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Abstract
Concept drift is a well-known issue that arises when working with data streams. In this paper, we present a procedure that
allows a quantile tracking procedure to cope with concept drift. We suggest using expected quantile loss, a popular loss
function in quantile regression, to monitor the quantile tracking error, which, in turn, is used to efficiently adapt to concept
drift. The suggested procedures adapt efficiently to concept drift, and the tracking performance is close to theoretically
optimal. The procedures were further applied to three real-life streaming data sets related to Twitter event detection, activity
recognition, and stock trading. The results show that the procedures are efficient at adapting to concept drift, thereby
documenting the real-world applicability of the procedures. We further used asymptotic theory from statistics to show the
appealing theoretical property that, if the data stream distribution is stationary over time, the procedures converge to the true
quantile.

Keywords Concept drift · Data mining · Incremental quantile estimator · Real-time tracking

1 Introduction

The volume of automatically generated data is constantly
increasing [39], which leads to more urgent demand for real-
time analysis [34]. Conventional statistical and data mining
techniques are usually designed for offline situations and
are therefore often inappropriate for real-time analysis [21].
Thus, a wide range of streaming algorithms is continuously
being developed by the data mining community that address
a range of real-time tasks, such as clustering, filtering, cardi-
nality estimation, estimation of moments or quantiles, pre-
dictions, dimensionality reduction, and anomaly detection
[19, 34].

Concept drift, a well-known issue when working with data
streams, refers to unforeseeable changes in the underlying
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distribution of streaming data over time [28]. Therefore, the
prediction error for a machine learning method trained on
historic data usually increases when faced with concept drift.
Consequently, machine learning methods should be retrained
on more recent data to adapt to the concept drift. A range of
different methods has been developed to detect and adapt to
concept drift, and a review is provided in Section 2.

In this paper, we address the problem of adapting to con-
cept drift when the objective is to track quantiles of the
data stream distribution. A data stream that changes from
slow to rapid variations or experiences changes in the scale
of the data over time is a typical example of concept drift.
To the best of our knowledge, this is the first work in the
literature to address this research problem. When quantiles
are estimated in real time, the problem is usually referred
to as quantile tracking [16]. Quantile tracking has found a
wide range of applications, a review of which is provided in
Section 2. In this paper, we focus on a family of lightweight
and efficient estimators called incremental quantile estima-
tors. The estimators perform small updates of the quantile
estimate every time a new sample is received from the data
stream. Incremental quantile estimators document state-of-
the-art performance on quantile tracking [14, 16].

Learning under concept drift is traditionally based on
two steps. The first step involves a method for detecting
concept drift, while the second step involves a method for
adaptation when concept drift is detected, which is typically
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based on retraining the machine learning method [28].
However, this two-step procedure is not optimal for making
quantile tracking algorithms adapt to concept drift. First,
the retraining of incremental quantile tracking algorithms
is computationally heavier than running the algorithms.
Secondly, incremental quantile algorithms usually only have
very few parameters. This opens up for a single-step, fast
approach instead of the two steps outlined above. More
specifically, in this paper, we suggest a novel approach to
optimize the parameters of the quantile tracking algorithms
in each iteration based on monitoring the expected
quantile loss, a loss function commonly used in quantile
regression [20]. The main contributions of the paper can be
summarized as follows:

– We present two new methods for efficient quantile
tracking under concept drift. The methods can be cou-
pled with any quantile tracking algorithm to improve
tracking performance under concept drift. To the best
of our knowledge, these are the first methods in the lit-
erature to address the issue of quantile tracking under
concept drift.

– The methods have appealing theoretical properties in
the sense that, for stationary data streams, the resulting
procedures will converge to the true quantile. We prove
convergence using the asymptotic theory.

– Our experiments show that the suggested procedures
clearly improve the tracking performance of existing
quantile estimators for data streams with concept drift.
The performance is close to the theoretically optimal
performance, i.e., the performance when using the
optimal values of the parameters in the quantile tracking
algorithm in every iteration.

– The real-life applicability of the procedures is demon-
strated using three large datasets related to Twitter event
detection, activity recognition, and stock trading.

The paper is organized as the following: Section 2
presents related work. Section 3 gives a short presentation
of incremental quantile estimators. Section 4 explains how
to estimate the current quantile tracking error, and how to
use it to adapt to concept drift. Sections 6 and 7 evaluate
the suggested procedures using synthetic and real-life data
streams, while Section 8 consists of some closing remarks.

2 Related work

2.1 Incremental quantile algorithms

Quantiles are useful for characterizing data stream distri-
bution in a flexible and non-parametric way [29]. They
have been used for a range of applied intelligence tasks,
such as real-time classification [13], concept drift detection

[14], anomaly detection [11], portfolio risk measurement in
the stock market [1, 8], fraud detection [49], signal pro-
cessing and filtering [44], climate change monitoring [50],
Service Level Agreement (SLA) violation monitoring [42,
43], network monitoring [6, 27], structural health monitor-
ing [9], non-parametric statistical testing [23], concept drift
detection [14], and Tukey depth estimation [11, 33].

Incremental algorithms are an important class of methods
for addressing the problem of quantile tracking, but the
research on such methods is still quite sparse. Tierney [46]
introduced the concept of incremental quantile estimators,
which was originally designed to work on static data
streams. A more recent incremental quantile estimation
approach is the Frugal algorithm of Ma et al. [30], which
can also be applied to dynamically varying data streams.
Yazidi and Hammer [48] suggested using the DUMIQE
algorithms, while Tiwari and Pandey [47] proposed DQTRE
and DQTRSE, which can all be seen as multiplicative
variants of the Frugal algorithm. The multiplicative variants
are more efficient at adapting to changes in the scale of the
data. A weakness of the above estimators is that they do
not use the magnitude of the observations when updating
the current estimate, which can result in slow convergence.
To address this issue, Hammer et al. [14] suggested the
QEWA algorithm, where the update size is proportional to
the current tracking error. This algorithm has documented
efficient performance, but it has a disadvantage compared to
most other incremental quantile estimators because it is not
robust to outliers in the data stream. The reason for this is the
fact that the observations are used directly in the updating of
the running estimate. One limitation of the estimators above
is that they can only track a single quantile. Obviously, the
estimators can be run in parallel to track many quantiles,
but the monotone property of quantiles can then be violated.
Some methods have recently been developed to address this
issue by allowing joint tracking of multiple quantiles [15,
16]. We will not consider tracking of multiple quantiles in
this paper, although our suggested concept drift adaptation
methods can also be applied to these algorithms. There is
a gap in the current research within incremental quantile
estimation related to finding suitable values for the tuning
parameters, and how to adjust the values if the properties of
the data stream change (concept drift) which is the specific
issue addressed in this paper.

2.2 Concept drift

Methods for adapting to concept drift mainly consist of two
parts: i) a method to detect concept drift and ii) a method to
adapt after concept drift is detected.

One of the first methods for concept drift detection was
the Drift Detection Method (DDM) of [7], which is based on
testing whether the prediction error significantly increased

290 H. L. Hammer et al.



within a recent time window. However, a disadvantage of
window-based approaches is that every sample in the win-
dow is weighted equally. Another computationally efficient
approach that addresses this issue relies on tracking the
current prediction error using the exponentially weighted
moving average [12, 40].

For concept drift adaptation, the most natural approach
is probably to retrain the machine learning methods based
on recent data. An example is the paired learner, which
uses a stable learner and a reactive learner using only
recent data [4]. There are also researchers who attempt to
integrate concept drift detection with retraining, like [26]
for Extreme Learning Machine. However, a weakness of
these approaches is that it is computationally demanding to
repeatedly retrain a machine learning method. To address
this issue, Sun et al. [45] suggest a strategy to build up
an ensemble of trained models to reduce the amount of
retraining required when faced with recurring drift. Pratama
et al. [37] suggested only updating parts of the parameters of
the machine learning method, thereby saving computational
resources.

Class imbalance is another well-known issue in machine
learning. Recent works like [2, 24, 38] address this chal-
lenge when faced with concept drift. Concept drift methods
usually assume that class labels are immediately avail-
able. Mahdi et al. [31] addressed the problem of concept
drift detection in the opposite case when class labels are
not available, whereas the work reported in [25] suggests
a method for making an ensemble of trained models as
efficient as possible by introducing diversity measures.

3 Incremental quantile algorithms

Let Xt ∼ ft (x) represent possible outcomes from a data
stream at time t , xt a random sample, and Qt,q the quantile
associated with probability q, i.e., P(Xt ≤ Qt,q) =
Ft(Qt,q) = q.

Incremental quantile algorithms update a quantile esti-
mate every time a new observation is received. The algo-
rithms are initiated with an estimate ̂Q0,q(λt ) that is further
recursively updated

̂Qt+1,q(λt ) ← ̂Qt,q(λt ) + λtD1
(

q, ̂Qt,q(λt )
)

if xt

≥ ̂Qt,q(λt )

̂Qt+1,q(λt ) ← ̂Qt,q(λt ) − λtD2
(

q, ̂Qt,q(λt )
)

if xt

< ̂Qt,q(λt ) (1)

where the functions D1 and D2 are positive and can be
deterministic or random. The estimation procedure is intu-
itive in the sense that, if the received observation is above
(below) the current estimate, the estimate is increased
(decreased). The functions are typically further constructed

to ensure that the estimator converges to the underlying true
quantile [46]. A prominent example is the deterministic-
based multiplicative incremental quantile estimator (DUMIQE)
[48] where D1(q, ̂Qt,q(λt )) = q ̂Qt,q(λt ) and D2(q, ̂Qt,q

(λt )) = (1 − q)̂Qt,q(λt ). Another example is the Frugal
estimator [30], where D1(q, ̂Qt,q(λt )) = I (q < U) and
D2(q, ̂Qt,q(λt )) = I (1 − q < U), and where U denotes a
uniformly distributed number on [0, 1] and I (·) the indicator
function.

The tuning parameter λt determines the update size in
each iteration. If the data stream distribution changes rapidly
(slowly) with time, a high (small) value should be used.
Furthermore, the step size should be adjusted to the scale of
the data.

4 Adaptive quantile tracking under concept
drift

We consider the problem of predicting Qt,q in every itera-
tion using an incremental quantile algorithm. However, such
an algorithm consists of one or more parameters, e.g., the
λt from the previous section. If the properties of the data
stream change (concept drift), the values of these parame-
ters must be adjusted to maintain efficient tracking. See the
bottom panel of Fig. 2 for an example where the data stream
concept changes from rapid variations to slow variations on
iteration 10 000.

To adapt to concept drift, we suggest monitoring the
current quantile tracking error using expected quantile loss
(EQL), a popular loss function in quantile regression. The
quantile loss on iteration t is

QLt (λt )=
{

(1−q)
(

xt − ̂Qt,q(λt )
)

if xt ≥ ̂Qt,q(λt )

q
(

̂Qt,q(λt ) − xt

)

if xt < ̂Qt,q(λt )
(2)

To estimate the current expected quantile loss, we use the
exponentially weighted moving average [12]

̂EQLt (λt ) = (1 − γ ) ̂EQLt−1(λt ) + γ QLt (λt ) (3)

A common strategy for learning under concept drift is to
1) use the error measure ̂EQLt (λt ) to detect concept drift,
and 2) to adjust the values of the parameter of the algorithm.
However, since the number of parameters of quantile tracking
algorithms is usually small, we suggest avoiding the detec-
tion part and instead continuously updating the values of
the parameters of the quantile tracking algorithms in every
iteration. The method will therefore adapt more rapidly to
concept drift, especially in cases where the drift occurs
gradually. We call the method Oracle. It is described below.

Oracle Let the values λ∗
1 < λ∗

2 < · · · < λ∗
L span

all reasonable values for the tuning parameter and track
Qt,q(λ∗

l ), l = 1, . . . , L using (1). For each ̂Qt,q(λ∗
l ),
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compute the associated EQL, ̂EQLt (λ
∗), l = 1, . . . , L,

using (3). Let λt = arg minλ∗
l ,l∈1,...,L

̂EQLt (λ
∗
l ) and let the

current quantile estimate be given by ̂Qt,q(λt ).
Naturally, there may be large fluctuations in the values

of λ used, and updates may be limited to only neighbouring
values (friction), but we have not explored this further in
this paper. We denote this approach the Oracle approach,
since we can imagine an Oracle that monitors the individual
quantile tracking procedures and uses the estimated EQLs to
select the best current quantile estimate, without disturbing
the quantile or EQL tracking procedures. The procedure
is illustrated in Fig. 1, where the objective is to track the
q = 0.7 quantile of the data stream (gray dots). In the
bottom left panel, the quantile is tracked with a small update
size, λ∗

1, resulting in a high estimation bias (the proportion
of observations below the quantile estimates is far below
the target q = 0.7). Further, in the bottom right panel, the
quantile is tracked with a large update size, λ∗

L, resulting in
high tracking variance. The estimator in the middle panel
seems to have both a fairly small bias and a variance
resulting in a small EQL.

A potential challenge if this approach is used is that,
with limited knowledge about the data stream, it may be
difficult to select the range of λ∗’s. The solution is that, if
the Oracle selects the quantile estimate for a λ close to λ∗

1
(or λ∗

L), additional estimators using values of λ less than λ∗
1

(or above λ∗
L) are included.

The approach entails storing a total of 2L values and
performing a total of 2L operations (storing and updating
the quantile estimate and the expected quantile loss) for
each sample received from the data stream. A typical value
for L is 100, and thus for extremely massive data streams,
this may be a computational challenge. An example is
when incremental quantile estimators are used to track depth
contours, which requires the tracking of thousands or even
millions of quantile estimates [11].

HIL This approach follows the traditional approach to
handling concept drift, namely to first detect and then adapt
to concept drift. The method will be computationally less
demanding than the Oracle approach, but at the cost of
adapting less efficiently to concept drift. The approach only
tracks the quantile for a high, intermediate and low (HIL)
value of the update size, and therefore only entails storing a
total of 2 · 3 values and performing a total of 2 · 3 operations
for each received data stream sample. For convenience of
notation, the subscript t is avoided.

– Run three quantile tracking estimators in parallel using
tuning parameters λ1ow = λ/a, λintermediate = λ and
λhigh = aλ, a > 1, and track the EQL for each of them.

– Every M iterations, update λ:

– If EQL is smallest for λ1ow (or λhigh), reduce
(or increase) the value of the tuning parameter
for the three estimators by setting λ ← λ/a

(or λ ← aλ). Restart the three quantile estima-
tors initialized with the currently best quantile
estimate, i.e., for λ1ow (or λhigh).

– If EQL is smallest using λintermediate, no
updates are done.

The current quantile estimate is given by ̂Qt,q(λ). Con-
cept drift usually happen slowly or rarely, and it makes sense
to use a high value of M , say 103. Further, the values of
the tuning parameter γ should be chosen so that, when an
update of λ is performed, the estimate of the EQL has con-
verged at the same time as most of the information since
the last update of λ is used. A simple rule of thumb is to
set γ = 1 − M

√
0.01, which means that the weight of the

M th term of the exponentially weighted sum in (3) is 0.01.
This worked well in our experiments. Data streams follow
different periodic patterns most of the time, thus randomly
selecting when to update λ can sometimes be useful.

Fig. 1 An overview of the
Oracle approach. In the bottom
row, the gray dots show
observations from the data
stream. The black curves show
tracking of the q = 0.7 quantile
for different step sizes (λ∗

1, λ∗
2

and λ∗
L). The information in the

panels is used to estimate
expected quantile loss for each
value of the step size using the
procedure in Section 4. The
expected quantile loss estimates
are sent to the Oracle, which
selects the currently best
quantile estimate in each
iteration

292 H. L. Hammer et al.



A challenge posed by the HIL approach is that the
quantile estimates and associated EQLs must be restarted
after an update and must have converged before a new
update is performed. This limits how rapidly and smoothly
the procedure can adapt to concept drift. Further, since λ is
rarely updated, a fairly large value of a, say 2, must be used,
thereby limiting any fine tuning of λ. The Oracle approach
is not burdened with these challenges.

5 Asymptotics

A natural requirement of the suggested procedures is that,
if the data stream distribution does not change with time
(stationary stream), the quantile estimate should converge to
the true quantile as time goes to infinity. This is confirmed
by the following theorem for the HIL approach (a similar
theorem can also be set up for the Oracle approach, which
is explained below).

Theorem 1 Assume a stationary data stream, and let Qq

be the true quantile to be estimated. Further assume that D1

and D2 are selected, such that ̂Qt,q(λt ) satisfies the assump-
tions for convergence of Markov processes [35, 36]. Using
the HIL approach with at = (t + M)p/tp, 0<p<1, then

lim
t→∞λt = 0 (4)

lim
t→∞

̂Qt,q(λt ) = Qq (5)

The proof is provided in Appendix A. The overall intu-
ition is that, if the data stream is stationary, the HIL proce-
dure will iteratively select a smaller and smaller step size,
and the estimator will converge to the true quantile. For the
Oracle approach, we suggested including values less than
λ∗

1 if the Oracle selected the quantile estimate for a λt close
to λ∗

1. Thus, a similar argument can be set up to prove the
convergence of the Oracle approach.

Most of the recently developed incremental quantile esti-
mators satisfy the assumptions for convergence of Markov
processes referred to in the theorem, see, e.g., the proofs in
[14, 15, 48]. Therefore, by using one of these incremental
quantile estimators in combination with either the HIL or
the Oracle procedures, convergence is guaranteed.

6 Synthetic experiments

Consider a normally distributed data stream where the expecta-
tion changes between slow and rapid dynamics (concept drift)

ft (x) = N

(

μ + b sin

(

2π

τ(n)
n

)

, σ

)

τ(n) = τ1I (mod n < T ) + τ2I (T ≤ mod n < 2T ) (6)

with τ1 = 500, τ2 = 104, μ = 8, b = 2, σ = 1, T = 104.
We tracked this data stream using the DUMIQE algorithm.
To estimate the step length λ in each iteration, we used the
the Oracle approach with the following values for the update
sizes λ∗

1 = exp(−7), λ∗
2 = exp(−6.95), . . . , λ∗

L = exp(0).
We estimate the expected quantile loss using (3) with γ =
1− 1000

√
0.01 = 0.005, following the rule of thumb suggested

above.
Figure 2 shows the estimated expected quantile loss (top

left) and the estimated values of the step length (top right)
in each iteration and the actual quantile tracking (bottom
panel). In the upper left panel, we see that quantile loss
quickly decreases and then stabilizes. The initial value of
the quantile tracking algorithm is outside the data stream
distribution. Therefore, in the initial phase, the quantile loss
is high and a high value of λ (update size) is used for the
tracking algorithm to quickly get within the data stream
distribution. When the quantile tracking algorithm is within
the data stream distribution, a smaller λ is optimal and the
value of λ is reduced. The expected quantile loss is reduced
accordingly. The gray lines in the top right panel show the
optimal value of λ for the data stream dynamics before and
after the concept change at iteration 10 000. We see that a
larger step size is needed to efficiently track rapid variations.
We further see that the Oracle approach uses step lengths
close to the optimal step lengths.

We now analyze the performance of the suggested
procedures in more detail for data streams with concept
drift. In particular, we analyze how the efficiency of the
concept drift adaptation depends on the parameter γ in
(3). Consider again the data stream in (6) as well as a χ2

distributed stream

ft (x) = χ2
(

ν + b sin

(

2π

τ(n)
n

))

τ(n) = τ1I (mod n < T ) + τ2I (T ≤ mod n < 2T ) (7)

using the same values τ1, τ2, T and b as above, and ν =
6. χ2(ν) represents the χ2 distribution with ν degrees of
freedom. The χ2 distributed stream is challenging since
both the expectation and variance change with time. For the
HIL approach, a = 1.5 and M = 1000 + U were used,
where U was uniformly distributed on the interval [0, 1000],
i.e., λ was updated on average every 1500 iterations. We
tracked the q = 0.5, 0.7 and 0.9 quantiles. To remove any
Monte Carlo error, data streams were run for a total of
N = 107 iterations and the observed tracking MSE was
computed:

MSE = 1

N

N
∑

t=1

(

̂Qt,q − Qt,q

)2
(8)

Figure 3 shows the tracking error as a function of γ for
the data streams above, which contain concept drift.
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Fig. 2 Diagnostics plots when tracking the q = 0.7 quantile using
the Oracle approach. The top left panel shows the estimated QL in
every iteration. The top right panel shows the resulting recursive updat-
ing of λ. The symbol λopt refers to the value resulting in the minimal

estimated QL. The gray lines refer to theoretically optimal values of λ.
The bottom panel shows the resulting tracking. The gray dots represent
the data stream in (6) and the black line is tracking

Let MSEtheo
τ1

and MSEtheo
τ2

represent the theoretically
minimum tracking MSE for a data stream with constant
fast dynamics (τ1) and constant slow dynamics (τ2),
respectively. These errors were found by running the
DUMIQE algorithm for a range of values of λ to find the
values that minimized the tracking error for fast dynamics
and slow dynamics. The data streams in examples (6) and
(8) consist of an equal amount of fast and slow dynamics.
By tracking with optimal values of λ for fast and slow

dynamics and instantaneous adaptation to concept drift, the
minimum tracking error will be 0.5 MSEtheo

τ1
+ 0.5 MSEtheo

τ2
,

which is shown as gray solid lines in Fig. 3. The gray lines
therefore represent the theoretically minimal tracking error.
We further computed the minimum tracking MSE using a
constant value of λ, which is shown as gray dashed lines.
The results show that, for all the cases, the Oracle approach
tracks the true quantile with an error that is just slightly
above the theoretically optimal tracking error. The HIL
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Fig. 3 The left and right panels show results for the normal and χ2 distributed data streams. The rows from top to bottom show results from
tracking of the q = 0.5, 0.7 and 0.9 quantiles, respectively
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approach also performs well, but not as well as the Oracle
approach, which is as expected given the discussion at the
end of Section 4. Optimal values of the tuning parameter,
γ , are close to the suggested rule of thumb 1 − M

√
0.01 =

0.0031.

7 Real-life data examples

In this section, we present three real-world data examples
for benchmarking the procedures. The examples are related
to Twitter streaming data, activity monitoring, and stock
trading.

7.1 Twitter

Twitter data streams have been used for many interesting
applications, such as predicting election outcomes and detect-
ing natural disasters and other real world events [3, 17].

We consider a dataset consisting of the time stamp for
every tweet posted by Norwegian users before and after the
terrorist attack on July 22, 2011 [41]. The time stamps were
given in seconds, and to reconstruct a representation of the
true time stamps a uniformly drawn value between zero and
one second was added to each time stamp.

Let Tt represent the time stamp when tweet number t was
posted. We consider the problem of tracking quantiles of the
quantity Rt = (Tt −Tt−1)

−1, which can be interpreted as the
frequency of posted tweets. The quantity can, for instance,
be used for real world event detection in the sense that if the
number of received tweets is increasing, Rt will increase.

The terrorist attack was initiated by a bomb exploding
in Oslo on July 22 at 3:25 p.m. local time, which created
a significant concept drift in the data stream distribution.
We will evaluate how well the methods in this paper are
able to adapt to the concept drift in the dataset. We tracked
quantiles of Rt using the Frugal estimator [30] and the
Oracle approach was used for adaptation. We used γ =
0.005 in accordance with the rule of thumb in Section 4.

The results are shown in Fig. 4. The black curve in the
upper panel shows the tracking of the q = 0.7 quantile of
Rt . The gray dots show the observed Rt . The gray and black
curves in the bottom panel show the value of λ in every
iteration and a moving average, respectively. The Frugal
estimator was initiated with λ = 1 and the procedure rapidly
adjusted the step length to a more suitable value.

For the period until the bomb exploded, it is a trend that λ

is adjusted to lower values during night time, which makes
sense since both the scale and dynamics of Rt are smaller.
When the bomb exploded, the values of Rt rapidly increased
(concept drift), and the value λ therefore rapidly increased
to be able to efficiently track under the increased scale and
dynamics.

7.2 Activity monitoring

Activity recognition is a popular machine learning task
where the goal is to use sensors to automatically detect
and identify the activity of a user. For instance, activity
recognition could be used to assess whether a person is
performing a healthy amount of exercises or to detect
accidents such as falls. In this experiment, we will track

Fig. 4 Twitter data example. Upper panel: Gray dots show the observed data stream Rt (every 10th shown) and the black curve tracking of the
q = 0.7 quantile using the Frugal estimator. Bottom panel: The values of λ are shown in gray, and the black curve is a moving average of the λ

values
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Fig. 5 Accelerometer data example. Upper panel: Gray dots show the accelerometer observations and the black curve the tracking of the q = 0.7
quantile using the Frugal estimator. The gray vertical lines show when the user changed activity. Bottom panel: The values of λ

quantiles of accelerometer data that are available on almost
any modern cell phone or smart watch device. Tracking
quantiles can be used to detect when a user changes activity
[10] or to classify the current activity of the user [5].

We consider an accelerometer dataset from the Wireless
Sensor Data Mining (WISDM) project [22]. Accelerations
in x, y, and z directions were observed, with a frequency
of 20 observations per second, while users were performing
the following activities: walking, jogging, walking up a
stairway and walking down a stairway.

Figure 5 shows the tracking of the x acceleration of an
arbitrary user. We see that, when the accelerometer distribu-
tion is stable over time, the Oracle approach uses a small
value of λ, e.g, for the two first activities. When the user
changed activity, an immediate change in acceleration was
observed. The value of λ (step length) was rapidly increased
for the quantile tracking to efficiently adapt to the new
accelerometer distribution. Further, the value of λ was grad-
ually reduced when the accelerometer distribution stabilized
for the new activity. From around 20 minutes, the user

Fig. 6 Stock trading example. Upper panel: Gray dots show the number of traded Tesla, Inc. shares, while the black curve shows the tracking of
the q = 0.7 quantile using the Frugal estimator. Bottom panel: The values of λ
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changed activity far more frequently, and higher values of λ

were therefore used to ensure efficient quantile tracking.

7.3 Stock trading

High frequency data are highly abundant in stock trading,
and they need to be analyzed efficiently in real-time [18].
Figure 6 shows tracking of the q = 0.7 quantile of the
number of traded Tesla Inc. shares on the The New York
Stock Exchange [32]. When the number of traded shares
increased rapidly, the value of λ was increased to rapidly
adapt to the rapid change in scale and dynamics (concept
drift). The value of λ further decreased slightly when the
trade volume (dynamics) stabilized at a high level.

The three real-life data experiments demonstrate that the
suggested procedure is able to rapidly adjust λ to maintain
efficient quantile tracking under concept drifts.

8 Closing remarks

Surprisingly little attention has been paid to automatic
adjustment of the values of the parameters of incremental
quantile algorithms. In this paper, we develop two simple
procedures to address this problem. Both procedures are
based on estimating the current tracking quantile loss and
using this to efficiently track the true quantiles. The Oracle
approach tracks the quantile and associated quantile loss for
a wide range of values of the algorithm parameters and, in
each iteration, selects the quantile estimate with the minimal
estimated quantile loss. The second approach only tracks
the quantile for three values of the tuning parameter and
repeatedly forgets the estimate with the highest estimated
quantile loss and adds a quantile estimator for another value
of the tuning parameter. Both methods are computationally
and memory efficient, since only a limited set of quantities
needs to be computed and stored in each iteration.

The results show that the methods are highly efficient for
adjusting the value of λ to achieve efficient tracking. The
synthetic experiments showed that the resulting tracking
error is close to the theoretical minimum. The Oracle
performs best, but at a higher computational cost. The real-
life data examples demonstrated that the procedures were
able to adapt to concept drift for complex and massive real-
life data streams. In future work, we would like to test the
methods on data with different properties, such as mental
health activity data that often show rapid changes in the
behaviour of the patient.

Appendix A: Proof of Theorem 1

In this section, we provide a proof of Theorem 1.

Proof Since the data stream is stationary, we avoid the
time subscript for the data stream distribution. Using Taylor
expansion

L(̂Qt,q(λ)) = L(Qq) + L′(Qq)(̂Qt,q(λ) − Qq)

+1

2
L′′(Qq)(̂Qt,q(λ) − Qq)2

+O((̂Qt,q(λ) − Qq)3) (9)

= L(Qq) + 1

2
L′′(Qq)(̂Qt,q(λ) − Qq)2

+O((̂Qt,q(λ) − Qq)3) (10)

where L(·) refer to expected quantile loss.
According to [36], ̂Qt,q(λ) will be approximately

normally distributed with Bias2 = (̂Qt,q(λ) − Qq)2 =
O(λ2) and Var(̂Qt,q(λ)) = O(λ) (further details can be
found in [35]). Thus according to (10), L(̂Qt,q(λ)) =
O(λ2), which implies that L(λlow) < L(λintermediate) since
λlow < λintermediate.

By using a sufficiently small value for γ in (3) and
a sufficiently large M , the approximation of the expected
quantile loss will be sufficiently good to ensure that ̂EQL
(λlow) < ̂EQL(λintermediate). Consequently, the HIL proce-
dure will iteratively select smaller and smaller values for the
step size.

A final requirement for convergence is that λt approaches
zero, such that tλt → ∞ [35]. This is ensured by using at

as given in Theorem 1. The algorithm is initiated using a
step size of λ1 = λ. At time t = M , the step size is reduced
by dividing by aM : λM = λMp/(2M)p = λ/2p. At time
t = 2M: λ2M = λ/2p · (2M)p/(3M)p = λ/3p. Thus
tλt = kM ·λkM = kM ·λ/(k +1)p → ∞ since 0 < p < 1.

Convergence follows

lim
λ→0,tλt→∞

̂Qt,q(λt ) = Qq (11)
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