the algorithms spread the budget
across the phases and steps and over the incentives.

Regarding the seven settings, in the simulations of each
setting, the related quantities, i.e., B, T , I , gi , ci , μi , δi ∀i =
1, . . . , I (except the corresponding independent variable)
are generated uniformly in specific ranges. The ranges of
the quantities are shown in Table 1 and will be discussed in
more detail in Section 6.2.1.

In terms of the maximum group size settings, we run one
setting to examine the performance of the algorithms with
different values for the maximum group size. Specifically,
in the simulations of this setting, group sizes of the
incentives are generated uniformly from 1 to the value
of the independent variable. In addition, we also run two
more settings in two special cases. Concretely, since the
algorithms (excluding HAIS) apply the incentives without
considering the group sizes, when the group size of the real
best (worst) incentive is largest, these algorithms have an
advantage (disadvantage) over HAIS. For example, if the
group size of the real best incentive is largest, by applying
the incentives evenly in the exploration phase, ε-first and
Stepped ε-first also partially exploit the best incentive
as it has more sampled users on this incentive. However,
HAIS does not have that exploitation while exploring as in
its exploration phase it tries to apply the incentives so that
the number of sampled users on each incentive is almost
the same. Additionally, by having more sampled users in
the exploration phase, ε-first and Stepped ε-first
have a better estimate of the real best incentive and hence
they are likely to recognise that this is indeed the real best
incentive after exploring. Therefore, we want to investigate
how HAIS performs compared to other algorithms in these
two special cases. In the simulations of these two settings,
we keep the group size of the real best (worst) incentive
fixed with the value of the independent variable (x). The
group sizes of the other incentives are generated randomly
from 1 to x − 1 (to ensure they are always smaller).

For each value of the independent variable, we run
20,000 simulations to achieve statistically significant results
at the 99% confidence level. In Figs. 5–13 and 16, the
confidence intervals are small. So, for better image clarity,
the error bars representing the confidence intervals are
omitted. To better understand the algorithms’ behaviours,
we run with six incentives where the densities of incentives
1 to 6 are 90, 80, 75, 75, 70, and 60 respectively. That means
incentive 1 is the best, while incentive 6 is the worst. In the
simulation, the budgets are £3,000 and 10 periods, and the
standard deviation of incentive i is 0.4μi ∀i = 1 . . . 6 (the
mean value of the range presented in Table 1 which will be
discussed in the next subsection). The group size of each
incentive in each period is generated uniformly in the range
from 1 to 10. We also run the simulation 20,000 times as
with the above-mentioned simulations.

Next, in Section 6.2.1, we detail the ranges of the
quantities used for randomisation in the simulations. Then,
in Section 6.2.2, we detail the values of the algorithms’
predefined parameters. Finally, in Section 6.2.3, we present
how the performance of a group is generated in the
simulations (based on the performance of the individuals of
the group).

6.2.1 Ranges of the quantities for randomisation

The ranges of the quantities are described in Table 1.
The values are chosen to represent realistic settings from
a number of real crowdsourcing projects. The projects
will be presented in the corresponding parameters. As the
crowdsourcing projects found in the literature are not run
using MABs, based on the figures in these projects (such as
budgets or group sizes), we infer the ranges for the related
quantities in our simulations. The papers used for inferring
the ranges will be stated when possible. In more detail,
regarding the number of incentives, as will be shown later in
Section 6.3, the more incentives the worse the performance
of the algorithms becomes. This is reasonable because the
more incentives the more budget spent on exploring their
effectiveness. Hence, in a real crowdsourcing project, the
chosen number of incentives should be as small as possible.
For this reason, we choose 20 as the maximum value of I .
We can have 20 separate incentives or 5 group sizes with 4
payment structures per group size.

Regarding the group sizes, according to the figures from
[54], the popular group sizes on Taskcn are from 1 to about
100. However, it is more difficult to recruit many users (for
a contest), especially with crowdsourcing projects that are
not run on other platforms (such as Amazon Mechanical
Turk or Clickworker) and hence they have to recruit users
by themselves [29]. Additionally, when users get experience
with crowdsourcing contests, they tend to participate in the
contests with small group sizes so that they can have a better
chance to win the competition [54]. Because of this, the
chosen maximum value for group sizes is 50 (instead of
100).

Regarding the densities and utility means, since each
crowdsourcing project can use a different way to measure
the utility (as discussed in Section 3), the range of densities
can be very different. In our simulations, we combine both
the quantity and quality of the tasks (i.e., number of tasks
completed and their corresponding quality) in the metric.

13In the simulation settings, we know the real density of the worst
incentive (which is 60 utility per £). So, to have a better comparison
between the algorithms, the effectiveness of each algorithm is
measured by the increase in utility over the worst algorithm. The worst
algorithm is the algorithm which simply applies the worst incentive
as many times as possible. We refer to this increase in utility as
normalised utility.
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So, we choose [60..90] as the possible utility means and
[60..90] as the possible density values of the incentives. The
maximum difference between the best and worst incentives
is 30 but not larger because in real crowdsourcing projects,
by using prior knowledge about the projects (if possible)
together with existing studies, we can build good-enough
incentives. Although some of the designed incentives may
be relatively poor (e.g., their densities are 30 or 40), they
do not result in a significant difference in the results.
Hence, we skip these cases and concentrate on the more
challenging settings where performance differences are
relatively small. Moreover, to observe the performance of
the algorithms more clearly with different values of the
independent variables, the density of the best incentive is
always 90.

Regarding the utility standard deviations, when these
values are too small (e.g., 0.05μi), the algorithms can
easily identify the real densities of the incentives. Similarly,
when they are too large (e.g., 0.9μi), it is very challenging
for all the algorithms to estimate the incentives, as they
need a much higher budget to obtain better estimates.
This is infeasible in real crowdsourcing projects, where
the budgets are usually limited. Therefore, as the purpose
of the simulations is to compare the performance of the
algorithms, we use an average range of the standard
deviations, that is from 0.2μi to 0.6μi (∀i).

Regarding the financial budget, to allow us to carry out
a meaningful performance comparison, the budget should
not be too small. If the algorithms do not have a sufficient
budget for exploring, then all of their performances will
be low. Also, as the number of incentives and group sizes
are generated uniformly, to be sure the budget is not too
small, its value should be proportional to these quantities.
Therefore, we use round cost to control the minimum value
of the budgets. Here, round cost (denoted by round cost) is
the cost of applying all incentives where each incentive has
U1 sampled users.

According to our calculation, the budgets used for
the first crowdsourcing project in [23] (experiment 1:
image ordering) and the crowdsourcing project in [25] (the
experiment with the word puzzle) are about about 94 and
58 times the round cost. In these studies, as they use
individual-based incentives, the round cost is the cost of
one user in all treatments of the corresponding experiment.
Moreover, since these two crowdsourcing projects are
running behavioural experiments, the real crowdsourcing
projects might use larger budgets. Thus, we choose the
possible range of the generated financial budgets to be from
10 to 200 times the round cost.

This mechanism is applied to the simulations of all
the settings except the three related to the maximum
group sizes. Choosing a different mechanism for generating
financial budgets in the three settings is because we want to

investigate the performance of the algorithms with different
values of the maximum group sizes. If this mechanism is
also applied to the three settings, the trends can be affected
by the financial budgets. Actually, when the maximum
value of the group sizes is large, with this mechanism,
the financial budget is also large. Thus, the budget for
exploitation in HAIS, ε-first, and Stepped ε-first
is large. This might affect the general performance of the
algorithms. Therefore, in these three settings, we use the
above-mentioned generating mechanism with one change.
The round cost is replaced with the median value of the
range of the group sizes as described in Table 1, that is 25.5.
By doing so, different values of the independent variable x

(i.e., the maximum group sizes) do not affect the generated
financial budgets. Hence, the performance of the algorithms
is influenced by x only.

Regarding the time budget, as the result of 1 period
is uninteresting (i.e., nothing can be learnt), we choose 2
periods as the minimum value of T . We also choose 30 as
the maximum value of T . Depending on the characteristics
of specific crowdsourcing projects and how long of a period,
the most likely time budgets are believed to be in this range.
For example, if a period is 1 week, then several (e.g., 8)
weeks is a reasonable deadline. Or, if a period is 1 day, then
30 days for the time budget is feasible.

6.2.2 Values of the predefined parameters of the algorithms

We run the algorithms with different values of the
predefined parameters and then choose appropriate values
for the parameters. For example, with ε1 of ε-first, we
first run this algorithm with different values (such as 0.05,
0.1, 0.2, 0.3, and 0.4). Then we choose one value that
helps ε-first perform well in different settings. A similar
process is used for the other predefined parameters such
as ε2 of Stepped ε-first and Lh of HAIS. We can
automate the process of choosing appropriate values for
these predefined parameters by using Baysian optimisation
[55, 56].

As changing these values slightly does not result in a
significant difference (i.e., the trends of the algorithms’
performance are broadly the same), in Section 6.3, we only
present the results on the simulations with the values of the
algorithms’ predefined parameters as described in Table 2.
Regarding the predefined parameters of HAIS, as most of
them are self-explanatory and some of them are already
discussed in Section 4.3, we do not explain them here.

6.2.3 The model of group performance

In the simulations, we assume that the performance of
a group (i.e., the total utility of all users in the group)
is proportional to the group size. This means the more
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Table 2 Values of the algorithms’ predefined parameters in the simulations

Algorithm Parameter Value Description

HAIS ε1 0.10 Budget limit for exploration.

ε2 0.50 Budget for stepped exploitation (calculated based on the residual budget).

εgreedy 0.10 The probability of choosing to explore (i.e., selecting a random incentive) in each
period of stepped exploitation.

U1 20 Target number of sampled users to obtain after the first (sampling) period.

Le 90% Confidence level to calculate confidence intervals of the incentives’ estimates for
eliminate ineffective incentives.

Lh 50% Confidence level to stop exploring.

Ls 90% Confidence level to stop stepped exploiting.

Ns 5 Maximum number of consecutive periods that an incentive is applied in the stepped
exploitation step.

ε-first ε1 0.10 Budget limit for exploration.

Stepped
ε-first

ε1 0.10 Budget limit for exploration.

ε2 0.50 Budget for stepped exploitation (calculated based on the residual budget).

Exp3
γ 0.50 Exploration factor

ε2 0.50 Budget for stepped exploitation (calculated based on the residual budget).
Stepped
fKUBE

ε2 0.50 Budget for stepped exploitation (calculated based on the residual budget).

SOAAv ξ 0 ξ = 0 means the incentives to be applied in a period are the ones whose estimates
are above the average of the estimates of the ones in the previous period.

users there are in a group, the better the performance
of the whole group. In the literature, there are very few
papers investigating the performance of a group of users
in crowdsourcing contests. This assumption is based on
an empirical study conducted by [49]. In their work,
they investigate the data collected from 99designs, a
crowdsourcing platform where users submit their designs
and compete with others for a financial reward. They found

that the quality of the designs in a contest is almost linear in
the number of users who participated in the contest.

6.3 Results

In general, HAIS performs best in most cases (Figs. 5–11).
In more detail, HAIS performs better with a larger financial
budget (Fig. 5), with a looser deadline (Fig. 6), with fewer

Fig. 5 Performance of
algorithms for different financial
budget sizes
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Fig. 6 Performance of
algorithms for different time
budget values

Fig. 7 Performance of
algorithms for different numbers
of incentives

Fig. 8 Performance of
algorithms for different values
of the standard deviation of the
incentives’ utilities
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Fig. 9 Performance of
algorithms for different values
of maximum group size

Fig. 10 Performance of
algorithms for different values of
maximum group size on the best
incentive. Group size of the best
incentive is fixed with the value
of the independent variable, x,
while group sizes of the other
incentives are generated
randomly from 1 to x − 1

Fig. 11 Performance of
algorithms for different values
of maximum group size on the
worst incentive. Group size of
the worst incentive is fixed with
the value of the independent
variable, x, while group sizes of
the other incentives are
generated randomly from 1 to
x − 1
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incentives (Fig. 7), and with smaller values of the standard
deviation of the incentives’ utilities (Fig. 8). Its performance
is reasonably stable with different group sizes (Fig. 9), even
when the group size of the best incentive is the largest,
i.e., when other algorithms (especially Stepped ε-first)
have an advantage over HAIS (Fig. 10).

Additionally, as shown in Fig. 9, when all incentives are
individual-based (i.e., their group sizes are all one), HAIS
performs much better than the benchmarks. This emphasises
the performance of HAIS in traditional settings where the
group-based nature of the arms is omitted.

Moreover, as we can see, Stepped ε-first performs
much better when the group size of the best incentive is
the largest (Fig. 10) than when the group size of the worst
incentive is the largest (Fig. 11). The difference is clearer
when the maximum group size of the best/worst incentive
becomes larger. This is because in Fig. 10 they are likely to
have more sampled users in the best incentive. Hence, they
can quickly identify this incentive. In both settings, HAIS
remains almost at the same level of performance.

The reason that HAIS can do this effectively is that it
has (1) a better exploration-exploitation strategy together
with (2) an efficient way of using the time budget in
the exploitation phase, and (3) an effective approach for
spending more of the budget on highly effective incentives
in the exploration phase. We will discuss each of these
issues in the following subsections. Then, we will continue
with effective ways to use HAIS in a specific crowdsourcing
project.

However, as in general Exp3 does not perform well
and does not relate to the analysis, we first discuss its
performance here and will not consider this algorithm in
the remaining subsections. Specifically, Exp3 does not
perform well in any settings (Figs. 5–11). This is because
choosing the incentives randomly based on their weights
does not work well when the time budget is small. As
reflected in Fig. 6, the performance of Exp3 becomes
better when the time budget becomes larger. Yet, in most
crowdsourcing projects, the time budgets are usually not
large (e.g., several days or months instead of several years).
Additionally, with respect to ε-first, as the purpose of
running this algorithm is to examine the effectiveness of the
stepped exploitation step, we only discuss this algorithm in
Section 6.3.2 when explaining the importance and the usage
of stepped exploitation.

6.3.1 Exploration-exploitation balance

Regarding the exploration-exploitation strategy, as both
financial and time budgets are limited in the ISP, an
algorithm that takes advantage of the budgets can enhance
the overall performance significantly. That is, sufficient
exploration should be conducted to identify highly effective

incentives so that the algorithm has enough budget and time
to exploit these incentives effectively.

In general, Stepped fKUBE’s performance is low.
This is because one round for initial exploration is not
enough to have good estimates for the next step (stepped
exploitation). Actually, as can be seen from Figs. 6 and 9,
the performance of this algorithm improves significantly
when the time budget or the group sizes become large. This
is due to the more time available for the algorithm to identify
the best incentive. Also, with larger group sizes, it has more
sampled users, and thus the initial estimates become better.

In most cases, Stepped ε-first performs better than
Stepped fKUBE (Figs. 5–11). This is because Stepped
ε-first spends more of its budget (to have more rounds)
for exploring (which is identified by ε1); so it has better
estimates of the incentives. However, the performance of
Stepped ε-first depends on choosing an appropriate
value of ε1.

On the other hand, as HAIS uses Hoeffding’s inequality,
it is more flexible in determining an appropriate budget for
exploration. Actually, Fig. 12 shows that when the budget
for the crowdsourcing project (B) is large, instead of using
all ε1B as in Stepped ε-first, HAIS tends to use less
of the budget (than Stepped ε-first) to explore. Note
that although less of the budget is used for exploring, the
total cost for applying the best incentive in the exploration
phase tends to be larger than that of Stepped ε-first.
This will be discussed in detail in Section 6.3.3.

6.3.2 Taking advantage of the time budget

By comparing the performance of Stepped ε-first
with the original ε-first, we can see that stepped
exploitation helps take advantage of the time budget, and

Fig. 12 Average Budget Used for Exploration. This is the correspond-
ing result of the simulations shown in Fig. 5
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Fig. 13 Number of Periods Used by HAIS. This is the corresponding
result of the simulations shown in Fig. 6

hence improves the overall performance of the algorithm
significantly. As Figs. 5–11 show, Stepped ε-first
performs significantly better than ε-first, especially
when the budget is not large or when the time budget is
large. Specifically, in Fig. 5, with low budgets (e.g., from
£1,000 to £10,000), ε-first does not explore sufficiently;

so, its performance is rather low. Meanwhile, although
with the same budgets (i.e., not exploring enough in the
exploration phase), Stepped ε-first performs much
better, as it makes use of the time budget to conduct further
exploration while exploiting the incentives. In Fig. 6, this
difference in performance between the two algorithms is
clearer when the time budget is large (e.g., more than 10
periods). As shown in this figure, since ε-first always
uses two periods, its performance is almost the same with
different values of the time budget.

Although using the same exploitation mechanism, HAIS
makes use of stepped exploitation better than Stepped
ε-first (Figs. 5–11). This is especially the case when
the financial budget is large (Fig. 5). In particular, as
Stepped ε-first has more exploration rounds when
the financial budget becomes larger, after the exploration
phase, it can identify the highly effective incentives better
(i.e., the estimated best incentive is likely to be the real
best incentive). Thus, the effect of stepped exploitation
on Stepped ε-first becomes smaller. Note that, by
doing this, Stepped ε-first also wastes the budget on
applying ineffective incentives in the exploration phase.
This is shown in Fig. 5 where ε-first’s effectiveness

Fig. 14 Cost distribution over
the incentives across the phases
of each algorithm
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approaches that of Stepped ε-first when the budget
size becomes larger.

In addition, as discussed in Section 4.6, HAIS is able
to stop stepped exploiting sooner without significantly
affecting the results. Hence, setting a loose deadline is
better for its performance as it has enough time to conduct
stepped exploitation effectively. To this end, Fig. 13 shows
the average number of periods used by HAIS in the setting
corresponding to Fig. 6. This figure shows that although
the time budget is large, HAIS tends to use a lot less of
it. This suggests that when applying the algorithm to a real
crowdsourcing project, if the time is not very important, it
is better to set a longer deadline. The algorithm will then
automatically select an appropriate time to stop.

6.3.3 Effective elimination

By eliminating clearly ineffective incentives right after
having initial estimates and before conducting more explo-
ration, HAIS can distinguish highly effective incentives
more quickly. The advantage of elimination is that it has
more of the budget to continue exploring these incentives (to
find the real best one) in the Hoeffding step. Because of this,
the Hoeffding step can be considered as not only explor-
ing but also partially exploiting, as it applies only highly
effective incentives. The effectiveness of the elimination is
shown in Figs. 14 and 15. In more detail, Fig. 14a shows
that, compared with other algorithms, HAIS spends more
of its budget on the best incentive (incentive 1) and less of

Fig. 15 Cost distribution across
the periods incurred by each
algorithm
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its budget on the others. By looking more closely at how
the cost is distributed over the incentives across the phases
of HAIS (Fig. 14b), we can see that after the sampling
step, HAIS identifies ineffective incentives effectively. This
figure therefore clearly shows that in the Hoeffding step,
HAIS spends more of its budget on highly effective incen-
tives. In contrast to this, Stepped ε-first spends the
same amount of budget to explore each incentive. This helps
HAIS not only partially exploit highly effective incentives
while exploring, but also increasing the chance of identify-
ing the real best incentive in the exploitation phase (as the
best incentives are likely to be applied more than the others).
Indeed, by looking at how the cost is distributed across the
periods, we can see that HAIS spends the most on the real
best incentive in all exploitation periods, i.e., the periods in
the exploitation phase, including the last period (Fig. 15a).
Additionally, Fig. 15b shows that HAIS spends less than
Stepped ε-first on ineffective incentives in all peri-
ods. Note that Stepped ε-first uses only one period
to explore, while HAIS uses two periods. So, Stepped
ε-first starts exploiting one period sooner than HAIS.
Therefore, when comparing the total spent until the end of
a certain period (i) of HAIS in the exploitation phase, we
need to compare it with that until the end of period i − 1 of
Stepped ε-first. For example, we need to compare the
total spent from period 1 to period 3 of HAIS with that of
periods 1 and 2 of Stepped ε-first.

Although using an elimination technique like HAIS,
SOAAv does not perform well. Specifically, Fig. 15 shows
that SOAAv under-explores the incentives, especially the
highly effective ones in the first (e.g., 3) periods. This results
in exploiting ineffective incentives in the remaining periods.
More specifically, in the first periods SOAAv eliminates the
incentives based on the estimates so far (of the incentives’
densities). However, in these periods, the algorithm does
not have enough sampled users to make good elimination

decisions. Hence, the real best incentive may be eliminated
with a probability that is not insignificant. Therefore, in the
later periods (e.g., from period 4 to period 9), SOAAv tends
to apply the ineffective incentives much more than HAIS
and Stepped ε-first (Fig. 15). One exception is that
SOAAv performs better than HAIS in the case when the
difference in the effectiveness of the incentives is small.
In detail, Fig. 8 shows that when the standard deviation of
the utility of each incentive is less than about 20 per cent
of the mean utility of the incentive, SOAAv has slightly
higher overall utility than HAIS. The reason is that right
after the first period, the estimate of the real best incentive
is clearly better than those of the other incentives. Thus, it
is likely that the estimated densities of the incentives other
than the best one are smaller than the average. Hence, in
the remaining periods, these incentives will be eliminated.
However, in crowsourcing projects the performance of users
tends to be large from user to user depending on their
motivations. So, the standard deviations tend to be not too
small as in this case. Therefore, we do not include this case
in the simulations. Instead, we focus on more realistic cases
where the differences are large enough.

6.4 Practical usage of the HAIS algorithm

The above-mentioned results suggest several guidelines for
using the HAIS algorithm in practice. First, the larger the
budget, the better (Fig. 5). It is reasonable that when the
budget is larger, HAIS can spend more on exploring the
incentives so that it can identify the best incentives before
exploiting.

Second, the fewer incentives, the better (Fig. 7).
Specifically, when there are more incentives, HAIS has to
spend more of the budget exploring ineffective incentives.
But, as the requesters might be uncertain about the
effectiveness of the incentives in specific crowdsourcing

Fig. 16 Performance of HAIS
for Different Budget Ratios.
Budget ratio is B/round cost .
This is the corresponding result
of the simulations shown in
Fig. 5
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projects, they may not have good reasons to eliminate
some chosen candidate incentives so as to improve the
overall performance of HAIS. Therefore, Fig. 16 can be
used to have a clearer view of how the current number
of candidate incentives affects the overall performance.
Indeed, the performance of HAIS increases significantly
when the budget ratio (i.e., B/round cost) is from 1 to about
10. After that, it still improves, but slowly. This suggests
that the budget should be at least 10 times the round cost.
Based on this, with a given financial budget, we can easily
determine an appropriate maximum number of incentives.

Third, the time budget should be large enough (e.g., from
15 to 20 periods), but does not need to be very large (e.g.,
100 periods) so that HAIS has enough time to conduct
stepped exploitation effectively (Fig. 6). Also, if the time
budget is set to be larger than necessary, the algorithm will
choose an appropriate time to stop.

Fourth, the runtime of the HAIS algorithm to select
incentives in a period depends on the number of incentives
and the time budget. In the above-mentioned settings, the
runtime is less than a second on a desktop computer (2.2
GHz quad-core processor and 16GB internal memory). So,
it is feasible for an autonomous agent to quickly identify an
appropriate applying policy.

7 Conclusions and future work

We discussed the incentive selection problem and outlined
an approach that helps requesters in crowdsourcing projects
with a fixed budget maximise their utility. Then, we
formalised the problem as a batched 2d-budgeted group-
based MAB and introduced an algorithm (HAIS) to solve
this effectively. Our algorithm is adaptive and performs
efficiently in a wide range of different cases without the
need to tune its predefined parameters. Although HAIS
is specifically designed for incentives in the form of
contests, it can also be used with other types of incentives
where the group size is 1 (i.e., there are no contests,
such as paying for performance or using bonuses). HAIS
significantly outperforms the state-of-the-art approaches in
simulations. Additionally, our results also suggest several
guidelines for using this algorithm in practice. Regarding
other applications of our work, the model proposed and
the algorithm developed can be applied in other domains
with a group-based nature such as in schools, companies,
or organisations (i.e., finding the most effective groups of
students or employees to work or study together).

Although HAIS is an important initial step towards
solving the incentive selection problem, there are a number
of areas of further work. From a practical perspective,
we have systematically explored the key determinants of
the behaviour in a series of controlled experiments. Such

experiments are a necessary first step to understanding
this complex design space. They help us discover the key
influences on behaviour and performance. These insights
can then be deployed in real-world environments and
applications. This is a significant undertaking, but our
results provide an excellent foundation for this work. From
a more conceptual perspective, there are a number of areas
to explore. First, our current model assumes that time steps
are homogeneous and a new incentive can be started only
when all previous ones have completed. However in some
real world settings, the durations of the incentives (e.g.,
the time to run a contest) might be heterogeneous and
variable. The difference in the durations might be large
when some incentives are individual-based (e.g., paying for
performance) and some others are contests with large group
sizes (e.g., 20 users). So, within a given period, groups
that finished early will have to wait until all other groups
in the period are finished so that the algorithm can move
to the next period. Thus, addressing this limitation would
shorten waiting times and thereby the total time used by
the algorithm. Additionally, this could improve the overall
performance as the algorithm has more time to conduct
stepped exploitation, especially when the time budget is
limited.

A second issue is that the model assumes that the cost
of applying an incentive is the same at all times. This
may be limiting in more general settings. To motivate top
users to continue performing tasks, for example, requesters
in crowdsourcing projects might use contests whose prize
values depend on the performance of the winners. For
instance, instead of paying a fixed £3 to the best user, they
could pay from £2 to £4 to the best user depending on
the number of tasks completed by this user. This might
encourage the best user to do tasks even whey they have
a steady top position in the leader board. Moreover, some
incentives are inherently designed with variable payment
such as paying for performance [23] or using bonuses [25].
Actually, in paying for performance, the more tasks a user
completes the more money they earn. And in using bonuses,
the bonuses provided depend on the algorithms used and
might be different at different times. Therefore, expanding
the model to cover the case of variable costs of applying
an incentive will provide requesters with more options in
choosing incentives to be used in the ISP.

To cope with these limitations, in the ongoing and future
work, we will consider using other approaches such as
MABs with delayed feedback or reinforcement learning.
In more detail, to deal with the homogeneous time steps,
MABs with delayed feedback [57] may be a good approach.
They focus on MABs where the feedback (i.e., utility)
of applying an incentive is not known immediately. By
using this approach, in a time step, we do not have
to wait for the feedback of all the incentives (pulled
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in this step). We can continue applying other incentives
and consider the feedback of incentives being applied as
delayed. Additionally, reinforcement learning [53] appears
to be a promising approach as it can deal with not only the
homogeneous and variable time steps but also the variable
costs of the incentives. This is because reinforcement
learning is designed to work with learning with delayed
feedback and in a non-stationary environment (i.e., variable
pulling costs).
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Appendix A: Proof of Theorem 1

In the sampling step (step 1), since each incentive i

will be applied n
(1)
i = [u1/gi] times (where u1 =

min

{
U1,

ε1B∑I
i=1 ci/gi

}
), the regret in this step is:

Regrets1(μ̃1) =
(

I∑
i=1

n
(1)
i

)
μ̃1 −

I∑
i=1

n
(1)
i μ̃i . (25)

After the sampling step, suppose we only have I ′ incentives
left to move to the Hoeffding step (step 2). That is, I − I ′
incentives are eliminated with Le level of confidence. We
can calculate the probability of the best incentive (incentive
1) being eliminated after the sampling step. Suppose there
exists incentive j such that d

(1)
1,upper < d

(1)
j,lower . We then

have:

P
(
μ̃1 ≤ d

(1)
1,upper

)
=1 − 1 − Le

2

P
(
d

(1)
j,lower ≤ μ̃j

)
=1 + Le

2

=⇒ P
(
μ̃1 ≤ d

(1)
1,upper and d

(1)
j,lower ≤ μ̃j

)
=
(

1 + Le

2

)2

=⇒ P
(
d

(1)
j,lower ≤ d

(1)
1,upper

)
≥
(

1 + Le

2

)2

=⇒ P
(
d

(1)
1,upper < d

(1)
j,lower

)

= 1 − P
(
d

(1)
1,upper ≥ d

(1)
j,lower

)
≤ 1 −

(
1 + Le

2

)2

.

Since μ̃1 ≥ μ̃j and P(B) ≥ P(B)P (A|B) =
P(A)P (B|A) = P(A) where A and B are

the events
(
μ̃1 ≤ d

(1)
1,upper and d

(1)
j,lower ≤ μ̃j

)
and(

d
(1)
j,lower ≤ d

(1)
1,upper

)
respectively. Thus, with probability

1 −
(

1+Le

2

)2
(i.e., a small probability), the best incentive

(incentive 1) is eliminated after step 1 .
Now we consider step 2 when we use the Hoeffding’s

inequality for the remaining I ′ incentives, which includes
the best incentive with high probability. In HAIS, using
a small γ and increasing the number of times the
incentive is applied to reduce the probability bound
(i.e., exp

(−2ui(t)γ
2/β2

i

)
) is the same as using a small

probability bound and increasing the number of samples
to reduce the number γt . Suppose that after step 1, with a
small probability bound ε (i.e., ε = exp

(−2ui(t)γ
2/β2

i

)
),

the difference between the mean and the estimate of each
incentive i will have lower bound and upper bound of
(−γ 1

i , γ 1
i ). We will apply each incentive more times to make

sure that with the same probability, the upper bound of each
incentive i will be less than a certain level of accuracy, γ ∗.
Therefore, after the Hoeffding step, with high probability
(i.e., 1−2ε), we have the estimate of the mean value of each
incentive i as follows:

|μ̊i − μ̃i | ≤ γ ∗ ∀i ∈ [1, I ′].
Thus, the regret in step 2 will be:

Regrets2(μ̃1) =
⎛
⎝

I ′∑
i=1

n
(2)
i

⎞
⎠ μ̃1 −

I ′∑
i=1

n
(2)
i μ̃i , (26)

where n
(2)
i is the number of times incentive i is applied in

step 2, which can be specified by:

n
(2)
i = log(ε)βi

2

−2γ ∗gi

− n
(1)
i .

After this step, the predicted best incentive j (i.e., j =
arg maxi∈[1,I ′] μ̊i), will have the following property with
high probability (i.e., (1 − ε)2):

μ̃1−μ̃j = μ̃1−μ̊1+μ̊1−μ̊j −(μ̃j −μ̊j ) ≤ γ ∗+0+γ ∗ = 2γ ∗. (27)

In the stepped exploitation step (step 3), the algorithm
results in reducing the gap (μ̃j − μ̊j ) (i.e., the current
predicted best incentive) by increasing the number of
samples of incentive j . However, if the best incentive does
not appear in the current predicted best incentive set, then
step 3 does not improve the estimate of the best incentive.
Thus the best bound which our algorithm guarantees in steps
3 and 4 (pure exploitation) will be

μ̃1 − μ̃j ≤ μ̃1 − μ̊1 + μ̊1 − μ̊j − (μ̃j − μ̊j ) ≤ γ ∗ +0+0 = γ ∗, (28)

when we get the exact estimate for the predicted best
incentive j (e.g., μ̃j − μ̊j = 0). Let b1,2 be the residual
budget after steps 1 and 2. Then the regret in steps 3 and 4
will be bounded by:

Regrets3,4(μ̃1) = b1,2

cj

μ̃1 − b1,2

cj

μ̃j ≤ b1,2

cj

γ ∗. (29)
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Note that in the above regret, we ignore the fact that the
estimate μ̊j will slowly converge to μ̃j in step 3 as the
difference in Inequality (25) will always be O(γ ∗). From
(25) and (26) and Inequality (29) we have:

RegretT (μ̃1) = Regrets1 (μ̃1) + Regrets2 (μ̃1) + Regrets3,4 (μ̃1)

≤
(

I∑
i=1

n
(1)
i

)
μ̃1 −

I∑
i=1

n
(1)
i μ̃i+

⎛
⎝

I ′∑
i=1

log(ε)βi
2

−2γ ∗gi

− n
(1)
i

⎞
⎠ μ̃1

−
I ′∑

i=1

(
log(ε)βi

2

−2γ ∗gi

− n
(1)
i

)
μ̃i + b1,2

cj

γ ∗,

or

RegretT (μ̃1)≤
⎛
⎝

I∑
i=I ′+1

[
u1

gi

]⎞
⎠ μ̃1 −

I∑
i=I ′+1

[
u1

gi

]
μ̃1

+
⎛
⎝

I ′∑
i=1

log(ε)βi
2

−2γ ∗gi

⎞
⎠ (μ̃1 − μ̃i ) + b1,2

cj

γ ∗,

(30)

where u1 = min

{
U1,

ε1B∑I
i=1 ci/gi

}
.

Inequality (30) shows that the total regret RegretT (μ̃1)

will depend on the parameter γ ∗ (i.e., the accuracy of the
Hoeffding step). With the normalised problem, the number
of times an incentive will be applied is B/c, thus the regret
in Inequality (30) can be rewritten as:

RegretT (μ̃1) ≤
⎛
⎝

I∑
i=I ′+1

[
u1

gi

]⎞
⎠ μ̃1 −

I∑
i=I ′+1

[
u1

gi

]
μ̃1

+ log(ε)

−2

I ′∑
i=1

β2
i

gi

(μ̃1 − μ̃i )
1

γ ∗

+
⎛
⎝B

c
−

I ′∑
i=1

log(ε)β2
i

−2γ ∗gi

⎞
⎠ γ ∗,

(31)

or

RegretT (μ̃1) ≤
⎛
⎝

I∑
i=I ′+1

[
u1

gi

]⎞
⎠ μ̃1 −

I∑
i=I ′+1

[
u1

gi

]
μ̃1

+ log(ε)

−2

I ′∑
i=1

β2
i

gi

(μ̃1 − μ̃i )
1

γ ∗

+
(

B

c

)
γ ∗ −

I ′∑
i=1

log(ε)β2
i

−2gi

.

(32)

When B is large, the following part in Inequality (32) will
be negligible:

⎛
⎝

I∑
i=I ′+1

[
u1

gi

]⎞
⎠ μ̃1 −

I∑
i=I ′+1

[
u1

gi

]
μ̃1 −

I ′∑
i=1

log(ε)β2
i

−2gi

. (33)

This is because this part does not depend on B. Thus,
Inequality (30) can be rewritten as:

RegretT (μ̃1) = O

⎛
⎝ log(ε)

−2

I ′∑
i=1

β2
i

gi

(μ̃1 − μ̃i )
1

γ ∗ +
(

B

c

)
γ ∗
⎞
⎠ . (34)

Denote A = log(ε)
−2

∑I ′
i=1

β2
i

gi
(μ̃1 − μ̃i), then by setting γ ∗

equal to

γ ∗ =

√√√√ log(ε)
−2

∑I ′
i=1

β2
i

gi
(μ̃1 − μ̃i)c

B
=
√

Ac

B
,

the regret of HAIS will be:

RegretT (μ̃1) = O
(√

AB

c

)
. (35)

Equation (35) shows that the total regret RegretT (μ̃1) is
sublinear in B

c
, which is the average number of times the

incentives are applied.

Appendix B: An Illustration of how Stepped
ε-firstWorks

Figure 17 shows an example of how Stepped ε-first runs in
a simple case. The setting in this figure is the same as the one in
Fig. 2. In the exploration phase (day 1) of this example, as it does
not look at the group sizes (as per HAIS), it applies the incentives
evenly (4 times each). After this period, suppose that the estimate of
incentive 1 is higher than those of the other incentives. So, based on
these estimates, Stepped ε-first identifies that incentive 1 is the
best one. Compared with ε-first, it is better as instead of applying
incentive 1 (the best incentive) 12 times with the residual budget of
$48 as in ε-first, it distributes half (ε2 = 0.50) of this budget
(that is $24) equally across the next three periods ($8 each on days
2, 3, and 4). Then, on day 2, it applies the best incentive (incentive
1) and updates this incentive’s estimate. In so doing, it identifies that
incentive 1 is not the best any more. Hence, on day 3, it applies
incentive 2 (the new best incentive). We also suppose that the estimates
after periods 3 and 4 are consistent with incentive 2 being the best,
thus it simply applies this incentive in periods 4 and 5. Compared
with the example of HAIS in Fig. 2, as HAIS eliminates the worst
incentive (incentive 3) after the sampling step, it can spend more of its
budget on exploring incentives 1 and 2. It applies the real best incentive
(incentive 2) 6 times compared to Stepped ε-first, which only
applies it 4 times. Hence, it better estimates incentive 2 and finds that
this is the best incentive. In the exploitation phase, HAIS applies this
incentive all the time. However, with Stepped ε-first, after the
exploration phase, it applies incentive 1 twice (in period 2) before
identifying and applying the real best incentive (incentive 2) with the
residual budget in periods 3, 4, and 5. From this example, it can be
seen that by exploring the incentives evenly without looking at their
group sizes, Stepped ε-first over-explores the incentives with
large group sizes and under-explores the other ones. Hence, it is easier
to miss the best incentive with a small group size compared to HAIS.
However, compared to ε-first, Stepped ε-first is likely to be
better because it takes advantage of the residual time budget to exploit.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
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Fig. 17 An example of applying
policy with Stepped ε-first
where I = 3, g1 = 4, g2 = 2,
g3 = 2, T = 5 (periods),
B = £80, c1 = £4, c2 = £2,
c3 = £2, ε1 = 0.4, ε2 = 0.5,
incentive 2 is the real best
incentive, and incentive 3 is the
real worst incentive

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.
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