
https://doi.org/10.1007/s10489-022-03539-8

Neural network input feature selection using structured l2− norm
penalization

Nathaniel Egwu1 · Thomas Mrziglod2 · Andreas Schuppert1

Accepted: 22 March 2022
© The Author(s) 2022

Abstract
Artificial neural networks are referred to as universal approximators due to their inherent ability to reconstruct complex
linear and nonlinear output maps conceived as input-output relationships from data sets. This can be done by reducing large
networks via regularization in order to establish compact models containing fewer parameters aimed at describing vital
dependencies in data sets. In situations where the data sets contain non-informative input features, devising a continuous,
optimal input feature selection technique can lead to improved prediction or classification. We propose a continuous
input selection technique through a dimensional reduction mechanism using a ‘structured’ l2− norm regularization. The
implementation is done by identifying the most informative feature subsets from a given data set via an adaptive training
mechanism. The adaptation involves introducing a novel, modified gradient approach during training to deal with the non-
differentiability associated with the gradient of the structured norm penalty. When the method is applied to process data sets,
results indicate that the most informative inputs of artificial neural networks can be selected using a structured l2− norm
penalization.
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1 Introduction

An integral part of learning with artificial neural networks
(ANNs) involves selecting the most relevant features from
data sets [1–4]. The aim is to reduce the complexity
and computational constraints associated with the resulting
models in order to improve their ability to generalize on
new data sets. This can be done by adapting classical
learning algorithms, where intricate relationships between
data features and labels conceived as internal mappings
are identified via training. Artificial neural network (ANN)
training is done by statistical inference via regression using
back-propagation, where modelling involves parameter
(weights in the case of ANNs) optimization – corresponding
to the minimum error of an objective function [5–8].
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For instance, when a learning algorithm is categorized as
supervised based on data labels, optimal feature selection
from data sets can improve the quality of output map recon-
struction using well-known mathematical results [9–11].

In principle, feature selection techniques can be cate-
gorized as wrapper, filter and embedded methods [12–14].
While wrapper methods involve coupling a feature subset
to a classifier in order to identify relevant data features
[15–17], filter methods involve identifying relevance among
feature subgroups using a statistical information measure.
Also, filter methods do not involve data labels but trans-
form the original feature space along a lower dimensional
manifold. Meanwhile, wrapper methods are effective in
obtaining feature subsets but inefficient and unsuitable for
large-scale or high-dimensional data sets [18]. This is due
to the fact that in wrapper methods, the performance of the
selected feature subset is often validated on the training
outcome. Hence, wrapper methods are suitable for fea-
ture selection in supervised learning scenarios. In [19], a
hybrid formulation consisting of both the wrapper and filter
method based on applying a multi-objective (whale) opti-
mization was proposed. The aim is to merge the merits of
both methods into a single system in order to achieve bet-
ter performance. However, employing wrapper methods can
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increase the computational time in problems with large fea-
ture space. Examples of filter selection methods include:
F-statistic, reliefF [20, 21], minimal-redundancy-maximal-
relevance criterion (mRMR) [22], t-test and information
gain [23]. Both wrapper and filter methods are prone to
over-fitting and can lead to extensive use of computa-
tional resources. Moreover, relying on statistical relevance
for feature selection can introduce unwanted constraints on
the training algorithm making it difficult for the resulting
models to be properly interpreted. To cater for the afore-
mentioned deficiencies, several embedded methods such as
regularization [24, 25], dropout [26] methods have been
proposed. In principle, embedded methods involve incor-
porating a mechanism into a supervised learning algorithm
in order to identify the most relevant inputs and other fea-
tures during training [26, 27]. However, these methods are
limited in their ability to optimally select relevant (most
informative) inputs and other features in problems with high
dimensional data containing fewer data set points.

From several embedded feature selection methods, we
focus on situations where a mechanism can be introduced
during training – to analyze the influence of parameter
groups associated with data inputs – in order to reduce
the dimension of the input space. Examples of classical
dimension reduction (DR) techniques include: the drop-
out method [26, 28], pruning [29, 30], feature extraction
techniques such as the principal component analysis (PCA)
[31, 32], or low dimensional approximation methods for
feature selection in image classification problems [33]
(where ANNs were used in DR of dynamical systems
and applied to conductance-based neuron models [34]. In
contrast to the aforementioned DR techniques, we focus on
embedded feature selection methods which are based on
regularization, where a penalty term is added to an objective
function prior to ANN training.

In supervised learning literature, a well-developed theory
on the application of regularization techniques in feature
selection problems exists. For instance, in [25, 35–38] (and
references therein), several regularization methods were
proposed and successfully applied to many feature selection
problems. Examples of regularization functions include the
l1 penalty (Lasso) – defined as the total sum of the absolute
values of model parameters (or weights in ANNs) [39–42].
When ANNs are penalized with the Lasso, sparsity (zero
parameters) is introduced in models. Other penalties include
the ridge regression (l2 norm squared) and the elastic net
- obtained by combining the l1 (Lasso) and the squared l2
norm. Modified forms of the Lasso and refined l2 penalties
were proposed in [33] to eliminate unimportant filters
and channels in convolutional neural networks. Meanwhile,
[25] proposed the use of exclusive group Lasso for intra-
group learning based on the extensive grouping of network
parameters and validated on several benchmark problems.

In [37], a tree-guided group Lasso was proposed to relate
multiple genes in gene expression data by leveraging
hierarchical clusters. The Lasso is known for inducing zeros
in model parameters due to its geometric property, while
the squared l2 norm tends to drive parameters to small
values. Several combinations of the aforementioned penalty
functions have successfully been applied to many problems
[24, 35, 43, 44]. Meanwhile, [24] proposed a penalty for the
simultaneous selection of input and hidden layer neurons of
deep neural networks in classification problems.

Furthermore, the embedded feature selection method
proposed in [45] relies on an input-to-output skip-layer
(residual) connection that allows a feature to have non-zero
weights in a hidden unit only if its skip-layer connection is
active. While [1] proposed a grouped lasso regularization
which is an integrated scheme for feature selection along
with controlling the extent of redundancy in the selected
features using neural networks. In the latter case, the method
also handles problems with redundant features. While in
[46], an l1 regularization for improving the performance
of imbalanced classification, and an iterative scheme to
solve the optimization problem associated with feature
selection was proposed. Meanwhile, [47] proposed a three
step method via a hypergraph based multi-task feature
selection for multi-modal classification, which seeks to
address limitations associated with including redundancy
among features. While in [48], a two-layer feature selection
approach that combines a wrapper and an embedded method
in constructing an appropriate subset of predictors was
proposed. Essentially, the wrapper method was adopted to
search for optimal subset of predictors, while the elastic
net was used to eliminate remaining redundant predictors
in order to improve prediction accuracy. Meanwhile, in
[49], a top−k feature selection framework was proposed
to utilize an l0,2 regularization norm as a sparsity matrix
constraint. The method was applied to unsupervised, semi-
supervised and supervised learning scenarios. Besides, these
embedded regularization techniques (including the Lasso
and its flavours and elastic net) do not tend to recognize
grouping in high dimensional data sets with implicit
nonlinear relationships among input features.

However, the aforementioned embedded feature selec-
tion techniques are suited to problems with large data set
points which are not obtainable in biomedical, pharmaceu-
tical and crop industries. In such circumstances, the lack of
scalability in the data sets corresponding to quality mea-
surements involving batch runs during production do not
often varry per year. Moreover, since training deep ANNs
are often characterized by large data set points which are
not available in these industries. Hence, applying the afore-
mentioned feature selection techniques will not be suitable
in these scenarios. Besides, relying on two-step modelling
techniques where the feature selection step is separated from
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the classification or prediction step, can add unwanted com-
putational problems during training. Other key constraints
associated with classical approaches include under-fitting,
over-fitting and reliance on validating performance out-
comes by sub-diving the Training data set to determine
best informative inputs and other relevant features. To
cater for these deficiencies, we propose a continuous fea-
ture selection technique where a novel penalty function
is incorporated during training to control the influence
of non-informative input features. The proposed mecha-
nism combines both the informative input selection, optimal
parameters and neurons together with the classification or
prediction steps during training. The aim is to establish
robust models for better generalization and performance
outcomes on new data sets. In this paper, model robust-
ness refers to the fact that the extrapolative ability of the
resulting model (represented by the most informative inputs
and structural information or the least number of optimally
selected parameters and neurons) is resistant to changes in
the data set points. In principle, the goal is to reduce an
over-parameterized ANN parameter and input feature space
to get a feature subspace, which is then used to establish a
simplified, partial or sub-network model. The mechanism is
inspired by the notion of parsimonious models in statistical
learning literature [41, 50] – where sparse models (contain-
ing few parameters) are often preferred to complex models
(containing more parameters). This assumption is based on
the fact that the most vital information contained in data
sets can be described by models containing fewer inputs and
other relevant features (parameters in the case of ANNs).
The aim of the embedded structured penalty is to adapt the
classical training problem to cater for constraints associated
with the non-informative inputs and other relevant features
contained in the original data set.

In principle, incorporating the proposed structured l2
penalty function – defined as the cumulative sum of l2
norms – to an objective (loss) function transforms the initial
ill-posed objective function (containing non-informative
inputs) to a well-posed problem. The theoretical background
associated with the structured l2 penalty is to implicitly
introduce a grouping structure among the parameter set
corresponding to each ANN input neuron. The formalism
is aimed at determining the importance of each input
feature using the influence of each l2 norm on each
parameter group emanating from each input neuron. This
is due to the geometric property of the l2 norm function,
which is used to simultaneously shrink the l2 norm of
each group of parameters corresponding to each input.
Hence, the most informative inputs can be simultaneously
identified and retained, while non-informative inputs are
eliminated during training. However, the newly introduced
structured l2 norm penalty renders the initial objective
function non-differentiable. To deal with this, we adapt

the classical training algorithm by introducing a modified
gradient condition in order to guarantee convergence of the
adapted training algorithm. Thus, the proposed formalism
preserves the most significant information contained in
the data set by selecting the most informative input and
the least number of optimal parameters during training.
The method also eliminates the need for sub-dividing the
data set for validation during training, prevents over-fitting
and provides high accuracy when applied in classifying
or predicting data outputs. The main contributions can be
highlighted as follows:

– Propose a novel embedded feature selection mechanism
by incorporating a structured penalty during ANN
training aimed at selecting the most informative inputs
from data sets. The method will be validated on small
to medium sized data set points in contrast to existing
methods which are characterized by large data set
points.

– The mechanism induces a grouping structure among
inputs and relies on the implicit relationship between
inputs and labels for optimal input and feature selection
in contrast to using statistical importance, ranking or
relevance methods which can lead to loss of vital
information in data sets. It also optimizes the number of
neurons in each ANN layer during training, enabling us
to learn less complexity in data sets and thus provide a
good understanding of the problem.

– The method differs from the aforementioned embed-
ded regularization techniques because of its ability to
simultaneously identify and eliminate distinct param-
eter groups corresponding to non-informative inputs.
Also, it leads to models whose solution space is rep-
resented by the least number of optimal parameters
thereby simplifying model evaluation in applications.

– The method also relies on fine-tuning parameters by
reducing the model bias and over-parameterized ANNs
via sparsity to determine optimal input and feature
subsets with the best model performance. The aim is to
remove unwanted noise from the data during training
and in applications using robust models which offer
flexibility in generalization and extrapolation (shown in
the Result section).

– The technique is applicable in industrial settings where
process quality measurements are not scalable due to
the invariability of the dimension of the data set points
and the high cost associated with generating such data.
Hence, optimal inputs and relevant feature selection is
needed to prevent the loss of vital information in such
applications.

In order to validate the performance of the proposed
mechanism, training will be performed on different data sets
of varrying compositions. Next, essential parameters will be
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introduced to fine-tune models prior to application. In order
to quantify the model prediction and classification accuracy,
several performance statistics will be obtained by analyzing
the resulting model residues and complexity computed from
optimal model parameters. These quantities (model residues
and complexity) will be obtained from an ensemble of
models and used for model selection. The remaining outline
of this paper is organized as follows: In Section 2, we
introduce the notations and present the problem statement,
while the implementation and optimization methods are
discussed in Section 3. The input selection algorithm is
presented in Section 4, while the experimental setup and the
results obtained by applying the formalism on artificial and
real data sets are presented in Section 5. Meanwhile, the
conclusion and discussion are presented in Section 6.

2 Problem statement

Consider the process data set D = (xi , yi ) ∈ Rn+1, where
xi are inputs and yi are outputs. We assume that the outputs
yi consist of a noise vector ε and the true output yi ; where
both yi and yi,true are related by:

yi = yi,true + ε, yi,true ∈ R. (1)

For each component in D containing N data points, we
have that xi ∈ RN×n, yi ∈ RN ; while both components
in D will be represented by xi and yi respectively. Note
that ε ∼ N (μ, σ 2)− implies that the noise vector ε, is
randomly drawn from the normal distribution with mean
μ and standard deviation σ . Let the matrix Θ ⊂ Rn×m

represent the parameters (weights) connecting all layers
of a feed-forward ANN (Fig. 1) structure containing n

inputs, m hidden and 1 output layer neurons. If the
modelling objective is to approximate yi , the optimal
parameter matrix corresponding to the resulting model will
be represented by Θ∗ ⊂ Rn×m. In non-linear regression
problems, modelling involves optimization of an objective
function F(Θ) via the well-known residual sum of squares
formula:

F(Θ) =
N∑

i=1

(
yi − f (xi , Θ)

)2 . (2)

Meanwhile, for binary classification problems [51–53],
the loss function is defined as:

G(Θ)=− 1

M

M∑

l=1

(
yl log(f (xl , Θ))+(1−yl ) log(1−f (xl , Θ))

)
, (3)

where f (xi , Θ) can either represent a single hidden layer
ANN structure:

f (xi , Θ)=
m∑

j=1

θjσ

[
n∑

l=1

xij θjl

]
, m1, m2, n1 ∈ N; (4)

or a 2 hidden layer deep ANN structure:

g(xi , Θ̃) =
m1∑

k=1

θkσ

⎡

⎣
m2∑

j=1

θjkσ

[
n1∑

l=1

xij θjl

]⎤

⎦ , m1, m2, n1 ∈ N;

(5)

and σ is the activation function. In compact form, (2) can be
written as

Θ∗ = argmin
Θ

F(Θ). (6)

In order to compute Θ∗, we minimize the loss function
F(Θ), by training a suitable ANN structure using a
gradient-based algorithm [54]. The aim of the input
selection problem is to find x∗

i ⊂ xi ∈ D for some ε > 0
where Θ∗ ⊂ R and:

xi = {xF
i , xNF

i }, (7)

where xF
i , xNF

i represent the informative (F) and non-
informative inputs respectively. In order to accomplish this,
we adopt the following grouping mechanism for a 1-hidden
layered ANN structure: let Θ1 ⊂ Θ represent the set of
parameters connecting the hidden to output layer neurons;
while Θ2 ⊂ Θ represent the set of parameters connecting
input to the first hidden layer neurons (with biases at
each layer incorporated into the corresponding group). The
grouping mechanism permits the use of Θ = {Θ1, Θ2} to
represent the total parameters in each structure in Fig. 1,
while Θ̃ = {Θ̃1, Θ̃2} can be used to represent the total
parameters in a 2- hidden layered deep ANN. For input
selection, we propose that the structured l2 norm penalty:

P2(λ2, Θ2) = λ2

[
n∑

k=1

|| Θk
2 ||2

]
, (8)

Fig. 1 A schematic diagram
showing how the structured
penalty and Lasso can be
incorporated to different layers
of a (a) shallow and (b) deep
ANN structures STRUCTURED 

PENALTY

LASSO

(a) (b)
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should be incorporated in (1). Note that the structured
penalty function in (8) is defined as the cumulative sum
of l2 norms: || Θl

2 ||2, where each l2 norm penalizes each
set of parameters Θl

2 ⊂ Θ2, l = 1, . . . , n; – emanating
from each input neuron. The structured penalty in (8) can be
explained as follows:

P2(λ2, Θ2)=λ2

[
l2(Θ

1
2 ) + l2(Θ

2
2 ) + l2(Θ

3
2 ) . . .+l2(Θ

n
2 )

]

(9)

where l2(Θ
1
2 ) means that the l2− norm penalizes the

group of parameters corresponding to Θ1
2 . For a process

containing n inputs, Θ2 becomes:

Θ2 = {Θ1
2 , Θ

2
2 , Θ

3
2 , . . . , Θ

n
2 } (10)

To optimize the ANN parameters in all layers, (8) is
combined with the Lasso penalty [40]. Incorporating (8) and
the Lasso to (6), we obtain the penalized objective function
(POF) for a single hidden layer ANN:

Θ∗ = arg min
Θ1,Θ2⊂Θ

[F(Θ)+P1(λ1, Θ1)+P2(λ2, Θ2)] , (11)

where λ1, λ2 ∈ R are called the tuning, regularization or
trade-off parameters. For deep-layered ANNs, Θ in (11)
can be replaced by Θ̃; while for classification problems,
F(Θ) can be replaced by G(Θ). The choice of (8) for
feature selection is influenced by the geometric property
of the l2− norm – which tends to shrink the total norm
value of the associated parameter vector by the same
amount thereby, controlling the influence of the gradient
of the objective function and parameter values during
optimization. The implementation is done by adapting
the gradient-based algorithm [54], by incorporating the
continuous input feature selection. Deductions will also
made from the structural information associated with the
resulting models and used for model selection.

3 Implementation and optimization
methods

3.1 Implementationmethod

In Fig. 1, we present how both the structured l2 penalty and
Lasso can be incorporated to different layers of a (a) shallow
and (b) deep ANN structure without overlaps (meaning both
penalty functions are incorporated at different ANN layers).
Let {Θ1 ∪ Θ2} represent the total parameters in each ANN
structure. If Θ2 represent the total parameters connecting
the input to hidden layer neurons, another subgroup ofΘl

2 ⊂
Θ2 l = 1, . . . , n can be identified as shown in 10. The
number of values in eachΘl

2 l = 1, 2, . . . , n is determined

by the number of neurons in the first hidden layer. Thus, l2
norms are incorporated in each input neuron containing Θl

2
number of weight and the cumulative sum is added to (2) to
get (11).

In order to train the POF, we devise a criterion to
compare the contribution and influence of each Θl

2 to the
loss function and the structured l2 norm penalty. When
the contribution of each group of Θl

2 to the structured
penalty is less than its contribution to the loss function, the
entire sub-group of Θl

2 is set to zero and the corresponding
neurons dropped from the ANN structure during the next
iterative steps. This results in a reduction of the dimension
of input feature space and the most informative inputs and
features being retained during training. When this happens,
sparse ANN model structures ensue. To understand the
influence of the structured penalty (when combined with
the Lasso), reference can be made to earlier results which
are based on the interaction of different penalty functions
in training ANNs [41, 42, 55]. Similarly, optimizing (8)
results in two types of sparsity: the first case arises
due to the Lasso, while the second case arises due to
the elimination of non-informative inputs and features.
Subsequently, a mechanism will be proposed to handle the
non-differentiability associated with the gradient of both
penalty terms.

3.2 The overall training steps

The Flowchart displayed in Fig. 2 represents an overview
of the main implementation steps of the feature selec-
tion mechanism. The initial step consists of the data pre-
processing, normalization and initialization of the regu-
larization (λ1 and λ2) and training parameters. Next, a
conditional counter variable (COND COUNTER) > 0 and
a check variable K > 0 are introducing prior to train-
ing. The value of K is used to determine how many
times the condition in (12) can be computed (since (12)
is calculated whenever COND COUNTER= K) thereby
preventing a significant increase in the overall training
time. In our experiment, we chose K = 5, 10, 15, . . . , Nk ,
where Nk ≤ epochs (see the detail description in Fig. 3).
Note that when (12) is satisfied for any group of input
parameter set, the entire parameters are fixed (thereby
preventing non-differentiability of the structured penalty).
As shown in Fig. 2, setting the parameter group to zero
depends on comparing the value obtained from (12) with
the threshold parameter - THRESHOLD PARAM. Train-
ing stops when K ≥ epochs, since K is bounded by
the total number of training epochs. A detailed descrip-
tion of the implementation steps (including a Pseudo code
and Flowchart) of the proposed mechanism is presented
in Section 4.
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Fig. 2 A schematic view of the
overall implementation steps. It
presents the data pre-processing,
normalization and initialization
of the training parameters. The
embedded feature selection
mechanism is performed at
T HRESHOLD PARAM

number of times during training

3.3 Optimizationmethod

In order to determine Θ∗ in (11), an initial ANN
structure is trained by minimizing F(Θ) using a gradient-
based algorithm [54]. During training, two types of non-
differentiable scenarios arise: the first case is due to the
non-differentiability of the gradient of the structured l2
penalty, while the second case arises due to gradient of

the Lasso. To cater for the non-differentiability associated
with the Lasso, we resort to the modified gradient approach
in [40] and propose a new formalism to deal with the
non-differentiability associated with the gradient of the
structured l2 norm penalty. In principle, this involves
selecting an arbitrary number of iterative steps where a
criterion is introduced to test the closeness of the objective
function to zero, when a search direction is accepted during
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SELECT  AND COMPUTE 
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STRUCTURED 
PENALTY
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Fig. 3 An overview of the input feature selection (optimization) steps

training. To understand this formalism, let the gradient of
the loss function with respect to the group parameters Θk

2
be given by:

∂F (xi, Θ)

∂Θk
2

= 2

[
N∑

i=1

(
yi − f (xi , Θ)

) ∂f (xi , Θ)

∂Θk
2

]
; (12)

while the gradient of structured l2 norm with respect to Θk
2

be given by:

∂P2(λ2,Θ2)

∂Θk
2

= λ2

[
n∑

k=1

∂ || Θk
2 ||2

∂Θk
2

]
= λ2

{
Θk

2

|| Θk
2 ||2

, k = 1, . . . , n

}
.(13)

Applying the l2 norm to the gradient in (13), we get λ2
since:
∣∣∣∣∣

∣∣∣∣∣λ2

[
Θk

2

|| Θk
2 ||2

]∣∣∣∣∣

∣∣∣∣∣
2

= λ2;
∣∣∣∣∣

∣∣∣∣∣

[
Θk

2

|| Θk
2 ||2

]∣∣∣∣∣

∣∣∣∣∣
2

= 1. (14)

If each group of Θk
2 = 0 for some k− th index, we compare

their contributions to the loss function and structured l2
norm penalty term using the modified gradient condition
(MGC):
∣∣∣∣∣

∣∣∣∣∣2
N∑

i=1

(
yi − f (xi , Θ)

) ∂f (xi , Θ)

∂Θk
2

∣∣∣∣∣

∣∣∣∣∣
l2

< λ2, (15)

The expression in (15) can be interpreted as follows: If
the contribution of the l2 norm of each group of Θk

2
to the loss function is less than its contribution to the
structured l2 norm penalty, we set the corresponding Θk

2
to zero. This is motivated by the gradient of the structured
l2 norm penalty evaluated at each parameter group in
Θk

2 locally in the neighborhood of zero. The geometric
intuition associated with this formalism is based on the
jump created by the l2 norm gradient of the corresponding

group of input parameters at zero. Thus, the l2 norm value
of each parameter sub-group is computed and compared
with a threshold value. Due to the shrinking property of
the l2 norm, individual contribution of each input can
be estimated. In doing so, non-informative inputs can be
zeroed out, since the l2 norm values corresponding to
their parameter sub-groups will be close to zero thereby
introducing sparsity among input features.

During implementation, several values of λ1, λ2 ∈ R
were selected and their influence on the model observed
during training. Note that the MGC was adapted to cater for
the influence of λ2 – which is used to control the amount
of penalty – leading to the convergence of the training
algorithm. By setting parameters which satisfy the MGC
to zero, less informative input neurons can be disconnected
from the ANN. For instance, choosing large values of λ1
and λ2 will introduced more zeros in Θ∗. Intuitively, the
geometric interpretation can be understood by considering
the relationship between the structured penalty and the loss
function. Hence, setting non-informative or redundant input
features to zero results in a reduction of the input feature
dimension space during training. By setting the k − th

group of Θk
2 to zero based on the MGC, convergence of

the algorithm during training is guaranteed. Thus, if (15)
is satisfied, λ2 can be interpreted as a threshold value. The
values displayed in Table 1 represent the results obtained
when the method is applied to train a given number of
benchmarks data sets.

4 The input selection algorithm

Let Vl , l = 1, . . . , n, be used to denote the values com-
puted from the left hand side of (15), and M, NIter ∈
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N; M ≤ NIter represent the total number of iteration
points. During training, choose Nj , j = 1, . . . , NM steps
and compute Vl for each Θl

2 ⊂ Θ2, where N1 < N2 <

. . . NM ≤ NIter . For each Vl , a check is performed to
determine whether the modified gradient condition is satis-
fied and set Θl

2 = 0, where Θl
2 corresponds to the l − th

parameter subgroup of Θ2. When this happens, the entire
parameter subgroup of Θl

2 ⊂ Θ2 will be fixed leading
to a reduction in the input dimension. In doing so, we
assume that Θl

2 satisfies the MGC. Hence, when Θl
2 =

0, their corresponding neurons are also fixed during the
next iteration steps, resulting in the non-informative inputs
being removed from the ANN structure. An overview of
the implementation steps involved in the algorithm is dis-
played in Fig. 3. The main steps can be summarized in the
following pseudo-code:

– Pre-process data, initializeΘ1, Θ2, n, m, λ1, λ2 and set
a counter cnt = 0.

– Select N1 number of times and compute Vl resulting in
N1 vectors of Vl , where l ∈ N corresponds to the total
number of n in each data set.

– Do

Select NIter iteration steps and and index
subset I ≤ NIter .
For N1 < N2 < · · · < NI , NI ≤ NIter ,
compute Vl from (15); Nt ∈ R, t =
1, 2, 3, . . . , I .
Set group Θk

2 = 0 if (15) is satisfied, where
Θk

2 ⊂ Θ2.
Until end of training.

– For model selection:

Varry each pair of λ1, λ2 and save the
corresponding error (loss) values for each
model. Compute the model complexity using
non-zero parameter values in Θ∗.
Construct the Pareto boundary [56] and pro-
ceed with model selection.

5 Experimental setup and results

5.1 Experimental setup

In order to validated the method, 2 prediction and 4
classification data sets were trained. The prediction data
consist of a Bayer Solar cell [40] and an Artificial data
set, while the classification data consist of the Wisconsin
Breast Cancer (WCDS) and Heart disease data sets (hosted
on the UCI repository [57]). For the Prediction data sets,
the modelling objective is to predict the output labels, while
for the WCDS, the objective is to determine whether or

not the diagnosis of participants (represented as features)
can be classified into either malignant or benign cancer.
While the aim of training the Heart disease data set is to
determine whether or not participants have heart disease by
classifying features into 2 classes. In particular, for a given
data set, we let n ≤ M; where M and n represent the data
points and number of inputs respectively. Also, note that
the method was validated for data sets where n < 1000
as presented in the Results section (see (5.4)) for which
M = {126, 303, 100, 847}.

During each training phase, each value of λ1 and λ2
were varied 20 times, while the structural complexity and
residual values corresponding to each model was com-
puted. For each pair of (λ1, λ2), training was performed
10 times by randomly assigning different real values to Θ

and the global minimum selected from the vector of 10
residual values. Initializing Θ during each training phase
will provide a proper analysis regarding the relationship
between each model error and complexity represented by
the surface plots in Figures (Fig.) 4 (a)-(b). Also, exper-
imenting with different initial Θ values can reduce the
chance of outliers being introduced among Θ∗, thereby
reducing inconsistency in the results. Further variation of Θ

values can render the surface in Fig. 4(b) smoother thereby,
facilitating the computation of the structural complexity
corresponding to each model. To avoid repetition, we plot
the residuals for 1 prediction data and use this to demon-
strate the model selection in order to avoid multiple plots
with same outcome for other data sets. The Vl values from
(15) were computed at training intervals of 5, while features
with 0 Vl = 0 were fixed during the next training steps.

5.2 Data sets

The composition of each data set containing n inputs and N

set points is as follows:

– The prediction data sets containing N = 100 points are
composed of:

� An artificial data composed of n = 7+1 (with
7 informative and 2 non-informative inputs),

� A Solar data set composed of n = 6 + 1 (with
6 informative and 1 non-informative inputs).

– The composition of the classification data sets (con-
taining unknown number of informative and non-
informative features prior to training) are defined as
follows:

� A WCDS data set with N = 899 and n = 32;
containing 1 output label which was encoded
into 2 classes prior to training.

� A Heart disease data consisting of 2 files
namely: the Heart disease 1 and the Heart
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Fig. 4 Relationship between the (a) Residuals and (b) GIC values against λ1, λ2. Examples of ANN models with optimal topology and most
informative inputs for the (c) Solar cell and (d) artificial data sets are also depicted. The non-informative inputs are disconnected from the ANN
models in both cases

disease 2 data sets. Each contains N = 303
points with n = 13 and n = 74 inputs
respectively.

� The contents of the Heart disease 1 data file
were drawn from the Heart disease 2 data
file and is often used in research studies (see
[57]). Using the information provided in [57],
4 input features in the Heart disease 1 data was
encoded into 2 features.

� In each case, the output labels were encoded
into 2 classes prior to training.

– Classification data set for speech assessment (PD Data)
containing n = 300, N = 126 [58] with output 2
classes.

5.3 Data preparation

Prior to training, the classification data sets were pre-
processed using the Sklearn package [59] in Python 3.7
[60]. Using the information provided by the data set Authors
on the UCI Repository [57], 2 columns were dropped
from the original data set. For the heart disease data set,
imputation was used to handle cases of missing values.
Then, each data set was normalized and divided in the ratio
of 70 : 30 for Training and Testing. The implementation was

done by adapting the Levenberg-Marquardt (LM) algorithm
using the TensorFlow package [61].

5.4 Results

The relationship between the model residuals and tuning
parameters for the Solar cell data is displayed in Fig. 4(a),
while the relationship between the structural complexity
(computed from Θ∗) and the residuals corresponding to each
model is displayed in Fig. 4(b). Observe from Fig. 4(a) that
models with low residual values contain high complexity
(contain more non-zero parameters in Θ∗), while models
with higher residual values and low complexity contain
fewer number of non-zero parameter values in Θ∗. Thus,
peaks correspond to over-fitted models while under-fitted
models are represented by troughs in Fig. 4(a). This implies
that the peaks and troughs in Fig. 4(a) correspond to small
and large pairs of λ1 and λ2 values respectively. By aligning
candidate compact models between the lower and higher
parts of Fig. 4(a), models lying on the plateau in Fig. 4(a)
can be selected and analyzed to determine their performance
on the output. Next we compute general information
criterion (GIC) values using the non-zero parameters in
each Θ∗ corresponding to pairs of (λ1, λ2) (Fig. 4(a)). The
computed GIC values can provide a useful insight on how
to devise a formulation for model selection.
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Examples of models containing the selected most
informative inputs are presented in Fig. 4(c) and (d). For
each data set, a total of 20 × 20 × 10 = 4000 runs
corresponding to each pair of (λ1, λ2) were performed by
assigning 50 different values to Θ . Suitable values for λ1
and λ2 were obtained via a 2-dimensional grid search by
comparing model residuals and structural complexity [62].
For each pair of (λ1 λ2), a weighting term was computed
using the Generalized Information Criterion (GIC) (with
Akaike (AIC) and Bayesian Information Criteria (BIC) as
special cases) [63]. Each (λj , λk), j, k, = 1, . . . , 20 was
selected in the interval [0, 5]×[0, 5] in steps of 0.001, while
the GIC was computed from:

GICλ = loss + κndfλ (16)

where κn ∈ R. The complexity weighted term dfλ, is
computed from the non–zero parameters in each Θ∗. For
each group of candidate models, the same number of
inputs were selected irrespective of the number of non-
zero parameters in Θ∗. In order to devise a mechanism
for model selection, a global minimum value was obtained
from several local minima of GIC values. This was done
by identifying models which lie along the “dark region”
(corresponding to the global minima of the GIC values) as
shown in Fig. 4(b).

For model selection, we resort to a modified form of
Pareto ranking [56, 64] – by ranking candidate models using
their residual values and structural complexity values. The
candidate models are selected by comparing their accuracy
and performance on new data sets. As seen in Fig. 4(b),
models whose GIC point values lie on the plateau were
selected from an ensemble of candidate models which lie
within an artificially defined Pareto boundary [65]. The
relationship between the predicted and true output labels for
the Solar and Artificial Test Sets are displayed in Fig. 5.

The plots in Fig. 6 correspond to the relationship between
the error and training epochs for each data set. The results
indicate convergence when the classical back-propagation
algorithm is adapted for input selection.

In Fig. 7, we compare the relationship between the
PCA values and the feature contributions of original and
selected features from the WCDS data [59]. From Fig. 7
(a), we observe that the most significant relationship can be
described using 5 features (as shown at the peak positions of
the graph), while 6 features were selected via our approach.
Similarly, in Fig. 8, the relationship between the PCA
values for the original and selected features for the Heart
disease data 1 are displayed. From Fig. 7(a) and (b), the
output can be described by 28 input features obtained using
our approach. Also, the corresponding accuracy and other
essential statistics will be presented in Table 3.

Observe from the results that the proposed feature
selection mechanism provides more information for the

selected input features in contrast to the PCA which projects
relevant features along principal components. Thus, in
situations where information about the selected inputs are
significant in interpreting the modelling outcome, applying
PCA is limited since it does not provide selected feature
information.

5.5 Performance analysis

In Fig. 9, we compare essential performance statistics for
models trained using the optimally selected input features
and compute the corresponding Accuracy on the Testing
Set. We also present the corresponding True Positives
(TP), False Positive (FP), True Negative (TN) and False
Negative (FN) for the WCDS data set. The comparison is
made between our approach (OA) and several well-known
classical methods (the Random Classifier (RF), Lasso (L1),
Dropout (DP), Xgboost (Xbc) and the Elastic Net (EN)
[52, 53, 66]). We observe that 6 input features were
selected via using our approach while 8 – 9 features were
selected using RF and XbC. On the other hand, deciding
on how to set the threshold value when using both RF
and XbC is critical. Thus, choosing non suitable threshold
values can result in less optimal inputs being selected and
lead to loss of vital information in the resulting model.
Furthermore, the results also indicate that over-fitting can
be prevented via our approach as seen from the accuracy of
Test Set, in addition to input feature selection and topology
optimization during training. Also, we note that automatic
fine-tuning is performed implicitly using our approach.
Meanwhile, no input features were selected using the EN,
Lasso and Dropout methods. Also, highly accurate models
were obtained when the mechanism was validated on the
Testing Set when compared with these methods.

Similarly, Fig. 10 we present the performance statistics
results for the Heart Disease Data set. From the results, the
accuracy on the Testing set is dependent on the number
of optimal features. Observe that the performance of our
approach on the Testing data set is higher when compared
to other classification algorithms. This can attributed to the
composition of the original data due to cases of missing
values. Also, the correct and miss classified output labels
obtained by retraining the Heart disease and WCDS sets
using the most informative feature subsets using different
classification algorithms (DP, RF [52], L1 and (EN)) are
displayed in Figs. 9 and 10 respectively. The statistical
quantities (TP, FP, TN and FN) in Figs. 10 and 9 correspond
to the Heart disease 1 and WCDS Test sets respectively. In
both Figs. 10 and 9, TP represent the number of participants
that were correctly classified as belonging to class 1 and
TN for class 0. The correctly classified participants are
represented by TP and TN, while the miss classified
participants are represented ny FN and FP.

1 3

5741



N. Egwu et al.

0.1          0.2          0.3           0.4           0.5            0.6          0.7

Data Data

Data
 0.0            0.2              0.4             0.6             0.8              1.0

0.6

0.4

0.2

0.0

1.0

0.8

0.1

0.3

0.2

0.4

0.7

0.6

0.5

Data

M
od

el

M
od

el

M
od

el

M
od

el

(a) (b)

(c) (d)

Fig. 5 Scatter plots corresponding to the Testing and Training data of the artificial data set are depicted in (a) and (b) respectively, while (c) and
(d) represent the Testing and Training data of the Solar cell data set

The TP and TN in Figs. 9 and 10 results also indicate that
very few miss-classified were identified as seen from the
few FP and FN, and high TP and TN values. The accuracy
obtained by retraining the selected features using different
classification algorithms (L1, XbC, DP, EN, RF [53]) are
also shown. The results also indicate that a higher Accuracy
for the Testing set was obtained via our approach when
compared with different algorithms in Fig. 10. Even though
the Lasso required a minimum training time, it did not result
in input feature selection.

In Table 1, we compare the performance statistics
between our approach and other classical training methods
[28, 41, 53, 67]. From the results, we observe a similarity
in the Testing set accuracy. But our approach has the added
benefit that under-fitting, over-fitting, most informative

inputs and optimal topology can be simultaneously selected
by choosing suitable λ1 and λ2 values during training.

In contrast to our approach, we also observe that the
most informative inputs cannot be selected using EN, DP
and L1, while statistical ranking and feature importance
are required for both Xbc abd RF. We also note that the
results obtained from the classical approach in Table 1
constitute a form of systematic approach which is applied
during or after training. However, both RF and Xbc are
done by using statistical ranking and feature importance
whereby, informative inputs are selected if their computed
feature importance values are less than a manually selected
threshold value. This can result in the loss of vital
information especially in non-linear high dimensional
problems. Also, informative inputs and relevant features
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a) b)

d)
c)

Fig. 6 Relationship between the residues and Epochs corresponding to the (a) Artificial (b) Solar cell, (c) Heart disease 1 and (d) WCDS data sets

selected using these classical methods are done in two-steps
in contrast to our one-step approach. The implementation
was done by training the data set using the [59].

In Tables 2 and 3, we analyze different statistical
quantities corresponding to the WCDS data set with
Feature Selection (FS) and without feature selection (WFS).
While in Table 2, we compare vital performance metrics
(Precision, recall, f-score) [59], and present the number of
correctly and miss classified outputs in both instances (WFS
and FS).

In Table 3, we compare the statistical quantities from
Table 2 in both instances (WFS and FS) for the Heart
disease 1 data set. The results indicate that a high accuracy
was obtained when training was performed using the most
informative inputs.

The resulting True Negative (TN), False Positive (FP),
False Negative (FN) and True Positive (TP) values are
displayed in Fig. 9. In Table 4, we compare the results
between the original and selected inputs when l2 and

Lasso are incorporated in different ANN layers. The results
indicate that a significant reduction in the number of inputs,
parameters and neurons were obtained in each layer. Models
containing the optimally selected inputs were trained using
different classification algorithms and the results are shown
in Fig. 10 (a) - (b).

In Table 5, we compare the number of non-zero
values in Θ and Θ∗ for each data set. The results also
indicate that a significant reduction in the number of input
features was obtained using our approach. Also included
in the results are suitable values for λ1, λ2 and the
errors corresponding to the selected models for each data
set.

5.6 Computational and time complexity

The analytical computational complexity associated with
the proposed input selection technique can be obtained
by using foundational concepts derived from classical
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Fig. 7 A comparison between the PCA contribution for the (a) original and (b) selected features, including the cumulative explained variance and
principal component for the (c) original and (d) selected features for the WCDS data set

results. Based on the results of the analytical computational
complexity of the Lasso penalty derived from [68], let n be
the number of inputs andN be the data set points. The Lasso
complexity is given byO(n3+n2N), and if n < N,we have
that n3 < n2N, while then the computational complexity of
the Lasso penalty equals n2N , and is dependent on the given
problem.

The computational complexity for structured l2 penalty
can be obtained by using the results corresponding to the
Lasso penalty. For instance, two key concepts considered in
our analysis include: composition of the data sets consisting
of N points and n features. Note that the complexity for
small to medium size data sets with smaller N will scale
below O(n3 + n2N). To derive the complexity associated

Fig. 8 The relation between the feature contribution against indices for the (a) original and (b) selected features. While the relationship between
the cumulative explained variance against PCA values for the original and selected features of the Heart Disease 2 data set are depicted in (c) and
(d) respectively

1 3

5744



Neural network input feature selection using structured l2− norm penalization

Fig. 9 Comparing the
performance statistics (Testing
Accuracy, optimally selected
features, True Positives (TP),
False Positive (FP), True
Negative (TN) and False
Negative (FN)) between our
approach and conventional
methods. Results were obtained
from feature ranking using
Random Classifier (RF), Lasso
(L1), Dropout (DP), Xgboost
(Xbc), Elastic Net (EN) and Our
Approach (OA) for the WCDS
data set containing n = 32
inputs

Fig. 10 Comparing the most
essential performance statistics
(Testing data accuracy, optimal
features, True Positive (TP),
False Positive (FP), True
Negative (TN) and False
Negative (FN) output labels)
between our approach (OA) and
classical methods for the Heart
data set with initial n = 35
inputs. Results were obtained
from via ranking using Random
Classifier (RF), Lasso (L1),
Dropout (DP), Xgboost (Xbc),
Elastic Net (EN) and OA

Table 1 Comparing performance statistics (accuracy, optimal features,
loss) for the Training and Testing data sets between our approach and
conventional methods (Random Classifier (RF), Lasso (L1), Dropout

(DP), Xgboost (Xbc), Elastic Net (EN) and Our Approach (OA)), cor-
responding to the WCDS data set, which initially contains n = 32
inputs

Methods Selected Error Training Data Testing Data

RF 7-8 0.07 0.94 0.93

DP 32 0.08 0.93 0.91

Xbc 8 0.05 0.94 0.93

L1 32 0.09 0.93 0.93

EN 32 0.07 0.94 0.92

OA 6 0.09 0.94 0.93
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Table 2 Results showing the Accuracy and statistical quantities (Precision, F-Score and recall) for the WCDS data sets

Precision recall f–score support

WFS FS WFS FS WFS FS

0 0.93 0.95 0.96 0.945 0.91 0.93 71

1 0.97 0.98 0.93 0.90 0.93 0.94 43

accuracy 0.95 0.96 114

macro avg 0.95 0.96 0.94 0.95 71 0.96 114

weighted avg 0.95 0.96 0.94 0.96 71 0.96 114

Also displayed are the number of correctly predicted outputs for the Testing Set

Table 3 Accuracy and statistical results for the Heart disease data sets

Precision recall f–score support

WFS FS WFS FS WFS FS

0 0.88 0.86 0.87 0.86 0.86 0.865 149

1 0.87 0.87 0.88 0.88 0.87 0.868 121

accuracy 0.89 0.87 270

macro avg 0.88 0.87 0.87 0.85 0.89 0.87 270

weighted avg 0.88 0.86 0.88 0.86 0.90 0.88 270

Table 4 A comparison between
the original and the optimally
selected inputs for all data sets

Data set Original Features Selected Features

Full 8 6

Solar 7 4

Heart Disease 1 22 9

Heart Disease 2 74 35

WCDS 30 7

PD Data 300 35

The results indicate a significant number of inputs were selected in each case using our approach

Table 5 Comparing the resulting initial, optimal neurons and parameters for different data sets selected using the proposed mechanism

Data set Θ Θ∗ λ2 λ1 Error

Full 150 16 0.009–0.003 0.008–0.05 0.05

Solar 128 35 0.004–0.008 0.001–0.006 0.09

Heart Disease 150 28 0.07–0.2 0.04–0.2 1.2

WCDS 757 178 0.008–0.04 0.01–0.06 0.78

PD Data 1520 210 0.008–0.04 0.01–0.04 0.18
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Table 6 Comparing training and feature selection times for different
algorithms obtained through Feature ranking (FeatRank), Feature
Importance (FeatRel), Lasso and our approach

Method Time (seconds)

FeatRank 17.972

FeatRel 13.241

Lasso 5.34

Our Approach 15.72

Out method compares with existing methods and leads to optimal
input feature selection

with the search space for both λ1 and λ2, eliminating
large and small values for λ1 and λ2 will narrow the
search interval resulting in a reduction in the computational
complexity of the grid space. This implies that there will
be no significant increase in the value of the computational
complexity will be introduced by applying the proposed
mechanism for feature selection.

In Table 6, we present the time obtained by training the
WCDS Data set with n = 32 inputs and N = 600 points.
Observe that apart from the Lasso, the time required in in
our approach is comparable to Xgboost with feature ranking
(FeatRank) and feature importance (FeatRel). The training
was performed on an Intel Computer with an i7-8550U (8
cores) using 4.000GHz Processor containing a 16 Random
Access Memory (RAM) size. This shows that the time
derived from our approach is comparable to other methods
and do not add any significant over head when compared
with the training times obtained from other approaches.

6 Discussion and conclusion

In this paper, an embedded, continuous mechanism was
proposed to optimally select the most informative features
from data sets. The technique is based on incorporating
a novel structured l2 penalty to the input layer of an
ANN structure. It relies on the ability of l2 norms to
simultaneously shrink a group of parameters corresponding
to a given input feature towards zero. The introduction of
the structured l2 penalty transforms the objective function
from an ill to a well-posed optimization problem which
was solved by adapting the classical LM back-propagation
algorithm. In principle, the implementation was done by
devising a modified gradient-based technique whereby,
the contribution of a parameter group (associated with
a given input) to the structured penalty was compared
to its contribution to the loss function. The method also
enforces the importance of parsimonious models – a
well-known phenomenon in statistical learning literature –
where models containing fewer parameters are preferred
in applications. The results show a significant reduction

in the number of input features when applied to different
data sets. When combined with the Lasso, the method
resulted in the simultaneous input feature selection and
topology optimization. Hence, the results also indicate that
the most informative input features can be selected using the
proposed mechanism via adaptive training.

Further improvements can be made on the formalism
by adapting the modified gradient technique to deal with
data sets containing redundant inputs. Also, extending the
influence of the modified gradient step globally during
training can improve convergence. Meanwhile, analyzing
the interaction between non-differentiable gradients of the
structured and other sparsity inducing penalties can reduce
unwanted outliers in the models. Furthermore, the tuning
parameters search space can be expanded in order to
facilitate the interpretation of model complexity.
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