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Abstract
Exchange rates are affected by the impact of disparate types of new information as well as the couplings between these
modalities. Previous work mainly predicted exchange rates solely based on market indicators and therefore achieved
unsatisfactory results. In response to such an issue, this study develops an inventive multimodal fusion-based long short-term
memory (MF-LSTM) model to forecast the USD/CNY exchange rate. Our model consists of two parallel LSTM modules
that extract abstract features from each modality of information and a shared representation layer that fuses these features. In
terms of the text modality, bidirectional encoder representations from transformers (BERT) is applied to conduct a sentiment
analysis on social media microblogs. Compared to previous studies, we incorporate not only market indicators but also
investor sentiments into consideration, treating the two types of data differently to match their exclusive characteristics. In
addition, we apply the multimodal fusion technique and contrive a deep coupled model rather than a shallow and simple
model to reflect the couplings between the two modalities. As a consequence, the experimental results obtained over a 15-
month period exhibit the superiority of the proposed approach over nine baseline algorithms. The purpose of our study is to
demonstrate that it is practicable and effective to incorporate multimodal fusion into financial time series forecasting.

Keywords Multimodal fusion · MF-LSTM · Sentiment analysis · Exchange rate forecasting

1 Introduction

The foreign exchange market has become the largest
financial market on the globe, with a daily volume of
$6.6 trillion [1]. However, with the rapid increase in the
size of the market in recent decades, the risk of foreign
exchange has also been greatly accentuated. After the
debacle of the Bretton Woods system, more flexible policies
regarding exchange rates were adopted by most central
banks, contributing to the volatile nature of the Forex
market. These unanticipated fluctuations impose threats
to not only the profits of multinational corporations but
also the stability of financial systems. For illustration, the
devaluation plan for the Mexican peso against the U.S.
dollar implemented in 1994 triggered an unexpected plunge
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in the Mexican Peso Index, which eventually led to a severe
recession in the Mexican economy, with a 6.2% decline
in gross domestic product (GDP) over the following year1.
Consequently, the exigency of forecasting the directions
and extents of these fluctuations began to rise. In addition,
the internationalization of CNY has profoundly influenced
the global market. In 2020, US$2.591 trillion worth of
goods and services were exported by China, accounting
for 13.8% of overall global exports2. In addition, China
brought in US$ 163 billion of inflows in 2020, surpassing
the United States as the largest recipient of foreign direct
investment (FDI)3. Nevertheless, trade conflicts with the
United States and the COVID-19 pandemic have also
brought risks to China’s economy. In terms of such
magnitude, correspondingly, any exchange rate fluctuation
might incur an enormous aftershock. Therefore, forecasting
exchange rates with accuracy and robustness is crucial for
international trade practitioners, global investors, and policy
makers.

1https://data.worldbank.org/indicator
2https://data.stats.gov.cn/staticreq.htm
3https://unctad.org/statistics
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Unfortunately, there is still no panacea to address this
issue. Such a predicament can be ascribed to three main
reasons. First, an exchange rate is determined by an
intricate system with complicated coupled relationships [2],
as shown in the left part of Fig. 1. Factors comprising
stock market movements and macroeconomic policies not
only possess distinctive conduction mechanisms and impose
various effects on the Forex market but also interact
with each other. In addition, the factors that belong to
each country’s markets are also related. Second, Forex
market participants do not make decisions solely based on
the numerical market indicator data. Investor sentiments
aroused by new information can also exert coupled effects
among themselves concerning markets and countries, as
displayed in the right part of Fig. 1, eventually affecting
the corresponding exchange rates [3]. Two theories can
expound on this phenomenon. On the one hand, according
to the effective market hypothesis (EMH), the stock market
is capable of making rapid adjustments to new information
[4, 5]. This hypothesis was further applied to the Forex
market in [6]. That is, new information in different
markets and regions, including financial news and social
media texts, can be absorbed by Forex market participants
through investor sentiments. Ergo, market expectations
and exchange rates will change accordingly. On the other
hand, behavioral finance theory argues that some agents
are not fully rational [7]. When facing new information,
irrationality such as herd behavior, thought contagion, and
risk aversion affects market movement [8]. Additionally,
these irrationalities within a single market can be conveyed
far beyond the original sphere. For example, when
encountering unpredictable calamities in the British stock
market, panic may disseminate and compel practitioners
to make overreact. These investor sentiments may even
be transmitted to the USD/CNY Forex market and trigger
fluctuations. Even though the above two theories have
disparate perception with regard to how market movements
reflect all sorts of new information, a consensus regarding
the effect of new information can be derived – information
related to each market is capable of generating investor

sentiments, ultimately affecting the exchange rate. Third,
there are also deep couplings between market indicators and
investor sentiments, as shown in the middle of Fig. 1. Since
the mechanism that determines an exchange rate has three
types of couplings with exclusive characteristics and the
two forms of information are distinctive in modality, any
attempt that considers only a single modality of information,
whether that be numerical market indicator data or text
data regarding investor sentiments, tends to fail in terms
of obtaining accurate forecasts. Thus, to cope with the
above problems, it is logical that a qualified forecasting
methodology should capture both the inherent interactions
among the market indicators and investor sentiments within
these markets, as well as the couplings between the two
modalities of new information.

When confronting such a challenge, however, it is
arduous for existing methods to represent sophisticated
coupled structures while incorporating various modalities
of information. Traditionally, economists have applied
econometric methods (e.g., the autoregressive integrated
moving average (ARIMA) approach [9]) for financial
time series forecasting. Nonetheless, the processed time
series are assumed to be rigidly linear and stationary
[10]. As a result, these methods are rendered feeble
when facing nonlinear hidden patterns within exchange
rates and the impacts of various information. In addition,
although machine learning techniques (e.g., decision trees
[11] and support vector machines (SVMs) [12]) are
capable of incorporating diverse factors without such
stringent restrictions, these shallow structures may ignore
the distinctive conduction mechanisms of the market, as
well as coupled effects. Furthermore, different modalities
of data owns distinctive characteristics. It is logical that
any approaches should treat them separately. Therefore,
using a single and shallow structure to process multiple
types of data actually ignores the differences between
them, which is likely to generate unfavorable results.
Nevertheless, in recent years, two methods have exhibited
the potential to resolve these difficulties. The first is the
long short-term memory (LSTM) approach proposed by

Fig. 1 Hidden mechanisms beneath the exchange rate
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Schmidhuber and Hochreiter. Through its memory cells and
gates, LSTM fixes the exploding and vanishing gradient
problems formerly exhibited by recurrent neural networks
(RNNs) [13]. Such a merit contributes to the excellent
performance of LSTM in learning both long-term and short-
term dependencies [14]. Hence, the LSTM model was
later applied to numerous time series forecasting tasks,
and achieved excellent results [15–17]. Another candidate
method is multimodal fusion (MF), in which multiple
types of media, their related features, or the intermediate
decisions are incorporated to complete an analysis task
[18]. In particular, since a hierarchical architecture can be
automatically learned for each modality via deep learning,
deep multimodal learning achieves undeniable success in
domains such as object recognition tasks [19], medical
applications [20], and autonomous systems [21]. It is
noteworthy that this ability is consistent with the elaborate
nature of the Forex market – different modalities of
information exert distinctive impacts on exchange rates.
However, to our knowledge, this method has not been
applied to forecast foreign exchange rates. It is still an issue
to formulate a deep learning model that is able to reflect
the effects of factors within each type of information as
well as the couplings of multiple modalities for the complex
currency market.

To address the above challenge, this study devises a novel
multimodal fusion-based long short-term memory (MF-
LSTM) approach to forecast the USD/CNY exchange rate.
We manifest the framework of our study in Fig. 2. The main
contributions of this paper are as follows:

– Sentiment analysis: We leverage state-of-the-art senti-
ment analysis models based on bidirectional encoder
representations from transformers (BERT) to extract
the daily sentiments in the Forex market from both
countries’ social media platforms. More than a million
pieces of microblogs are processed to create sentiment
series.

– Model structure: The deep multimodal fusion (MF)
method is applied to exchange rate forecasting for the
first time. In terms of our MF-LSTM model, two LSTM
models are deployed in the first layer to learn from
the influencing factors within market indicators and
social media sentiments separately. In the second layer,
to represent the couplings of each modality, a shared
representation layer is applied to fuse the two abstract
features acquired from the first layer. Finally, a fully
connected layer is fed by the coupled features learned
from the previous layer to perform the exchange rate
forecasting task.

– Experimental results: By implementing the deep
multimodal fusion technique, our model is able to
significantly outperform all baseline approaches with

regard to technical and statistical results, demonstrating
that deep MF is useful for exchange rate forecasting.
Additionally, it is feasible and quite effective to
incorporate this method into an LSTM-derived model
for time series prediction.

The rest of this paper is organized as follows. In
Section 2, we introduce the methodology of the basic
BERT model and our MF-LSTM model. In Section 3, we
describe the experimental settings, including the utilized
data gathering and preparation approaches, as well as
the model settings. Then, our model is compared with
other algorithms regarding various technical and statistical
indicators. In Section 4, the main findings and limitations of
our work are presented. We also describe three perspectives
from which future studies may build upon our research.
Finally, we conclude our study in Section 5.

2Methodology

2.1 Basic BERTmodel

Devlin et al. [22] proposed bidirectional encoder repre-
sentations from transformers (BERT) in 2018. It achieved
excellent performance in 11 natural language processing
(NLP) tasks and was widely used in the NLP field. Serv-
ing as the basis of BERT, transformer encoders can be
stacked to extract the deep relationships among words and
sentences. Addditionally, multi-head attention allows the
model to jointly learn information of input vectors Xa from
different positions, resulting in superior performance. This
mechanism can be described as follows:

Att(Q, K, V ) = softmax

(
QKT

√
dk

)
V

Vl = linear(Wl concat(Att1, Att2, . . . , Att h)+ bl) (1)

where Q, K , and V are different representations of the input
vector Xa . Through a softmax computation, the attention
output V1 is obtained.

Then Va = Xa + Vl is normalized and thrown into a
feed-forward neural network. As a result, the output of a
transformer Vt is reached as follows:

Vt = h
(
Wf Va + bf

) + Va (2)

Finally, since BERT consists of bidirectional stacked
transformers, for any input vector Xa , the output of BERT
Vb can be acquired via repeating the process above.

16703Improving exchange rate forecasting via a new deep multimodal fusion model



Fig. 2 Flowchart of our work

2.2 Elementary LSTMmodel

We describe the basic structure of an LSTM model in this
part. At time t , it consists of a memory cell Ct with three
distinctive gates – a forget gate ft determines the disposal of
information from the previous memory cell Ct−1, an input
gate it keeps the remaining information, and an output gate
ot defines the output information of the current cell Ct . The
working mechanism of an LSTM model can be described as
follows:

ft = σ
(
Uf Xt + Wf ht−1 + bf

)
(3)

it = σ (UiXt + Wiht−1 + bi) (4)

C̃t = tanh (UcXt + Wcht−1 + bc) (5)

Ct = ft × Ct−1 + it × C̃t (6)

ot = σ (UoXt + Woht−1 + bo) (7)

ht = ot × tanh (Ct ) (8)

where ht and Xt denote the hidden state and input variable
at time t , respectively. W and U are weight matrices of the
variables, and b is a bias vector. C̃t represents the candidate
input in cell Ct . As shown in (3), at the forget gate ft , the
input Xt and ht−1 are processed by a sigmoid function.
Hence, a value ranging from 0 to 1 is obtained, which speci-
fies how much information in Ct−1 should be forgotten. For
example, if the value is 0, all information are forgotten and
will not affect later states. (4)–(6) constitute the next steps.
Through another sigmoid function, the input gate it decides
how much current information in C̃t should be stored. For
example, if the value is 1, all information are preserved for
future operations.Then a tanh function generates a candi-
date vector C̃ and the cell state Ct is updated according to
(5) and (6). Finally, (7) and (8) depict the output process:
hidden state or current output ht is obtained through the
output gate ot .

Through the three-gate mechanism, the LSTM model
manages to preserve the long-term information while
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avoiding the problem of exploding and vanishing gradient.
Apparently, this hallmark is very useful to identify
the impact of various influencing factors within each
modality.

2.3 MF-LSTMmodel

Although the basic LSTM model exhibits great performance
in multivariate time series forecasting, it is not capable
of analyzing different influencing factors within multiple
modalities at the same time, let alone the coupling effects
between these modalities. Therefore, to simulate the impact
exerted by different sources of information, we propose
the MF-LSTM model, which is characterized in Fig. 3. It
consists of three layers. Two LSTM models are embedded
at the first layer, where the first one depicts the couplings
of social media sentiments in the text modality and the
second one represents the couplings of market indicators
in the numerical modality, so as to learn from disparate
modalities separately. Suppose the window length is n,
features of the two modalities from time t − n + 1 to
time t are served as the input of the first layer. Next, the
hidden state features obtained from the two LSTM modules
are concatenated and fed into a shared representation layer,
which represents the couplings between the modalities
via intermediate multimodal fusion [23]. Finally, a dense
layer is deployed in the third layer. Obviously, it applies
a nonlinear transformation to the deep interactions learned
from the previous layer and converts them into the exchange
rate forecasting results.

2.3.1 Representation of text modality couplings

Specifically, in the first LSTM, suppose there are
N series {α1, α2, . . . , αN } of social media sentiments,
where αit represents a daily sentiment value of certain
social media keyword. Correspondingly, {α11, α12, . . . , α1t }
denotes a single sentiment time series. At time t ,
X

C1
t = {α1t , α2t , . . . , αNt , ERt } is fed into the first

LSTM (LST MC1) module, where ERt equals the current
USD/CNY exchange rate. In our work, due to the LSTM’s
requirement of three-dimentional input, the shape of X

C1
t

is (batch size, 1, 9) because we predict the value at time
t + 1 and there are 9 social media keywords, as discussed
in the following experimental setting part. Through the
three-gate-mechanism shown in (3), (4) and (7), the LSTM
model shall explore the couplings of social media indicators
and generate a hidden state feature from the text modality
consequently:

h
C1
t = o

C1
t × tanh

(
C

C1
t

)
(9)

where the shape of h
C1
t is (batch size, 50) because there are

50 cells in LST MC1 (please refer to Table 4).

2.3.2 Representation of numerical modality couplings

Similarly, in the second LSTM, suppose there are M series
{β1, β2, . . . , βM} of market indicators. At time t , X

C2
t =

{β1t , β2t , . . . , βMt , ERt } serves as the input of the LSTM
model. In our work, the shape of X

C2
t is (batch size, 1,

14) because there are 14 market indicators. Subsequently,
the hidden patterns learned from the numerical modality
(LST MC2) is obtained as:

h
C2
t = o

C2
t × tanh

(
C

C2
t

)
(10)

where the shape of h
C2
t is (batch size, 60) because there are

60 cells in LST MC2 (please refer to Table 4).

2.3.3 Intermediate fusion andMF-LSTM-based forecasting

The next step is to fuse the hidden features acquired from
each modality. Initially, two outputs from the first layers are
concatenated as the input of the second layer at time t :

X
CMF
t = concat

{
h

C1
t , h

C2
t

}
(11)

where the shape of the contatenated X
CMF
t is (batch size,

110).
Then X

CMF
t is thrown into a shared representation layer,

which represents the coupled effects between the two
modalities:

h
CMF
t = δ

(
X

CMF
t Wh

)
(12)

where δ and Wh denote the ReLU activation function
and weight matrix, respectively. The shape of h

CMF
t is

(batch size, 64).
Finally, a dense layer is deployed to process h

CMF
t and the

exchange rate prediction ERt+1 at time t + 1 is obtained:

ERt+1 = δ
(
h

CMF
t WER

)
(13)

3 Experimental settings and results

3.1 Data Gathering

3.1.1 Social media sentiments

To comprehensively display the public sentiment related
to the USD/CNY exchange rate comprehensively, we first
construct an original unprocessed dataset. Considering the
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Fig. 3 Structure of the MF-LSTM model

characteristics and availability of social media data, certain
social networking or chatting tools such as Facebook
and WeChat apparently cannot fulfill the purpose of our
study. Therefore, Twitter and Sina Weibo are elected
as the data sources of our text modality. Twitter is an
American microblogging platform. It provides some-to-
many microblogging services that are more suitable for
our study. Sina Weibo is the largest Chinese microblogging
website. The original unprocessed dataset applied in this
work contains 419,228 English tweets with 7 keywords and
912,363 Chinese microblogs collected from 1/1/2015 to
4/1/2021 via the official application programming interfaces
(APIs) of these websites. The 9 total keywords are listed
in Table 1 (Mandarin keywords are translated into English
in this table) Unfortunately, tradeoffs are made during
the selection of keywords. For example, when searching
“USD/CNY” on Twitter, we find too few results to reflect
user opinions on each day. As a result, this word is replaced
with “Dollar Index”. Additionally, the search results of
other keywords on Sina Weibo teem with noise (e.g.,
advertisements). Thus, after conducting data processing,
only 2 keywords are preserved for our study. Nevertheless,
these remaining keywords are all in accordance with the
selection of market indicators.

Before applying BERT models to perform sentiment
analysis, it is essential to preprocess the original dataset

[24]. Notably, since Twitter and Sina Weibo users type
various nonstandard language such as slang terms and
emojis in their microblogs, and because these terms can
help improve the sentiment classification results [25, 26],
we choose to preserve them. Therefore, the collected social
media text is preprocessed as follows:

– Removing noisy microblogs: Microblogs sent by
foreign users or from overseas regions are deleted. In
addition, duplicates of any Sina microblogs and Twitter
tweets are removed.

– Removing useless symbols and stopwords: Address
signs (@), hashtags (@), URLs, and stopwords (e.g.,
“the”) are excluded.

– Lemmatization for English tweets: English words are
processed to return to the basic dictionary morphology.
For example, an “s” or “es” at the end of a plural word is
removed. Please note that Mandarin text does not need
to go through this step due to its syntax characteristics.

– Tokenization: Phrases, sentences, or paragraphs are split
into individual words to fulfill the requirements of
BERT models.

To obtain the sentiment time series of these keywords,
it is necessary to extract the sentiment of each microblog.
Consequently, inspired by the concept of transfer learn-
ing, we leverage two BERT-based models, the robustly

16706 E. Windsor and W. Cao



Table 1 Selected market indicators and social media keywords

Category Market indicator Social media keyword

Twitter Sina Weibo

Commodity market Gold price “Gold price”

Silver Price “Silver price”

WTI crude oil price “Oil price”

Stock market Shanghai Securities Composite Index N/A “CN stock market”

Shenzhen Component Index

Dow Jones Index “US stock market” N/A

S&P 500 Index

NASDAQ Index

NYSE Index

Bond market China 10-year bond yield N/A N/A

U.S. 10-year Treasury bond yield “US bond market”

Interest rate Shibor O/N rate N/A N/A

Federal fund rate “US interest rate”

Exchange rate USD/CNY rate “Dollar index” “USD/CNY”

optimized BERT approach (RoBERTa) and BERT with
whole-word masking (BERT-wwm), for the sentiment anal-
ysis task. Since the invention of BERT, several improved
models have been presented. For illustration, Cui et al. [27]
proposed the BERT-wwm model. Compared to BERT, it
takes the syntax difference between Mandarin and English
into account, using the whole-word masking technique to
improve the model performance on common NLP tasks
with Chinese text. Additionally, Liu et al. [28] proposed
RoBERTa, which is also based on BERT. In addition to
applying more training data, the authors adopted a dynamic
masking method to optimize the obtained results.

The two models above are selected for our sentiment
analysis task. Since BERT-derived models are capable of
effectively capturing the deep relationships among words
and sentences, only the parameters of the output layer
need to be fine-tuned. Therefore, for Sina microblogs, we
train the BERT-wwm model on an appropriate dataset4.
For English tweets, the Twitter-RoBERTa-base sentiment
model is imported from Hugging Face. Since this model has
already been fine-tuned on approximately 58 million tweets,
there is no need to conduct further training [29].

The sentiment orientations in our work are defined as -
1 (negative), 0 (neutral), and 1 (positive). To examine the
sentiment classification performance of the models, two
experts in the field of international finance are invited to
label 1% of the large preprocessed dataset, which is evenly
sampled in terms of years and keywords. The consistency
of the annotation results reaches 95.7%, indicating the
effectiveness of the annotation process. Table 2 presents the

4https://github.com/InsaneLife/ChineseNLPCorpus

number of three sentiment orientations regarding each social
media keyword in our manually labeled test set. We ensure
that the distribution of three sentiment orientations in the
evaluation dataset is in accordance with that of the whole
dataset. In addition, it can be observed that the distribution
in general fit the market condition. For example, in our
observation period, there are 892 days that the NASDAQ
Index goes up and 681 days that the Index goes down.
In terms of the “US stock market” of our dataset, the
percentage of positive orientation (27.9%) is significantly
higher that of negative orientation (16.9%), which reflects
the real market condition.

Then, the sentiment orientation results produced by
the two models are evaluated on these manually labeled
microblogs. Three evaluation methods based on a confusion
matrix are as follows:

– Precision: Precision is the ratio of correctly classified
positive observations to the total number of predicted
positive observations. High precision indicates a low
false-positive rate. It can be described by the following
formula:

Precision = T ruePositive

T ruePositive + FalsePositive
(14)

– Recall: Recall (sensitivity) is the ratio of correctly
classified positive observations to the number of total
observations in the actual class:

Recall = T ruePositive

T ruePositive + FalseNegative
(15)

16707Improving exchange rate forecasting via a new deep multimodal fusion model
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Table 2 Evaluation dataset of
sentiment analysis Social media keyword Positive Neutral Negative Total

“Gold price” 76 194 119 389

“Silver price” 53 89 71 213

“Oil price” 108 109 184 401

“CN stock market” 384 1,207 1,882 3,473

“US stock market” 285 563 173 1,021

“US bond market” 201 637 299 1,137

“US interest rate” 162 387 313 862

“Dollar index” 276 538 183 997

“USD/CNY” 1,156 695 673 2,524

– F1 score: The F1 score refers to the weighted average
of the precision and recall metrics, which takes both
false positives and false negatives into account:

F1 = 2 · Precision · Recall

P recision + Recall
(16)

The sentiment evaluation results are shown in Table 3,
demonstrating the sentiment classification efficacy of the
models.

After that, the sentiment time series of these keywords
are calculated based on the sentiment orientation results of
each microblog. Here we employ a straightforward method:

αkt = M
pos
k,t − M

neg
k,t (17)

where αkt denotes the sentiment value of a keyword on
day t . M

pos
k,t and M

neg
k,t are the total numbers of positive

and negative microblogs containing a keyword on day t ,
respectively. Correspondingly, the social media sentiment
time series {α1, α2, . . . , αN } of each keyword is obtained.

3.1.2 Market indicators

Market indicator data covering the period from 1/1/2015 to
4/1/2021 are collected from the Wind Database5. The daily
USD/CNY central parity rate is designated as the prediction
target. Thirteen factors along with the exchange rate are
displayed in Table 1. Due to the existence of nontrading
days, each missing value is filled with the value of the
previous trading day.

3.2 Data preparation

Raw time series are often skewed by a multitude of
outliers. The use of such numerical features directly may
cause issues that impair the forecasting performance of the
tested models. Hence, the trailing moving average method
is applied in our work for feature engineering: αkt =
mean(obs(t − 2), obs(t − 1), obs(t)), where obs(t) is the
current observation value of the time series on day t . Then

5https://www.wind.com.cn

all processed data is normalized to [0,1] by I ′
t = It−Imin

Imax−Imin
,

where It denotes the raw value of the time series on day
t , because the LSTMs in the first layer of our model are
sensitive to the scale of the inputs. The dataset is split into
training, validation, and test sets at a ratio of 6:2:2. That is,
the data ranging from 1/1/2020 to 4/1/2021 are selected to
examine the forecasting performance of our model.

3.3 Evaluationmethodology

3.3.1 Technical perspective

– R2

R2, also known as the coefficient of determination, is a
technical indicator that represents the proportion of the
variance of a dependent variable that can be explained
by the independent variables in a regression model.
Suppose that yt and ŷt denote the original and predicted
values at time t during the given time period (N days);
then a high R2 result means that the model fits the data
well.

R2 = 1 −
∑N

t=1

(
ŷt − yt

)2

∑N
t=1 (yt − ȳ)2

(18)

– Mean absolute error (MAE)
The MAE represents the average of the absolute
differences between the original and predicted values. It
is the most intuitive and common forecasting evaluation
method. A small value indicates a higher forecasting

Table 3 Sentiment evaluation results

Evaluation methods BERT-wwm RoBERTa

Precision 0.83 0.81

Recall 0.84 0.79

F1 score 0.83 0.80
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https://www.wind.com.cn


accuracy. The meanings of the symbols below are
consistent with those in the previous equation.

MAE = 1

N

N∑
t=1

∣∣yt − ŷt

∣∣ (19)

– Mean squared error (MSE)
The MSE is the mean of the squared differences
between the original and predicted values. It measures
the variance of the residuals. A small value represents a
better forecasting performance.

MSE = 1

N

N∑
t=1

(
yt − ŷt

)2 (20)

– Root mean square error (RMSE)
The RMSE is the square root of the mean of the square
of all errors. As with the MSE, a small value indicates a
better forecasting performance.

RMSE =
√√√√ 1

N

N∑
t=1

(
yt − ŷt

)2 (21)

3.3.2 Statistical perspective

Sometimes favorable results obtained from a technical
perspective do not equate with promising forecasting
performance, as they might be biased. It is still necessary to
execute statistical tests to conclude whether the forecasting
accuracy is significant from a statistical perspective.
Consequently, the Pesaran-Timmermann (PT) test [30] and
Diebold-Mariano (DM) test [31] are leveraged in our work.

– PT test
The PT test aims to examine the forecasting perfor-
mance of model in terms of the direction of movement.
The PT value can be obtained through the following
steps.

For any time t during the whole time period (T days),
we first define

It (i) =
{

1; ti > 0
0; ti ≤ 0

(22)

qt = pt (1 − pt )

T
(23)

pt = 1

T

T∑
i=1

It (i) (24)

Now y and ŷ denote the time series of the original and
predicted values, respectively, then

p = pypŷ + (
1 − py

) (
1 − pŷ

)
(25)

v = p(1 − p)

T
(26)

w = (
2py − 1

)2
qŷ + (

2pŷ − 1
)2

qy + 4qyqŷ (27)

Finally, we have the following test statistic:

PT = pyŷ − p√
v − w

∼ N(0, 1) (28)

If the obtained p value is less than the given
threshold, the null hypothesis can be rejected, indicating
a good prediction result.

– DM test
Suppose y(t) and ŷ(t) are the original and predicted
values at time t , respectively, the forecasting error
of model i can be defined as ei,t = ŷi,t − yt .
Correspondingly, the loss difference between model i1
and model i2 is constructed as dt = g

(
ei1,t

) − g
(
ei2,t

)
,

where g() is the MSE loss fuction. Then, the DM value
is described as follows:

DM = d̄√
2πf̂d(0)/T

∼ N(0, 1) (29)

where d̄ = 1
T

∑T
t=1

(
g

(
u1,t

) − g
(
u2,t

))
.√

2πf̂d(0)/T is the standard error of time series d,

in which f̂d (0) represents the consistent estimator of
fd(0). As in the PT test, if the obtained p value is less
than the given threshold, the null hypothesis can be
rejected, which means that the difference between the
prediction capabilities of model i1 and model

3.4 Baseline algorithms

To test the forecasting performance of the proposed
MF-LSTM model, we compare it with the following
algorithms. The model settings are listed in Table 4. We
use GridSearchCV to help determine an optimal set of
hyperparameter values, which is a widely used and effective
method for hyper-parameter optimization.

– ARIMA
This is a traditional time series forecasting method. The
model output is derived from the historical USD/CNY
rate data.

– Support vector regression (SVR)
Though it is equipped with shallow structures, as a
classic machine learning method, SVR can still incor-
porate various factors without stringent restrictions. We
compare it with the following deep learning methods.

– Backpropagation neural network (BPNN)
BPNNs are widely used for various tasks. The
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Table 4 Model settings

Algorithms Sentiment series Market indicators Historical
USD/CNY rate

Parameters

ARIMA X X O Order = (2,1,2)

BPNN O O O Hidden units: 52; Activation
function: ReLU; Learning rate:
0.05}

ELM O O O Hidden units: 77; Activation function: sigmoid}
SVR O O O Kernel function: sigmoid; C: 100.0; γ : 0.1}
CNN O O O Convolutional layer: Conv1D,

Filter: 64, Kernal size: 2; Pool-
ing layer: MaxPooling1D, Pool
size: 2; Optimizer: Adam; Acti-
vate function: ReLU

LSTM-single X X O Hidden units: 32; Learning rate: 0.0001; Epoch: 200

LSTM-market O O O Hidden units: 60; Learning rate: 0.0001; Epoch: 200

LSTM-sentiment O X O Hidden units: 50; Learning rate: 0.0001; Epoch: 200

LSTM-all X O O Hidden units: 64; Learning rate: 0.0001; Epoch:200

MF-LSTM O O O Hidden units: 50(LST MC1),
60(LST MC2), 64(FC layer);
Learning rate: 0.0001; Epoch:
200

O means that the factor is applied, while X means not

backpropagation algorithm computes the loss function
gradient multiple times to update the weights of hidden
units so that the loss can be minimized.

– Extreme learning machine (ELM)
An ELM is a feedforward NN. No parameters need to
be manually tuned through gradient descent. Compared
to a BPNN and SVR, an ELM usually exhibites a better
generalization performance.

– Convolutional Neural Network (CNN)
CNNs are deep learning models that are widely used in
Computer Vision (CV) [32, 33], NLP [34], time series
prediction [35], etc. The forecasting performances of a
CNN and LSTM are compared.

– LSTM-single
This is a single LSTM that only applies the historical data
of the USD/CNY exchange rate to the prediction task.

– LSTM-sentiment
LSTM-sentiment is LST MC1 in the first layer of our
MF-LSTM model. It only takes the sentiment time
series into account.

– LSTM-market
LSTM-market is LST MC2 in the first layer of our
MF-LSTM model, and it only considers the market
indicators.

– LSTM-all
This is a single LSTM model that considers both
sentiment time series and market indicators. The

difference in forecasting performance between this
model and MF-LSTM reflects the effect of MF.

3.5 Results

To determine the optimal lag order, we compare the six-
month-window forecasting results obtained by the LSTM-
all model with several lag length settings, which are shown
in Table 5.

Based on the results, it can be concluded that the
optimal lag length is 1 day, which is consistent with the
observation in [36]. Such a result may imply that the Forex
market can swiftly absorb the new information from both
the text and numerical modalities and make corresponding
adjustments.

Table 5 Forecasting performance with different lag orders

Lag time R2 MAE MSE RMSE

1 0.9788 0.0145 0.0004 0.0208

2 0.9767 0.0147 0.0004 0.0212

3 0.9702 0.0154 0.0006 0.0249

4 0.9612 0.0265 0.0013 0.0362

5 0.9537 0.0384 0.0021 0.0457
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3.5.1 Forecasting performance results

Table 6 displays the forecasting performance of the ten
models in terms of the MAE, MSE, and RMSE metrics
with a six-month window length. Note that we also list
the results of two scenarios (MF-LSTM-US and MF-
LSTM-CN), in which the market indicators and social
media sentiments belonging to each country are exclusively
applied to the MF-LSTM model, to determine which
side exerts more influence on the USD/CNY exchange
rate.

Apparently, it can be concluded that the proposed MF-
LSTM model exceeds all baseline algorithms regarding
the technical indicators. In addition, three observations can
be obtained. First, the LSTM-derived models generally
outperform the ARIMA, SVR, BPNN, ELM, and CNN
approaches. Second, the MAE values of MF-LSTM are
15.9%, 36.1%, and 47.8% lower than those of LSTM-single,
LSTM-sentiment, LSTM-market, and LSTM-all. Third, the
LSTM-market model is superior to LSTM-sentiment when
a six-month window length is utilized. Last, MF-LSTM-
US holds an advantage over MF-LSTM-CN, with a lower
RMSE value (0.0252).

Figure 4 shows the forecasting accuracies and errors
of the ten approaches for the period from 1/1/2020 to
4/1/2021. For a clearer view, Fig. 4c and d are extractions
(Mar. 2020) from Fig. 4a and b, respectively. It can be
observed from Fig. 4a that the MF-LSTM arguably fits the
historical USD/CNY rate well. Moreover, the forecasting
performance discrepancy is clearer in Fig. 4b. Furthermore,
Fig. 5 depicts the forecasting RMSE of of different
algorithms in 5 seasons. Notably, the USD/CNY exchange

Table 6 Technical results of different algorithms

Algorithms R2 MAE MSE RMSE

ARIMA 0.9392 0.0271 0.0014 0.0369

SVR 0.9582 0.0248 0.0011 0.0335

BPNN 0.9447 0.0256 0.0012 0.0347

ELM 0.9578 0.0239 0.0009 0.0312

CNN 0.9603 0.0232 0.0009 0.0299

LSTM-single 0.9655 0.0235 0.0009 0.0304

LSTM-sentiment 0.9689 0.0234 0.0008 0.0286

LSTM-market 0.9723 0.0191 0.0006 0.0240

LSTM-all 0.9788 0.0145 0.0004 0.0208

MF-LSTM-US 0.9765 0.0193 0.0006 0.0248

MF-LSTM-CN 0.9693 0.0227 0.0008 0.0289

MF-LSTM 0.9851 0.0122 0.0002 0.0154

Six-month window length

rate fluctuated severely in 2020Q1 due to the effect of the
COVID-19 pandemic. During this period, our MF-LSTM
model still significantly outperforms all other algorithms,
exhibiting great resilience and robustness. Overall, our
approach has the smallest forecasting errors throughout the
whole period, especially on days with very high volatility.
(Table 7)

3.5.2 Results of robustness tests

Robustness is crucial for determining the effectiveness of an
algorithm, as well as its applicability for practitioners. This
attribute should be demonstrated well on an independent
but similar dataset. Correspondingly, we evaluate the ten
approaches on the out-of-time data further collected from
1/1/2012 to 12/31/2014, where the previously utilized
dataset (1/1/2015 to 4/1/2021) is excluded. To align with the
previous dataset, we also apply a data partition setting of
6:2:2. The data from 6/1/2014 to 12/31/2014 are selected to
test the robustness of these algorithms.

Table 8 shows the detailed results of robustness tests
on out-of-time data. It can be observed that the results
are consistent with those in the previous subsection. For
illustration, the MF-LSTM exhibits superiority over the
other nine algorithms with regard to the three technical
criteria. In addition, the LSTM-derived models have
better forecasting performance than ARIMA, SVR, BPNN,
ELM, and CNN models. Notably, the LSTM-market
still outperforms the LSTM-sentiment when a six-month
window length is applied.

3.5.3 Results of statistical tests

Table 9 exhibits the results obtained on the PT test and
DM test. A high PT statistic indicates that a model
is accurate in predicting the direction of exchange rate
movements. Clearly, the MF-LSTM model outperforms
all baseline algorithms in terms of forecasting accuracy
from a statistical perspective. Specifically, the performance
of the LSTM-derived models exceeds that of the other
models, which is consistent with the results obtained
from the technical perspective. Moreover, the PT statis-
tic of MF-LSTM is significantly higher than that of
LSTM-all.

As mentioned before, a low DM statistic represents the
forecasting discrepancy between a given model and MF-
LSTM. From Table 9, it can be concluded that our proposed
model is better than all benchmarks except the LSTM-
all model under a 99% confidence level since their DM
statistics are below -2. The MF-LSTM is still superior to the
LSTM-all under a 95% confidence level.
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Fig. 4 Forecasting results of
different algorithms with a
six-month window length
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Fig. 5 Seasonal forecasting
RMSE

4 Discussion

Interestingly, four findings can be derived from the previous
section. First, it can be easily observed from Tables 6 and
9 that the LSTM-derived models outperform the ARIMA,
SVR, BPNN, ELM, and CNN models. In accordance
with [2] and [15], this observation confirms the capability
of LSTM in depicting both long-term and short-term
dependencies in time series analysis. That is, the LSTM-
derived models are good at differentiating and capturing
the effects of disparate influencing factors within each
modality of information. Second, the MF-LSTM model
exhibits an overwhelming advantage over the LSTM-
based benchmarks regarding forecasting accuracy and error.
This is further confirmed in the statistical tests. Here we
present our reasoning and explanation. Initially, compared
to LSTM-single, the LSTM-sentiment and the LSTM-
market performs better, indicating the necessity of including
any modalities of data (market indicators and investor
sentiments). Additionally, compared to LSTM-sentiment
and LSTM-market, the LSTM-all and the MF-LSTM show
superiority, revealing the merits of fusing the modalities.
Furthermore, between the two fusing methods, the MF-
LSTM is better than the LSTM-all, which implies that a
deep multimodal fusion structure is more effective than

a straightforward fusion. Therefore, we believe it is safe
to accredit such improvement of forecasting accuracy to
MF-LSTM’s unique property – it takes two modalities
of data into account, treats their exclusive characteristics
separately, and fuses the hidden abstract features learned
from different modalities. As a result, the proposed model
is rendered not only capable of capturing couplings
within each type of information, it is also adept at
reflecting the interaction between different modalities of
information. Third, the LSTM-market model is superior
to LSTM-sentiment under the six-month window setting.
In consideration of the similar findings concluded in [35],
we ascribe this phenomenon to the fact that the impact
of information obtained from social media is exerted
mainly in the short term. This implies that although
extreme sentiments can spread quickly on social media
platforms, market indicators and exchange rates may not
always fluctuate accordingly. Thus, it might not be an
excellent idea to forecast Forex rates purely based on social
media sentiments. Finally, the advantage that MF-LSTM-
US possesses over MF-LSTM-CN implies that the features
obtained from the U.S. side might impact the exchange rate
more than those derived from the Chinese side. Here, we
give two possible explanations for this finding: On the one
hand, the U.S. economy is larger and more liquid, and such

Table 7 Seasonal forecasting
RMSE of different algorithms Algorithms 2020Q1 2020Q2 2020Q3 2020Q4 2021Q1

ARIMA 0.0469 0.0275 0.0385 0.0419 0.0442

SVR 0.0423 0.0382 0.0361 0.0379 0.0288

BPNN 0.0402 0.0378 0.0365 0.0399 0.0270

ELM 0.0401 0.0338 0.0361 0.0389 0.0224

CNN 0.0380 0.0326 0.0311 0.0340 0.0216

LSTM-single 0.0321 0.0302 0.0348 0.0362 0.0234

LSTM-sentiment 0.0281 0.0308 0.0314 0.0334 0.0210

LSTM-market 0.0259 0.0273 0.0260 0.0261 0.0182

LSTM-all 0.0195 0.0236 0.0220 0.0242 0.0161

MF-LSTM 0.0145 0.0176 0.0167 0.0186 0.0135
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Table 8 Technical results of
different algorithms (robustness
tests on out-of-time data)

Algorithms R2 MAE MSE RMSE

ARIMA 0.9388 0.0275 0.0014 0.0372

SVR 0.9587 0.0240 0.0011 0.0328

BPNN 0.9466 0.0261 0.0011 0.0339

ELM 0.9580 0.0243 0.0010 0.0317

CNN 0.9611 0.0237 0.0009 0.0303

LSTM-single 0.9657 0.0233 0.0009 0.0298

LSTM-sentiment 0.9691 0.0229 0.0008 0.0282

LSTM-market 0.9746 0.0188 0.0006 0.0237

LSTM-all 0.9785 0.0147 0.0004 0.0211

MF-LSTM 0.9848 0.0129 0.0003 0.0161

Six-month window length

differences might affect the utilized market indicators. On
the other hand, investor sentiments and new information
on Twitter might be more easily transmittable to the Forex
market.

In addition to these findings, we believe that two main
contributions of our work should be emphasized. Initially,
we apply the deep MF method to exchange rate forecasting
for the first time, and it is demonstrated to be effective.
On the one hand, although previous works used various
methods (e.g., the ARIMA technique and SVR), they
achieved considerably less promising results because of
the overgeneralization of various influencing factors, as
well as the neglect of the interactions among different
modalities of information. On the other hand, although the
MF method has achieved success on certain tasks such
as disease diagnosis [37], we have not seen any practical
applications of MF in the intricate foreign exchange market.
Additionally, we adopt BERT for the sentiment analysis

Table 9 Statistical results of different algorithms

Algorithms PT statistic DM statistic

ARIMA 0.8125 −5.7468***

SVR 1.2039 −5.2486***

BPNN 1.1433 −5.3276***

ELM 1.2918* −5.1937***

CNN 1.9922** −5.1329***

LSTM-single 2.6138** −4.4173***

LSTM-sentiment 3.0192*** −3.5404***

LSTM-market 3.9765*** −3.0719***

LSTM-all 5.2011*** −2.3561**

MF-LSTM 6.8469***

*** denotes rejection of the null hypothesis at 1% significance level.
** denotes rejection of the null hypothesis at 5% significance level.
* denotes rejection of the null hypothesis at 10% significance level

task to obtain sentiment time series, which reflect the text
modality. Previous studies usually applied lexicon-based
[38] or traditional machine learning-based [39] methods
to conduct sentiment analysis on social media text. There
is no reason not to utilize the BERT model, which has
already been recognized as a state-of-the-art tool for NLP
tasks, to execute sentiment classification for microblogs
related to the financial market. However, limitations still
exist in our study. Considering data availability, we only
select microblogs from two social media platforms with
respect to the text modality. In addition, only two Mandarin
keywords remain after preprocessing. Such data might not
be sufficient to reflect the text modality comprehensively.
Therefore, in the future, we plan to include more types of
social media text, such as news and posts on forums.

By building upon this research, future studies can be con-
ducted from three facets. First, further work may investigate
different fusion strategies (e.g., gradual fusion and hybrid
fusion), optimization techniques, and model structures to
achieve better performance. Although the use of a shared
representation layer for intermediate fusion is indeed flex-
ible, easy to operate, and efficacious, other strategies still
possess certain merits. For example, late fusion (or deci-
sion fusion) is another favorable choice since the errors
obtained from multiple classifiers are uncorrelated, and
the method itself is feature-independent. In addition, rein-
forcement learning and other approaches can be leveraged
to optimize the fusion structure. Furthermore, the possi-
ble structures are not confined to LSTM-derived models.
We have noticed that some new models (e.g., the tempo-
ral convolutional network (TCN) [40] and LSTM with a
transformation mechanism [41]) perform remarkably well
in tasks such as time series prediction. Second, in terms
of the modalities, image data can also be incorporated
into exchange rate forecasting. For illustration, a CNN has
demonstrated applicability in extracting abstract features
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(e.g., Bolinger bands) from stock charts [42]. This modal-
ity may also be employed to explore exchange rate charts
and generate interesting results when used along with other
modalities. Moreover, as recent studies have demonstrated
the great potential of multimodal sentiment analysis [43,
44], future studies can conduct sentiment analysis on dif-
ferent modalities of data to improve the effectiveness of
sentiment classification. Third, extra engineering tasks may
be required before applying the findings of our work to
the industry. Since current Chinese NLP corpora are still
insufficient relative to the English corpora, we strongly rec-
ommend the construction of comprehensive corpora with
higher quality, especially for informal social media text. If
BERT-based models can be fine-tuned on such corpora in
advance and exhibit robustness when encountering different
types of text, plenty of practitioner effort can be saved.

5 Conclusion

The forecasting of exchange rates is an onerous task due
not only to the distinctive conduction mechanisms of the
influencing factors within each type of information but also
to the intricate couplings among information modalities.
In this study, we introduce the MF technique with the
aim of addressing this issue. We first apply BERT to
1,323,956 pieces of social media text and obtain sentiment
time series for 16 keywords to represent the text modality.
Along with the market indicator data, which reflect the
numerical modality, the data are fed into a novel MF-
LSTM model, where two parallel LSTM modules in the
first layer learn from each modality of information and
a shared representation layer fuses the abstract features
acquired from the previous layer. Then evaluations from the
technical perspective (the MAE, MSE, and RMSE metrics)
and the statistical perspective (the PT test and DM test)
are leveraged to compare the prediction performance of our
proposed model with that of nine baseline algorithms. The
experimental results show the superiority of MF-LSTM in
terms of both forecasting accuracy and error, demonstrating
that it is feasible and effective to introduce MF into financial
time series forecasting. Future studies can be conducted
on various fusion strategies, optimization techniques,
modal structures, modality selections, etc. We hope that
our work may provide practical value for international
trade practitioners, Forex market investors, and policy
makers.
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