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Abstract
Motivated by human behavior, dividing inpainting tasks into structure reconstruction and texture generation helps to simplify
restoration process and avoid distorted structures and blurry textures. However, most of tasks are ineffective for dealing with
large continuous holes. In this paper, we devise a parallel adaptive guidance network(PAGN), which repairs structures and
enriches textures through parallel branches, and several intermediate-level representations in different branches guide each
other via the vertical skip connection and the guidance filter, ensuring that each branch only leverages the desirable features
of another and outputs high-quality contents. Considering that the larger the missing regions are, less information is available.
We promote the joint-contextual attention mechanism(Joint-CAM), which explores the connection between unknown and
known patches by measuring their similarity at the same scale and at different scales, to utilize the existing messages fully.
Since strong feature representation is essential for generating visually realistic and semantically reasonable contents in the
missing regions, we further design attention-based multiscale perceptual res2blcok(AMPR) in the bottleneck that extracts
features of various sizes at granular levels and obtains relatively precise object locations. Experiments on the public datasets
CelebA-HQ, Places2, and Paris show that our proposed model is superior to state-of-the-art models, especially for filling
large holes.

Keywords Image inpainting · Parallel adaptive guidance network · Joint-contextual attention mechanism ·
Multiscale receptive fields

1 Introduction

Image inpainting is an important yet challenging computer
vision task. Its goal is to predict appropriate pixels of the
missing areas. It serves a wide range of applications, such
as photoediting, decapping, and removing unwanted objects
from photos. Well-repaired areas should have reasonable
semantic structures and visually realistic textures.

Earlier traditional algorithms [2, 4, 6] fill holes by
dealing with suitable patches or pixels from known regions.
However, these methods cannot understand meaningful
image semantic priors, and the repaired areas might exhibit
incorrect semantic features.
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In recent years, with the rapid development of deep
learning, some methods [8, 16, 24, 26, 37, 39] have learned
image data distributions by adopting convolutional neural
networks(CNNs). Although these approaches generate
semantically reasonable contents in the missing areas,
the completed regions often suffer from either distorted
structures or texture artifacts due to incompatibility with
the human restoration behavior of the structure and texture
of missing regions separately. To solve this problem, a
multistage network [1, 28, 29, 33] repairs edge or structure
information firstly, and use it to guide full image recovery.
A single-stage network [35] utilizes the properties of
the convolutional encoder-decoder itself, which extracts
structures and textures at the deep layers and shallow layers
of the encoder respectively and repairs them. However, as
the holes become larger, most of separate repair networks
easily generate discontinuous structures and unsatisfactory
textures. This mainly lies in two reasons. One is failure to
depict accurate edges or structures for guiding the texture
generation, due to the constraint of a small amount of
known information. The other is not offering the specific
effective strategies to handle large holes. The progressive
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repair model [31, 32] fills large holes gradually by repeating
the same modules, as they consider the reconstruction of
structures and textures as a whole, making it more likely to
produce inferior content that affects the restoration of the
next stage.

To overcome the above limitations, we design multiple
tactics to aid in fixing large holes on the basis of separate
restoration. Specifically, we propose a novel framework
called parallel adaptive guidance network (PAGN), in which
the structure reconstruction branch and texture enrichment
branch restore the structured image (the image after
edge-preserving smoothing) and full image, respectively.
As shown in Fig. 1, the structured image consists of
large-scale objects such as edges and flat areas and
excludes small-scale objects (e.g., details). The complete
image includes semantically reasonable structures and
rich textures. Unlike unidirectional structure-guided repair
[28, 29, 33], our parallel branches guide each other at
multiple intermediate layers via a skip connection to
achieve “win-win cooperation”, in which the structure
reconstruction branch provides strong structure priors for
the repair process of complete image, and the well-designed
texture enrichment branch carrying reasonable structural
information contributes to the recovery of structure maps.
In addition, in contrast to the previously repaired pixels
directly guiding the recovery of the remaining pixels
[31, 32], we adopt the guidance filter to avoid useless
information from one branch directly passing into another.
In this way, the model can adaptively utilize contributing
information in the mutual guidance process and produce
more visually pleasing results, especially on large hole
inpainting tasks. To the best of my knowledge, we are the

Fig. 1 The difference between a complete image with details and a
structured image

first to use a mutual guidance structure to allow each branch
to take advantage of additional information that is only
beneficial to its own restoration results.

To make the recovered content more consistent with the
background (undamaged regions), some methods [9, 22, 24,
32] build long-term connections between distant pixels by
modifying contextual attention [25]. However, all of these
existing attention designs fill missing areas by searching
patches with high similarity within the same scale. When
the image is badly damaged and only scarce information
is available, exploiting limited known information through
various perspectives is particularly essential. Thus, we
devise a joint-contextual attention mechanism(Joint-CAM),
which explores feature dependencies not only at the same
scale but also different scales. This can utilize finite
contextual information maximally to infer the missing
contents and ensure structural continuity to some extent.

Furthermore, precise feature representation helps to
understand the semantic content of an image, which is good
for the inpainting task. Existing methods [3, 30, 34] utilizes
utilize layerwise multiscale structures to extract different-
scale features. However, these learned representations are
relatively coarse due to the lack of intralevel feature
fusion. To solve this issue, we design a novel multibranch
module in the end of the encoder, namely attention-based
multiscale perceptual res2block(AMPR). In addition to the
multiple parallel convolution layers with different receptive
fields, AMPR contains intralayer residual connections
and attention mechanism. Thus, AMPR not only extracts
multiscale features of the whole image at a granular level
and retains more accurate spatial location information,
but also fuses features from various branches effectively
through an attention mechanism.

In summary, the main contributions of our work can be
described as follows:

1. A novel framework called the parallel adaptive guid-
ance network (PAGN) for image inpainting not only
specializes in repairing structures and enriching tex-
tures through parallel branches separately but also facil-
itates features from one branch to adaptively accept
useful information from another via a skip connection
with a guidance filter.

2. We introduce strategies for repairing large holes, includ-
ing the joint-contextual attention mechanisms(Joint-
CAM), which utilize limited known information max-
imally, and an attention-based multiscale perceptual
res2block(AMPR), which effectively recovers missing
objects of various sizes. These tactics help to generate
the results with clear textures and continuous structures

3. Our method is more effective than state-of-the-art
models for dealing with large holes, and achieves high-
quality results on facial and natural datasets.
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2 Related work

2.1 Image inpainting

Currently, image inpainting is divided into two main parts:
traditional methods or deep learning methods. Traditional
approach [2, 4, 6] spreads the neighborhood pixels or
patches from background to the target hole. Although
these methods can repair better textures, they have many
limitations: 1. They must assume that the content of the
missing regions can be found in the input image or external
image libraries. 2. The reconstructed areas often exhibit
incorrect structures due to a lack of understanding of
the high-level semantics of images. 3. Broken images are
repaired with regular-shaped masks.

With the rapid development of deep learning, convo-
lutional neural networks (CNNs) have shown outstanding
performance in image inpainting tasks because they effec-
tively capture local features and high-level abstract fea-
tures of an image. Pathak et al. [7] proposed a context
encoder and was the first work incorporating generative
adversarial loss into an encoder-decoder architecture to
repair broken pixels. However, the repaired results always
contain texture artifacts due to the restriction of the chan-
nelwise fully connected layer. Subsequently, Iizuka et al.
[8] improved the image quality by employing cascaded
dilated convolution, and use the local and global discrim-
inators together to ensure both the consistency of the
repaired region and the entire image. Chen et al. [39] let
the local discriminator identify the similar patches in dif-
ferent images but in the same type, which improves the
discriminative ability of the network. Yu et al. [25] pro-
posed a coarse-to-fine network, which produces the rough
prediction first through a coarse network, and further opti-
mizes the coarse intermediate results into more high-quality
images through a refinement network. Chen et al. [27]
added context-awareness loss to make the repaired regions
more realistic by constraining the similarity of local fea-
tures. Liu et al. [16] and Yu et al. [26] replace the partial
convolution and gated convolution with an ordinary con-
volution, respectively, to avoid color incongruity and edge
response.

These methods often fail to reconstruct continuous
structures or fine details as they recover the holes without
plausible strong constraints. Nazeri et al. [29] depicted the
lines of the missing areas first and added the colors and
textures based on these restricted lines. Ren et al. [33] split
the whole inpainting into two steps: first, they repaired
the missing structures and then provided the completed
structures to the texture generator to direct the synthesis
the vivid textures through appearance flow. Shao et al. [1]
utilized fusion images of edge maps and blurred images
which provide color information as labels to guide the

reconstruction of the refined image. Liu et al. [35] captured
structure and texture features using the deep and shallow
layers of the encoder respectively, and filled the holes of
different-type features via separate multiscale blocks. Guo
et al. [31] and Li et al. [32] considered a progressive
inpainting policy, in which dilated pixels gradually form
known regions to the hole center by using repeating blocks
or modules. Zhu et al. [40] utilized multiple decoders to
refine the reconstructed results.

2.2 Contextual attention inpainting

To keep the generated textures realistic and consistent
with the surrounding features, Yu et al. [25] proposed
a contextual attention layer that borrows similar feature
patches from context to fill missing regions. Chen et al. [39]
preprocessed the images by using a similar block around the
damaged area to update the damaged block. Zeng et al. [24]
designed a pyramid-context encoder, which progressively
applies a contextual attention mechanism from latent feature
maps to the original image, to ensure both semantic and
visual coherence in the repaired regions. Liu et al. [9] found
that the repaired results will show discontinuous pixels if
they focus only on feature dependency inside and outside
the holes. Thus, they explore relationships between pixels in
the holes as well. Li et al. [32] considered the consistency
between the attention scores from different recurrences
and devised the knowledge attention layer for recurrent
architecture. However, these methods ignore the strong
correlations between feature patches at different scales.
Exploring it will obtain more accurate matching patches in
missing regions, especially when background information
fades considerably.

2.3 Multiscale design

Influenced by the way neurons in the human brain are
connecte, multiscale structure is adopted to capture features
of different sizes in many computer vision tasks. Inception
[12] and atrous spatial pyramid pooling (ASPP) [21] are
the most common multiscale designs are implemented in
various networks. In the object detection field, Liu et al.
[42] proposed a receptive field block, which absorbs the
advantages of ASPP and Inception, to enhance feature
robustness and improve detection accuracy. In the super
resolution field, Li et al. [38] combined ASPP and channel
attention at the bottleneck. In the 3D reconstruction field,
Ding et al. [44] estimated a more accurate depth map by
using continuous multiple ASPP blocks, which is vital for
better 3D reconstruction. In the image deraining filed, Wang
et al. [45] utilizeed multiscale kernels and multiresolution
feature maps to capture rain streaks with different sizes and
scales.
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In the image inpainting field, multiscale feature represen-
tation is essential for understanding the semantic informa-
tion of images. Wang et al. [30] devised the multicolumn
network, which contains three parallel encoder-decoder
branches with different filter sizes and spatial resolutions, to
extract different levels of features. Chen et al. [34] designed
two parallel encoders with different receptive fields to
obtain global semantic features and local detail features
respectively.

3 Parallel adaptive guidance network

Given a defective image and the corresponding binary
mask, our goal is to output a well-repaired image with
visually realistic content. Xiong et al. [28], Nazeri et al.
[29], Ren et al. [33] showed that repairing the structures
and textures of an image separately would reduces
texture artifacts and oversmoothed boundaries. Therefore,
we design a parallel adaptive guidance network(PAGN)
as shown in Fig. 2, where the structure reconstruction
branch aims to reconstruct the structures of a damaged
image, and the texture enrichment branch simultaneously
enriches the textures and recover the complete image.
These features from different branches guide each other’s
restoration using skip connections and guidance filters.
Moreover, the utilizing of the joint-contextual attention
mechanism(Joint-CAM) in the texture enrichment branch
helps to output completed images with realistic details
and continuous structures, and designed attention-based
multiscale perceptual Res2Blocks(AMPR) in the bottleneck

helps to capture the features with different receptive fields
in a way closer to the human eye.

We first introduce the idea of mutual adaptive guidance
in Section 3.1. Then, we describe the Attention-basedMulti-
scale Perceptual Res2block and Joint Contextual Attention
Mechanism in Sections 3.2 and 3.3 respectively. Finally, we
provide the corresponding loss functions of our model in
Section 3.4.

3.1 Mutual adaptive guidance

Different elements of an image, structure and texture
are interrelated. In contrast to the traditional idea, which
only takes the guidance map (structure map, edge map,
etc.) as one of the inputs to provide extra information,
we make two improvements. First, one-way guidance is
replaced with mutual guidance in favor of the restoration
of each element. Specifically, in the decoder, recovered
structures can be integrated into the texture enrichment
branch to provide strong priors. Once the correct struc-
tures are completed, the inpainting task can be treated
as a detail-enrich problem. In the encoder, extracted full
features involving rich texture and reasonable structure
information can also help the repair of accurate struc-
tures in turn. Second, each branch incorporates multiple
intermediate-level features from another branch so that
the guidance information is considered at multiple lay-
ers, avoiding only affecting previous layers of the deep
network.

As the mask area increases, the feature maps used in
guidance inevitably contain wrong or invalid information

Fig. 2 The overall pipeline of
the PAGN. It consists of
structure reconstruction branch
and texture enrichment branch.
Each branch adopts a typical
encoder-decoder structure. The
two branches guide each other
by skip connection and guidance
filter. In the encoder,
downsample blocks, AMPR, etc.
are used to understand the
semantic information. In the
decoder, upsample blocks,
Joint-CAM, etc. are used to
reconstruct the image. The
downsample block consists of
convolution block and Resblock,
and the upsample block consists
of ResBlock, nearest
upsampling and convolution
block with normalization and
activation layer. The number k
represents the kernel size of the
convolutional layer
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during the restoration process. To prevent less informative
features from one branch directly going to another via skip
connection, an extra guidance filter is added to highlight
contributing features adaptively and suppress poor features.
The guidance filter consists of two convolution layers with
different kernel sizes and a sigmoid function, in which a
1∗1 convolution is utilized to integrate information and
compress channels of input feature maps, and another 3∗3
convolution and a sigmoid function are used to yield an
attention map. This attention map is then used to recalibrate
the feature map to be directed to another branch. The feature
contrast diagram of the input and output feature of the guide
filter is shown in Fig. 3, and the processed feature maps
highlight the important objectives such as mask regions and
key points of the face.(feature maps are upsampled to 256 ∗
256 for observation).

3.2 AMPR In the encoder

Robust feature representations facilitate inpainting networks
to yield semantically accurate contents and clear details.
We think that robust feature representations are reflected in
two aspects: features with multiscale receptive fields and
precise spatial location. The former usually contains global
and local information, which helps network understand
the missing semantic content and enrich texture details.
The latter is vital for visual systems. For up to these
purposes, we propose a new multiscale structure called
attention-based multiscale perceptual res2block(AMPR) at
the bottleneck, which consists of multiscale perceptual
block, intralayer residual connection similar to [19]
and convolutional block attention module(CBAM) [36].
The multiscale perceptual block (Section 3.2.1) aims to

Fig. 3 Visual contrast diagram of the input and output of the guidance
filter

capture scale-diverse features effectively. Intralayer residual
connection (Section 3.2.2) enhances information exchange
between different branches, contributing to understanding
the contents of missing regions at a granular level and
retaining relatively precise spatial location information.
The convolutional block attention module(CBAM) helps to
reduce redundant features when fusing multiscale features.
The design inspiration of this block originates from the
receptive fields block(RFB) [42] as shown in Fig. 4a, but
has three special modifications as shown in Fig. 4b, where
d represents the dilation rate, and k represents the kernel
size. Next, we introduce the corresponding modifications in
detail.

3.2.1 Multiscale perceptual block

Inspired by receptive fields block [42], both the size and
eccentricity of the receptive fields play important roles in
human vision. Thus, the multiscale perceptual block can be
divided into two components as well: convolution layers
with different kernels and dilated convolution layers [18]
with individual eccentricity. To reduce network parameters,
a 1 ∗ 1 convolution is employed to compress the channels of
the feature map before going to multibranch structure. As
shown in Fig. 4b, in four parallel branches with various filter
groups, for the convolution layer part, the kernel size is 1,
3, 5 and 7, and the eccentricity is fixed at 1. For the dilated
convolution layer part, the eccentricity is 1, 2, 4 and 8, and
the kernel size is fixed at 3.

Since replacing a large-scale convolution kernel with
multiple small-scale convolution kernels can both reduce
the parameters and increase the depth of the network with
the same receptive field, we use the corresponding 3 ∗ 3
convolution kernels instead of a large-scale convolutional
kernel of 5,7.

3.2.2 Intralayer residual connection

Intralayer feature fusion has been successfully applied
in many computer vision tasks, but is less explored in
image inpainting tasks. Our proposed intralayer residual
connection allows adequate information fusion between
different-branch features. This operation not only helps to
capture multiscale features at a finer level, but also preserves
accurate spatial information, which leads to key point (nose,
eyes, etc.) localization. We denote Ci() as the i-th branch
in the multiscale perceptual block and Fi is the output
of Ci(). The specific implementation is to add the input
feature Xi to the output of the previous branch Fi−1, and
then feed into Ci(). As shown in Fig. 4b, we use the
element-wise sum instead of a concatenation operation to
fuse features inside each branch, aiming to avoid redundant
feature information as the convolution layers continuously
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Fig. 4 The comparison between
(a) RFB and (b) AMPR. The
CBAM module of AMPR is
shown in (c). The parameters k
and d represent the kernel size
and the dilated rates of the
dilated convolution(or
convolution), respectively. In
convolution, the default value of
d is 1
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increase. The output of each branch can be computed as
follows:

Fi =
{

Ci(Xi) i = 1

Ci(Xi + Fi−1) i = 2, 3, 4
(1)

3.2.3 Convolutional block attention module

Actually, each feature from different sources is treated
equally if we stack them directly in channel dim, which
is not consistent with human vision. Thus, attention
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mechanism is utilized to tell us which features need special
attention and elevate the redundant information. Here,
we choose the popular attention module - convolutional
block attention module(CBAM) [43] - to fuse features
effectively. As shown in Fig. 4c, the CBAM includes
channel attention and spatial attention. Within channel
attention, we concern about what is meaningful information.
The 3-dimensional input (simple stacking of feature maps
from multiple branches) is compressed into two different 2-
dimensional features that only have the channel information
by global maximum pooling and global average pooling
along the spatial dimmention. Maximum pooling is used to
search for unique semantic features and average pooling is
used to count the semantic information. Then the shared
neural network and sigmoid function are explored for
internal correlations between channels to produce a channel
attention mask.

Supplementation to channel attention, spatial attention
is used to concern where the important information is. We
perform maximum pooling and average pooling on features
of passing channel attention along the channel dimension,
which represent two different kinds of spatial information.
Then, the two pooled feature maps are stacked on the
channel dimension to generate the spatial attention mask by
convolution and sigmoid activation.

3.3 Joint-contextual attentionmechanism

With the help of contextual attention [25], we can copy
distant patches from surrounding areas to synthesize better
quality textures. However, existing attention modules [9,
24, 25] for inpainting task reconstruct the missing patch by
using the similar patches at the same scale, which fails to
make the most of the helpful information. With the missing
areas increase, the scale restriction make the contextual
attention prone to generate the distorted structures. In the
task of super resolution reconstruction, the paper [43]
utilize the cross-scale non-local module to explore the
correlations between the low-resolution patch and high-
resolution patches, which ensures the structural consistency.
Inspired by it, we introduce the joint-contextual attention
mechanism(Joint-CAM)to enlarge the search scope of
similar patches. Joint-CAM contains in-scale contextual
attention(is-ca), cross-scale contextual attention(cs-ca) and
the residual connection. The is-ca considers similarity
between same-scale feature patches, which help to generate
the clearer textures. The cs-ca explores the dependencies
between cross-scale feature patches, which facilitates the
recovery of reasonable structures and details. The residual
connection can help the Joint-CAM target feature patches
that need to be filled with patches of known regions.
These two contextual attention are described in detail
below.

3.3.1 In-scale contextual attention

We take the center hole as an example. For the in-
scale contextual attention(is-ca), we usually measure the
similarity for all the patch pairs inside and outside
the holes(foreground and background) using the cosine
similarity:

simx,y,x̄,ȳ = 〈 fx,y

‖fx,y‖ ,
fx̄,ȳ

‖fx̄,ȳ‖〉 (2)

Where simx,y,x̄,ȳ represents the similarity between the
foreground patch fx,y at location (x, y) and the background
patch fx̄,ȳ at the location (x̄, ȳ) in the same feature maps.
The in-scale attention score of each background patch fx̄,ȳ

is calculated by softmax function with a scale. Finally,
each foreground patch is reconstructed by aggregating
weighted background patches. In practice, the above steps
usually can be simplified by the convolution, a channelwise
softmax function, and the transposed convolution. The
paper [25] described the simplified process in detail.If you
are interested, you can review it. The green and black arrows
in Fig. 5 show the process of is-ca clearly as well.

3.3.2 Cross-scale contextual attention

Cross-scale feature similarity was proposed for image
super-resolution by [43], and this idea is then extended to
our restoration tasks. Cross-scale contextual attention(cs-
ca) models long-range dependency without same-scale
restriction. The similarity between cross-scale features
is obtained by measuring the correlations between low-
resolution patches (k ∗ k) and higher-resolution patches
(sk ∗ sk) in the same feature map. However, applying
cosine similarity directly is infeasible since the spatial
dimensions of different resolutions are different. Thus, we
first downsample the feature map, and the low-resolution
patches (k ∗ k) in the downsampled maps have the same
receptive fields as the higher-resolution (sk ∗ sk) patches
in the original maps. Then, the cross-scale attention scores
are derived by calculating the cosine similarity between the
patches from the downsampled map and the those with the
resolutions from the original map, which can be achieved
along the red and black arrows in Fig. 5. Specifically, we
assume that the input feature map is f(H ∗ W ). First, f
is downsampled to g (H/s ∗ W/s ). Then, the cross-scale
attention scores between patches(k ∗ k) in f and those in
g are calculated by convolution and a softmax function.
Finally, the corresponding patches(sk ∗ sk) in f are used
as deconvolution filters to reconstruct the missing patches
in f and generate high-frequency details. Notably, unlike
the single image super resolution task [38], the stride of
transposed convolution(deconvolution) is set to 1 so that
the feature maps are not zoomed upon when reconstructing
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Fig. 5 The implementation of
in-scale contextual attention(is-
ca) and cross-scale contextual
attention(cs-ca). The green and
red lines represent different parts
between two types of contextual
attention, and the black lines
represent similar parts
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the missing patches. In this paper, we choose k to be 3
and s to be 2, and the downsampling operation is bilinear
interpolation.

When merging the two independent feature maps
generated by the is-ca Fin scale and cs-ca Fcross scale into
the unified feature maps, we use residual convolution
ResConv() to learn residual features Rattn between different
sources instead of adding or concatenating them directly,
which allows the network to focus on only the distinct
information while bypassing the same information, to
reduce redundant features in the merged maps. In addition,
building a skip connection between the input feature
Finput and output of Joint-CAM Fattn allows the network
focus more on hole patches that have similar patches
in known regions. This improves the discriminative
ability of the network. The merging process is shown
in (3)-(5).

Rattn = Fin scale − Fcross scale (3)

Fattn = ResConv(Rattn) + Fin scale (4)

F = Fattn + Finput (5)

3.4 Loss function

For the structure reconstruction branch, we jointly use
generative adversarial loss and L1 loss. For the texture
enrichment branch, we add extra perceptual loss as well
as style loss. In our paper, the weight setting of the
above losses is the same as that of StructureFlow(SF) [33].
In addition, we use depth-supervised perceptual loss in
each deconvolution layers of two branches to refine the
predictions at each scale. The refined estimation of the
missing regions ensures that the joint contextual attention
mechanism performs well.

3.4.1 Depth-supervised perceptual loss

Compared with pixel-by-pixel loss, the perceptual loss
is shown to be more consistent with the human visual
system and generate more details. Thus, we use the depth-
supervised perceptual loss to progressively optimize the
predictions at each deconvolution layer of parallel branches.
Taking the texture enrichment branch as an example,
we first use activation layers {relu3 1}and {relu2 1} of
VGG19 [17] to extract two-resolution feature maps of real
images, and then calculate the loss Ldeep between the
extracted real features and the features predicted by our
corresponding deconvolution layer. The depth-supervised
perceptual loss in the structure reconstruction branch LS

deep

is obtained in the same way:

Ldeep =
P∑

i=1
‖�i(Igt ) − Fi‖1

LS
deep =

P∑
i=1

‖�i(Sgt ) − Si‖1
(6)

Here, Igt and Sgt represent real images and real structured
images, respectively. �i represents the i-th selected
activation layer of the VGG19 [17] network. Fi represents
the feature maps with the same size as �i(Igt ), predicted
by the deconvolution layer of texture enrichment branch.
Si represents the structure feature maps with the same size
as �i(Sgt ), predicted by the deconvolution layer of the
structure reconstruction branch.

3.4.2 Structure reconstruction branch loss

The pixel-to-pixel loss of the structure reconstruction
branch Ls

l1 is defined as the L1 loss between the

reconstructed structured image Ŝre and the real structured
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image Sgt , which constrains the major content in the missing
regions, as shown in (7).

[]Ls
l1 = ‖Sgt − Ŝre‖1 (7)

In fact, the image inpainting task is an ill-posed problem
with multiple feasible restoration results in the missing
regions. To make the repaired results look more realistic and
contain more details, we use the generative adversarial loss
Ls

adv [13]:

Ls
adv = E[log(1 − Ds(Gs(Iin, Sin, M)))] + E[log(Ds(Sgt ))] (8)

Here, Iin denotes the broken input image, and Sin denotes
the edge-preserving smoothed structure of the corrupted
image. Sgt represents the real structured image.M represents
the binary mask, in which pixel value 0 represents the back-
ground and pixel value 1 represents the missing region. Gs

is our structure reconstruction branch.Ds is the structure dis-
criminator, which discriminates whether the restored struc-
tured image is the same as the real one or not. If the identifica-
tion results is true, the output is 1, otherwise, the output is 0.
The best output is 0.5, i.e., restored image is so realistic that
fools the discriminator. In this paper, we adopt PatchGAN
[20] as our discriminator to discriminate the authenticity of
all image patches instead of the whole image.

Eventually, the structure reconstruction branch is trained
together using (9), and λs

l1, λs
adv and λs

deep are 4,1,0.01,
respectively.

min
G

max
D

Ls(G, D) = λs
l1L

s
l1 + λs

advL
s
adv + λs

deepLs
deep (9)

3.4.3 Texture enrichment branch loss

The pixel-to-pixel loss of the texture enrichment branch Lt
l1

is defined as the L1 loss between the reconstructed image
Îre and the real image Igt , as shown in (10):

Lt
l1 = ‖Igt − Îre‖1 (10)

Additionally, the generative adversarial loss is added in
the texture enrichment branch, as shown in (11), where Gt

is the texture enrichment branch that generates the final
restored result image containing rich textures. The structure
of discriminator Dt is the same as Ds , which determines
whether the given input is real or fake.

Lt
adv = E[log(1 − Dt(Gt (Iin, M)))] + E[log(Dt (Igt ))] (11)

To ensure that the repaired image matches the human
vision system, the perceptual loss Lt

per [15] is shown in
(12). �i() represents the activation layer of the VGG19 [17]
network, and {relu1 1}, {relu2 1}, {relu3 1}, {relu4 1}
and {relu5 1} are selected in this paper. As shown in (13),
the style loss Lt

style [15] is also additionally included in
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Table 2 Quantitative
evaluation of the Paris dataset
under the large holes, and the
mask ratio is 40%-60%

MODEL SSIM PSNR LPIPS

EC(ICCVW 2019) [29] 0.75 21.00 0.1884

CSA(ICCV 2019) [9] 0.77 21.73 0.2133

Paris MEDEF(ECCV 2020) [35] 0.76 21.50 0.2180

RFR(CVPR 2020) [32] 0.78 21.80 0.1835

PAGN 0.81 22.27 0.1796

the texture enrichment branch, to reduce the checkerboard
artifacts caused by the perceptual loss and to maintain
the consistent texture style with the real image. G

φ
j is a

style matrix of size C ∗ C. Because the result of model
trained with a small style loss weight has many fish scale
artifacts, the weight of style loss is much bigger than other
losses.

Lt
per = E[

P∑
i

1

Ni

‖�i(Igt ) − �i(Îre)‖1] (12)

Lt
style = Ej [‖Gφ

j (Igt ) − G
φ
j (Îre)‖1] (13)

Finally, the texture enrichment branch is trained together
using (14), where λt

adv ,λt
l1 , λ

t
per , λ

t
sty , λ

t
deep are 1, 5, 0.01,

180, 0.1 respectively in the experiment.

min
G

max
D

Lt(G, D) = λt
l1L

t
l1 + λt

advL
t
adv + λt

deepLdeep

+λt
styL

t
style + λt

perL
t
per (14)

The total losses are shown in (15). Inspired by PEPSI
[11] that slightly reduces the weights of one path loss
to focus on the other path. At the beginning of training,
we want to provide a strong structure prior to the
texture enrichment branch, and the penalty of the structure
reconstruction branch is strong. As the training processes,
we focus on image detail restoration gradually, and the
penalty of the structure reconstruction branch slowly
weakens. I represents current iterations, and Imax represents
the maximum number of iterations.

Ltotal = min
G

max
D

Lt (G, D) + (1 − I

Imax

) min
G

max
D

Ls(G, D)

(15)

4 Experiment

4.1 Implementation details

We train our method on the Place2 [10], CelebA-HQ [46]
and Paris [23] datasets. Place2 contains more than 10
million images and covers 365 natural scenes, and we follow
the original training and validation splits. The CelebA-HQ
dataset consists of 30,000 highly structured face images
with the resolution of 1024∗1024, where 3000 images are
randomly selected into the test set. For Paris, it is 6,000
images of Paris street buildings, where 50 images belong
to the test set. For mask, we use challenging irregular
mask datasets provided by [16]. All the irregular masks and
images used for training and testing are resized to 256∗256.

During the training, we use the Adam optimizer [41] with
β1=0 and β2=0.999. The batch size and the learning rate are
set to 8 and 1 × 10e−4, respectively. Our proposed method
is implemented in PyTorch, and conducted on a single
NVIDIA 3090 GPU. In addition, the end-to-end training
strategy is adopted, so the structure reconstruction branch
and texture enrichment branch are trained simultaneously.
The training process of the CelebA-HQ model, Paris model
and Placces2 model took 3 days, 2.5 days and 10 days
respectively.

To obtain a smoothed structure of the ground truth, a
rolling guidance filter (RGF) [14] is utilized to process
real images, which leaves critical structures and edges and
removes texture details. As a real time edge-preserved
method, its parameters σs and σr are used to control spatial
and range scale of smooth window. As the σs and σr larger,
more details are smoothed. Here, we select σs as 3 and σr

as 0.05.

Table 3 NR scores for various
mask ratios on CelebA-HQ and
Paris

MODEL 20–40% 40–60%

EC(ICCVW 2019) [29] 0.22 0.10

NR CSA(ICCV 2019) [9] 0.38 0.18

RFR(CVPR 2020) [32] 0.41 0.24

PAGN 0.67 0.58
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Table 4 FR scores for various
mask ratios on CelebA-HQ and
Paris

MODEL 20–40% 40–60%

Rank1 Rank2 Rank3 Rank4 Rank1 Rank2 Rank3 Rank4

EC(ICCVW 2019) [29] 0 0.22 0.27 0.58 0 0.05 0.50 0.55

FR CSA(ICCV 2019) [9] 0 0.27 0.54 0.30 0 0.11 0.47 0.52

RFR(CVPR 2020) [32] 0.30 0.23 0.30 0.19 0.05 0.88 0.13 0

PAGN 0.69 0.30 0 0 0.94 0.05 0 0

No.1 means that the completed image is considered by volunteers to be the best and No.4 means the
worst image among the images inpainted by different methods

4.2 Quantitative comparisons

4.2.1 objective evaluation

The image inpainting task lacks reasonable objective
evaluation metrics that can accurately reflect the image
performance. However, when our method is compared with
other methods, objective evaluation metrics are essential
because they are relatively fair and independent of human
will. Thus, the commonly used metrics - PSNR, SSIM and
LPIPS- are adopted for image quantitative comparisons.
PSNR measures the difference between the reference image
and the predicted result based on the pixel-level errors, and

the larger the value is, the less distorted the image is. SSIM
evaluates the image in terms of luminance, contrast and
structure, and its value range is [0,1]. The closer the value is
to 1, the closer the image is to the reference image. LPIPS
[5] based on AlexNet, measures the distance between the
deep features of restored image and those of real image. The
caculation of LPIPS is shown (16).

D(Xgt , Xre) = ∑
i

1
Hi×Wi

∑
h,w

‖Wi � (f i
gt − f i

re)‖2 (16)

The specific algorithm is as follows. Firstly, we use the
relu1 ∼ relu5 layers from AlexNet to extract the feature
stack f i

gt and f i
re from the ground truth and generated

Fig. 6 Qualitative results on the
CelebA-HQ dataset
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Fig. 7 Qualitative results on the
Places2 dataset

image, respectively. And we assign f i
gt , f i

re ∈ RHi×Wi×Ci

for activation layer i (i=1∼5). Secondly, we scale the
channels of each feature by vector Wi and compute the l2
distance to get the difference map. The Wi consists of a 1∗1
convolution layer where the output channel is set 1. Finally,
all stacked difference maps are averaged in the spatial
dimension and accumulated in the channel dimension.

We compare our approach with several state-of-the-art
models on the CelebA-HQ [11], Place2 [10] and Paris [23]
datasets. These models are: EdgeConnect (ICCVW 2019)
[29] and CSA (ICCV 2019) [9], SF (ICCV 2019) [33],
RFR (CVPR 2020) [32] and MEDEF (ECCV 2020) [35].
During the training process, for the Paris dataset, three
pretrained models have been adopted(EC (ICCVW 2019)
[29], MEDEF (ECCV 2020) [35] and RFR (CVPR 2020)
[32]) through their official websites. And the CSA model
is trained by us by using the official code and default
parameters. For the Places2 dataset, the pretrained model
of EC (ICCVW 2019) [29], SF (ICCV 2019) [33] and
MEDEF (ECCV 2020) [35] have been adopted through their
official websites. And for CelebA-HQ dataset, since the
official pretrained CelebA model of comparison methods
[9, 29, 32] cannot be generalized to the CelebA-HQ
dataset, we retrained them on the CelebA-HQ dataset by
using the default parameters and official code. And we
choose the best results as the final output. Additionally, to

evaluate fairly, we conduct experiments on same irregular
holes provided by Liu [16]. These masks are classified
based on different hole-to-image area ratios(e.g.,0-10%,10-
20%,etc.). During testing, the comparison methods and our
methods are evaluated by the same test dataset and irregular
masks.The results are shown in Tables 1 and 2.

4.2.2 Subjective evaluation

The objective evaluation may be inconsistent with the sub-
jective perception of people. In this section, subjective eval-
uation, as an essential complement to objective evaluation
indicators, is utilized to assess our proposed method.

According to whether the ground truth is required, we
divided the user study into two types of experiments: no
reference(NR) and full reference(FR). No reference means
that users do not know what the real image looks like
and where the mask is, and full reference is the opposite.
Specifically, we invited 20 participants, both engaged and
not engaged in image processing direction. In the first set of
experiments, the participants are asked to whether the image
is real in a bunch of random images that contain repaired
images and ground truth. The results are summarized
in Table 3, and the numbers in the table represent the
probability that the completed images are considered as the
real image. We can see that images inpainted by our method
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Fig. 8 Qualitative results on the
Paris dataset

are always the most realistic under different mask ratios.
In the second set of experiments, participants needed to
rate the quality of displayed images, and these images are
repaired from one broken image by our method and other
comparison methods. Table 4 shows the results that sorted
by participants, and the number in the table represents the
probability that the image restored by a certain model is
of that rank(No.1, No.2...). From Table 4, we can conclude
that images completed by our method have the highest
probability of being thought to be the best in human
vision, indicating that our models can generate more natural
images. Notably, images for subjective evaluation come
from a portion of CelebA-HQ and Paris, and all images are
shown to participants for no time limitation.

4.3 Qualitative comparisons

The qualitative comparison can test image quality in a
intuitive way. Figures 6, 7 and 8 show the results of our
method that compared with other state-of-the-art methods
on the CelebA-HQ, Places2 and Paris datasets, respectively.
Compared with other methods, the images repaired by
our method have less noticeable discontinuous structures
and blurry textures and are the most genuine in terms
of the human visual system. In Fig. 6, we find that

EC easily generate irrational structures, and CSA fails to
generate clear textures. We guess that when the missing
hole is large, EC is difficult to repair the edges of missing
areas accurately, and CSA has insufficient information to
understand the connection between pixels in the missing
region. For RFR, although the use of recurrent feature
reasoning is suitable for repairing large holes, the restored
images still have some unnatural content.

Combining Fig. 6 with the Table 1, we observe the
following two points. First, the higher PSNR value of
an image does not mean better vision for human eye.
For example, in the CSA method, repaired images look
visually poor, but their PSNR value is not low. Therefore,
there is a gap between objective indicator and subjective

Table 5 The effectiveness of PAGN

Two-stage
network

One-way
guidance

w/o guidance
filter

Our PAGN

PSNR 21.88 22.05 22.05 22.20

SSIM 0.82 0.83 0.83 0.84

LPIPS 0.1299 0.1114 0.1113 0.1077

These statistics are based on irregular masks with a size of 50%-60%
of the entire image
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Fig. 9 Effect of the guidance filter on inpainting results, and the mask
ratio is 50%-60%

perception. Second, as the missing area increases, the
advantages of objective metrics tested by our model are
gradually emerge. As the mask ratio increases and the
information in known areas is reduced, other methods
generate more apparently distorted pixels than our method,
so both objective indicators and subjective vision are
inferior to our model.

4.4 Ablation study

In this study, the quantitative metrics are calculated from
validation images on the CelebA-HQ dataset [11].

4.4.1 The effectiveness of mutual adaptive guidance

To demonstrate the effectiveness of the idea of mutual
adaptive guidance, we compare the PAGN with several
variants: a two-stage network, a network with one-way
guidance, a network without guidance filter. The two-stage
network divides image inpainting into two stages without
end-to-end training. The first stage is used to recover
damaged structures, and the second stage would recover
the textures based on recovered structures.The network with
one-way guidance means that the guidance direction in

Fig. 10 Results of different contextual attention

Table 6 The effectiveness of Joint-CAM,and the mask ratio is 50%-
60%

w/o cs-ca Joint-CAM(different-
level feature map as
cross-scale map)

Our Joint-CAM

PSNR 21.94 22.02 22.20

SSIM 0.81 0.82 0.84

LPIPS 0.1141 0.1109 0.1077

the encoder is the same as that in the decoder. We use
ablation experiments which are seen in Table 5 and Fig. 9
to show the inpainting performance of the full network and
corresponding variants.

The objective results are given in Table 5, demonstrating
that the proposed PAGN performs better than other variants
in terms of PSNR, SSIM, LPIPS. Figure 9 shows the
visual results. By observing the mouth in the first row,
the network without guidance filter generates the wrong
semantic structures, and the network with one-way guidance
produces the inconsistent color. The results in the second
row show that our PAGN can produce less blurring around
the hair and ear.

4.4.2 Effect of joint-contextual attention mechanism

To investigate the effectiveness of cross-scale contextual
attention(cs-ca), we perform two groups of experiments
to make a comparison. The first group only use in-scale
contextual attention(is-ca) [25] in the texture enrichment
branch. The visual comparison is shown in Fig. 10. By
observing the left eye and mouth of the first black man
on the top row and the ear of the second man on the
bottom row, we can see that the model with Joint-CAM

Fig. 11 The visual contrast diagram of the Joint-CAM
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Table 7 The effectiveness of AMPR and the mask ratio is 50%–60%

w/o AMPR w/o intralayer resi-
dual connection

w/o CBAM AMPR

PSNR 21.48 21.95 22.12 22.20

SSIM 0.80 0.83 0.83 0.84

LPIPS 0.1244 0.1141 0.1124 0.1077

helps to recover accurate structures and realistic textures
with fewer artifacts. In the next group, we adopt the previous
high-level feature map instead of the downsampling map
to explore the relationship between different-scale features.
The comparison objective metrics are shown in Table 6.

In addition, we further demonstrate the effectiveness of
our proposed Joint-CAM in the feature space. Since the
gray-scale features maps are easier for observation, we
display the input and output feature maps of Joint-CAM
module in gray-scale. As shown in Fig. 11, we find that
the feature maps processed by Joint- CAM have a more
reasonable structures, clearer textures and brighter color.

4.4.3 Effective of attention-basedmultiscale perceptive
Res2Block

AMPR is used to capture different-scale features and
improve model generalization. We conducted experiments
to evaluate the importance of different components of
AMPR. Table 7 shows that both PSNR and SSIM are the
highest with the addition of all components. The visual
quality as shown in Fig. 12, as the mask ratio increases, the
areas repaired by the network without AMPR have more
obvious texture artifacts. Noteworthy, a convolutional layers
are applied in the last of the encoder in the case of without
AMPR.

To further validate the AMPR, we show the feature
visualization comparison as shown in Fig. 13. Specifically,

Fig. 12 Visual comparison results with or without AMPR, and the
mask ratio is 30%-40%. Among the images without AMPR, blurry
textures exist in the neck, eyes.

Fig. 13 The visual contrast diagram of the AMPR

we up-sample the size of feature maps with different
sources from 32×32 to 64 × 64 and display them in
colors(COLORMAP JET) for better observation. One is
generated by the last layer of encoder which is consist of a
convolutional layer. And the other is generated by the last
layer of encoder which is consist of AMPR.We can find that
the feature maps generated by AMPR have larger receptive
fields than those of convolutional layer. Other than that,
the localization of key points and missing regions is more
accurately by applying the AMPR module.

5 Conclusion and future work

In this paper, we introduce the parallel adaptive guidance
network(PAGN), which repairs broken structures and tex-
tures separately in a parallel manner within one stage. Struc-
tural and texture features mutually guide through skip con-
nections with guidance filters, which allows to pay attention
on the communication of useful features. Furthermore, in
the texture enrichment branch, we apply the joint-contextual
attention mechanism(Joint-CAM), which leverages limited
context from multiple perspectives, making it easier to yield
details and accurate structures in missing regions. Finally,
to give our inpainting network has robust feature represen-
tation, a novel multiscale structure called attention-based
multiscale perceptual res2block(AMPR) is adopted into the
bottleneck, to extract different-level features at a finer level.
Experiments on the public datasets verified the effective-
ness of our proposed models, which are especially suitable
for repairing large holes.
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In future work, we aim to combine inpainting tasks with
super resolution to efficiently repair high-resolution images
with complex textures and rich colors.
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