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Abstract
Excellent performance has been demonstrated in implementing challenging agricultural production processes using modern
information technology, especially in the use of artificial intelligence methods to improve modern production environments.
However, most of the existing work uses visual methods to train models that extract image features of organisms to analyze
their behavior, and it may not be truly intelligent. Because vocal animals transmit information through grunts, the information
obtained directly from the grunts of pigs is more useful to understand their behavior and emotional state, which is important
for monitoring and predicting the health conditions and abnormal behavior of pigs. We propose a sound classification
model called TransformerCNN, which combines the advantages of CNN spatial feature representation and the Transformer
sequence coding to form a powerful global feature perception and local feature extraction capability. Through detailed
qualitative and quantitative evaluations and by comparing state-of-the-art traditional animal sound recognition methods with
deep learning methods, we demonstrate the advantages of our approach for classifying domestic pig sounds. The scores for
domestic pig sound recognition accuracy, AUC and recall were 96.05%, 98.37% and 90.52%, respectively, all higher than
the comparison model. In addition, it has good robustness and generalization capability with low variation in performance
for different input features.

Keywords Audio recognition · Transformer · Neural networks · Domestic pig · Animal behavior

1 Introduction

Domestic pigs have considerable economic value and have
been used as an important source of nutritional intake
for people. Pig rearing has been closely related to the
production and lifestyle of people around the world. On
the one hand, people as breeders are often concerned about
pig nutritional health status and its changes, which directly
affect the quality and yield of pork. On the other hand,
people as consumers are more concerned about pork health.
The outbreak of swine fever in recent years has directly
affected pork production and quality in affected regions
and countries, leading to a sharp rise in pork prices, which
has seriously affected socioeconomic development and
people’s production and lifestyle [1]. The development of
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science and technology has led to rapid development in the
feeding industry, and computerized intelligent systems have
brought many benefits to agriculture, such as increased cost
efficiency, improved animal welfare, and better production
monitoring [2]. The intelligent ecological feeding mode
provides convenience for feeding development on the one
hand and makes it possible for the breeder to regulate the
feeding process intuitively on the other hand.

Through the precise control of the feeding process, it
is possible to directly understand the growth and living
conditions of the animals, which is an important part of the
feeding process. The introduction of intelligent technology
allows remote monitoring of animal feeding and real-time
access to data, which in turn improves production efficiency
[3, 4].

Intelligent systems are now widely used in animal
behavior and condition research. S. Hua et al. used image
processing techniques to solve monitoring and management
problems in smart pig farming to improve productivity and
management efficiency [5]. Tian et al. used deep learning
for pig density calculation and showed good accuracy [6].
Cowton et al. and Alameer et al. used detection technology
for pig movement tracking for behavior monitoring [7,

/ Published online: 16 June 2022

Applied Intelligence (2023) 53:4907–4923

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03581-6&domain=pdf
http://orcid.org/0000-0002-7224-9484
mailto: lijun@sicau.edu.cn


8]. D Li et al. used a nuclear extreme learning machine
(KELM) to detect injury behavior in pigs [9]. Zhang et al.
used the mel inverse spectral coefficient of pig coughs to
construct a recognition system for automated management
in intensive feedlots [10]. Leliveld et al. studied sow calls
through emotional responses in context and found encoding
potential in the emotional state of sow calls [11]. The
application of intelligent detection systems tremendously
simplifies the management process and helps greatly in
feeding.

In recent years, researchers have become increasingly
concerned with the health status of captive animals, both
for animal conservation purposes and for meat health
monitoring purposes. One of the most significant studies
focuses on the expression of emotional states in animals,
and understanding nonverbal animal emotions plays a
crucial role in people’s understanding of animal habits
and states [12, 13]. Animal emotions can be used to
explain the motivations that produce certain behaviors
[14]. The judgment ability of pigs can be influenced
by emotional changes and personality differences [15].
However, in the existing studies, there are still problems
such as lack of standard datasets, low accuracy of
model recognition, and weak generalization and robustness.
To solve the above problems, this paper proposes a
method to discriminate behavior and emotion by pig
grunts, and the main contributions of this paper are as
follows.

1. We used recording equipment to collect domestic pig
calls in breeding plants, and by characterizing domestic
pig calls, we unified them in dimensionality. The
collected call data were constructed as a standardized
dataset for other scholars to study. No publicly available
dataset has been provided for reference in this research
direction in past studies. Our work will be an important
foundation for subsequent related studies.

2. We use a total of eight audio features for extensive
comparison experiments by extracting multiple sound
audio features and their combinations to select the best
audio features.

3. We design a novel network structure (Transformer-
CNN) that has excellent global feature perception and
local feature extraction capability. By parallel com-
puting of the Transformer and CNN, we effectively
compensate for the RNN feature, which cannot be par-
allelized in processing speech sequences, and on this
basis, we combine the excellent CNN local feature
extraction ability. By structural parallelism, richer fea-
ture information can be learned in different call signals
than in a single network structure. In addition, this
work is the first study of domestic pig sounds using the
Transformer and CNN parallel models.

4. The proposed TransformerCNN for animal call classi-
fication of four animal (cat(4), bird(16), bird(8), pig(4),
Cetaceans(4)) call datasets all exhibit advanced clas-
sification results with little effect on the difference of
animals.

The main structure of this paper is as follows. In
Section 2, we discuss the related research work. In Section
3, the main research methods of this paper are provided.
In Section 4, we conduct qualitative and quantitative
experiments. In Section 5, the work of this paper is
discussed. In Section 6, we conclude the paper and propose
directions for future work.

2 Related work

The Gaussian mixture model (GMM) and hidden Markov
model (HMM) are widely used to construct acoustic mod-
els in speech recognition tasks. B. O. Kang proposed using
the Gaussian mixture model (GMM), which maximizes the
shared context information and location of the state of the
logarithmic likelihood to implement robust speech recogni-
tion caused by environmental factors. To solve the identifi-
cation error, this method can effectively solve the influence
of different noise and improve the stability of recognition
[16]. Marek B. et al. used hidden Markov models (HMMs)
for automatic classification and vocalization detection of
whales [17],and with the continuous development of arti-
ficial intelligence, deep learning is widely used in various
fields. Dias Issa et al. used four spectral contrast features
to train deep convolutional neural networks for performing
speech emotion recognition tasks with success [18]. Saon
et al. demonstrated impressive results using recurrent neu-
ral networks in speech recognition tasks [19]; M. Nasef
Mohammed et al. proposed an end-to-end system based on
a self-attention mechanism for speech recognition tasks in
unconstrained environments [20]. A. Orhan et al. proposed
an end-to-end 3D CNN-LSTM model with attention guid-
ance for solving speech-based emotion recognition [21].An
encoder-decoder with an attention mechanism was intro-
duced, and the new model Transformer architecture was also
applied to machine translation tasks [22].

The unlimited potential of deep learning has been
verified in recent studies, and many researchers have
continued to attempt to apply deep learning to animal
sound classification tasks. Lbrahim et al. proposed the
use of deep neural network LSTM networks for sound
classification of four species of grouper, showing that
LSTM has better performance than WMFCC [23]. Zhang
et al. used the LSTM-RNN method for automatic detection
and classification of marmoset calls and found that the
method outperformed DNN and SVM [24]. With the
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excellent results of convolutional neural networks in the
image field, some scholars have attempted to use CNNs
for speech classification [25, 26]. Tao et al. converted
three marine animal sounds into spectral images and
obtained 99% accuracy for classification using AlexNet,
demonstrating the excellent performance of CNNs for sound
classification tasks [27].Yanling Yin et al. used AlexNet
to extract spectrograms for cough sound classification and
obtained 96.8% accuracy [52]. Weizheng Shen et al. used
MFCC-CNN to obtain 97.72% accuracy in a pig cough
sound classification task [53]. Mustaqeem et al. designed
a lightweight architecture of a one-dimensional dilation
convolutional neural network (DCNN) for efficient real-
time SER recognition [28]. In the latest research, attentional
mechanisms have demonstrated excellent performance in
both computer vision and natural language processing. The
attention mechanism can be understood as the full perception
of the surrounding environment by humans. Yang et
al. used multiple attention mechanisms in a multiscale
convolutional model for image classification [29]. L.
Dongdong et al. used a bidirectional long short-term
memory network with directed self-attention (BLSTM-
DSA) to mine diversity in audio signals [30].Kumar Pandey
et al. used tensor decomposition to capture information
in speech emotions and obtained an emotional speech
recognition model that outperforms LSTM and CNN by
combining a tensor decomposition network (TFNN) with
an attention-gated tensor decomposition neural network
(AG-TFNN) [31]. Ziping Zhao and Jinsong Su et al.
were able to effectively improve the performance of
the model by introducing self-attention by using a
self-attention mechanism for the sentiment classification
task [32, 33].

The choice of data features has a significant impact
on the model accuracy. Husam Ali Abdulmohsin et al.
explored the impact of feature extraction methods on speech
recognition tasks by modifying the number of standard
deviations (SD) on both sides of the mean for feature
extraction experiments, and the new extraction method
achieves excellent performance in a variety of datasets [34,
35]. Different extraction methods can have different
degrees of impact on prediction results. Paul et al. used
the GAEF feature extraction method to demonstrate the
differences between different methods [36].Arumugam et
al. proposed audio feature extraction using enhanced the mel
frequency cepstrum coefficient (EMFCC) and enhanced
power normalized cepstrum coefficient (EPNCC) methods,
which were tested in pairs of music audio and achieved
excellent performance in terms of accuracy performance
[37]. Garima Sharma et al. discussed audio signal analysis
and classification tasks and found that feature extraction
methods using modern machine learning methods combined
with speech signal processing can provide solutions to

many modern problems, showing the importance of feature
extraction [38].

3 The proposed approach

3.1 Noise handling

In the sound samples, noise can interfere with the
recognition accuracy to a certain extent. By analyzing the
domestic pig breeding environment, it is found that the noise
mainly comes from the sound generated by the exhaust
fan or machine operation, which is manifested as a slight
fluctuation of the signal outside the vocal period. It is worth
noting that domestic pig vocalization will cover this type of
noise when it reaches a certain decibel, and we only need to
focus on noise treatment for noise outside the vocal cycle.
In our work, we use the Hamming window to attenuate
the paraflop signal, which was verified in the study of
Veerendra et al [39]. In processing the squawk signal, the
squawk signal is divided into multiple short-time frames of
length 60,000 by framing the squawk signal. We find that
the data length may be lower than the split-frame signal
length; then, in this case, the number of frames is set to 1,
and for insufficient length, it is filled by zero. Considering
the possible discontinuity of multiple short-time frames,
the continuity of the voice signal is ensured by panning
the adjacent short-time frame signals by a certain length
and allowing the signals to overlap with each other. In our
work, we set the offset length to 128, the length of the
overlapping part of the signal is the length of the short-time
frame minus the offset length, and the specific formula for
the frame-splitting process is shown below.

f n = (N − overlap)/inc = (N − wlen)/inc + 1 (1)

where N is the length of the voice signal, overlap is the
overlap part, inc is the data frame shift length, wlen is the
short-time frame length, and the starting position of each
frame signal is shown in the following equation.

stratindex = (0 : (f n − 1)) ∗ inc + 1 (2)

In the preprocessing, the data were framed to make the
signal interval by multiplying the speech signal with
the Hamming window, which in turn ensured the global
continuity and periodicity and weakened the data at both
ends of the frame signal. One of the window functions is
shown as follows.

f (x) =
{

0.54 − 0.46cos(2πn/(L − 1)), 0 ≤ n < L − 1
0, else

(3)
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Fig. 1 Comparison of noise
reduction data for domestic pig
calls

By taking the original domestic pig call as input, the noise
data were effectively processed after the framing and
windowing process, as shown in Fig. 1.

3.2 Feature extraction

We used eight features for our experiments, which are log-
mel spectrogram (LM), MFCC, chroma, spectral contrast,

and tonnetz (for the description of subsequent articles, we
refer to chroma, spectral contrast, and tonnetz together as
CST), MC, LMC, and MLMC, as shown in Fig. 2. In
this paper, we adopt a feature extraction method similar
to that of [40] to extract chroma, spectral contrast, and
tonnetz using the preset parameters of the Librosa library
[41]. The channels of MFCC and mel spectrogram are
set to 60. MC is aggregated from MFCC and CST. LM

Fig. 2 Schematic diagram of
spectrogram features
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combines CST to form LMC. MLMC is combined by MC
and LMC.

3.3 TransformerCNN

In this paper, we propose a two-stream parallel network
structure incorporating the Transformer and CNN and using
MLMC as the input to the model, as shown in Fig. 3.
It consists of two parts. One is the Transformer module.
Because sound classification does not require a decoder
language model such as machine translation, we only use
the encoder part of the Transformer. The other part is the
CNN module, where we use a convolutional neural network
with 4 convolutional layers.

In our work, we use MLMC (145x55) as the input
features of the model. We use the CNN module and Trans-
former module for high-dimensional feature extraction,
merge the high-dimensional features from these two mod-
ules, reorganize them into new feature signals into a linear
layer, and merge them to obtain 657x2 dimensional features.
The CNN module contains four convolutional layers to
obtain the 2x512 dimensional features, and the Transformer
module contains multiple attention and encoding layers to
obtain the 2x145 dimensional data. By such extraction, the
model can obtain two different features, and the combina-
tion of features allows the feature signal to contain more
information. With the above approach, TransformerCNN
can effectively combine the advantages of both, i.e., main-
taining the advantages of CNN in local feature extraction
and retaining the powerful capability of the Transformer
in processing sequential data. In addition, such a network
structure brings the advantage of parallel computation that
cannot be achieved by RNNs.

3.4 The CNN component of TransformerCNN

CNNs have powerful feature extraction and parallelism,
and CNNs with 2D convolutional layers are the gold
standard for image processing. CNNs benefit from globally
shared weights and pool operations and have translation
invariance. When we put an input and its translation into
a CNN, we both obtain the same output. Thanks to local
connectivity and weight sharing, the convolutional layer has
translation equivalence. Since the convolutional kernel of
a convolutional layer has a larger activation value for only
a specific feature, the convolutional kernel will find the
feature and present a larger activation value regardless of
where a feature in the feature map of the previous layer
has been translated. Due to the above CNN properties, we
can imagine MLMC as a 145x55 black and white image
with one signal strength channel for feature extraction using
CNN, which does not destroy the temporal characteristics of
the audio sequence and improves the local feature extraction
capability of the model. Spectrograms do not have three
channels and large scales like ImageNet, and 2 s of audio
data are not suitable for generating 224x224 spectrograms.
For the convenience of the narrative, we introduce the
network structure of the model with MLMC as the input,
and the inputs of other dimensions only need to modify
some parameters. The CNN network structure we use is
shown in Fig. 4 and Table 1.

As shown in Fig. 4, in the CNN module, we use
four 3x3 convolutional kernels to extract the data features,
normalize the input features using batch normalization,
add the ReLU activation function to solve the possible
gradient disappearance problem, promote the sparsity of the
network, and alleviate the overfitting problem. The pooling

Fig. 3 TransformerCNN structure diagram
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Fig. 4 The architecture and size of feature maps in each convolutional layer

layer is used to reduce the dimensionality of the data,
remove the redundant information in the sound features, and
make the network nodes work according to the probability
by adding dropout. In this work, the node probability is
set as 0.5. Through this treatment, the joint adaptation
between neuron nodes is effectively weakened, and then the
generalization ability of the model is improved.

3.5 The transformer component of TransformerCNN

In the speech classification task, we do not require
the model to have linguistic expressiveness in machine
translation, so we only use the encoder in the Transformer.
We wanted the model to learn to predict the frequency
distribution of different categories based on the overall
structure of each voice. We could have used an RNN to learn

Table 1 CNN network structure with MLMC as input

Input MLMC (145, 55)

Conv2d (3 x 3, 16, stride 2)

BatchNorm2d (16)

Conv1 RELU

MaxPool2d (2 x 2, stride 2)

Dropout (0.5)

Conv2d (3 x 3, 32, stride 2)

BatchNorm2d (32)

Conv2 RELU

MaxPool2d (2 x 2, stride 2)

Dropout,0.5

Conv2d (3 x 3, 64, stride 2)

BatchNorm2d (64)

Conv3 RELU

MaxPool2d (2 x 2, stride 2)

Dropout (0.5)

Conv2d (3 x 3, 128, stride 2)

BatchNorm2d (128)

Conv4 RELU

MaxPool2d (4 x 4, stride 2)

Dropout (0.5)

the sequence of sound spectrograms for each emotion, but
it would only learn to predict frequency changes based on
adjacent time steps. Instead, the Transformer’s multihead
attention allows the network to look at multiple previous
time steps when predicting the next step. This is very
appropriate for pig grunt classification since the sound
renders the entire frequency sequence, not just at one time
step. The Transformer breaks through the shortcomings of
RNNs that cannot be parallelized because of their inherent
sequential structure. In contrast to CNNs, the attention
mechanism dictates that the number of operations required
by the Transformer to compute the association between two
locations does not grow with distance. Self-attention can
produce more interpretable models. We can examine the
attention distribution from the model. Each attention head
can learn to perform different tasks.

We use a 2-layer encoder layer stack to construct the
Transformer encoder, and the main parameters of the
encoder layer with MLMC (145x55) as input are shown in
Table 2.

As shown in Table 2, in our work, 2 encoder layers are
used to build the Transformer encoder, and in each encoder,
a multihead attention layer is included, which takes the input
MLMC vector data and first passes it through a linear layer,
then divides the data equally into 5 heads and computes the
attention. By adding multihead attention, the Transformer

Table 2 Transformer encoding layer structure with MLMC as input

Layer Output shape

Multihead Attention (-1,2,145), (-1,27,27)

Dropout (-1,2,145)

Layer Norm (-1,2,145)

Linear (-1,2,512)

Dropout (-1,2,512)

Linear (-1,2,145)

Dropout (-1,2,145)

Layer Norm (-1,2,145)

Transformer EncoderLayer (-1,2,145)
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can capture richer information about the speech features of
domestic pigs.

4 Experiment and results

4.1 Dataset

The experimental data were collected from June 2020
to September 2020 at a domestic pig farm in Asbestos
County, Ya’an City, Sichuan Province, using farmed pigs
as experimental animals. The length and width of the
breeding pen were 3 m x 2.4 m, and the height was 1.2
m. The pig house was constructed using cement and bricks.

The temperature in the pig house was kept at 23 degrees
Celsius, and the maximum temperature was 26 degrees
Celsius by supplemental lighting during the experiment.
The experimental recording equipment was a Lenovo B610,
which had a sound collection range of 10 meters. To avoid
discomfort caused by direct contact with the pigs, the
recording device was placed at a height of approximately
30 cm from the experimental barn, with a vertical height
of 1.5 m. The specific placement is shown in Fig. 5 below.
Sound data were recorded at a bit rate of 512 kbps and
stored losslessly in wav format. The experimental data
were collected during the normal resting time of the pigs,
usually from 7:30 a.m. to 10:00 p.m. The feeders performed
intensive feeding at 9:00 a.m., 12:00 noon and 6:00 p.m.

Fig. 5 Schematic diagram of the
placement of the collection
equipment
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Table 3 Distribution of each class and dataset splitting

Class Train Test Total

Calm 800 200 1,000

Feeding 800 200 1,000

Frightened 800 200 1,000

Anxious 800 200 1,000

Total 3200 800 4,000

By consulting with breeding experts1, we classify the
basic behavior of domestic pigs, which includes four
categories: calm, feeding, frightened, and anxious. Calm
is the normal grunting sound of domestic pigs in a
nonstimulated state. The chewing sound made by feeding
domestic pigs is defined as feeding. Frightened is the
sound produced by intensifying the stimulation of domestic
pigs, such as repelling by sticks or injecting vaccination to
domestic pigs. Anxious is defined as the grunting sound
of domestic pigs in an agitated state when they are not
feeding and are hungry. To ensure the correctness of data
annotation, we performed simultaneous video acquisition of
domestic pigs’ behaviors during the recording. In the data
classification process, the state information of domestic pigs
was confirmed by both video and voice for annotating and
classifying grunting data. In the process of data labeling, we
found that the duration of each domestic pig vocalization
was 0.3 s 1.8 s, so we determined the duration of each
data as 2 s. The dataset contains a total of 4,000 2 s of
domestic pig grunting data, divided into 4 categories with
1,000 data points in each category, as shown in Table 3 and
Fig. 6. Since our data are from real scenes and the data
volume is large enough, it is not easy to overfit in the highly
parameterized deep neural network model. Therefore, we
do not need to perform data augmentation to enhance
robustness, such as additive white Gaussian noise (AWGN),
and excessive addition of noise will make the model difficult
to fit.

4.2 Evaluationmetrics

To fully demonstrate the model performance, we evaluated
the model using the ACC, AUC, recall, precision and F1
score. The ACC formula is shown below:

ACC = T P + T N

TP+TN+FP+FN
(4)

AUC represents the area under the ROC curve, and the
formula is shown below:

AUC =
∑

insi ∈ positiveclassrankinsi − M×(M+1)
2

M × N
(5)

1Shuai Surong. Director, Animal Genetic Breeding Branch, Chinese
Society of Animal Husbandry and Veterinary Medicine.

where M is the number of positive samples and N is the
number of negative samples, where the negative sample
book = total number of samples - number of positive
samples.

Recall reflects the proportion of positive cases whose
data were correctly determined to the total number of
positive cases, and the formula is shown below:

T PR = T P

TP+FN
(6)

Precision indicates the proportion of samples classified
as positive cases that are actually positive cases, and the
formula is shown below:

Precision = T P

TP+FP
(7)

The F1 score is defined as the summed average of
precision and recall, and is calculated as shown below:

F1 score = 2 × Recall × Precision

Recall+Precision
(8)

where TP denotes the number of positive classes predicted
as positive, TN denotes the number of negative classes
predicted as negative, FP denotes the number of false
positives predicted as positive, and FN denotes the number
of positive classes predicted as negative.

4.3 Experiment

We found that the accuracy of chroma, spectral contrast and
tonnetz was low and that the difference between different
models was large, as shown in Table 4. This is largely due
to the small feature dimension, which is not conducive to
feature extraction with a narrow input. Since it is difficult to
achieve satisfactory performance with CST features alone,
we decided to abandon their use alone. The combination
of features achieves excellent performance on RNN, GRU,
LSTM, CNN and the Transformer, which indicates that
by combining audio features, the input dimension can be
expanded to facilitate feature extraction and to include more
useful information.

We achieved excellent performance in 8 features using
only the Transformer, which demonstrates the power and
applicability of the Transformer. In addition, the CNN also
shows excellent performance, although not compared to
the Transformer, which proves that it is feasible to use a
CNN for domestic pig call classification. A simple stack
of convolutional layers also has excellent performance and
a much smaller computational complexity and number
of parameters. As shown in Table 5, TransformerCNN
achieves optimal results on all five features. It is worth
noting that the accuracy variance in TransformerCNN on
different features is small, which proves the excellent
robustness and generalization of the proposed model. This
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Fig. 6 Spectrogram of domestic
pig sounds

Table 4 Comparison of ACC obtained for the eight features on each model

CST

MFCC C S T LM MC LMC MLMC

Shape (60, 55) (12, 55) (7, 55) (6, 55) (60,55) (85, 55) (85, 55) (145,55)

RNN1 0.6704 0.5284 0.6079 0.6022 0.7329 0.7506 0.7102 0.7386

GRU2 0.7510 0.6466 0.7672 0.5113 0.7727 0.7841 0.7272 0.8011

LSTM2 0.7727 0.4545 0.5681 0.5573 0.7954 0.7954 0.7727 0.8011

CNN3 0.8068 0.6704 0.4147 0.6136 0.8125 0.8522 0.8409 0.8411

Transf4 0.9089 0.6931 0.7509 0.6170 0.9203 0.9280 0.9312 0.9286

We simply define the Transformer as Transf in this table only
1The model consists of 12 blocks of bidirectional cyclic RNN
2The model consists of 8 bidirectional circular layers
3The model consists of 3 hidden layers of convolutional blocks
4For this model, please refer to Table 2

The highlighted text is the optimal value for a more visual presentation of the comparison of the results
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Table 5 Comparison of ACC obtained for the eight features on each model

ACC AUC Recall Precision F1

MFCC 0.9382 0.9754 0.8304 0.8993 0.8478

LM 0.9554 0.9819 0.8965 0.9023 0.8983

MC 0.9541 0.9810 0.9051 0.9083 0.9016

LMC 0.9420 0.9748 0.8505 0.8919 0.8614

MLMC 0.9605 0.9836 0.9051 0.9080 0.9064

The highlighted text is the optimal value for a more visual presentation of the comparison of the results

reasonable model structure and efficient featurew extraction
capability can adapt to different feature inputs.

The MLMC feature achieves satisfactory performance
on all types of models, as shown in Tables 4 and 5.
Therefore, we consider it to be the optimal feature for this
task. During the experiment, we introduced Grad-CAM to
uncover the importance of process features for the results
[42]. The results are shown in Fig. 7 below. We visualized
the speech signal features of four categories [A,B,C,D],
extracted the MLMC (MC, LMC combined features) of the
call signal as the model input, and tested the accuracy of the
TransformerCNN model; the heatmap for the test set was
approximately 95.13% - 96.01%. Through the results, it is
found that the combined feature signal CST is important
for the judgment of the model in the process of home
pig squeak classification, and LM(MFCC, CST combined
feature) and LMC(LM, CST combined feature) combined
CST also has some importance, and the TransformerCNN
reflects excellent feature perception ability in this task.

We used MLMC features as input and compared the
most common speech classification models currently used,
as shown in Fig. 8 and Table 6, and the experimental results

show that the proposed model significantly outperforms the
existing models in all metrics.

We used t-SNE to verify the effectiveness of the algorithm,
and we limited the number of test data to make the display
more appreciable [43]. During the test, we used a model
with an accuracy of 96.01% for testing by extracting the
dense layer (657x2) data to generate visualization results.
Among them, 3D and 2D t-SNE are shown in Fig. 9 below.

In this task, feeding sounds are difficult to distinguish,
as they are sometimes similar to frightened sounds and
sometimes similar to anxious sounds in the spectrogram,
but they convey very different meanings. The attention
mechanism of the Transformer can capture the important
distinction points of the spectrogram well, and this, together
with the local feature extraction function of the CNN, is the
main reason why the proposed model can achieve excellent
performance in all metrics.

In later work, we explored the performance of the
method on other datasets, and given the sparse open
dataset of domestic pig calls in this domain, we decided
to use other vocal animals for model testing. In that test-
ing effort, five different animal datasets were included,

Fig. 7 Visualization of four call
type characteristics
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Fig. 8 ROC curves for each
model

Table 6 Performance comparison of various models with MLMC as input

ACC AUC Recall Precision F1

TransformCNN 0.9605 0.9837 0.9052 0.9080 0.9047

GoogLeNet 0.8352 0.9716 0.8224 0.8599 0.8214

ResNet34 0.8419 0.9744 0.8419 0.8665 0.7924

ResNet18 0.7471 0.9602 0.7471 0.7908 0.6971

LSTM 0.8017 0.9051 0.8017 0.7998 0.7959

GRU 0.7902 0.9197 0.7902 0.7946 0.7914

RNN 0.7528 0.9020 0.7528 0.7544 0.7529

The highlighted text is the optimal value for a more visual presentation of the comparison of the results

Fig. 9 Visualization of t-SNE in
the dense layer
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involving species such as birds, cats, marine animals, and
our experimental data. One of them, cat vocal data, was
collected by Stavros Ntalampiras et al. in 2019 and con-
tains the call data of twenty-one cats in three states,
and we extracted 145x80-dimensional MLMC features
for the experiments [44]. Birdcall data were collected
through the Xeno-Canto website (https://www.xeno-canto.
org/) in two datasets, recording eight species (Macropygia
phasianella, Burhinus grallarius, Eopsaltria australis, Tri-
choglossus moluccanus, Chrysococcyx lucidus, Pardalotu
striatus, Cacatua galerita, Melithreptus albogularis) and 16
species (Macropygia phasianella, Burhinus grallarius, Eop-
saltria australis, Trichoglossus moluccanus, Chrysococcyx
lucidus, Pardalotus striatus, Cacatua galerita, Melithrep-
tus albogularis, Phasianus colchicus, Tachybaptus ruficollis,
Coturnix coturnix, Anas crecca, Botaurus stellaris, Ardea
cinerea, Rallus aquaticus, Porzana pusilla) different birds,
by selecting eight types of birds in this dataset to form a sub-
dataset for comparing the effect of category on the network.
The duration of each birdcall data ranged from 12 s to 100 s,
and we split each data into 40 s of data. Each call extracted
225x400 dimensions of call data for the experiment. We
also collected calls from five types of marine animals in the
Watkins Marine Mammal Sound Database (https://whoicf2.
whoi.edu/science/B/whalesounds/), which contains beluga
whales, dolphins, false killer whales, sperm whales, and
walruses, with each individual data The duration is approx-
imately 2 s - 9 s, and we expand the data to 10 s by padding,
which has made it retain all the feature data. We used these
four dataset effects to compare with the domestic pig data.
The results are shown in Table 7 below.

As shown in Table 7 above, the TransformerCNN still
has excellent performance on other datasets, especially in
the classification tasks of bird speech and whale speech
with few categories, and the recognition accuracy of 95.50%
and 92.12% for the two types of data, respectively, showing
excellent performance. By adding 8 categories to the bird
data, we still have a reliable performance of 90.64%,
which has a small impact on the data. Through different
experimental demonstrations, the method can effectively
extract the feature signals of different animal speech signals,
and through the effective combination of the Transformer
and CNN, the accuracy of the animal speech classification

task is significantly improved, and it has a strong tolerance
to different data.

5 Discussion

In our work, we innovatively propose a parallel network
of the CNN and Transformer for the task of classifying
domestic pig calls. In the process of classifying domestic
pig calls, it was found that there were similarities between
call features. For the similarity between features, we
propose using five different extraction methods (log-
mel spectrogram (LM), MFCC, chroma, spectral contrast,
and tonnetz) to obtain more information. Three types of
combined features, LM, LMC, and MLMC, are generated
by combining features (MC is formed by aggregating
MFCC and CST). LM combines with CST to form LMC.
MLMC is formed by combining MC and LMC). It has
been demonstrated that the information obtained by using
different extraction methods is not the same. By combining
features, the potential features can be found better, which
helps the TransformerCNN obtain a better feature signal
and better deal with the similarity between information.
This is very important for the classification task. In both
modules of the TransformerCNN, we use the CNN for local
feature extraction. The efficient feature extraction capability
of CNN networks is widely supported in classification
tasks. Introducing a CNN for local perception between call
features is successful and effective for high-dimensional
feature extraction. In another Transformer module, we
use attention mechanism extraction and global feature
extraction to compensate for the CNN shortcomings in time-
series data and the inability of RNNs to be parallelized.
The Transformer can compensate exactly for this lack
of work in time series. The Transformer’s multiheaded
attention can view the information between previous time
steps when making predictions for the next step. This is
exactly what the CNN lacks. A reasonable combination
of the two methods can more efficiently distinguish the
subtle differences between the calls of domestic pigs. In
previous work, the exploration of only one dimension
or one method has often been focused on, which is not
enough in our opinion. By introducing two methods with

Table 7 Performance of the TransformerCNN on different datasets

Dataset ACC AUC Recall Precision F1

Pig Sound(4) 0.9605 0.9837 0.9052 0.9080 0.9047

Cat Sound(3) 0.8527 0.8927 0.8523 0.8220 0.8320

Bird Sound(8) 0.9550 0.9376 0.8692 0.8995 0.8704

Bird Sound(16) 0.9064 0.8716 0.8389 0.8528 0.8494

Marine Animals(4) 0.9212 0.8720 0.8512 0.8689 0.8586
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different characteristics, the model is allowed to obtain more
comprehensive information, achieving the most advanced
results in the task of classifying domestic pig calls. We
compare the use of the domestic pig call signal in other
methods and demonstrate by comparison the importance of
the method for the call classification task. State-of-the-art
results were obtained in the domestic pig call classification
task.

We validated our method with other datasets containing
three other animals (bird, whale, and cat), and the
TransformerCNN also performed reliably on the other
datasets, with 85.27% for cat (3), 95.5% for bird (8),
90.64% for bird (16), and 92.12% for whale (4), which
demonstrates the method’s state-of-the-art performance in
animal call classification task. We also found that the
classification process using catcalls was not very accurate,
and we compared the catcall dataset with other datasets to

attempt to find the reason for this result. We found that the
cat sound dataset used simpler traditional methods (HMM,
SVM) in the original experiments, while our model had a
more complex computational process. We also found that
there was a large difference in the total number of datasets,
and the training set of the cat sound dataset was small
compared to the other datasets. We believe that this is the
main reason for the poor results.

We compared the proposed method with the current
studies by other scholars. We illustrate this in Table 8,
which contains the study team, the number of animals
and classifications studied, the method used and the
classification results.

By comparing other field studies, our proposed Trans-
formerCNN model has an excellent performance in animal
call classification tasks. Most of the studies on pig grunting
have focused only on the detection of coughing diseases,

Table 8 Comparison between the approach using the TransformerCNN and other studies

Study Number of Classes Method or Classifier Performance

Yanling Yin et al.[52] 2 classes Spectrogram, AlexNet Accuracy: 96.8%

(pigs)

Weizheng Shen et al.[53] 2 classes MFCC-CNN Accuracy: 97.72%

(pigs)

Xie and Zhu[45] 14 classes CNN F1-Score: 95.95%

(bird species)

Kücüktopcu et al.[46] 21 classes MFCCs, minimum distance classifier Accuracy: 72%

(bird species)

Zottesso et al.[47] 8 classes Textural features Accuracy rate: 71%

(bird species)

Zhang et al.[48] 4 classes Spectrogram-frame linear network F1-Score: 96.9%

(bird species)

Jiang et al.[49] 2 classes CNN ACC: 95%

(Cetaceans)

Marek et al.[50] 11 classes MFCC,HMM,GMM ACC: 84.11%

(Cetaceans)

Tao Lu et al. [51] 3 classes AlexNet ACC: 99.96%

(Cetaceans)

Stavros Ntalampiras et al. [44] 3 classes MFCC,temporal modulation features ACC: 95.94%

(cat) DAG-HMM,HMM,SVM,ESN

Our Method 4 classes TransformerCNN ACC: 96.05%

(pigs)

Our Method 3 classes TransformerCNN ACC: 85.27%

(cat)

Our Method 8 classes TransformerCNN ACC: 95.50%

(bird species)

Our Method 16 classes TransformerCNN ACC: 90.64%

(bird species)

Our Method 4 classes TransformerCNN ACC: 92.12%

(Cetaceans)
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often containing only two categories. In our model, we ana-
lyze four cases, including two similar cases, which are more
computationally complex in comparison but only 0.03% and
1.67% lower in accuracy performance than existing stud-
ies, but our work doubles the number of data categories. In
the whale call classification task, we also achieved 92.12%
accuracy. For the bird call classification task, we used more
recognition categories than existing researchers and still
had almost consistent accuracy. The TransformerCNN has
excellent generalization ability compared to existing stud-
ies, which is reflected by the fact that the method remains
advanced when applied to different datasets and different
features.

In addition, we made the experimental dataset open
access and available for researchers to view at (https://
figshare.com/articles/dataset/Sow call dataset/16940389).
We believe that a reasonable division is the basis for nor-
malization. In our work, we divided each collected grunt
signal into 2 s according to the vocal characteristics of
domestic pigs to make each grunt data contain the complete
grunt signal. During our exploration, we found that there are
no normalized datasets on domestic pig grunting that have
been published by other researchers. To promote research
on domestic pig calls, we decided to grant open access to
the dataset. Open access to the dataset fills the lack of a
standardized dataset in this field and provides a reference
for other researchers. We also encourage other researchers
to build on this research and propose more novel meth-
ods. This study has important implications for behavioral
monitoring of domestic pigs, and the excellent recognition
performance provides new ideas for the development of
smart farming. The study also remedies the problems in the
visual method. Farm managers often cannot directly grasp
the emotional behavior of domestic pigs through visual
methods, which often requires long-time analysis of the
behavior, which consumes much time, while the anxious
and fearful grunts are the most intuitive expression of the
pig’s emotions.

The development of this study is groundbreaking for
the study of domestic pig call classification tasks, and our
study is the first to use a combined Transformer and CNN
model for domestic pig sound research. Additionally, the
open access to the dataset makes it possible to support the
research on domestic pig calls more favorably and to solve
the problems that cannot be solved by traditional methods
in a groundbreaking way.

6 Conclusions

In this work, we collected and demonstrated the applica-
bility of a standard sound classification dataset for domes-
tic pigs. The dataset is publicly available to provide data

support for future research on domestic pig grunts. In this
paper, we proposed a parallel neural network based on
the Transformer and CNN and compared it with existing
grunt classification models. By comparing the experimen-
tal results, our proposed model significantly outperforms
the existing models in all metrics. In addition, we vali-
dated the proposed method on other datasets and compared
it with other methods. Through the experimental results,
it was proven that the TransformerCNN achieves excel-
lent performance for different data, with low impact on
the data and strong generalization ability. The use of the
TransformerCNN for animal call classification tasks is an
advanced experiment in existing research. It also shows that
this novel network structure can effectively improve the fea-
ture extraction ability of the model and can better improve
the prediction accuracy and robustness by complementing
each other between different extraction methods. This work
can provide a reference for realistic behavioral and emo-
tional analysis of domestic pigs, as well as experience for
future research work.

For the future organization of the work, we have fully
considered the existing scholars who have contributed to
the visual and acoustic directions. We believe that there
is still room for exploration in this work, and we hope to
add visual methods for multimodal studies. Through the
addition of visual methods, more biological information
can be obtained to further explore the behavior and state
performance of animals.
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36. Paul D, Su R, Romain M, Sébastien V., Pierre V, Isabelle G (2017)
Feature selection for outcome prediction in oesophageal cancer
using genetic algorithm and random forest classifier. Comput Med
Imaging Graph 60:42–49

37. Arumugam M, Kaliappan M (2016) An efficient approach for seg-
mentation, feature extraction and classification of audio signals.
Circ Syst 7(4):1–25. https://doi.org/10.4236/cs.2016.74024

38. Sharma G, Umapathy K, Krishnan S (2020) Trends in audio signal
feature extraction methods, Applied Acoustics, Vol. 158, https://
www.sciencedirect.com/science/article/pii/S0003682X19308795

39. Veerendra M, Bakhar RM (2016) Vani, Robust Blind Beam
Formers for Smart Antenna System Using Window Techniques.
Procedia Comput Sci 93:713–720. https://www.sciencedirect.
com/science/article/pii/S1877050916315204

40. Su Y, Zhang K, Wang J, Madani K (2019) Environment sound
classification using a two-stream CNN based on decision-level
fusion. Sensors 19(7):1–15. https://doi.org/10.3390/s19071733

41. McFee B, Raffel C, Liang D, Ellis DP, McVicar M, Battenberg
E, Nieto O (2015) librosa: Audio and music signal analysis in
python. In: Proceedings of the 14th python in science conference,
pp 18–25

42. Selvaraju R, Cogswell RM, Das A, Vedantam R, Parikh D, Batra
D (2017) Grad-CAM:, Visual Explanations from Deep Networks
via Gradient-Based Localization. IEEE Int Conf Comput Vision
IEEE 1:618–626. https://doi.org/10.1109/ICCV.2017.74

43. Binu Melit D, Sony G (2020) Dimensionality reduction and visu-
alisation of hyperspectral ink data using t-SNE. Forensic Science
International, vol 311. https://doi.org/10.1016/j.forsciint.2020.11
0194

44. Ntalampiras S, Ludovico LA, Presti G et al (2019) Automatic
classification of cat vocalizations emitted in different contexts.
Animals 9(8):543. https://doi.org/10.3390/ani9080543

45. Jie X, Mingying Z (2019) Handcrafted features and late
fusion with deep learning for bird sound classification. Ecol
Inf 52:74–81. https://www.sciencedirect.com/science/article/pii/
S1574954118302991
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