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Abstract

This paper combines two approaches (Fuzzy set theory and Grey Relational Analysis) for modelling an investor’s imprecise
linguistic expectations and the uncertain returns of assets. We propose a novel maximization-type risk measure capable
of incorporating the investor’s individual preferences. The investor provides the expectations of what is considered the
“ideal” return from the portfolio. We use Credibility theory to capture the investors’ subjective and imprecise expectations
in a precise mathematical form. We construct a portfolio return sequence using the assets’ actual return data and an ideal
sequence based on investors’ preferences. Subsequently, we calculate the Grey similitude and the closeness incidence
degree between the two sequences. The closer the portfolio return is to the ideal return, the better. In this manner, we
develop a new risk measure that can quantify an investor’s perception of risk. This measure is intuitive and easy to
calculate. It does not involve estimating many parameters, something which would increase the estimation risk. We use
a genetic algorithm to solve the resulting portfolio optimization model. We illustrate this method with two case studies:
(i) a case study of 100 assets of the U.S. stock market’s NASDAQ-100 index and (ii) a case study of 50 assets of
the Indian stock market’s NIFTY-50 index. We comprehensively analyze the model’s out-of-sample performance and
discuss its implications. The portfolios obtained using the proposed approach exhibit healthy growth outside the in-sample
period. We also compare the out-of-sample performance of the proposed model with several approaches in the literature to
establish its superiority.

Keywords Portfolio optimization - Credibility theory - Grey incidence analysis - Multi-objective programming - Fuzzy set
theory - Genetic algorithm
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deciding on the allocation of capital over different assets.
Mathematically, this problem, with its various conflicting
objectives, is called multi-objective portfolio optimization.
Initially, Markowitz [1] formulated a mathematical model
of portfolio optimization. Numerous authors have improved
the original mean-variance portfolio optimization model
(proposed by Markowitz) to make it more relevant to stock
markets’ real-world scenarios. Speranza [2] employed mean
absolute semi-deviation (MASD), and Konno and Yamazaki
[3] used mean absolute deviation (MAD) to measure the risk
and transformed the quadratic mean-variance model into a
linear programming problem.

Different investors have diverse perceptions of the cur-
rent scenarios prevalent in the stock market. This is vital to
the facilitation of asset trading in the stock market. The con-
trasting investor attitudes are the prominent reason for asset
transactions. Therefore, any portfolio optimization model
must incorporate investor attitudes. Various authors have
explored the inclusion of investor attitude into the port-
folio optimization model. Li and Yi [4] have proposed
coherent fuzzy numbers in a possibilistic environment to
model the asset returns. An adaptive index, /, distinguishes
between optimistic, pessimistic, and neutral investors.
Interested readers can refer to [5-7], where a portfolio
optimization model that incorporates investor attitude is
proposed.

This paper proposes a novel maximization-type risk
measure for selecting the optimal portfolio for an investor.
The investor provides inputs about the expectations of the
returns from the portfolio (which can be understood as a
target return). These expectations are generally imprecise
and linguistic. Therefore, we use Fuzzy set theory to capture
these subjective expectations in a precise mathematical
form. The target return is expressed as a fuzzy number and
is called the ideal portfolio return. We use fuzzy simulation
to generate a sequence of returns based on the investor’s
fuzzy ideal returns. This sequence is the “ideal” sequence,
which the portfolio sequence should emulate. We calculate
the portfolio sequence using the asset weights and the
historical return data. We then calculate the Grey similitude
and closeness incidence degree between the ideal sequence
and the portfolio sequence. The closer the portfolio sequence
is to the ideal, the less risky the portfolio is for that investor.
Therefore, the objective is to maximize the weighted average
of the closeness and the similitude degree. Our method
of modelling the risk takes care of only the downside
deviations because no rational investor would suggest losses
(i.e., negative returns) as ideal portfolio behaviour.

Numerous approaches in the literature have tackled the
portfolio optimization problem. A natural question is: what
is the need for combining Fuzzy set theory and Grey
Systems theory to obtain an optimal portfolio? The success

of a portfolio optimization model depends heavily on
the accuracy of the prediction of the asset returns. Asset
prices are affected by a plethora of factors. Therefore, any
endeavour to completely describe such a system is not easy.
It may even render the entire exercise meaningless [8].
In such a scenario, the portfolio optimization model can
benefit from the experience and intuition of the experts.
The model should provide ways to integrate the advice and
knowledge of experts in the optimization process. In our
previous work [5, 6], we have used the mean absolute semi-
deviation (MASD) to estimate the portfolio risk. Although
MASD works well, we feel that the investor attitude should
play a role in the estimation of the risk. The proposed
approach aims to achieve this objective. The investor or
the expert provides inputs on the ideal portfolio return in
any given scenario. It is a problem of cognitive uncertainty
since most investors don’t know the optimal course of
action. Therefore, we use fuzzy set theory to model the ideal
portfolio return (i.e., the level of return that the investor aims
to achieve from the portfolio). The next task is to calculate
the risks involved in securing the ideal return. We cannot use
the existing risk measures such as the variance or MASD in
our model (since we only have a fuzzy estimate of the target
return). One could argue that we can use the fuzzy ideal
return’s expected value to calculate the variance or MASD,
but we would again be using crisp values for estimating
the risk. This would defeat the purpose of incorporating
the subjective preferences of the investors in assessing the
risk of the portfolio. As explained above, asset returns
are affected by several factors. A complete enumeration
of all these factors is not possible. However, the returns
themselves reflect the total effect of these factors. For
instance, if an asset’s returns are positive, for whatever
reasons, this must imply that the demand for the asset
exceeds its supply, i.e., its prospects must be bullish, and
vice versa. Therefore, modelling the risk of a portfolio can
be simplified if we focus our attention on asset returns.
On account of this objective, we propose a risk measure
that estimates the closeness and similarity of the portfolio
returns with the ideal returns. Grey Systems theory [9]
effectively deals with problems of “small sets and poor
information” [8]. It focuses on excavating partially known
information using the possibility function and sequence
operators. It uncovers the hidden patterns in any system for
its accurate understanding and description. One advantage
of Grey Systems theory is that it constructs models with
small amounts of data. Grey Incidence Analysis uses the
degree of similarity of geometric curves of the available data
sequences (in this case, the asset returns). Therefore, we
propose a way of using fuzzy simulation and Grey Incidence
Analysis to define a risk measure that quantifies the
similarity and the closeness between the ideal returns and
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those of the portfolio. The proposed risk measure is intuitive
and easy to understand. It simply gives a measure of the
point-to-point closeness and similarity between the ideal
returns and the returns of the portfolio. It does not require
the estimation of many parameters, something which would
compound errors [10]. The next step is to integrate the
investor attitude in the portfolio optimization model. We
provide two different methods to accomplish this task using
fuzzy set theory. The final step is to determine the optimal
asset allocations (i.e., the optimal portfolio weights). We
apply a genetic algorithm (a machine learning technique)
for this purpose. To summarize, the proposed approach
combines human intelligence and artificial intelligence to
determine the optimal portfolio that works for the investor.
We believe that no model in the literature quantifies the
investor’s perception of risk. Consequently, the investor or
the expert makes, in the proposed method, an increased
contribution in selecting the best portfolio.

We summarize the paper’s novelty and key highlights
as follows: (i) We propose a novel maximization-type risk
measure based on the Grey similitude and closeness incidence
degree between the portfolio returns and the ideal returns
(as preferred by the investor). This is a novel contribu-
tion to the portfolio optimization problem, to the best of
our knowledge. (ii) An aspect of portfolio optimization is
that risk is a perception-based, individual-specific concept.
The same asset may be considered risky by one investor,
while it may be considered less risky by another. From the
above discussion, we can conclude that the proposed risk
measure can incorporate investor risk perceptions. The opti-
mistic, pessimistic, and neutral investors can specify the
ideal portfolio behaviour, modelled using the appropriate
fuzzy numbers. (iii) Two separate approaches to integrate
investor attitude in the portfolio optimization model using
Fuzzy set theory have been discussed. (iv) We provide a
method to simulate coherent fuzzy numbers using probabil-
ity theory. In particular, we modify the triangular probability
distribution to generate sequences based on coherent trian-
gular fuzzy numbers. (v) We add several constraints, namely
bound and cardinality constraints, in the model to make it
more relevant to the practical requirements of investors. We
apply the proposed model to a case study involving the 100
assets of the U.S. stock market’s NASDAQ-100 index. We
use a genetic algorithm to solve the proposed model. We
also perform another case study of the 50 assets listed in
the Indian stock market’s NIFTY-50 index to further estab-
lish the validity of the proposed model. (vi) We demonstrate
the out-of-sample performance of the optimal portfolios and
discuss its implications. (vii) Skrinjari¢ [11] used Grey Inci-
dence Analysis to rank the assets based on the first four
moments, viz. expected return, variance, skewness, and kur-
tosis. These rankings were subsequently used to construct
the portfolios using 22 predefined investment strategies.
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Our model calculates the optimal asset allocations based
on historical data using the techniques of multi-criteria
decision-making. Thus, our model relies on optimization
techniques rather than predefined investment strategies. Our
approach combines Fuzzy set theory, Grey Systems the-
ory, and multi-criteria decision-making to provide optimal
portfolios based on investors’ preferences.

The rest of this paper is organized as follows: Section 2
provides a brief literature review of the recent studies in
portfolio optimization. Section 3 introduces the basic con-
cepts used throughout the paper. In Section 4, we formulate
the mathematical model for portfolio optimization, which
employs the proposed risk measure. We also develop a
genetic algorithm to solve the proposed model. Section 5
provides two case studies: one involving the 100 assets
of the U.S. stock market’s NASDAQ-100 index, and the
second involving the 50 assets of the Indian stock mar-
ket’s NIFTY-50 index. We also conduct a comprehensive
analysis of the out-of-sample performance of the obtained
optimal portfolios and discuss their implications. Finally,
Section 6 is the conclusion section with remarks on the
possible extensions of this paper.

2 Literature review

An essential ingredient in the success of any mathemati-
cal model for obtaining optimal portfolios is an accurate
representation of the stock market’s real-life scenarios. As
discussed above, asset prices are highly volatile and sub-
ject to various human-made and random factors. Thus, the
mathematical model for portfolio optimization must be flex-
ible enough to capture the uncertainty inherent in the stock
market. One method is to model the asset returns as random
variables. There are many studies where the asset returns
have been modelled as random variables. Markowitz used
a normal distribution to model the asset returns. However,
various authors have challenged this assumption [16, 17].
Asset returns exhibit extreme values more frequently than
predicted by the normal distribution [18]. This prompted
the authors to explore other methods of modelling asset
returns. Kamali et al. [19] employed various probability
distributions to model asset returns and select the best-
fitting distribution for the return data. They employ the
MATLAB solver to solve the optimization model. They
discover that the kernel distribution is the most appropri-
ate for modelling the asset returns. However, their study
is not exhaustive, and there could be other distributions
that are a better fit for the return data. Akbay et al.
[20] proposed a parallel variable neighbourhood search
algorithm for cardinality constrained portfolio optimization
problems. They propose a Variable Neighbourhood Search
(VNS) algorithm to find the best combination of assets. The
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asset proportions are determined using Quadratic program-
ming. The algorithm’s computational complexity is O (K?>
(poolsize; — K)), where K is the number of assets held
in the portfolio, and poolsizey is the number of solutions
in the local search phase. The proposed algorithm provides
superior results on five datasets (Hang Seng, DAX100,
FTSE100, S&P100, and Nikkei) over various competing
algorithms. However, their algorithm is based on the Mean-
variance (M-V) framework. We have already discussed the
disadvantages of the M-V model. Yu et al. [21] used Autore-
gressive Integrated Moving Average (ARIMA) to forecast
the asset returns. They study the importance of incor-
porating return forecasting in the portfolio optimization
process. Through various models (Mean-variance, Mean-
absolute deviation, and so on), they establish that portfolio
models with return forecasting outperform their correspond-
ing counterparts (without return forecasting) by 54%—61%.
However, the success of their model is heavily dependent on
the accuracy of the forecast. Other works include [12, 22—
26]. Modelling asset returns as random variables, although
popular, requires a significant amount of data for fitting
probability distributions with the requisite accuracy in the
estimation. It may not always be practical, especially for
newly-listed assets. The variations in asset returns are also
affected by various human-made factors, which are not ran-
dom. In such a scenario, it is more prudent to use the
judgments of stock market experts. However, these opinions
and judgments are usually qualitative rather than quantita-
tive, hence incorporating them into mathematical models is
difficult. Fuzzy set theory [27, 28] is an effective method to
formulate imprecise judgments in a mathematical form. It is
a popular method for modelling the uncertainty in portfolio
optimization problems [13, 14, 29-33]. Credibility theory
[34, 35], which employs a credibility measure to determine
the chance of an event’s occurrence, has the axiomatic prop-
erties of self-duality and normality. It is a consistent method
for modelling investors’ imprecise and linguistic judgments.
Many researchers have used credibility theory to model
volatile asset returns [36—42].

Multi-objective programming determines the optimal
tradeoff between return and risk in portfolio optimization.
It is an essential branch of Operations Research that tran-
scends disciplines in its application. It has applications
in finance, accounting, marketing, supply chain manage-
ment, and various other fields. Tirkolaee et al. [43] use
multi-objective optimization for a reliable pollution rout-
ing with cross-dock selection. They propose a bi-objective
mixed-integer linear programming problem with cost and
supply reliability as the objectives. Two multi-objective
metaheuristic algorithms are used to solve the model: Non-
dominating Sorting Genetic algorithm-II (NSGA-II) and
Multi-Objective Simulated Annealing (MOSA). The com-
putational complexity of NSGA-II is O(mN?), where N

is the size of the population, and m is the number of
objectives. They discovered that the objective functions
are heavily dependent on the demand; thus, the manage-
ment can evaluate the required resources by analyzing the
demand fluctuations. In [44], the authors study the problem
of allocation and scheduling rescue units during a natural
disaster. They formulate a bi-objective mixed-integer linear
programming model to simultaneously minimize the total
time to complete all the rescue operations and the total delay
time. Multi-choice goal programming was used to solve
the model. The model was validated using several compar-
ative studies. Reference [45] is a study of medical waste
management during the COVID-19 pandemic. The authors
develop a multi-objective mixed linear programming model
for a multi-trip location routing problem with time windows.
They use fuzzy chance-constrained programming to study
the uncertainty of the demand parameter. Based on their
case study, the total trip time is reported to be 19.733 hours
using three vehicles. The runtime of the solution algorithm
1s 1029.739 seconds. Thus, we can conclude from the above
discussion that multi-objective programming has a wide
variety of applications in various branches of Operations
Research.

Julong Deng developed Grey Systems theory [9] for
dealing with uncertain systems with partially known
information. It deals with insufficient information by
“generating and extracting useful information from what
is available” [8]. In this manner, the operational behaviour
of an uncertain system can be effectively monitored and
described. There are many instances of small samples and
poor information in the real world. Therefore, Grey Systems
theory can be applied to a wide variety of problems. Various
authors have used the Grey Systems theory to model the
uncertainty of asset returns [11, 46—48]. As discussed above,
asset returns are affected by different kinds of factors. The
mutual interaction of these factors determines the behaviour
of the asset’s returns. Statistical methods are usually
employed for analyzing asset returns. However, these
methods suffer from various weaknesses [8]: (i) Large data
samples are needed for reliable results. (ii) The available
data is assumed to follow a probability distribution, and
factors are assumed to have linear relationships. These
requirements are hard to satisfy. When historical data
is limited, applying the traditional statistical methods is
challenging, as a small amount of data is not usually
compatible with a conventional probability distribution.
Grey Incidence Analysis is a credible alternative to analyze
a system when statistical methods are impractical. It
applies to large and small samples and involves simple
computations. The idea is “to use the degree of similarity of
geometric curves formed by the available data sequences”
[8]. The higher the degree, the more similarity between the
curves and vice-versa [8]. It may seem that Grey Systems
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theory is similar to Fuzzy set theory; however, as Liu
et al. [8] mentioned, “Fuzzy mathematics emphasizes the
investigation of problems with cognitive uncertainty, where
research objects possess the characteristic of clear intension
and unclear extension.” For instance, “tall man” is a fuzzy
concept because everybody vaguely understands a “tall
man”. However, suppose we want to evaluate the particular
range within which every person is tall, and those outside
it are not tall. In that case, we will have many difficulties
because “tall man” has an unclear extension. This is a
problem of cognitive uncertainty, which is resolved using
individual judgment (i.e., using the membership function).

The method to measure the risk involved in an investment
is another important characteristic of the portfolio optimiza-
tion model. A quantitative estimate of a portfolio’s prospec-
tive losses helps the investor assess its suitability (vis-4-vis
returns). The variance was used to measure the portfolio’s
risk in the original mean-variance model (Markowitz [1]).
However, the variance is known to be a two-sided measure
of risk, i.e., it penalizes both upside and downside deviations
from the expected return. Only the downside deviations are
of concern for the investor; most investors would, in fact,
like the upside deviations. Nevertheless, the variance is a
prevalent risk measure among researchers [4, 15, 23, 49].
Downside risk measures, which penalize only the negative
deviations from the expected return, are more realistic for
the portfolio optimization problem. Mean absolute semi-
deviation (MASD), Value-at-Risk (VaR), and Conditional
Value-at-Risk (CVaR) are some examples of downside risk
measures. Each has its advantages and disadvantages. Refer
to [50] for an explanation of these. Downside risk mea-
sures have also been popular amongst authors [5-7, 42, 51,
52]. We have compared the existing literature approaches in
Table 1 based on the above discussion.

3 Preliminaries

This section provides a primer on the basic concepts used in
the paper. The basic theory of each concept is presented in
the appendix.

3.1 A brief introduction to coherent Fuzzy Numbers

Definition 1 (Mehlawat et al. [6]) “The credibility function
of a coherent triangular fuzzy number §; = (d —6,d,d +
mi> vi(z) : R — [0, 1], is given by

1

1), ifd-8<z<d,

i
v(z) = %(‘”%) ifd<z=<d+n, Sy
0, otherwise,

where / € R, [ > 0 (See Fig. 1).”
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Remark 1 The adaptive index [ specifies the stock market
perception of an investor (see Fig. 1). When 1 < [ < oo,
the credibility is higher for the left spread (d — 8 < z < d),
while it is lower for the right spread (d < z < d + n)
in comparison to a standard triangular fuzzy number (since
0 < wvi(z) < 1). Thus, if the investors assess the current
stock market prospects to be pessimistic, they can assign / in
[1, co]. When 0 < I < 1, the credibility is lower for the left
spread (d —8 < z < d), while it is higher for the right spread
(d < z < d + n) in comparison to a standard triangular
fuzzy number (since 0 < v;(z) < 1). Thus, if the investors
assess the current stock market prospects to be optimistic,
they can assign [ in (0, 1). For I = 1, the coherent fuzzy
number reduces to a standard triangular fuzzy number with
similar credibilities assigned to both the spreads. Therefore,
a neutral investor can assign / = 1. See Fig. 2 for visual
explanation of this concept.

Proposition 1 “Suppose that&1; = (d1—81,d1, d1+n1);,
&1 = (dr — 62, da, da + m2); are two coherent triangular
fuzzy numbers. Then, for k > 0, we have
§10+86, = ((di +d2) — (61 +82),d1 + da, (d1 + d2)
+(n +m)); . (Addition)
k&1 = (kdi — k81, kdy, kdi +kn1); -

(Scalar multiplication)”

Proposition 2 (Credibilistic expectation [6]) “Let & =
(d —6,d,d + n); be a coherent fuzzy number. Then, its
expected value is given by

1 k]
E[§] = d+m(7l—15)- (2)

3.2 Grey incidence analysis

Proposition 3 “Let Z; = (z;(1),z;(2), ..., zi(n)) be the
data sequence of a system’s behaviour, Z;—z; (1) denote the
zigzag line (z; (1)—zi (1), zi(2)—zi (1), ..., zi(n)—z; (1)), and

si = fn (Z; — zi(1)) dt,
1

when Z; increases, s; > 0, when Z; decreases, s; < 0, and
when Z; vibrates, the sign of s; varies.”

Proposition 4 “Assume that the images of the zero-
starting point of two behavioural sequences Z; and Z; are
respectively, 7% = %), z°2), ..., z°%n)) and ZjO =
z;,°), z,°Q), ..., z;°n)). Let,

n
Si —§; 2/ (Z,'O—Zjo)dl,
1

n
Si—Sj :/; (Zi—Zj)dt,
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Table 1 Comparison with existing methodologies
Feature [11] [4] [12] [13] [14] [7] [15] Proposed Approach
Mean v v v v v v v v
Risk measure Variance  Variance VaR Minimax  Variance MASD Variance GSD and GCD
Environment Random  Possibilistic = Random Uncertain ~ Possibilistic  Crediblistic ~ Uncertain ~ Credbilistic
random
Investor attitude X v X X X v X v
MCDM techniques X v v v v v v v
Solution method N.A. NLP Improved  NLP DE PBEMO NLP GA
NSGA-II
Bound constraints X X v v v v X v
No Short-selling X v v v v v v v
Cardinality constraint X X v X v v X v
Fuzzy simulation X X X X X X X v

Acronyms: VaR: Value-at-risk; MASD: Mean absolute semi-deviation; GSD: Grey similitude incidence degree ; GCD: Grey closeness incidence
degree; N.A.: Not applicable; DE: Differential evolution; NLP: Non-linear programming; NSGA-II: Nondominated sorting genetic algorithm II;
PBEMO: Preference-based evolutionary multi-objective optimization; GA: Genetic algorithm

when Z,~O is entirely above Zjo, si —sj = 0, when Z,~O is

entirely below Zjo, si —sj < 0, and when Z,-O and Zjo Is;]
alternate their positions, the sign of s; — s; is not fixed.

Similarly, the sign of S; — S; can be discussed.”

lsi—sjl =

Proposition 5 (Liu [53]) “Assume that Z; and Z; are 1-
time interval sequences (i.e., the time difference between

each observation is 1) of the same length, and the following 151
are the zero-starting point images of Z; and Z,

7 = @', '@, ..., 2. 151
z,% = @', 7,°@, ..., z;° ),

then, ’Si _Sj’ =

n—1
1
Isi| = ézi(’(szzi‘)(m :

Fig.1 Coherent fuzzy numbers’
credibility distribution for
different values of [

(a)l<1

n—1

> %% + %z,-o(n) :

k=2

n—1

> (0022 ®) 45 (0m—2,0m)|.

k=2

n—1
1 1
a(D+ gzi (k) + 5zi(m) .
1 ! 1
5D+ 2 + 52

k=2

1 n—1
E(Zi(l) —zj(1) +Z(Zi(k) —z;(k))

k=2

+ = (zitn) — zj(m) |

N =

v (2)
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«+Optimistic Neutral

0 1

Fig.2 Change in investor attitude with /

Definition 2 (Liu and Xie [54]) “Let Z; and Z; be sequences
of identical length, and s; — s; be as defined in Proposition
5. Then the Grey similitude incidence degree is given by,

1

=—" 3
T+l =) v

Eij

The similitude degree of Grey incidence measures the
geometric similarity of the shapes of the sequences Z; and
Z ;. A greater value of ¢;; indicates a higher similarity of the
geometric shapes of Z; and Z; and vice-versa

Remark 2 Some properties of the similitude degree are as
follows,

1. 0<g¢ i = 1.
&j is determined by the geometric shape of the sequences
Z; and Z; and is independent of the relative spatial
positions of the sequences. Therefore, any translation of
sequences Z; and Z; does not affect ;.

3. Eii = &jj = l,ande,-j = &jj.

Definition 3 (Liu and Xie [54]) “Let Z; and Z; be sequences
of identical length, and S; — S; be as defined in Proposition
5. Then the Grey closeness incidence degree is given by,

1
P 4
Pij L+ |8 — )] @

Closeness degree of Grey incidence measures the spatial
closeness of sequences Z; and Z ;. A greater the value of p;;
indicates that the sequences Z; and Z; are spatially closer
and vice versa.

Remark 3 Some properties of the closeness degree are as
follows,

1. 0< pPij = 1.

2. The value of p;; depends on both the geometric shapes
of the sequences X; and X; and their relative spatial
positions. Thus, any translation of the sequences will
change the value of p;;.

3. pii = pjj =1, and pjj = pji.
3.3 Fuzzy simulation

In the proposed approach, the investor provides the expec-
tations on the “ideal” portfolio behaviour. Since the investor
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expectations will most likely be imprecise and linguistic,
we use a credibilistic triangular fuzzy number to capture the
expectations in a mathematical form. To apply Grey Inci-
dence Analysis, we need two sequences to calculate the
closeness and the similitude degree. The portfolio sequence
can be readily constructed using the assets’ historical data
and the portfolio’s asset weights. Next, we need the “ideal”
sequence, i.e., the sequence that follows the credibility
distribution of the triangular fuzzy number given by the
investor. The portfolio sequence should emulate the ideal
sequence as closely as possible.

3.3.1 Generating sequences of credibilistic triangular fuzzy
numbers

Our task is to generate a random sequence of numbers dis-
tributed according to a given credibility function (i.e., the
given ideal triangular fuzzy number). However, this is not a
straightforward process as credibility functions do not obey
the laws of probability. Therefore, we use a triangular prob-
ability distribution to generate the ideal sequence. In this
manner, the shape of the generated sequence will be similar
to that of a triangular credibility function (See Fig. 3).

Definition 4 A random variable Y € [a, c¢] follows trian-
gular distribution if it has the following probability density
(P(.)) and cumulative distribution function (F'(.)),

0, ify <a,

_20=9) _ ifa<v<b
P(Y = v) = | Cat—-a y=0

Y=y = 2(c—y) it b < s

caeop HoO<Y=6

0, y > c.

0, ify <a,

L ifa <y<b,
F(Y = y) = (C_y)Z . (5)

1— =D’ ifb<y<ec,

1, otherwise,

where b is the mode of the distribution.

We summarize the procedure for generating the ideal
sequence < Iy >= (i;(1), i5(2), ..., is(L)) for a triangular
fuzzy number (a, b, c) in the following steps (L is the
historical data length),

Step 1: Fort = 1to L, do;
Step 2:  Generate r € [0, 1] randomly.
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(a) Credibility distribution of a triangular fuzzy number

Fig.3 Comparison of triangular credibility and probability functions

Step3: If0<r <22 theni;(t)=a + /r(c—a)(b—a).
Step 4: If h:g <r<l1,theni;(t)=c—/(1—-r)(c—a)(c—D).

c

The basic idea here is to calculate F~!(r). The above
process is repeated until the sequence’s requisite length has
been achieved (i.e., the historical data length).

3.3.2 Generating sequences of credibilistic coherent
triangular fuzzy numbers

We need to modify the probability density function of the
triangular distribution (see Definition 4) such that it retains
the properties of a probability function and has a similar
shape, as shown in Fig. 1. The probability density function
can be modified as follows,

0, ify <a,
1
d+DHy=a)l - ifa < y < b,
(Y =y) = (c+bl=D—ahb-a)T (6)
(+D(c—y) .
- —ahep Hb=y=c
0, y > c.

Proposition 6 The function defined in (6) is a probability
density function for all | > 0.

Proof 1t is a straightforward exercise to show that ffooo P
(y)dy = 1 VI > 0. Therefore, we only need to show that
c+b(—1)—al >0 Vi.Sincec > b = c+b(l—1) > b+
bl—1)=c+b(l—1)>bl=c+ b(l—1)>al (since b
>a) = c+b(l—1)—al >0, and the proof is complete. []

Thus, P; is a probability density function. The cumulative
distribution function of P; is given by,

0, ify <a,
#
Hy—a) -, ifa<y<b,
Fi(Y =y) =1 (etbl=D—ahbra)T (N
_ (c=y) :
I - G- fb=y=c
1, otherwise.

P(Y =vy)

[ o

(b) Probability density function of a triangular distribution

Thus, the ideal sequence < Iy; >= (is (1), i5:(2), ...,
is.1(L)) for the coherent triangular fuzzy number (a, b, c¢);
can be generated using the following steps (L is the histori-
cal data length),

Step 1: Fort =1to L, do;
Step 2:  Generate r € [0, 1] randomly.
Step3: If 0 < r < %, then is;(t) =
!
a+ r(chb(ll)lal)(bu)})Hl‘
Step 4: If % <r < 1,thenis;(t) = c—

(1 =)+ b — 1) — al)(c — b))y,

As a check, we plot the frequency distribution of the gen-
erated sequence for the triangular fuzzy number (1,2, 5),
for I = 0.3, 2 using the proposed method to verify if the
generated sequences are indeed following the required dis-
tribution. We have kept the length of the generated sequence
sufficiently high to ensure convergence. Figure 4 estab-
lishes the validity of the proposed method (see Fig. 1 for a
comparison).

4 Methodology

4.1 A mathematical formulation of the portfolio
optimization model

Suppose that the asset universe comprises N assets (i = 1,
2, ..., N). The investor aims to invest the available capital
in these assets optimally. Asset returns are modelled using
credibilistic triangular fuzzy numbers. We discuss two method-
ologies for incorporating investor attitude into the model.

— Using standard triangular fuzzy numbers
In this method, the pessimistic, optimistic, and neu-
tral investors provide different fuzzy numbers for ideal
return, each based on their market assessment. The
asset returns are also modelled using standard triangular
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fuzzy numbers. Suppose that §& = (d; — d;,d;, di +
n;) is the triangular fuzzy number that repre-
sents the i’" asset’s return. Let x; be the pro-
portion of allocation of capital in the i’" asset.

The portfolio return is modelled as, Zf\/:lxi.’;‘i =

(ZzNzl x;d; — x;6;, ZzNzl x;d;, ZzN:I x;d; + xmi).
— Using coherent triangular fuzzy numbers

If it is not possible to provide different fuzzy num-
bers for ideal return due to the nature of the his-
torical data (i.e., past performance of the assets),
then the coherent triangular fuzzy numbers can be
used to provide the ideal return for the optimistic,
pessimistic, and the neutral investors. The coher-
ent fuzzy numbers’ adaptive index, /, can be used
to incorporate the investor attitude (as explained in
Section 3.1). Suppose that & ; = (d; — 6;, di, di + ni);
is the coherent triangular fuzzy number that repre-
sents the return of the i’ asset. By Proposition 1,
the portfolio return is modelled as, va:lxiéi,l =

(Zf\lzl x;id; — x;6;, ZlNzl xid;, ZlNzl xid; + Xi’?i)l-

Remark 4 We can integrate the investor attitude into the
ideal portfolio return by setting appropriate fuzzy numbers.
When using coherent fuzzy numbers for ideal return, the
adaptive index [ is used for investor attitude (an optimistic
investor sets 0 < / < 1, a pessimistic investor sets 1 <[ <
00, and a neutral investor sets [ = 1). When using standard
triangular fuzzy numbers, a typical optimistic investor
focused on return maximization will choose a higher fuzzy
number with a larger variance. Thus, the generated ideal
sequence will also exhibit a larger variance. Therefore,
the resulting portfolio will be riskier. On the other hand,
a pessimistic investor focused on risk minimization will
choose a lower fuzzy number with a smaller variance.

After we get the fuzzy numbers for the ideal return, we
use the method described in Section 3.3 to generate the ideal
sequence < Iy >= (is(1),i5(2), ..., i5s:(L)), where L
is the length of the available historical data. When using
standard triangular fuzzy numbers for modelling, the case of
| = 1 will suffice. Therefore, in the sequel, asset returns are
modelled using coherent fuzzy numbers. We now formulate
the model’s objectives and constraints.

4.1.1 Model objectives

— Portfolio’s expected return
This objective maximizes the portfolio’s expected
return. It is modelled as follows:

N
Maximize E |:Z xiéi,l]

i=1

N 1 N N
= ;xidi + 20+ 1) (;xini —lei&-) .

i=1

— Weighted Grey closeness and similitude incidence
degree
This objective minimizes the portfolio’s risk. We use
a weighted sum of grey closeness and similitude
incidence degree to measure the risk. Suppose that <
Iy >= (is;(1),i51(2),...,i5(L)) is the sequence
generated from the fuzzy number representing the ideal
return, and that < Py >= (ps(1), ps(2), ..., ps(L))
is the sequence of the portfolio return. As discussed
above, the portfolio return is calculated from the
historical data of assets and the asset allocations,
xi, 1 = 1,2,..., N. The Grey closeness incidence
degree is calculated from (4) as,

orp

1
= = , (®)
LHISE= el 14 3G () = po0) + 25 (i) = po®) + 4 (1L = ps(D)|
where L is the length of the historical data available. The Grey similitude incidence degree is calculated from (3) as,
1 1
)

erp

Tl sl SR 00 - ) + 4 (W) p0(w)|

where is,lo(t) =i (t)—is(1), Pso(t) = ps(®)—ps(D).
As discussed before, the portfolio sequence should
emulate the ideal sequence as closely as possible.
Therefore, the portfolio with a low closeness and
similitude incidence degree with the ideal sequence is
considered more risky from the investor’s perspective.

@ Springer

Thus, the objective to minimize the risk of the portfolio
is formulated as

Maximize CLSIM = wip;p + waésp,

where CLSIM is the weighted average of the Grey
similitude and closeness incidence degree, and wy, w;
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Fig.4 Frequency distribution of
the sequences obtained using the 2,000 2,000
proposed method

3] kS
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are weights representing the relative importance of Grey
closeness and similitude incidence degree, respectively.

Remark 5 The concept of maximizing the risk measure
may alarm the investors. It is important to note that the
proposed risk measure (C L ST M) is different from standard
risk measures. Since most risk measures either estimate the
volatility of returns or the expected losses, the endeavour
to minimize such risk measures is easy to understand. On
the other hand, the proposed risk measure estimates the
closeness and similarity of the portfolio return and ideal
return (i.e., the investor’s target return). A high value of
CLSIM indicates that the portfolio return is closer to the
ideal return, and thus, is less risky from the investor’s
perspective. Therefore, the objective to minimize the risk of
the portfolio is to maximize CLSIM in our method.

4.1.2 Model constraints

— Cardinality constraint
The investor may require a certain level of diversifi-
cation in the portfolio. We define a binary variable,
vi, i=1,2,...,N as

e 1, if the i’" asset is included in the portfolio,
Yi= 0, otherwise.

Then the cardinality constraint to ensure at least K
assets in the portfolio, is formulated as

N
Y vz K. (10)

i=1

— Total investment constraint
The constraint requires the investment of the entire
available capital. Thus, this constraint is formulated as

le‘=1. (11)

— Upper bound on investment constraint
This constraint places an upper bound, u;, on the i’”
asset’s capital allocation. Then

xi <yui Vi=1,2,...,N, (12)

where y; is as defined above.

— Lower bound on investment constraint
This constraint places a lower bound, /;, on the ith
asset’s capital allocation. Then

xi >lLiyi Yi=1,2,...,N, (13)

where y; is as defined above.
— Binary variable constraint
y; can only take values O or 1. Thus,

yi €{0,1} Vi=1,2,...,N. (14)

The portfolio optimization model is subsequently formu-
lated as

N
Max Z1 = E |:in§,',{|

i=1
Max Z) = CLSIM = wip + wae

subject to (10)—(14). M1)

Model (M1) is a multi-objective optimization problem. The
next logical step is to devise a method to solve the multi-
objective optimization problem. A typical multi-objective
optimization problem involves a trade-off between its
objectives. Thus, the endeavour to improve one objective’s
value may lead to a degradation in other objectives’ values.
The primary objective in such a scenario is to find non-
dominated solutions.

Definition 5 Suppose that F is the set of all the feasible
solutions to a multi-objective programming problem. Let
fi» J =1,2,..., M, be the objectives. Without loss of
generality, assume that f; is a maximization-type objective
foreach j = 1,2,..., M. A solution x* € F is said to be
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a non-dominated solution to the multi-objective problem if
and only if there does not exist any x € F such that,

£i0) = fi(x*) Vj=1.2,....M. j #b, and,
fr(x) > fp(x™), foratleastone b, 1 < b < M.

Several literature approaches convert the multi-objective
problem to single-objective problem, such as weighted sum
and e-constraint methods. These methodologies guarantee
non-dominated solutions to the multi-objective optimization
problem under suitable assumptions. We use the e-constraint
method in this paper.

Consider the multi-objective programming problem
(MOPP),

Minimize fj(x)

Minimize f>(x)

Minimize fi(x)
subjectto x € S,

where S is the set of feasible solutions of the problem and
x € R" is an n-dimensional vector of decision variables.
In the e-constraint method, a single-objective problem is
constructed from the multi-objective problem by treating all
but one of the objectives in the constraints. A maximization-
type objective is converted to a >-type constraint, while
the minimization-type objective is converted to a <-type
constraint. We discuss only the minimization case here,
as the maximization-type objective can be converted to a
minimization-type by multiplying it with —1. Typically, the
essential objectives are treated in the constraints to control
their optimization. Thus the e-constraint formulation of the
M O PP is given by,

Minimize fi(x)

subjectto fa(x) < €

fe(x) < e
x e S.

The threshold values for the objectives (i.e., €;, i = 2,3,
..., k) in the constraints can be calculated by solving
the single-objective problem while ignoring the remaining
objectives. For our situation, the investor can provide the
threshold values for the objectives in the constraints. A flow
chart of the proposed method is shown in Fig. 5.

An investor usually has several targets associated with
the investments. These targets can easily be expressed in a
numerical form (for instance, return expectation, risk tol-
erance, etc.). The e-constraint method has the advantage
that it can directly incorporate the investor’s goals. Other
methods like the weighted sum approach require that the
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investor specify the relative preferences of the objectives in
a numerical form. However, it may not always be possible
for the investor to numerically specify the extent to which
one objective is preferred over others. No-preference meth-
ods are another class of methods for solving a multi-objec-
tive optimization problem that do not consider the decision-
maker’s preferences. Such methods aim to minimize the
distance of the objective function vector from an appropri-
ate reference point. However, it does not fill the bill here
as investor preferences play an important role in portfo-
lio optimization. Interactive methods are the most advanced
class of methods for solving a multi-objective optimization
problem. In such a method, the analyst or an interactive
computer program tries to determine the exact preferences
of the decision-maker iteratively. First, an initial feasible
solution is calculated and presented to the decision-maker.
If the decision-maker is satisfied with the solution, the pro-
cedure is stopped; otherwise, the process continues until a
solution is found that satisfies the decision-maker’s prefer-
ences. If we observe Fig. 5, we can immediately deduce that
we have used a hybrid of interactive and the e-constraint
method for our problem.

4.2 Solution methodology

We begin this section by illustrating the calculation of
CLSIM using an example.

Example 1 Suppose the fuzzy ideal return of an investor
is given by, (0.0005, 0.0015, 0.0035). Suppose the length
of the available historical data is 10 (L = 10). Using the
method described in Section 3.3, we generate 10 obser-
vations based on the credibility distribution of (0.0005,
0.0015, 0.0035). Let us assume [ = 2.5. Table 2 summarizes
the calculations. We have, a = 0.0005, b = 0.0015, ¢ =
0.0035. Thus

I(b—a)

—— = (.55556.
c+b(l—1)—al

Consider the first random number in Table 2 (r = 0.56056).

. [(b—a)
Since r > Tha—T=al’ Ve have

isa(1) =c— ((1 —r)(c+b(l —1)—al)(c— b)’)’T'
= 0.001507.

The second random number in Table 2 is 0.041383. Since

lb=a) e have

' < cpd—D—al’

1
1\ 1
is1(2) = a+ (r(chb(l — 1) —al)(b—a)T )

l

0.000656.

Table 2 Generation of the fuzzy ideal sequence

Random Number, r Ideal sequence, < I;; >

0.560656 0.001507
0.041383 0.000656
0.387799 0.001274
0.054567 0.000691
0.220832 0.001017
0.868099 0.002087
0.050264 0.00068
0.945982 0.002405
0.990356 0.002831
0.988708 0.0028

The rest of the ideal sequence can be generated in an
similar manner. Now, let us assume that there are only two
assets (A; and Aj). We compare the values of CLSIM
for three different portfolios, namely, x4 = {0.5,0.5},
xg = {0.3,0.7}, x¢c = {0.8,0.2}. The 10-period historical
return data and the return sequence generated by the three
portfolios (i.e., the portfolio sequences) have been shown
in Table 3. Now that we have the ideal and the portfolio
sequences, we can use (8) and (9) to calculate the Grey
similitude and closeness incidence degrees. Finally, using
wy; = 0.8, wy = 0.2, CLSIM for the three portfolios can
be calculated as follows,

prp(A) = 0972, e;p(A) = 0.8902,

CLSIM(A)=0.8 % 0.972013 + 0.2 x 0.890188 =0.9557,
p1p(B) = 0.9749, ¢/ p(B) = 0.9004,

CLSIM(B) = 0.8 % 0.974921 + 0.2 % 0.900437 = 0.96,
p1p(C) = 0.9677, £1p(C) = 0.8753,

CLSIM(C)=0.8 % 0.967683 + 0.2 x 0.875245=0.9492.

Therefore, based on CLSIM, we get that xp > x4 > xc.

We now describe the method to solve Model (M 1) using
a genetic algorithm. There are several complexities involved
in the proposed approach that render impractical traditional
solvers as a solution method. For instance, each iteration
requires calculating the Grey closeness and similitude inci-
dence degree between the portfolio and the ideal sequence.
The presence of cardinality constraint further exacerbates
the complexity of the problem (since the cardinality con-
straint is an integer valued function). For a problem of
higher dimensions (i.e., a large asset universe), obtaining a
globally optimal solution becomes a challenge. Therefore,
we must forgo the unrealistic expectation of a globally opti-
mal solution and look for alternate solution methodologies
to provide an acceptable solution in a reasonable run time.
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Table 3 Calculation of the portfolio return sequences

Aq Ap Py=05%xA;+05%A; Pp=03%xA;4+0.7 %A, Pc=08%xA1+0.2x%A;)
0.022816 0.014008 0.018412 0.016651 0.021055
-0.00972 -0.00783 -0.00878 -0.0084 -0.00934
0.007968 0.005726 0.006847 0.006399 0.00752
-0.0047 -0.00096 -0.00283 -0.00208 -0.00395
0.016086 0.013438 0.014762 0.014232 0.015557
0.021241 0.007636 0.014438 0.011718 0.01852
0.002261 -0.00188 0.00019 -0.00064 0.001433
0.021364 0.017127 0.019246 0.018398 0.020517
-0.0135 -0.00289 -0.0082 -0.00608 -0.01138
-0.00429 -0.0049 -0.00459 -0.00472 -0.00441

Genetic algorithms [55] are a class of metaheuristics for
solving optimization problems when traditional methods
are impractical. Unlike conventional methods, they simul-
taneously optimize a population of solutions. Genetic algo-
rithms employ selection, crossover, and mutation operators
to explore and exploit the search space for optimal or near-
optimal solutions. Genetic algorithms are stochastic, i.e., the
rules of transition in the algorithm are dependent upon prob-
abilistic conditions. Observant readers would have guessed
by now that the natural process of evolution has inspired
the operators and the transition rules of genetic algorithms.
The “Survival of the fittest” principle is implemented in
genetic algorithms to improve the solutions and weed out
unfit solutions iteratively. The fitness of a solution is charac-
terized by its objective function value. In the natural process
of evolution, both parents’ fitness characteristics are passed
to their offspring, creating even fitter individuals in the
process. The selection operator creates a mating pool of
solutions, i.e., the set of solutions (parents) that produce
the subsequent generation’s solutions (i.e., the solutions for
the next iteration). The offspring solutions are created by
applying the crossover operator to the parent solutions. The
mutation operator involves a random alteration of solutions.
The mutation itself is a random walk in the solution space.
When occasionally used with crossover and selection, it pro-
vides an alternative path to the algorithm if it gets stuck
in a locally optimal solution (introducing new solutions in
the population). As explained above, the transition rules
are probabilistic; thus, a probability condition is associated
with each algorithm operator. As with any machine-learning
algorithm, we can improve the genetic algorithm’s perfor-
mance by tuning its parameters (in this case, the crossover
and mutation probabilities). Selection and crossover direct
the search towards optimal solutions, i.e., these operators
exploit the feasible space. However, relying heavily on these
operators can lead to a premature convergence (i.e., local
optimal solutions). As explained above, mutation aids in
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exploring the search space, i.e., it provides an alternate
route to the algorithm. The trade-off is that the mutation
operator slows down convergence. Therefore, one needs to
strike a delicate balance between exploitation and explo-
ration operators. This is done by controlling the crossover
and mutation probabilities. The size of the population also
plays an important role. A large population ensures a suf-
ficient diversity of solutions in the population; however,
it increases the algorithm’s runtime. A small population
quickens the algorithm’s convergence, but it also risks a
locally optimal solution. A trade-off of convergence ver-
sus runtime is also involved with the maximum number of
generations (iterations). Now, we discuss the operators of a
genetic algorithm in detail.

Remark 6 Typically, the solutions are encoded as bit strings
in the genetic algorithm. The selection, crossover, and the
mutation operator work with an encoding of solutions.
It works well for discrete search spaces with countable
solutions. In the case of continuous search spaces with
uncountable solutions, a lot of bits are required to maintain
the requisite precision in the solutions. It hampers the
algorithm’s performance. We avoid encoding the solutions
and use them directly to overcome this disadvantage (i.e.,
a real-coded genetic algorithm). The operators described in
the sequel apply to a real-coded genetic algorithm only.

— Selection
As explained above, the selection operator is used to
create a mating pool of solutions (the set of solutions
(parents) used to develop the next generation’s solu-
tions). To emulate natural selection, we introduce a bias
towards fitter parent solutions. We employ the roulette
wheel selection. Each parent receives a slot on the
roulette wheel relative to its fitness. Thus, the selection
becomes biased towards parents with a higher fitness
value. In this manner, the parent solutions are selected
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to produce the subsequent generation’s solutions (i.e.,
offspring). The procedure is implemented in the follow-
ing steps

Step 1: Make the fitness value of each solution in the
population positive. To achieve this, deter-
mine the population’s minimum fitness value.
Deduct this value from every solution’s fitness
value.

Step 2:  Evaluate the population’s average fitness, f_av

= W. Here fitness; is the objective

value (fitness value) of the i’" solution and
P O P is the size of the population.

Step 3: Calculate the expected copies, ex_cpy; =
%, of each solution.

Step 4: Round ex_cpy to the nearest integer. It is the
number of copies of the i’ solution in the

mating pool.

Crossover

Various literature implementations of the crossover
operators are available, viz. flat crossover, BLX-«
crossover, Fuzzy connectives-based crossover (FCB),
simple crossover. The crossover operator is applied to
the selected solutions in the mating pool to produce
the subsequent generation’s solutions. In this paper,
the simulated binary crossover (SBX) [56, 57] is used.
It works well for multi-modal problems. We first
determine a spread factor as follows

chy —chy
pr1 — pr2
where pri, pro are the solutions of the previous
generation (parents), and chi, chy are the offspring
solutions of the current generation. Then, the probabil-
ity of producing offspring solutions with a particular ¢
is evaluated. It obtained as follows

0.5 + 1)¢™, if¢ <1,

0.5(r + 1)#, otherwise,

’

P(¢) ==

where m > 0, m € R. If the magnitude of m
is small, the obtained offspring solutions are far away
from the parents. If the magnitude of m is large, it leads
to the offspring solutions that are closer to the parent
solutions. The implementation of creating offspring
solutions in a particular range, say, ch; < ch < chy, is
as follows:

Step 1:  Obtain the following:

__ 2chy—pri—pr;

_ prit+pra—2chgp
L= & [pra—pri]

|pra—pril

Step 2:  Evaluate the following probabilities,

Pl = [g- P@)de, Py = [3¥ P@)de.

Step3: Obtain u € [0, 1], where u is a random
number.
Step 4:  Obtain ¢{ and ¢, for which,

[/ {/
Ll Pdr " o2 P©ds "
P] =4, P] =

Step 5:  Finally, the offspring solutions are obtained as
follows,

ch; =05 [(pr1 + pr2) — Cl/ |pra — PV1|] s
chy = 0.5[(pri + pr2) + & |pra — pril] .

Mutation

There are various mutation operator implementations,
viz. non-uniform mutation, Miihlenbein’s mutation, real
number creep, etc. If only the crossover operator is
present in the algorithm, the solutions will become iden-
tical after a specific number of iterations (generations).
Thus, the algorithm may get stuck in a locally opti-
mal solution. Mutation provides an alternate path to the
algorithm by randomly introducing new solutions in the
population. The paper uses the non-uniform mutation
operator (Michalewicz [58]). Let y € [Ib, ub] be a solu-
tion, CG be the current generation, and mut_y be the
mutated solution. Then

; y+g(CG,ub—y), it RAND =0,
mur_ =
Y y—g(CG,y—1b), if RAND =1,

where RAN D is chosen at random from the set {0, 1},
and

gz, r) = r(l_b(l,%)p)’

where b € R, 0 < b < 1, is chosen at random, MG is
the maximum number of generations, and F is a user-
specified parameter, which sets the level of dependency
on the number of generations. The function is defined
such mut _y is distant from y in the initial generations
to encourage exploration, while in the later generations,
mut_y comes closer to y for convergence.

Elitism

Elitism operator stores the solutions with the best
objective value so that they are preserved during the
search

Constraint handling

To dissuade the search from exploring an infeasible
region, the objective function is penalized for any
constraint violations. The penalty is usually levied in
proportion to the extent of the constraint violation. A
static penalty function, which remains constant during
the entire search process, is used in this paper.
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Algorithm 1 Proposed method’s pseudo code, explained
in Section 4.2

Input : Number of assets (N), Fuzzy return data of all
the assets, Fuzzy ideal return (1, Ip, I;),
Maximum number of generations (M G),
Historical asset return data (H 1S), Length of
historical data (L), Probability of Crossover
and Mutation (p;, and p.), Population size
(POP).

Output: Optimal allocation of assets, x*.

fori =0t POP — 1do

1

2 sum =0

3 for j =0to N —1do

4 x[i][j] =Rand(0,1) > Generate a random
number between 0 and 1 for each asset
allocation

5 sum = sum+x[i][j]

6 end

7 for j=0to N —1do

8 x[i][j] = x[i1[j]/sum > For each i, normalize
X

9 end

10 end

-

1 GenldealSequence((/,, I, I;)) > Generate the ideal
sequence based on the fuzzy ideal return (Section 3.3)

12 for gen =0t0o MG — 1 do

13 fori =0t0 POP — 1do

14 fort =0t L —1do

15 port_seqlil[t] =0

16 form =0to N — 1do
17 port_seqli][t] =

port_seq|i][t] + x[i][m] « HIS[m][¢]
> Get the return sequence of the ;"

18 > solution
19 end

20 end

21 end

22 CalCLSIM(port_seq) > Calculate CLSIM for
each member of the population using (8) and (9)

23 GetReturn(x) > Calculate the expected return for
each member of the population

24 Penalize(x) > Levy a penalty on the infeasible
solutions

25 Elitism(x) > Store 10% of the best solutions

26 RouletteWheelSelection(x) > Selection operator

27 SBX(x) > SBX crossover operator

28 Mutation(x)

29 Elitism(x) > Restore the best solutions of the

previous generation
30 end

@ Springer

Before closing this section, let us discuss the computa-
tional complexity of the proposed genetic algorithm. The
computations can be broadly classified into three categories,

1. Evaluation of the objective function along with the
penalties.

2. Applying the roulette wheel selection, SBX crossover,
and the non-uniform mutation operator.

3. Sorting the solutions according to objective function
values for the elitism operator.

The above computations are performed in each generation.
Thus, if N is the number of assets (i.e., problem dimension),
P O P is the population size, M G is the maximum number
of generations, and L is the length of the historical data, then
the worst case time complexity of each step is given by

1. O(MG x N x POP) (for evaluating the return)+O
(MG x N x POP x L) (for evaluating the risk) =
OMG x N x POP x L).

2. OMGXNxXxPOP)+OMGXxNxPOP)+O(MG x
N x POP) = O(MG x N x POP) (for selection,
mutation, and crossover).

3. OMG x POPlog(POP)).

Thus, the worst case time complexity of the algorithm is
givenby O(MG x N x POP x L)+ O(MG x POPlog
(POP)) < OMMGXxNxPOPxXL)+O(MGxPOP?) =
OMGxPOP(NXL+POP))=0(MGx POP xX),
where X = N x L + PO P. Therefore, the worst-case time
complexity of the algorithm is bounded by a polynomial.

5 Numerical experiments

We illustrate the proposed method on a case study of 100-
asset of the U.S. stock market’s NASDAQ-100 index. The
portfolio sequence is constructed using each asset’s daily
return data from 17 January 2016 to 31%' December 2019
(1004 observations). The asset returns have been modelled
as coherent fuzzy numbers. See Appendix C for a method on
fuzzy number construction. We demonstrate both methods
discussed in Section 4.1. Standard fuzzy numbers can be
handled by using the coherent fuzzy numbers with [ = 1.
The fuzzy return data for each asset is shown in Table 4.

5.1 Solving the model
5.1.1 Using standard fuzzy numbers for the ideal return
As discussed in Section 4.1, the optimistic, pessimistic,

and neutral investors provide different fuzzy numbers,
conveying their respective perceptions of the ideal return.
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The ideal sequence is generated based on these fuzzy
numbers (Table 5). The investor preferences for the ideal
return, bounds, cardinality constraint, and the remaining
model parameters have been summarized in Tables 6 and
7. The fuzzy numbers and the ideal return in Tables 4
and 6 are in terms of percentages. The optimistic investor
considers higher returns ideal and does not bother about
the extra risks (increased variance of the subsequent ideal
return sequence). On the contrary, the primary objective
of the pessimistic investor is risk minimization. Thus, the
pessimistic investor settles for a low positive return. We
have kept the remaining model parameters identical for each
investor. Since we have chosen w, wy sothat wi+wy =1,
by definition of CLSIM, we have 0 < CLSIM < 1.
Thus, the investors want at least a 75% resemblance to the
ideal return (Table 7). It is reasonable to place relatively
more importance on the closeness degree (i.e., w; > w»)
because the spatial closeness of the portfolio return to the
ideal return is more important to the investor than the shape
similarity. We generate the ideal sequences based on the
fuzzy numbers and solve different portfolio optimization
problems (Section 4.2). Example 1 illustrates the procedure
to calculate the ideal and the portfolio return sequences. We
solve an e-constraint formulation of Model (M 1) with the
expected return from the portfolio as the objective and treat
CLSIM as a constraint in the single-objective problem. We
chose the genetic algorithm parameters shown in Table 5
after extensive experimentation (parameter tuning). As
discussed in Section 4.2, the metaheuristic algorithms like
genetic algorithms cannot find globally optimum solutions.
They optimize a population of solutions simultaneously and
use operators to arrive at good solutions in a reasonable run
time. The performance of a genetic algorithm is influenced
by the parameter setting of the algorithm (probabilities of
crossover and mutation, population size, etc.). Theoretically,
a universal combination of parameters that works for
each problem does not exist, just as there is no single
genetic algorithm for every problem (although some general
guidelines are available for a good parameter setting). After
testing several combinations of parameters for stability and
consistency of solutions, it is usually obtained by trial and
error. It is beyond the scope of this text to present the
results of all the experiments. The optimal allocations for
each type of investor have been shown in Table 8. Since the
threshold value for CLSIM is the same for each investor,
optimistic investors expect the highest return. However, it
also entails larger risks as the portfolio sequence of the

Table 5 Ideal return for different types of investors

Optimistic Pessimistic Neutral

Ideal return (0.1,0.2,0.5) (0,0.05,0.1) (0.05,0.15,0.3)

Table 6 Parameters for the e-constraint formulation of Model M1
(Section 5.1.1)

Model parameter Value Model parameter Value
CLSIM (>) 0.75 i, i=1,2,...,100) 0.01
wi, (=1,2,...,1000 1 K (=) 30
w1 0.8 wy 0.2

optimistic investor is similar to the portfolio sequence of a
higher variance (i.e., the sequence generated by the fuzzy
number (0.1,0.2,0.5)). How this strategy pans out in the
real world is another matter entirely. We will take up this
discussion during the out-of-sample analysis.

Remark 7 As explained in Section 1, the ideal return
is the target return that the investor aims to achieve
with the portfolio (expressed as a fuzzy number). Careful
consideration must be given in selecting the ideal return.
The investors can consult experts or set the ideal return
based on the assets’ historical performance. Setting an
unrealistically high ideal return will only result in infeasible
solutions. The bound constraints have been added to
avoid unrealistic asset allocations in the final solution
(10_3 or lesser). The cardinality constraint ensures the
investors’ desired level of diversification. A pessimistic
or conservative investor may want investments in many
assets so that profits could offset losses in other assets. An
optimistic investor focused on return maximization may not
bother about too much diversification. Here, the experience
of the investor or expert plays an important role. The
threshold value of CLSIM indicates the level of similarity
between the ideal return and the investors’ desired portfolio
return. A pessimistic or conservative investor may want a
very high level of similarity, but this may result in infeasible
solutions. In such a scenario, the investor can adjust the
preferences (see Fig. 5) until a suitable solution is found.

5.1.2 Using coherent fuzzy numbers for the ideal return
Suppose the evidence from the historical asset data is such

that using different fuzzy numbers for the ideal return is
not practical. In that case, the same fuzzy number can be

Table 7 Parameter setting of the genetic algorithm

Parameter Value  Parameter Value
Probability of 0.8 Number of generations (MG) 2000
Crossover, p,

Probability of 0.2 Population size (PO P) 200
mutation, p,,

F (Non-Uniform 5 m (SBX Crossover) 2

Mutation)

@ Springer
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used as the ideal return for each investor type. We introduce
the investor attitude in the model using the adaptive index,
[, of the coherent fuzzy numbers (Section 3.1). For a fair
comparison, the remaining model parameters (Table 9) have
been kept identical as in Section 5.1.1. The genetic algo-
rithm parameters are also the same as in Table 5. The opti-
mal asset allocations are shown in Table 10. The expected
return is highest for the optimistic investor in this case
as well. The difference in the expected return from
Section 5.1.1 is due to the modelling of investor attitude.
We have chosen /! = 0.5 for an optimistic investor; any
value of / < 1 would suffice for an optimistic investor. The
same is the case for a pessimistic investor. Any value of
! > 1 can be used for a pessimistic investor. The magni-
tude of / only indicates the extent of pessimism or optimism
(although, for an optimistic investor, the value / works in an
opposite sense, i.e., as [ — 0, the optimism increases). We
have demonstrated this concept visually in Fig. 2 for a better
understanding.

Remark 8 Observing Tables 7 and 9, it may seem unusual
that we have chosen identical model parameters for each
type of investor (optimistic, pessimistic, and neutral). This
has been done deliberately to demonstrate the accuracy of
the proposed method of modelling investor attitude using
CLSIM and the fuzzy ideal return.

5.2 Out-of-sample analysis

This section is dedicated to the optimal portfolios’ out-of-
sample performance (Sections 5.1.1 and 5.1.2). We assume
that $1 is allocated to the obtained portfolios on January
1°%, 2020, and track the accumulated wealth till December
3157, 2020. No additional investment is made during this
period. Figures 6 and 7 illustrate the accumulated wealth
of the obtained portfolios of Sections 5.1.1 and 5.1.2.
We have also compared the out-of-sample performance
with Markowitz’s [1] mean-variance (M-V) model and
Speranza’s [2] mean-MASD model. For a fair comparison,
we have imposed the cardinality and the bound constraints
in both models. It can be observed that the COVID-19

Table 9 Parameters for the e-constraint formulation of Model M1
(Section 5.1.2)

Ideal return (0,0.15,0.35)

Model parameter Value = Model parameter Value

CLSIM (>) 0.75 li, i=1,2,...,1000 0.01
u;, i=1,2,...,100) 1 K (») 30
wi 0.8 wo 0.2

pandemic significantly affected the portfolios’ performance
during the period March-April 2020. Post that, the portfolios
make a significant recovery even when no changes were
made in the asset allocations. It can be observed from both
Figs. 6 and 7 that the pessimistic portfolio can minimize
extreme losses during crisis periods. This behaviour is
compatible with the pessimistic investor, whose primary
objective is risk minimization. In contrast, the optimistic
portfolio suffers from severe losses and lags behind the
other portfolios during this period. The M-V model and the
Mean-MASD model also exhibit poor performance during
this period. During the period of the recovery of the stock
market (July 2020 onwards), the optimistic portfolio shows
a dramatic surge and overtakes all the other portfolios.
This illustrates the importance of recognizing the bull and
bear stock market trends. Adopting an aggressive trading
strategy during periods of stock market crisis can lead
to significant losses. When the stock market is on an
upward trend, the pessimistic portfolio lags behind the other
portfolios because of the pessimistic investors’ conservative
attitude. Adopting a conservative attitude when the stock
market is in a bullish trend leads to lost opportunities. This
also illustrates the criticality of an accurate stock market
assessment. From Figs. 6 and 7, we can observe that the
pessimistic portfolio performs worse than even the M-V and
Mean-MASD portfolios, while the neutral portfolio exhibits
near-similar performance. This demonstrates that both of
the proposed methods to model the investor attitude are
effective and accurate.

The sample statistics of the optimal portfolios’ out-of-
sample performance (Sections 5.1.1 and 5.1.2) are shown in
Tables 11 and 12. Apart from the usual statistics, we have
also shown two performance indicators: the Sharpe ratio and
the Sortino ratio. Sharpe ratio [59], also known as a reward
to variability is defined as
Sharpe ratio = M,

Op
where ), is the portfolio return, rf is the risk-free return,
and o, is the standard deviation of the portfolio return.
Sortino ratio [60], a natural extension of the Sharpe ratio, is

defined as
. . I'p —7Ir
Sortino ratio = p—,
oD
where r), is the portfolio return, rr is the target return of the
investor, and op is defined as

T

- Z (min{r; ;VT, 0})2’

i=1

where T is the number of observations, r; is the realized
return of the i’" day. This paper uses U.S. treasury bond
futures as a risk-free asset. Each investor’s target return
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Fig.7 Wealth accumulated by the obtained portfolios (Section 5.1.2)
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Table 11 Sample statistics of the optimal portfolios’ daily out-of-sample return(Section 5.1.1)

Optimistic Pessimistic Neutral Naive NASDAQ-100 M-V Mean-MASD
Target return 0.25% 0.05% 0.1625% — - — -
Min return -12.7372% -9.8789% -10.6109% -12.2318% -12.1932% -12.6723% -11.3057%
Max return 11.7088% 8.6457% 9.8605% 9.3677% 10.0722% 13.4364% 14.176 %
Average return 0.2949% 0.1322% 0.1826% 0.1606% 0.1797% 0.217% 0.2165%
SD 0.0319 0.0212 0.0258 0.0219 0.0229 0.0238 0.0252
Sharpe ratio 0.079 0.0423 0.0541 0.0539 0.0598 0.0732 0.069
Skewness -0.0768 -0.1427 -0.2202 -0.6102 -0.5377 -0.3964 -0.1233
Kurtosis 3.1795 5.1622 3.6925 7.4398 6.0137 8.1525 6.8149
Sortino ratio 0.0201 0.056 0.0108 — - - -

Acronyms: SD: Standard deviation; M-V: Mean-variance; M-MASD: Mean-mean absolute semi-deviation

is the expected value of the fuzzy ideal return (Tables 11
and 12). The optimistic portfolio has the best overall
performance during the out-of-sample period. Out of the
three different kinds of investor attitudes, the pessimistic
portfolio exhibits the least standard deviation during the out-
of-sample period. In Table 11, the pessimistic portfolio’s
standard deviation is less than even the naive portfolio, with
the maximum systematic risk diversification. This is in line
with the pessimistic investors’ focus on risk minimization.
The optimistic portfolio has the best overall reward to
variability, as indicated by the Sharpe ratio. Since the
Sortino ratio is dependent on the target return, the optimistic
portfolio has a lesser value of the Sortino ratio (Table 11).
The optimistic portfolio’s target return is very high, while
the target return for the pessimistic portfolio is low. All the
portfolios exhibit a slight negative skewness. This could be
due to the significant losses incurred during the slowdown
during the March-April period (effects of COVID-19). The
kurtosis for the optimistic portfolio is only slightly higher
than 3. This indicates that the out-of-sample returns were
relatively stable around the expected return. This is in
contrast with other portfolios, which exhibit a large kurtosis.

This shows that these portfolios were more volatile during
the out-of-sample period. Thus, the optimistic portfolio
outperforms the rest of the portfolios in this aspect as well.

5.3 A case study of the Indian stock market

This section applies the proposed method to a case study
involving 50 assets listed in the Indian stock market’s
NIFTY-50 index. This section uses a 4-year historical return
data of assets beginning from 1%’ January 2016 to 31°
December 2019. Table 13 provides the fuzzy data of the
assets. We will use the adaptive index, [/, to incorporate
the investor attitude into the model. Table 14 provides the
model parameters. In this study, let us focus on achieving
closeness to the ideal return. Therefore, we have chosen
wi; =1, wp =0,and CLSIM > 0.95. Next, we solve the
model to obtain the optimal asset allocations for each
investor. Table 15 provides the optimal asset allocations. We
can observe that the optimistic investor expects the highest
return, while the pessimistic investor expects the lowest
return. Now, let us focus on the out-of-sample performance.
As in Section 5.2, we assume that the capital of INR 1

Table 12 Sample statistics of the optimal portfolios’ daily out-of-sample return (Section 5.1.2)

Optimistic Pessimistic Neutral Naive NASDAQ-100 M-V Mean-MASD
Target return 0.1917% 0.145% 0.1625% — - — —
Min return -11.3529% -11.1793% -13.424% -12.2318% -12.1932% -12.6723% -11.3057%
Max return 9.0138% 10.1734% 12.364% 9.3677% 10.0722% 13.4364% 14.176 %
Average return 0.2533% 0.1586% 0.2087% 0.1606% 0.1797% 0.217% 0.2165%
SD 0.027 0.0248 0.0255 0.0219 0.0229 0.0238 0.0252
Sharpe ratio 0.0781 0.0466 0.0651 0.0539 0.0598 0.0732 0.069
Skewness -0.3626 -0.2267 -0.3947 -0.6102 -0.5377 -0.3964 -0.1233
Kurtosis 3.3895 4.7558 7.4855 7.4398 6.0137 8.1525 6.8149
Sortino ratio 0.0319 0.0076 0.025 - — — -

Acronyms: SD: Standard deviation; M-V: Mean-Variance; M-MASD: Mean-mean absolute semi-deviation
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Table 13 Fuzzy returns of the assets (Section 5.3)

S. No. Symbol Fuzzy return S. No. Symbol Fuzzy return

1 “ADANIPORTS” (-3.5482,-0.0275,3.5731) 26 “INFY” (-3.222,0.0225,2.9437)

2 “ASIANPAINT” (-2.7443,-0.0082,3.0177) 27 “ITC” (-2.7549,-0.0349,3.049)
3 “AXISBANK” (-2.9879,-0.0572,3.3505) 28 “JSWSTEEL” (-3.0825,0.0422,3.2051)
4 “BAJAJ-AUTO” (-2.867,-0.0357,2.9481) 29 “KOTAKBANK” (-2.8024,0.0708,3.0547)
5 “BAJFINANCE” (-3.609,0.0369,3.6028) 30 “LT” (-2.7109,-0.0596,3.4005)
6 “BAJAJFINSV” (-3.1301,0.0209,3.2699) 31 “M&M” (-3.039,-0.0287,3.2358)
7 “BHARTIARTL” (-3.1056,-0.0411,3.6799) 32 “MARUTI” (-3.1095,-0.0292,3.1955)
8 “BPCL” (-3.5538,0.0159,3.3019) 33 “NESTLEIND” (-2.7641,0.0269,3.2029)
9 “BRITANNIA” (-2.8129,0.0156,3.1093) 34 “NTPC” (-2.8733,-0.0427,2.8928)
10 “CIPLA” (-2.8984,-0.0763,3.0535) 35 “ONGC” (-3.1085,0.0058,3.0776)
11 “COALINDIA” (-2.8886,-0.024,3.0222) 36 “POWERGRID” (-2.8165,0.0079,2.9292)
12 “DIVISLAB” (-3.5593,-0.0304,3.5155) 37 “RELIANCE” (-2.8185,0.051,3.1487)
13 “DRREDDY” (-3.2336,-0.0463,3.2191) 38 “SBIN” (-3.175,-0.0173,3.7464)
14 “EICHERMOT” (-3.3216,-0.0597,3.4293) 39 “SBILIFE” (-3.0904,0.0217,3.2731)
15 “GRASIM” (-3.1579,-0.0552,3.0835) 40 “SHREECEM” (-2.9387,0.0256,3.2646)
16 “HCLTECH” (-2.9908,0.0575,2.8188) 41 “SUNPHARMA” (-3.3852,-0.1003,3.198)
17 “HDFCBANK” (-2.7229,0.0502,2.8905) 42 “TATACONSUM” (-3.225,-0.0121,3.593)
18 “HDFCLIFE” (-2.8478,-0.1009,3.1803) 43 “TATAMOTORS” (-3.7208,-0.0433,3.9584)
19 “HEROMOTOCO” (-2.952,-0.0626,3.3207) 44 “TATASTEEL” (-3.2681,-0.038,3.5389)
20 “HINDALCO” (-3.2967,0.0054,3.5039) 45 “TCS” (-2.8473,0.0521,2.9523)
21 “HINDUNILVR” (-2.4992,0.0099,2.8047) 46 “TECHM” (-3.008,0.0118,3.2382)
22 “HDFC” (-2.9222,0.0325,2.8611) 47 “TITAN” (-3.189,0.0398,3.4744)
23 “ICICIBANK” (-2.9103,-0.0431,3.6187) 48 “ULTRACEMCO” (-2.8434,0.0191,2.9504)
24 “10C” (-3.2673,0.0022,3.3503) 49 “UPL” (-3.2451,0.0002,3.5422)
25 “INDUSINDBK” (-3.2409,0.0142,3.3102) 50 “WIPRO” (-2.8505,0.0345,2.7636)

(Indian National Rupee) is invested on 1% January 2020.
We track the out-of-sample performance for one year (till
315" December 2020). Figure § traces the movements of
all the portfolios during the out-of-sample period. One can
immediately observe the impact of COVID-19 on all the
portfolios. The risk-seeking optimistic investor faces heavy
losses during this period. However, the pessimistic portfolio
minimizes the losses and grows steadily throughout the
year. The standard deviation of returns for the pessimistic
portfolio is also the lowest except for the naive and
NIFTY-50 portfolios. This is consistent with the risk-averse
attitude of the pessimistic investor. At the latter end of
2020, when the stock market undergoes a recovery (post-
COVID-19), we observe that the optimistic portfolio shows
a dramatic surge and overtakes all the other portfolios.
This shows that the proposed method consistently captures
the investor attitude. The optimistic and the pessimistic
portfolios significantly outperform the M-V and the Mean-
MASD portfolios as well. Table 16 records the sample
statistics of each portfolio during the out-of-sample period.
Each portfolio exhibits a negative skewness due to the
extreme losses during the crisis period of COVID-19. All
the portfolios are highly leptokurtic, which is again the

@ Springer

consequence of a higher frequency of extreme returns. This
also establishes that each portfolio exhibited a non-normal
return during the out-of-sample period. The optimistic
and the pessimistic portfolios have the lowest kurtosis,
demonstrating that the returns were relatively more stable
around the mean than the rest of the portfolios.

5.4 Managerial implication
We demonstrated the effectiveness and accuracy of the

proposed approach by the case studies of Section 5. It is the
reason most of the model parameters were kept identical so

Table 14 Parameters for the e-constraint formulation of Model M1
(Section 5.3)

Ideal return (0.05,0.15,0.25)

Model parameter Value Model parameter Value
CLSIM (>) 0.95 li, i=1,2,...,50) 0.02
ui, i=12,...,50) 1 K () 15
wi 1 wy 0
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Fig.8 Wealth accumulated by the obtained portfolios (Section 5.3)

that impact of modelling the risk and the investor attitude
using CLSIM and fuzzy ideal return could be studied
(see Remark 8). This section discusses implementing results
and conclusions derived in the previous sections in real-
life scenarios. The construction of fuzzy asset returns using
expert opinion or historical data is straightforward. The
method of constructing fuzzy numbers for asset return is
described in Appendix C. The next step is to set the ideal
return. There is no specific procedure for establishing the
ideal return. It depends on the assessment of the investor
(whether optimistic, pessimistic, or neutral) based on the
historical performance of the assets and the current situation
prevailing in the stock market. Using experts’ help is
also a good option. We have provided only some general
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guidelines on setting the investor attitude (using either
of the two methodologies described in Section 4.1). The
extent of optimism or pessimism depends on the subjective
assessment of the investor. In practice, the investor needs to
adjust the attitude in response to changing market conditions
(either by changing the ideal return or the adaptive index,
I). The portfolio also needs to be rebalanced accordingly
as new asset information and return data become available.
Incorrect assessment of the overall stock market prospects
can lead to losses (as illustrated in Figs. 6 and 7). Asset
returns are volatile and subject to various random and non-
random factors. A universal parameter setting optimal for
all problems and time frames does not exist. We cannot
provide a theoretical justification for the chosen parameter

Table 16 Sample statistics of the optimal portfolios’ daily out-of-sample return (Section 5.3)

Optimistic Neutral Pessimistic M-V Mean-MASD Naive NIFTY-50

Average return 0.001479 0.000985 0.001263 0.001343 0.000746 0.000969 0.000757
Standard deviation 0.028168 0.026963 0.024551 0.031095 0.024901 0.019294 0.019735
Maximum return 0.073524 0.07432 0.111782 0.07724 0.074986 0.088389 0.087632
Minimum return -0.18565 -0.19694 -0.14774 -0.20593 -0.18631 -0.13043 -0.1298

Skewness -1.49294 -1.74732 -0.50264 -1.49521 -1.86105 -1.55751 -1.40985
Kurtosis 8.1663 11.86239 9.045949 8.11381 13.46162 11.8822 11.04732
Sharpe’s ratio 0.048696 0.032563 0.047074 0.039742 0.02565 0.044667 0.032903
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setting. No study in portfolio optimization can claim that
it has developed a model that provides optimal results in
all scenarios. It all depends on the skill and experience of
the investor. The investor needs to readjust and recalibrate
the portfolios in the wake of changing market conditions.
Our model provides a mathematical framework for an
investor’s subjective and linguistic assessments. Using a
numerical study, we have established the model’s accuracy
in capturing diverse investor attitudes. The next step is to
determine the optimal portfolio weights. Since our method
is based on optimization techniques, a discussion of the
advantages of optimizing the portfolio is warranted here.
Many authors have commented on this subject. Michaud
[10] showed that optimizing the portfolio weights multiplies
the estimation error of the model parameters. However,
Jagannathan and Ma [61] showed that imposing certain
constraints (such as the bound constraints) alleviates this
problem. Optimizing the portfolio provides an excellent
initial recommendation to the investor on the capital
allocation based on the natural assumption that assets that
have performed well in the past will continue to do so in
the future. Some critics also claim that risky assets become
less risky if the investments are held for a long time.
While this is true in general, it requires a lot of patience
and discipline from the investor. Interim losses can trigger
irrational or impulsive decisions. Another criticism is that
the naive portfolio performs just as well, if not better than
the optimized portfolio. This claim has been proven false
in our case study. Each portfolio performs significantly
better than the naive portfolio and the NASDAQ-100 index
(the portfolio based on market capitalization). This was
observed when there is no rebalancing of the portfolios in
response to market conditions. Even the mean-variance (M-
V) and the Mean-MASD portfolio outperform the naive
portfolio. Thus, we can conclude that optimization is crucial
in the portfolio selection process.

6 Conclusion

Various authors have studied numerous approaches to port-
folio optimization, each with its unique perspective. This
paper attempts to integrate two techniques of modelling
the stock market’s uncertainty and the investor’s imprecise
preferences (namely, Fuzzy set theory and Grey Relational
Analysis). We use Grey Relational Analysis to model a new
measure of risk based on the investor’s subjective require-
ments. We also incorporate the investor attitude in the model
using Fuzzy set theory. We provide a method to simulate
coherent triangular fuzzy numbers by modifying the trian-
gular probability distribution. A genetic algorithm is used to
solve the resulting optimization model. Numerical examples

have been provided to illustrate the proposed method. We
tested the real-world performance of the model by conduct-
ing an out-of-sample analysis. The obtained results prove
the validity of the proposed approach. The proposed method
accurately captures the optimistic and pessimistic behaviour
of the investors (See Sections 5.2 and 5.3). We can observe
from Figs. 6, 7, and 8 that the pessimistic portfolio can
minimize heavy losses during periods of recession (i.e.,
COVID-19). We can also observe that the optimistic port-
folio makes above-average gains when the stock market
is bullish. The proposed approach also outperforms sev-
eral competing portfolios such as the naive, the NIFTY-50,
the M-V, and the Mean-MASD portfolios. The conclusion
drawn is that the proposed approach effectively captures dif-
ferent investor behaviours observed in the stock market. The
main limitation of the study is the heavy dependence on
human input. It requires an accurate assessment of the pre-
vailing stock market conditions. As observed in Sections 5.2
and 5.3, an incorrect stock market assessment can lead to
underperformance. Therefore, our model cannot be used by
novice investors. Our study also does not consider other
realistic aspects of the stock market, such as dividends and
transaction costs. The accrued wealth shown in Sections 5.2
and 5.3 assumes that all the assets held in the portfolio are
liquid and can be quickly sold or bought. Sometimes, it
is not easy to sell a particular asset. Therefore, we should
consider the liquidity of assets in the portfolio optimiza-
tion model. The proposed model is difficult to solve using
traditional approaches. In non-traditional approaches such
as genetic algorithms, the parameter setting influences the
performance. Therefore, we need to test the algorithm for
several parameter settings before arriving at a stable and
consistent solution.

For further research, there can be various extensions of
this paper. A multi-period problem with transaction costs
can be considered, which would further add another dimen-
sion of reality. We can modify the Grey closeness incidence
degree to consider only the downside deviations from the
ideal return. We can also consider investor attitudes regard-
ing each asset rather than the stock market as a whole.

Appendix A: Credibility theory

Refer [62] for a detailed explanation of Credibility theory.
To summarize, credibility theory is defined as “the study
of fuzzy events in which a credibility measure determines
the chances of a fuzzy event occurrence”. Let ® be a set
with at least one element, and U be the set containing all
the subsets of ®. A set function from U to [0, 1] is called a
credibility measure. Each member of U is called an event.
The chance of occurrence of an event E in U is indicated by
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its credibility. A credibility measure satisfies the following
four axioms (See Li and Liu [34]),

Normality
Monotonicity
—  Duality
Maximality

Definition 6 “Let ® be a non-empty set, U be its power set,
and Cr is a credibility measure. Then the triplet (®, U, Cr)
is called a credibility space.”

Definition 7 [62] “A fuzzy variable £ is a function from a
credibility space (®, U, Cr) to the set of real numbers R.”

Definition 8 “Let £ be a fuzzy variable defined on the
credibility space (®, U, Cr). Then, its credibility function
vis given by: v(x) = Cr{é = x},Vx e R

Definition 9 “The following credibility function defines a
triangular fuzzy number, £ = (d — 8,d,d + n),

A8 ifd -8 <x <d,
d4+n—x :

e ifd <x<d+n,
0, otherwise,

v(x) =

where d is the core value of the fuzzy number and § > 0,
n > 0 are the left and right spreads, respectively (See
Fig. 9)”

Definition 10 “Fuzzy variables &1, &, ..., &, are said to be

independent if and only if v(x1, x2, ..., x,) = min v(x;)
1<i<n

for all (xy, x3, ..., x,) € R".”

Proposition 7 [62] “Ler & =
and & =

(di — d1,di,a1 + m)
(dy — 62,dr,dy + 1n2) be two independent

|
|
|
|
|
|
|
|
|
|
I
d

0 d-—9§¢ d+n

Fig.9 Triangular fuzzy number’s credibility distribution

@ Springer

triangular fuzzy numbers with credibility functions v, and
vy, respectively. Then, for any A1 > 0, Ay > 0, we have

MEL+ A28 = ((Mid1 + Aada) — (M181 + A282),
(Adyr + Aadd), (Midy + Aad)
+Aan1 + A2m2)).”

Definition 11 “(Credibilistic expectation of a fuzzy vari-
able) Let £ be a fuzzy variable on a credibility space
(®, U, Cr). Then its expected value is defined by (Liu and
Liu [35])

+o00 0
E[&] = / Cr{& >r}dr — / Cr{& <rldr,
0

—00

provided that at least one of the two integrals is finite.”

Appendix B: Grey Incidence Analysis

A brief introduction to Grey Incidence Analysis has already
been provided in Section 2. Refer to [8] for a detailed
explanation of this topic.

Definition 12 ([8]) “Assume that X; is a system factor and
its observation value at the ordinal position k is x; (k), k =
1,2,...,n,then X; = (x;(1), x;(2), ..., x;(n)) is referred
as the behavioural sequence of the factor X;.”

Remark 9 If k stands for the time order, then x;(k) is
referred to as the observational value of factor X; at time
moment k, and X; = (x;(1),x;(2),...,x;(n)) is the
behavioural time sequence of X;.

Definition 13 ([8]) “Assume that X is a data sequence of a
system’s behaviour, D is an operator to work on X, and after
being applied by the operator D, X becomes the following
sequence:

XD = (x(Dd, x(2)d, ..., x(n)d),

then D is referred as the sequence operator.”

Definition 14 ([8]) “Let X; = (x;(1),x;(2), ..., x;(n))
be a data sequence of a system’s behaviour, and D
be the sequence operator which satisfies X;D =

(xi()d, x;(2)d, ..., xi(n)d), and x;(k)yd = x;k) —
x; (1), k = 1,2,...,n. Then, D is referred to as
the zero-starting point operator, and X;D is the image
of X;. X;D is often written as X;D = X;° =

0, x:°2), .., X 0()).”
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Table 17 Frequency distribution of AAPL’s returns

Return range Frequency Return average Return range Frequency Return average
(-10%)-(-9%) 1 -9.9607 (0%)-(1%) 323 0.4562
(-7%)-(-6%) 3 -6.4872 (1%)-(2%) 155 1.4354
(-6%)-(-5%) 3 -5.3614 (2%)-(3%) 37 2.4020
(-5%)-(-4%) 7 -4.4411 (3%)-(4%) 17 3.5402
(-4%)-(-3%) 11 -3.4682 (4%)-(5%) 8 4.4386
(-3%)-(-2%) 48 -2.4094 (5%)-(6%) 2 5.6039
(-2%)-(-1%) 85 -1.4422 (6%)-(7%) 3 6.4760
(-1%)-(0%) 300 -0.4180 (7%)-(8%) 1 7.0422

Appendix C: Construction of fuzzy numbers
for asset returns using historical data

In this section, we illustrate the method to construct the
fuzzy numbers for the asset return. We determine the fuzzy
number that represents AAPL’s returns (Table 4). We create
frequency distribution of the return as shown in Table 17.
The least return class observed during the estimation period
was (—10%) — (—9%). Therefore, the average return of
this class (—9.9607) becomes the left endpoint (i.e., d —
8 = —9.9607). Similarly, the highest return class observed
during the estimation period was (7%) — (8%). Therefore,
the average return of this class (7.0422) becomes the right
endpoint (i.e., d + n = 7.0422). For constructing the core
of the triangular fuzzy number, we have used a weighted
average of the average return of the four classes with the
highest frequency. This is worked out to be 0.1412. Thus,
(=9.9607, 0.1412, 7.0422) represents the return of AAPL.
The fuzzy numbers of the returns of the remaining assets
can be constructed in a similar manner.

References

1. Markowitz H (1952) Portfolio selection. J Finance 7(1):77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

2. Speranza MG (1993) Linear programming models for portfolio
optimization. Finance 14:107-123

3. Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio
optimization model and its applications to Tokyo stock market.
Manag Sci 37(5):519-531. https://doi.org/10.1287/mnsc.37.5.519

4. Li H-Q, YiZ-H (2019) Portfolio selection with coherent investor?s
expectations under uncertainty. Expert Syst Appl 133:49-58.
https://doi.org/10.1016/j.eswa.2019.05.008

5. Gupta P, Mehlawat MK, Khan AZ (2020) Multi-period portfolio
optimization using coherent fuzzy numbers in a credibilistic envi-
ronment. Expert Syst. Appl., p 114135. https://doi.org/10.1016/j.
eswa.2020.114135

6. Mehlawat MK, Gupta P, Khan AZ (2021) Multiobjective portfolio
optimization using coherent fuzzy numbers in a credibilistic
environment. Int J Intell Syst 36(4):1560-1594. https://doi.org/
10.1002/int.22352

7.

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

. Liu S, Yang Y, Forrest J (2017) Grey data analysis :

Ruiz AB, Saborido Infantes R, Bermudez J, Luque M, Vercher
E (2019) Preference-based evolutionary multi-objective optimiza-
tion for portfolio selection: A new credibilistic model under
investor preferences. J Glob Optim 76:295-315. https://doi.org/10.
1007/s10898-019-00782-1

Methods,
models and applications. Springer Singapore, Singapore

. Deng J-L (1982) Control problems of grey systems. Syst Con-

trol Lett 1(5):288-294. https://doi.org/10.1016/S0167-6911(82)
80025-X

Michaud RO (1989) The markowitz optimization enigma: Is ?opti-
mized?optimal? Financial Anal J 45(1):31-42. https://doi.org/10.
2469/faj.v45.n1.31

Skrinjaric T (2020) Dynamic portfolio optimization based on
grey relational analysis approach. Expert Syst Appl 147:113207.
https://doi.org/10.1016/j.eswa.2020.113207

Babazadeh H, Esfahanipour A (2019) A novel multi period
mean-var portfolio optimization model considering practical
constraints and transaction cost. J] Comput Appl Math 361:313—
342. https://doi.org/10.1016/j.cam.2018.10.039

Li B, Sun Y, Aw G, Teo KL (2019) Uncertain portfolio
optimization problem under a minimax risk measure. Appl Math
Model 76:274-281. https://doi.org/10.1016/j.apm.2019.06.019
Liu Y-J, Zhang W-G (2019) Possibilistic moment models for
multi-period portfolio selection with fuzzy returns. Comput Econ
53(4):1657-1686. https://doi.org/10.1007/s10614-018-9833-6
Qin Z (2015) Mean-variance model for portfolio optimization
problem in the simultaneous presence of random and uncertain
returns. Eur J Oper Res 245(2):480-488. https://doi.org/10.1016/j.
€jor.2015.03.017

. Bonato M (2012) Modeling fat tails in stock returns: a multivariate

stable-garch approach. Comput Stat 27(3):499-521
Kittiakarasakun J, Tse Y (2011) Modeling the fat tails in
asian stock markets. Int Rev Econ Finance 20(3):430-440.
https://doi.org/10.1016/j.iref.2010.11.013. Institutional Character-
istics and Market Impediments in Asian Capital Markets
Campbell JY, Lo AW, MacKinlay AC (2012) The econometrics
of financial markets. Princeton University press, Princeton
Kamali R, Mahmoodi S, Jahandideh M-T (2019) Optimization of
multi-period portfolio model after fitting best distribution. Finance
Res Lett 30:44-50. https://doi.org/10.1016/j.£r1.2019.03.027
Akbay MA, Kalayci CB, Polat O (2020) A parallel variable
neighborhood search algorithm with quadratic programming for
cardinality constrained portfolio optimization. Knowl-Based Syst
198:105944. https://doi.org/10.1016/j.knosys.2020.105944

Yu J-R, Chiou W-JP, Lee W-Y, Lin S-J (2020) Portfolio models
with return forecasting and transaction costs. Int Rev Econ
Finance 66:118-130. https://doi.org/10.1016/j.iref.2019.11.002

@ Springer


https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1287/mnsc.37.5.519
https://doi.org/10.1016/j.eswa.2019.05.008
https://doi.org/10.1016/j.eswa.2020.114135
https://doi.org/10.1016/j.eswa.2020.114135
https://doi.org/10.1002/int.22352
https://doi.org/10.1002/int.22352
https://doi.org/10.1007/s10898-019-00782-1
https://doi.org/10.1007/s10898-019-00782-1
https://doi.org/10.1016/S0167-6911(82)80025-X
https://doi.org/10.1016/S0167-6911(82)80025-X
https://doi.org/10.2469/faj.v45.n1.31
https://doi.org/10.2469/faj.v45.n1.31
https://doi.org/10.1016/j.eswa.2020.113207
https://doi.org/10.1016/j.cam.2018.10.039
https://doi.org/10.1016/j.apm.2019.06.019
https://doi.org/10.1007/s10614-018-9833-6
https://doi.org/10.1016/j.ejor.2015.03.017
https://doi.org/10.1016/j.ejor.2015.03.017
https://doi.org/10.1016/j.iref.2010.11.013
https://doi.org/10.1016/j.frl.2019.03.027
https://doi.org/10.1016/j.knosys.2020.105944
https://doi.org/10.1016/j.iref.2019.11.002

3834

M. K. Mehlawat et al.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Ahmadi-Javid A, Fallah-Tafti M (2019) Portfolio optimization
with entropic value-at-risk. Eur J Oper Res 279(1):225-241.
https://doi.org/10.1016/j.ejor.2019.02.007

Chen B, Zhong J, Chen Y (2020) A hybrid approach for portfolio
selection with higher-order moments: Empirical evidence from
Shanghai Stock Exchange. Expert Syst Appl 145:113104.
https://doi.org/10.1016/j.eswa.2019.113104

Chen W, Jiang M, Zhang W-G, Chen Z (2020) A novel graph con-
volutional feature based convolutional neural network for stock
trend prediction. Inf Sci 556:67-94. https://doi.org/10.1016/j.ins.
2020.12.068

Nesaz HH, Jasemi M, Monplaisir L (2020) A new methodology
for multi-period portfolio selection based on the risk measure
of lower partial moments. Expert Syst Appl 144:113032.
https://doi.org/10.1016/j.eswa.2019.113032

Yu J-R, Chiou W-JP, Lee W-Y, Yu K-C (2017) Does entropy
model with return forecasting enhance portfolio performance?
Comput Ind Eng 114:175-182. https://doi.org/10.1016/j.cie.2017.
10.007

Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X

Zadeh LA (2011) Generalized theory of uncertainty: Princi-
pal concepts and ideas. In: Fundamental Uncertainty: Rational-
ity and Plausible Reasoning. Palgrave Macmillan UK, pp 104-
150

Chen W, Xu W (2019) A hybrid multiobjective bat algorithm
for fuzzy portfolio optimization with real-world constraints. Int
J Fuzzy Syst 21(1):291-307. https://doi.org/10.1007/s40815-018-
0533-0

Gupta P, Mehlawat M, Yadav S, Kumar A (2019) A polynomial
goal programming approach for intuitionistic fuzzy portfolio
optimization using entropy and higher moments. Appl Soft
Comput 85:105781. https://doi.org/10.1016/j.as0c.2019.105781
Gupta P, Mehlawat MK, Kumar A, Yadav S, Aggarwal A (2020)
A credibilistic fuzzy DEA approach for portfolio efficiency
evaluation and rebalancing toward benchmark portfolios using
positive and negative returns. Int J Fuzzy Syst 22(3):824-843.
https://doi.org/10.1007/s40815-020-00801-4

Liagkouras K, Metaxiotis K (2018) Multi-period mean?variance
fuzzy portfolio optimization model with transaction costs. Eng
Appl. Artif Intell 67:260-269. https://doi.org/10.1016/j.engappai.
2017.10.010

Mehlawat MK, Gupta P, Kumar A, Yadav S, Aggarwal A (2020)
Multiobjective fuzzy portfolio performance evaluation using data
envelopment analysis under credibilistic framework. IEEE Tran
Fuzzy Syst 28(11):2726-2737. https://doi.org/10.1109/TFUZZ.
2020.2969406

Li X, Liu B (2006) A sufficient and necessary condition for
credibility measures. Int J Uncert Fuzziness Knowl-Based Syst
14(05):527-535. https://doi.org/10.1142/S0218488506004175
Liu B, Liu Y-K (2002) Expected value of fuzzy variable and fuzzy
expected value models. IEEE Tran Fuzzy Syst 10(4):445-450.
https://doi.org/10.1109/TFUZZ.2002.800692

Gupta P, Inuiguchi M, Mehlawat MK, Mittal G (2013) Multiob-
jective credibilistic portfolio selection model with fuzzy chance-
constraints. Inf Sci 229:1-17. https://doi.org/10.1016/.ins.2012.
12.011

Jalota H, Thakur M, Mittal G (2017) A credibilistic decision
support system for portfolio optimization. Appl Soft Comput
59:512-528. https://doi.org/10.1016/j.as0c.2017.05.054

Liu N, Chen Y, Liu Y (2018) Optimizing portfolio selection
problems under credibilistic cvar criterion. J Intell Fuzzy Syst
34:335-347. https://doi.org/10.3233/JIFS-171298

Springer

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Liu Y-J, Zhang W-G, Zhang Q (2016) Credibilistic multi-
period portfolio optimization model with bankruptcy control and
affine recourse. Appl Soft Comput 38:890-906. https://doi.org/10.
1016/j.as0c.2015.09.023

Mehlawat MK (2016) Credibilistic mean-entropy models for
multi-period portfolio selection with multi-choice aspiration
levels. Inf Sci 345:9-26. https://doi.org/10.1016/j.ins.2016.01.042
Mehlawat MK, Gupta P (2014) Credibility-based fuzzy math-
ematical programming model for portfolio selection under
uncertainty. Int J Inf Technol Decis Mak 13(01):101-135.
https://doi.org/10.1142/S0219622014500059

Vercher E, Bermidez JD (2015) Portfolio optimization using a
credibility mean-absolute semi-deviation model. Expert Syst Appl
42(20):7121-7131. https://doi.org/10.1016/j.eswa.2015.05.020
Tirkolaee EB, Goli A, Faridnia A, Soltani M, Weber G-W (2020)
Multi-objective optimization for the reliable pollution-routing
problem with cross-dock selection using pareto-based algorithms.
J Clean Prod 276:122927. https://doi.org/10.1016/j.jclepro.2020.
122927

Tirkolaee EB, Aydin NS, Ranjbar-Bourani M, Weber G-W (2020)
A robust bi-objective mathematical model for disaster rescue units
allocation and scheduling with learning effect. Comput Ind Eng
149:106790. https://doi.org/10.1016/j.cie.2020.106790

Tirkolace EB, Abbasian P, Weber G-W (2021) Sustainable
fuzzy multi-trip location-routing problem for medical waste
management during the covid-19 outbreak. Sci Total Environ
756:143607. https://doi.org/10.1016/j.scitotenv.2020.143607
Bhattacharyya R (2015) A grey theory based multiple attribute
approach for r&d project portfolio selection. Fuzzy Inf Eng
7(2):211-225. https://doi.org/10.1016/j.fiae.2015.05.006

Huang KY, Jane C-J (2009) A hybrid model for stock market
forecasting and portfolio selection based on ARX, grey system
and RS theories. Expert Syst Appl 36(3, Part 1):5387-5392.
https://doi.org/10.1016/j.eswa.2008.06.103

Skrinjaric T, Sego B (2019) Using grey incidence analysis
approach in portfolio selection. Int J Financ Stud 7(1):1.
https://doi.org/10.3390/ijfs7010001

Tsaur R-C (2013) Fuzzy portfolio model with different investor
risk attitudes. Eur J Oper Res 227(2):385-390. https://doi.org/10.
1016/j.€jor.2012.10.036

Sortino FA, Forsey HJ (1996) On the use and misuse of downside
risk. J Portf Manag 22(2):35. https://doi.org/10.3905/jpm.1996.35
Goel A, Sharma A (2020) Mixed value-at-risk and its numerical
investigation. Physica A 541:123524. https://doi.org/10.1016/j.
physa.2019.123524

Qin Z, Dai Y, Zheng H (2017) Uncertain random portfolio
optimization models based on value-at-risk. J Intell Fuzzy Syst
32:4523-4531. https://doi.org/10.3233/JIFS-169216

Liu SF (1991) The three axioms of buffer operator and their
application. J Grey Syst 3(1):39-48

Liu SF, Xie NM (2011) New grey evaluation method based on
reformative triangular whitenization weight function. J Syst Eng
26(2):244-250

Holland JH (1992) Adaptation in natural and artificial systems:
An introductory analysis with applications to biology, control and
artificial intelligence. MIT Press

Deb K, Agrawal RB (1995) Simulated binary crossover for
continuous search space. Complex Syst 9(2):115-148

Kumar A, Deb K (1995) Real-coded genetic algorithms with sim-
ulated binary crossover: Studies on multimodal and multiobjective
problems. Complex Syst 9:431-454

Michalewicz Z (2013) Genetic algorithms+ data structures=
evolution programs. Springer Berlin Heidelberg, Berlin


https://doi.org/10.1016/j.ejor.2019.02.007
https://doi.org/10.1016/j.eswa.2019.113104
https://doi.org/10.1016/j.ins.2020.12.068
https://doi.org/10.1016/j.ins.2020.12.068
https://doi.org/10.1016/j.eswa.2019.113032
https://doi.org/10.1016/j.cie.2017.10.007
https://doi.org/10.1016/j.cie.2017.10.007
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/s40815-018-0533-0
https://doi.org/10.1007/s40815-018-0533-0
https://doi.org/10.1016/j.asoc.2019.105781
https://doi.org/10.1007/s40815-020-00801-4
https://doi.org/10.1016/j.engappai.2017.10.010
https://doi.org/10.1016/j.engappai.2017.10.010
https://doi.org/10.1109/TFUZZ.2020.2969406
https://doi.org/10.1109/TFUZZ.2020.2969406
https://doi.org/10.1142/S0218488506004175
https://doi.org/10.1109/TFUZZ.2002.800692
https://doi.org/10.1016/j.ins.2012.12.011
https://doi.org/10.1016/j.ins.2012.12.011
https://doi.org/10.1016/j.asoc.2017.05.054
https://doi.org/10.3233/JIFS-171298
https://doi.org/10.1016/j.asoc.2015.09.023
https://doi.org/10.1016/j.asoc.2015.09.023
https://doi.org/10.1016/j.ins.2016.01.042
https://doi.org/10.1142/S0219622014500059
https://doi.org/10.1016/j.eswa.2015.05.020
https://doi.org/10.1016/j.jclepro.2020.122927
https://doi.org/10.1016/j.jclepro.2020.122927
https://doi.org/10.1016/j.cie.2020.106790
https://doi.org/10.1016/j.scitotenv.2020.143607
https://doi.org/10.1016/j.fiae.2015.05.006
https://doi.org/10.1016/j.eswa.2008.06.103
https://doi.org/10.3390/ijfs7010001
https://doi.org/10.1016/j.ejor.2012.10.036
https://doi.org/10.1016/j.ejor.2012.10.036
https://doi.org/10.3905/jpm.1996.35
https://doi.org/10.1016/j.physa.2019.123524
https://doi.org/10.1016/j.physa.2019.123524
https://doi.org/10.3233/JIFS-169216

An integrated fuzzy-grey relational analysis approach to portfolio optimization

3835

59. Sharpe WF (1966) Mutual fund performance. J Bus 39(1):119-
138. https://doi.org/10.1086/294846

60. Sortino FA, Van Der Meer R (1991) Downside risk. J Portf Manag
17(4):27. https://doi.org/10.3905/jpm.1991.409343

61. Jagannathan R, Ma T (2003) Risk reduction in large portfolios:
Why imposing the wrong constraints helps. J Finance 58(4):1651—
1683

62. Li X (2013) Credibility theory. In: Credibilistic Programming:
An Introduction to Models and Applications. Springer Berlin
Heidelberg, pp 1-29

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Mukesh Kumar Mehlawat
received a Ph.D. degree in
operational research from
the University of Delhi, New
Delhi, India, in 2011. He is
currently teaching with the
Department of Operational
Research, University of Delhi.
He has published several
research papers in reputed
international journals, includ-
ing Fuzzy Sets and Systems,
Information Sciences, Expert
Systems with Applications, the
Journal of Global Optimiza-
tion, Optimization Letters,
TOP, Knowledge-Based Systems, Optimization, the International
Journal of Fuzzy Systems, Insurance: Mathematics and Economics,
the International Journal of Advanced Manufacturing Technology, the
1IEEE Transactions on Fuzzy Systems, Applied Intelligence, Applied
Soft Computing, Annals of Operations Research, Computers &
Operations Research and the International Journal of Information
Technology and Decision Making. In addition, he has co-authored the
monograph entitled Fuzzy Portfolio Optimization (Springer) under the
Studies in Fuzziness and Soft Computing series. His current research
interests include optimization: theory and applications, soft comput-
ing, fuzzy optimization, and financial optimization. Dr.Mehlawat is a
recipient of several teaching and research awards.

Pankaj Gupta received a Ph.D.
degree in mathematics from
the University of Delhi, New
Delhi, India, in 2000. He is
currently a Full Professor with
the Department of Operational
Research, University of Delhi.
He has published signifi-
cantly in reputed international
journals, including the Euro-
pean Journal of Operational
Research, Fuzzy Sets and Sys-
tems, Information Sciences,
Expert Systems with Applica-
tions, Applied Soft Computing,
Applied Mathematics  and
Computation, the Journal of Global Optimization, the Journal of
Optimization Theory and Applications, Optimization Letters, TOP,
Applied Intelligence, the Journal of Nonlinear and Convex Analysis,
Optimization, Applied Mathematical Modelling, Knowledge-Based
Systems, the International Journal of Fuzzy Systems, Insurance:
Mathematics and Economics, the International Journal of Advanced
Manufacturing Technology, the IEEE Transactions on Fuzzy Systems,
Annals of Operations Research, Computers & Operations Research
and the International Journal of Information Technology and Decision
Making. He has visited several universities abroad for research collab-
orations. He has co-authored the monograph entitled Fuzzy Portfolio
Optimization (Springer) under the Studies in Fuzziness and Soft
Computing series. He has supervised several Ph.D. theses andM.Phil.
dissertations. His current research interests include multiple criteria
optimization, fuzzy optimization, and portfolio optimization. Dr.
Gupta is a recipient of prestigious national and international fellow-
ships. He is an Associate Editor of the Information Sciences, the
International Journal of Fuzzy Systems, and the IEEE Transactions
on Fuzzy Systems. In addition, he is an Editor of the journal Applied
Soft Computing. He has also been a Guest Editor of special issues on
optimization and finance in several reputed journals.

Ahmad Zaman Khan is cur-
rently pursuing a Ph.D. degree
in operational research with
the Department of Operational
Research, University of Delhi,
New Delhi, India. He has pub-
lished several research papers
in reputed international jour-
nals, including Information
Sciences, Expert Systems with
Applications, and the Interna-
tional Journal of Intelligent
Systems. His current research
interests include portfolio opti-
mization, fuzzy optimization,
and evolutionary algorithms.

@ Springer


https://doi.org/10.1086/294846
https://doi.org/10.3905/jpm.1991.409343

	An integrated fuzzy-grey relational analysis approach to portfolio optimization
	Abstract
	Introduction
	Literature review
	Preliminaries
	A brief introduction to coherent Fuzzy Numbers
	Grey incidence analysis
	Fuzzy simulation
	Generating sequences of credibilistic triangular fuzzy numbers
	Generating sequences of credibilistic coherent triangular fuzzy numbers


	Methodology
	A mathematical formulation of the portfolio optimization model
	Model objectives
	Model constraints

	Solution methodology
	Genetic algorithms


	Numerical experiments
	Solving the model
	Using standard fuzzy numbers for the ideal return
	Using coherent fuzzy numbers for the ideal return

	Out-of-sample analysis
	A case study of the Indian stock market 
	Managerial implication

	Conclusion
	Appendix A: Credibility theory
	Appendix B: Grey Incidence Analysis
	Appendix C: Construction of fuzzy numbers for asset returns using historical data
	References




