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Abstract
Improving current efficiency and reducing energy consumption are two important technical goals of the electrolytic
aluminum process (EAP). However, because the process involves complex noise characteristics (i.e., unknown types,
redundant distributions and variable forms), it is very difficult to accurately develop a multiobjective prediction model. To
overcome this problem, in this paper, a novel framework of multiobjective incremental learning based on a multi-source
filter neural network (MSFNN) is presented. The proposed framework first presents a “multi-source filter” (MSF) technique
that utilizes the mean and variance in the unscented Kalman filter (UKF) to guide the importance function of the particle
filter (PF) based on a density kernel estimation method. Then, the MSF is embedded in the mutated neural network to
adjust weights in real time. Third, weights are calculated and normalized by a modified importance function, which is the
basis for further optimizing a secondary sampling based on sampling importance resampling (SIR). Finally, the incremental
learning model with two objectives (i.e., process power consumption and current efficiency) based on the MSFNN in the
EAP is established. The presented framework has been verified by the real-world EAP and some closely related methods.
All test results indicate that the MSFNN’s relative prediction errors of the above two objectives are controlled within 0.51%
and 0.38%, respectively and prove that MSFNN has significant competitive advantages over other recent filtering network
models. Successfully establishment of the proposed framework provides a model foundation for multiobjective optimization
problems in the EAP.

Keywords Multi-source filter · Unscented Kalman filter · Multiobjective problem · Neural network ·
Electrolytic aluminium process

Nomenclature and Abbreviations
NN Neural network
KF Kalman filter
PF Particle filter
EKF Extended Kalman filter
UKF Unscented Kalman filter
MSF Multi-source filter
MOP Multiobjective problem
UT Unscented transformation
EAP Electrolytic aluminium process
SIR Sampling Importance Resampling
PFNN Particle filter neural network
BPNN Back-propagation neural network
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UKFNN Extended Kalman filter neural network
EPFNN Extended particle filter neural network
UPFNN Unscented particle filter neural network
MSFNN Multi-source filter neural network

1 Introduction

It is well known that the electrolytic aluminium industry
holds an important strategic position worldwide [1]. How-
ever, the industry is characterized by high power consump-
tion and high pollution. Investigations show that producing
one ton of electrolytic aluminium will emit nearly 1500 m3

of polluting gas into the atmosphere and consume approx-
imately 500 kg of carbon anodes [2]. Research on energy-
saving and emission-reduction technology in the electrolytic
aluminium process (EAP) has significant engineering appli-
cation value.
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Currently, on the premise of ensuring the stable pro-
duction of electrolytic aluminium cells, improving current
efficiency and reducing energy consumption have become
important goals for electrolytic aluminium enterprises. To
achieve the above goals, the main research in this field has
been focused on the following two aspects: (1) Improving
process equipment, such as shaped cathodes and perforated
anodes. For example, Peng et al. [3] analyzed the method
of improving the current efficiency of a Hall-Heroult cell
by using a novel rectangular protruding cathode and pro-
cess parameters in the EAP. (2) Establishing system models
based on data mining technology and using a reasonable
and effective filtering method to improve the model accu-
racy. For instance, Yao et al. [4] used the Kalman filter
to establish the dynamic evolution model of the EAP in a
Gaussian noise environment. Because the existing industrial
aluminium electrolysis cell superheat identification mainly
depends on manual experience, the accuracy is far from
satisfactory, and a deep soft sensor method for superheat
degree detection was proposed by Lei et al. [5].

The above two aspects are helpful for realizing the energy
savings and emission reduction of the EAP. However, it
should be noted that the first method is meant to improve
equipment that is closely related to EAP data, such as mea-
surement and transmission equipment. The implementation
of these objectives is difficult and often consumes sub-
stantial financial and material resources, which are more
applicable for new production systems. The second method
predicts the state of process parameters based on the sys-
tem model and filtering algorithm, which does not need to
change the existing production equipment. Moreover, the
internal information about real data that has been covered
by complex noise can be further explored. Furthermore,
since neural networks (NNs) still have an excellent non-
linear mapping ability to fit a large amount of data under the
condition of an unknown system modeling mechanism [6],
the application of NN modeling is an effective method. It
does not need to understand the internal mechanism of EAP,
and the mapping relationship between decision variables
and industrial indicators can be obtained by learning and
training a series of process data. However, once the tradi-
tional NN is trained, its model parameters cannot be further
dynamically updated. The combination of an NN and new
filtering algorithms is expected to enhance the ability to
optimize the process model online. Yi et al. [7] proposed a
dynamic prediction model based on false nearest neighbors
and an UKFNN to determine the alumina concentration. Li
et al. [8] presented a method that uses an improved UKFNN
and NSGA-II algorithm to obtain the optimal output of sta-
ble operating variables in the EAP. A modular integrated
fuzzy neural network was developed for predicting multiple
fault diagnoses of the EAP by Li et al. [9]. The above studies
have established a single objective prediction model in the

EAP. However, current efficiency and DC power consump-
tion are twomain technical and economic indicators in a real
electrolytic aluminium equipment process system. The NN
modeling of two objectives provides a model foundation for
realizing collaborative optimization.

Based on the above analysis, one of the main directions
of energy savings and emission reduction is to establish
a multiobjective prediction model that not only has high
prediction accuracy but also can minimize unit power con-
sumption and maximize current efficiency in the EAP.
However, the EAP contains a series of physical and chem-
ical reactions, and there are various internal and external
parameters that present a complex coupling interaction, so
that the EAP involves some complex noise characteristics
(i.e., unknown types, redundant distributions and variable
forms). The above problems make it difficult to establish a
multiobjective prediction model for the EAP. Moreover, the
EAP is extremely susceptible to interference from uncertain
factors such as Gaussian noise or non-Gaussian noise while
collecting a series of decision parameters such as series
current, cell voltage, cell temperature, etc., which seriously
affects the accuracy of the prediction model. Therefore,
minimizing the noise interference in the model algorithm
has become a feasible breakthrough for further improving
model prediction accuracy [2].

However, the aforementioned studies did not consider the
characteristics of mixed noise in the EAP, and usually only
used a single filtering method to estimate the parameters
of the NN’s weights and thresholds. These investigations
lack a discussion on the filtering prediction problem with
complex and unknown system noise, and thus are not
conducive to mining the model’s prediction potential in
depth. For instance, previous research studies have shown
that combining the Kalman filter (or improved Kalman
filter) and an NN may cause modeling failure because the
noise is not limited to linear or Gaussian characteristics
[10, 11]. Additionally, it has been demonstrated that a
combination of a particle filter (PF) [12, 13] and NN can
solve model problems with non-linear and non-Gaussian
noise [14–16]. However, particle degradation in the PF
may lead to algorithm divergence after several iterations.
Therefore, the required state estimation cannot be obtained.
To solve the above problems, in this paper, a “multi-source
filter” technique is proposed, which uses the mean and
variance in the UKF to adjust the PF’s importance function
based on the density kernel estimation method. Then, the
NN’s model parameters (i.e., weights) can be viewed as
state variables of the filtering algorithm, and its outputs can
be viewed as measurement variables, which give the above
strategy a significant advantage of adaptively adjusting the
state estimation under various mixed noise interferences.
Finally, a multiobjective incremental learning prediction
model that meets the production requirements of the EAP
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is established, which helps to significantly reduce power
consumption and improve current efficiency in the EAP.

Through the aforementioned comprehensive analysis,
some important contributions of this study can be summa-
rized as follows:

(1) To solve the interference problem of mixed noise on
the model accuracy, a “multi-source filter” technique that
can be applied to the model’s parameter estimation under
various noise characteristics is proposed.

(2) Considering the dynamic performance of the model,
this paper combines the “multi-source filter” and a NN to
establish an incremental learning prediction model.

(3) To reduce particle degradation in the algorithm, this
paper adopts the mean and variance of the UKF to optimize
the PF’s importance function based on a density kernel
estimation.

(4) On the basis of the above research findings, in
this article, a multi-source filter neural network (MSFNN)
framework is developed, and its corresponding construction
process is provided.

(5) The new framework is applied to the modeling of
the EAP. The experimental results show that the MSFNN
can accurately predict the current efficiency and power
consumption data in real time.

The remainder of this paper is organized as follows:
Section 2 gives a clear problem description encountered in
the modeling process of electrolytic aluminium. Based on
the NN’s state-space model, Section 3 presents the “multi-
source filter” technique and states the process design,
theoretical analysis and implementation steps of the new
framework (MSFNN) in detail. In Section 4, the framework
developed in this paper is applied and verified in the EAP.
Section 5 provides a summary.

2 Problem description

In the process manufacturing industry [17], system mod-
els are often required to demonstrate accurate prediction
performance and an excellent incremental learning capa-
bility. However, an industrial process system usually has
many characteristics, such as complex and changing envi-
ronments, multiple alternating processes and strong cou-
pling among parameters. In addition, the production mech-
anism is often vague and difficult to quantify. Facing the
above-mentioned complex conditions, although supervised
machine learning algorithms are popular for establishing
process models to predict technical indicators of a real tech-
nological process [18, 19], the established process system
models still have great development potential and can be
developed further.

For ease of description, an industrial process system is
defined as follows:{

xk = f (xk−1, uk) + θk

yk = h(xk, uk) + νk

(1)

where xk represents variables (decision variables) of the
industrial process system to be estimated at moment k; uk

and yk respectively represent input variables and output
variables in the process system at moment k; θk and νk

represent the process noise and measurement noise (not
necessarily consistent with Gaussian noise), respectively.
The functions f and h represent the relationship of the
effective variables with time change.

Because the process noise θk and measurement noise νk

in the above-mentioned process system often have some
characteristics, such as unknown types and redundant distri-
butions, the Kalman filter (KF) and particle filter (PF) [20]
are mostly used to estimate the state of decision variables
directly in order to establish an accurate prediction model.

Since the traditional KF algorithm can only be applied to
linear systems, research scholars have expanded its appli-
cation scope and proposed two improved filtering technolo-
gies, such as the extended Kalman filter (EKF) [21, 22]
and unscented Kalman filter (UKF) [23, 24]. However, the
above two strategies are restricted by the condition of a
non-linear normal distribution. It can be seen from the non-
Gaussian distribution system model in Fig. 1 that the proba-
bility distribution is represented as a complex curve, which
is composed of multiple Gaussian curve segments with mul-
tiple peaks and valleys. In terms of properties, it is not just
a fusion of several similar Gaussian distributions, which
cannot be characterized by simple means and variances. In
related studies [12, 13] on the above issues, the effect of the
PF algorithm depends on the establishment of the impor-
tance function and the choice of the resampling method.
Because the PF algorithm has the advantage of not requir-
ing mandatory constraints on system state variables, it is
an “approximately optimal” tool used to solve the problem
of state parameter estimation for non-linear non-Gaussian
manufacturing systems. This shows that manufacturing sys-
tems with different characteristics need to adopt different
filtering methods. If the industrial process system meets
the operating characteristics of linear Gaussian white noise,
then the KF algorithm is preferred. If the industrial process
system belongs to the category of a non-linear Gaussian dis-
tribution, then it is necessary to comprehensively choose a
method with better performance according to the calcula-
tion size of different filtering algorithms and the accuracy of
state estimation. If the process system conforms to the non-
linear and non-Gaussian properties, then the particle filter
technique is preferred.
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Fig. 1 Process design of the
MSF technology

Table 1 lists the applicable range of various filtering tech-
nologies, from which we can see that the PF algorithm
has the widest range of applicability. However, with the
gradual development of the PF field, researchers have found
that the PF may not be the best filtering technique when
using it to approximately estimate all state parameters in
industrial manufacturing systems. As the particles degener-
ate, the weights of most particles will decrease during the
process of particle updating. The above phenomenon indi-
cates that if the iterative update is continued, the weight

updating exhibits no obvious improvement in the final fil-
tering accuracy. Instead, the filter resources are exhausted
to deal with the negligible particle calculation update. There
are two methods to solve particle degradation: one is to
increase the number of sampling particles, which may lead
to the divergence of the PF algorithm itself. The other is to
optimize the importance function to make it closer to the
real distribution function.

To solve the above problems, inspired by previous
studies [25–27], this paper proposes the “multi-source

Table 1 Applicability range of
various filtering technologies Observation equation

State equation Linear Linear Non-Linear Non-Linear

Gaussian Non-Gaussian Gaussian Non-Gaussian

Linear Gaussian KF PF EKF/UKF/PF PF

Linear Non-Gaussian PF PF PF PF

Non-Linear Gaussian EKF/UKF/PF PF EKF/UKF/PF PF

Non-Linear Non-Gaussian PF PF PF PF
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filter” (MSF) technique, which utilizes the UKF’s mean
and variance to guide the PF’s importance function based
on the density kernel estimation method. This method not
only inherits the characteristics and application range of the
two filtering methods, but also can solve the problem of
particle degradation in the PF. Therefore, theMSF technique
ignores the influence of noise properties and overcomes the
disadvantages of the PF algorithm, so it can be widely used
in the estimation of state parameters with various single
noise or mixed noise interferences in process manufacturing
systems.

To clearly describe this method, Fig. 1 shows the basic
process of MSF parameter estimation. This process includes
the UKF segment and PF segment, which interact with
each other through the adjustment of particles. From Fig. 1,
the particles are processed by the unscented transformation
(UT) method, and then the sampling distribution in step(b)
is obtained by the density kernel estimation method after
UKF optimization. Next, the PF method is used to update
the particles on this basis. Figure 1(a) represents the initial
sampling distribution. Figure 1(b) represents the sampling
distribution after the UT method. Figure 1(c) represents the
probability distribution after the particle weight is updated,
and Fig. 1(d) is the probability distribution after the particle
position is updated.

The process from Fig. 1(a) to Fig. 1(b) is mainly based on
the UKF segment. First, a set of sample points (represented
by the circle in the figure) are randomly generated from
the prior distribution of the initial state space, and then
“Sigma points” are calculated from the above sample points
by using the UT method in the UKF. Finally, the mean
and variance of these “Sigma points” are substituted for
the real mean and variance to continuously adjust the
sampling distribution. The following process from Fig. 1(b)
to Fig. 1(c) shows that the PF’s importance function is
adjusted by the mean and variance. The particles are
sampled from the optimized importance function, and the
weights of particles are constantly adjusted (shown as the
change in the circle size in the figure) by using the measured
data to modify the distribution. Finally, the weights are
mapped to the probability distribution curve. Fig. 1(c) and
1(d) show that the particles in Fig. 1(c) are split to change
the particles’ position (indicated as a circle from one to two
in Fig. 1(d)), so as to obtain the final modified probability
distribution.

Considering that the real-time internal and external
data in the EAP are frequently exchanged and constantly
changed [28], in order to ensure that the system exhibits
good dynamic performance, the above theory is combined
with an NN to predict the current efficiency and unit power
consumption. The NN’s model parameters ( i.e., weights)
can be viewed as the state variables of the MSF, and its
outputs can be viewed as measurement variables of the

MSF. Then, in turn, the performance of the incremental learn-
ing model can be tested by the above NN. Finally, the
perfect incremental learning prediction model for the Mul-
tiobjective problem (MOP) [29, 30] (i.e., unit power con-
sumption and current efficiency in an EAP) is established.

In Fig. 2, we present the dynamic evolutionary process
of the probability density distribution for two objectives in
the incremental learning prediction model. Fig. 2(a) shows
the process of updating the probability density distribution
of unit power consumption with time in the EAP; Fig. 2(b)
shows the process of updating the probability density
distribution of current efficiency with time in the EAP. The
above two figures reflect that the MOP prediction model
established by MSF theory has an incremental learning
ability, so that the model can evolve dynamically to predict
the technical power consumption and current efficiency
with time and sample changes in the EAP.

Therefore, in order to fully tap the complementary
advantages of the MSF and NN in the MOP, in this paper,
a MSFNN is designed that can typically solve adaptive
modeling problems with unknown mixed noise by deeply
merging the MSF and NN. The process design, theoretical
analysis and implementation steps of the new framework
(MSFNN) will be presented in the next section.

3 Design of theMSFNN algorithm

3.1 State-spacemodel of the neural network

The state-space representation based on the NN describes
the updating process of the back-propagation neural net-
work’s (BPNN’s) weights and thresholds with time [31].
The above process includes using both a state equation
to describe the change in the weights and thresholds and
a measurement equation to describe the non-linear rela-
tionship between the inputs and outputs of the model. The
specific equation is as follows.{

ωk = ωk−1 + θk

yk = h(ωk, uk) + νk

(2)

where ωk represents the state variables at moment k (i.e.,
the BPNN’s weights and thresholds to be estimated); uk

represents the input variables of the EAP at moment k;
yk represents the measurement variables at moment k

(i.e., the output variables to evaluate the advantages and
disadvantages of the industrial process system). Assume
that the system measurement noise νk is Gaussian noise
with mean 0 and variance R; the system process noise
θk is Gaussian noise with mean 0 and variance Q. The
NN’s weights at moment k depend on the NN’s weights at
moment k-1 and the random system process noise θk , and
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Fig. 2 The dynamic
evolutionary process of the
MSF-MOP prediction model

(a) The probability density distribution of power consumption

(b) The probability density distribution of current efficiency

the measurement noise νk mainly describes the modeling
error caused by sensors and other devices in the system.

The non-linear measurement function h(·) is approxi-
mated by using a multilayer perceptron.

hl(ω, u) =
9∑

j=1

ω∗∗
jk

1 + exp

[
−

(
9∑

i=1
ω∗

ij ui + aj

)] + bl (3)

where ω∗
ij represents the connection weights between the

i-th input layer and the j-th hidden layer; aj represents
the thresholds of hidden layer neurons; ω∗∗

jk represents the
connection weights between the j-th hidden layer and the k-
th output layer; bl represents the thresholds of output layer
neurons; ui is the input variable.

3.2 Multi-source filter technique

The existing filtering theory takes the state-space model of
any system as the research object. Under the premise of
the known measurement value, the parameter estimation of
the state variable is carried out by rigorous mathematical
derivation, and the error between the state value of the
estimated system and the real value of the corresponding

system is finally within the allowable range [32]. However,
because the types of noise are unknown, the distribution
is complicated, and the forms are variable in the actual
process, the existing single filtering methods [33] have
limited the applicability and lowered the accuracy, which
cannot solve the problem of mixed noise.

To solve the modeling problem of process manufacturing
systems in an environment with mixed noise, this paper
proposes the MSF technique. The MSF utilizes the mean
and variance in the UKF to guide the importance function
of the PF based on the density kernel estimation method
[34, 35], and it can be embedded in any state model to
perform a probability estimation of state variables. Then,
the “Sigma points” in the UKF are employed to update the
model at every moment. Finally, the weights are calculated
and normalized by the modified importance function, and
whether to perform sampling importance resampling (SIR)
is judged by the number of effective particles, so as to
achieve an accurate estimation of the state parameters
(decision parameters) of the process system.

The above theory can be applied to the estimation of state
parameters under various noise interference conditions and
improve the filtering accuracy. The main advantages are as
follows:
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(1) The method extracts particles from the probability
distribution established by the initial values, so it is
applicable to the different characteristics of initial states.

x ∼ q(xk|x0:k−1) (4)

where x represents particles; q(xk|x0:k−1) represents the
probability of the state variable at moment k under the
premise that the state data are known at moment k-1.

(2) The method of constructing a distribution function
based on density kernel estimation is used to expand the
application range of the filtering algorithm. This method
gets rid of the previous filtering problem that the importance
function is almost always represented by the Gaussian
distribution N(x̄, σ ) established by the mean x̄ and variance
σ of samples. In the proposed MSF, it is only necessary to
simulate the desired distribution as the optimal importance
function through a set of random particles carrying weights.

x ∼ q(xk|x0:k−1, z0:k) = N(x̄, σ ) (5)

x ∼ q(xk|x0:k−1, z0:k) = F(x) (6)

where x represents the particles after sampling; x repre-
sents the particle set before sampling; q(xk|x0:k−1, z0:k)
represents the posterior probability of the state variable at
moment k under the premise that the state data are known
from moment 0 to k-1 and observation data are known from
moment 0 to k. F is the distribution function constructed
based on density kernel estimation.

Equation (5) shows that the importance function q(xk|
x0:k−1, z0:k) was approximated by the mean x̄ and variance
σ , but the posterior distribution cannot often be represented
by only a Gaussian curve. In this paper, the distribution
function F in (6) is used to replace the normal distribution
N in (5) as the importance function.

(3) To improve the algorithm accuracy, this method
optimizes the importance function by utilizing the mean and
variance obtained in the UKF, as shown in Fig. 3.

It is assumed that the curve’s expression in Fig. 3(a) is

f (x) = 1√
2πσ

exp(− (x−μ)2

2σ 2 ). Where, μ is the mean and

σ is the variance; x is the sampled particle and fmax(x)

is the maximum probability density. The Gaussian model
in Fig. 3(a) is established based on the mean μ and variance
σ , which are updated by the UKF. The red vertical dotted
line in Fig. 3 represents the symmetry axis of the Gaussian
model. The green curve in Fig. 3(b) is the importance
function established by the density kernel estimation
method, from which we can see that it is a non-linear
non-Gaussian curve. The green vertical dotted line, which
represents the expectation of the importance function,
divides the area enclosed by the green curve and the black
line into two equal parts. In Fig. 3(c), the red vertical dotted
line is on the left side of the green vertical dotted line, so
the green curve should move toward the red curve to meet

the requirements of the average expected value. Fig. 3(d)
shows the importance function updated by the mean. Since
the variance σ represents the distribution degree of all
sampled particles, the importance function in Fig. 3(d) can
be further optimized. The smaller the variance is, the more
concentrated the distribution is, which makes the original
importance function (red curve) move to the position of the
yellow curve.

3.3 Design and analysis of theMSFNN algorithm

While modeling a process system with an unknown mech-
anism, the NN still has the ability to fit a large amount of
non-linear process data, and further approximate the oper-
ation mode of a real process system. However, when a
conventional NN constructs the process operation model of
the industrial system, it is often assumed that the internal
states of the process system and the interference of the exter-
nal production environment are stable. In fact, the process
system continuously exchanges materials, energy, and infor-
mation with the external environment, making it difficult
for the static NN to adapt to environmental change when
modeling the process system.

To make full use of the complementarity between the
MSF and NN, this study proposes a MSFNN framework.
This MSFNN integrates the powerful non-linear fitting
ability of the NN while using MSF theory to forecast
the NN’s model parameters. Specifically, the model
parameters (i.e., weights) act as state variables of the MSF.
Furthermore, the predicted outputs of the process model act
as the measurement variables of the MSF.

Taking the neural network state-space model established
by (2) as the research object, the main steps of the MSFNN
algorithm are as follows:

(1) Initialization.
Extract N particles ω

i(a)
0 ∼ p(ω0) , i = 1, 2, · · · , N

from the prior distribution p(ω0) established by the NN’s
weights and thresholds.

ω̄
i(a)
0 = E(ω

i(a)
0 ) (7)

P
i(a)
0 = E[(ωi(a)

0 − ω̄
i(a)
0 )(ω

i(a)
0 − ω̄

i(a)
0 )T ] (8)

where ω̄
i(a)
0 represents the mathematical expectation (mean)

of particles; P
i(a)
0 represents the variance matrix of

particles. The superscript number represents the particle
sequence, and the subscript number represents the time
sequence.

(2) Update each particle with the UKF at each moment
as follows:

a. Calculate the Sigma points of each particle.

χ
i(a)
k−1 = [ω̄i(a)

k−1, ω̄
i(a)
k−1 ±

√
(na + λ)P

i(a)
k−1 ] (9)
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Fig. 3 The optimization process of the importance function in the MSF algorithm

where λ = α2(nx + κ) − nx is the proportional coefficient,
and the size of α determines the distribution of the selected
sample points around the mean ω̄. In particular, lowering
α can reduce higher-order effects to a greater extent; κ , nx

and na are the setting parameters in the UKF.
b. Introduce particle recursion (time update).

χ
i(x)
k|k−1 = f (χ

i(a)
k−1) (10)

ω̄
i(x)
k|k−1 =

2na∑
j=1

wm
j χ

i(x)
j,k|k−1 (11)

P i
k|k−1 =

2na∑
j=1

wc
j (χ

i(x)
j,k|k−1 − ω̄

i(x)
k|k−1)

×(χ
i(x)
j,k|k−1 − ω̄

i(x)
k|k−1)

T (12)

yi
k|k−1 = h(χ

i(x)
j,k|k−1) (13)

where χ is the sampling point obtained by UTmethod; χi(a)
k−1

is the original sampling point; χ
i(x)
k|k−1 is the sampling point

obtained by symmetrically distributed sampling;wm
j andwc

j

are the weights corresponding to the j-th sampling point,
respectively. According to (1) and (2), it can be known that

f (ω) = ω and h(ω) =
9∑

j=1

ω∗∗
jk

1+exp

[
−

(
9∑

i=1
ω∗

ij ui

)
+aj

] + bl .

c. Calculate newmeasurement values (measurement update).

The mean ω̄i
k and variance P̂ i

k of the statistics y are
calculated as follows.

ȳi
k|k−1 =

2na∑
j=1

wm
j yi

j,k|k−1 (14)

Pzkzk
=

2na∑
j=1

wc
j (y

i
j,k|k−1 − ȳi

k|k−1)

×(yi
j,k|k−1 − ȳi

k|k−1)
T (15)

Pxkzk
=

2na∑
j=1

wc
j (χ

i
j,k|k−1 − ω̄i

k|k−1)

×(yi
j,k|k−1 − ȳi

k|k−1)
T (16)

Kk = Pxkzk
P −1

zkzk
(17)

ω̄i
k = ω̄i

k|k−1 + Kk(yk − ȳi
k|k−1) (18)

P̂ i
k = P i

k|k−1 − KkPzkzk
KT

k (19)

d. Use a method based on density kernel estimation to
construct the important function q(ωi

k|xi
0:k−1, y1:k) = F(·),

and then utilize the mean ω̄i
k and variance P̂ i

k in the UKF to
optimize the importance function of the PF q(ωi

k|xi
0:k−1,

y1:k) = F̂ (·).
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e. Calculate weights and normalize.

wi
k = wi

k−1

p(yk|ω̄i
k)p(ω̄i

k|ωi
k−1)

q(ω̄i
k|ωi

0:k−1, y1:k)
(20)

w̃i
k = wi

k/

N∑
j=1

w
j
k (21)

(3) SIR secondary resampling.

Neff = 1/
N∑

j=1

w̃
j
k (22)

If Neff ≤ Nth (Nth is a set threshold, generally taken as
N/3 ), it means that the weights of the particles have been
seriously degraded, so the residual resampling [36, 37] is
needed; otherwise, it goes directly to the next step.

(4) k = k + 1 , go to step (2).
The above steps are the process of the MSFNN algo-

rithm. (The pseudocode of theMSFNN is given in Appendix
A.) It can be seen that the MSFNN establishes an important
function F(·), which gets rid of the limitation of the Gaus-
sian model and reduces the algorithm sensitivity to mixed
noise. The accurate establishment of the important func-
tion F(·) is a critical part of the incremental learning model
applied to non-linear non-Gaussian systems.

On the convergence of the research framework, the
MSFNN takes a NN as the basic model and adopts the
UKF’s mean and variance to optimize the PF’s importance
function based on the density kernel estimation method.
Therefore, the NN’s convergence performance is not
changed [38]. Moreover, the convergence characteristic of
the MSF algorithm depends on the UKF and PF. To simplify
and clarify the discussion, the convergence analysis of the
MSFNN can be found in Appendix B.

This section systematically presents the framework of
the MSFNN incremental learning model through an in-
depth analysis of important links in the model construction
process and integrates MSF theory, a NNmodel, and density
kernel estimation.

Figure 4 graphically shows the flow of the MSFNN
incremental learning algorithm. First, the MSFNN algo-
rithm needs to initialize the model parameters. Second, the
UT method is performed near the estimated points, and the
Sigma point sets are calculated. Third, these Sigma points
are updated with time and measurement values. Then, the
density function F is obtained through the density ker-
nel estimation method, which is modified and optimized
by means of the mean and variance in the UKF. Finally,
the parameter estimation value is imported into the NN to
test the performance of the model. If the system’s sam-
ple increases or decreases (i.e., the inputs or outputs are
changed), the model can adaptively update the NN’s model
parameters to achieve a new dynamic balance.

In Fig. 4, the red font represents the main contribution
and innovation of this paper, and the blue virtual boxes
represent important modules of this proposed method.
Among these modules, i, ii, iii and iv respectively
represent updating sigma points by UKF, constructing
importance function F , updating model parameters by PF
and testing incremental learning model performance. The
MSFNN algorithm proposed in this paper performs deep
optimization of the traditional BPNN model construction
algorithm, mainly including:

(1) The traditional BPNN belongs to the category of
static modeling. In contrast, the MSFNN uses a dynamic
modeling mechanism, which can adjust the model param-
eters adaptively as the external or internal environment
changes.

(2) To make the model suitable for parameter estimation
under mixed noise characteristics, the technique of the MSF
is proposed and combined with the NN first.

(3) To reduce the influence of various noise on the
algorithm for improving the estimation accuracy of NN’s
parameters, this paper adopts a method utilizing the UKF’s
mean and variance to guide the PF’s importance function
based on the density kernel estimation method, so that
the probability density function obtained from the state
estimation can better tend to the real density function.

4Multiobjective incremental learningmodel
based on theMSFNN in the electrolytic
aluminium equipment process system

To ensure that the industrial process system has an accurate
prediction performance and a good incremental learning
ability, the above algorithm can be applied to an EAP
system [39]. The main steps in establishing a multiobjective
incremental learning model of the EAP based on the
MSFNN algorithm are as follows:

Step. 1: Import the input and output data of the EAP into
the BPNN model to obtain the initial model parameters;

Step. 2: Build a basic process model, as described in (2),
based on the NN principle;

Step. 3: The NN’s model parameters (i.e., weights and
thresholds) are taken as particles, and then an iterative loop
is performed according to the MSFNN algorithm ((7) to
(22)) to obtain a new round of model parameters;

Step. 4: The newly obtained model parameters are
imported into the BPNN model to test whether it meets the
expected prediction result. If not, the above weights and
thresholds are regarded as the particles in the new round of
the MSFNN algorithm to continue to iteratively update until
the expectation is met.

This paper uses the MSFNN as the theoretical framework
to establish a multiobjective incremental learning prediction
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Fig. 4 Algorithm flow of the
MSFNN incremental learning
model

model for the unit power consumption and current
efficiency of the EAP. The BPNN’s weights and thresholds
are estimated by the MSF, which enables the production
model of the EAP to have good adaptability, accurate
predictive ability and a wide application range.

4.1 Experiment object andmodel parameters

In this paper, industrial experiments based on an electrolytic
aluminium cell combining a shaped cathode and perforated
anode are carried out [4], as shown in Fig. 5. In the figure,
f1 represents the current efficiency, and f2 represents the
power consumption of electrolytic aluminium. Ideally, the
power consumption should be as low as possible, and the
current efficiency should be as high as possible.

However, the process system of electrolytic aluminium
equipment is complex and has the following characteristics:
nonlinearity, multiple parameters, strong coupling and
noise redundancy. Moreover, it is accompanied by several
operation links, such as anode changing, bus lifting, shell
punching and aluminium discharging [40, 41]. It is difficult
to obtain an accurate multiobjective incremental learning

model using traditional modeling methods in the EAP.
Fortunately, the proposed MSFNN algorithm can be applied
to an environment with various complex noise, and it can
update and track the real-time status of multiple targets in
the EAP, which has the potential to obtain a high-precision
process model.

By analyzing the operating variables related to the two
goals (i.e., current efficiency and power consumption) in the
EAP, leveraging expert knowledge and a data acquisition
system, nine main operating variables and two predicted
objectives are acquired and are listed in Table 2. To facilitate
k-fold cross validation, all 780 groups of sample data were
collected from device No. 160 in 170kA series electrolytic
aluminium equipment. To verify the effectiveness of the

Fig. 5 The core components of electrolytic aluminium cell
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Table 2 The sample data from
No. 160 electrolytic aluminium
equipment

Parameters Sample

1 2 3 · · · 780

Series current (A) 1679 1679 1679 · · · 1761

Molecular ratio 2.31 2.31 2.31 · · · 2.75

Aluminium level (cm) 21.5 21.5 22 · · · 16

Electrolyte level (cm) 17 17 17 · · · 8

Cell temperature ◦C 952 942 947 · · · 950

Aluminium output (kg) 1260 1240 1260 · · · 1345

Daily consumption of fluoride salt (kg) 29 23.4 21.6 · · · 19.7

NB times 646 707 671 · · · 798

Cell voltage (mV) 3712 3723 3718 · · · 3633

DC power consumption per ton 11852 12130 11889 · · · 12045

of aluminium (kW.h/t-Al)

Current efficiency (%) 96.58 94.85 96.43 · · · 97.78

presented framework, we divided all 780 samples into 10
disjoint subsets on average. On this basis, 78 samples of
one subset were selected as a testing set, and the other nine
subsets were selected as a training set.

The MSFNN presented in the study was employed to
build a 3-layer feedforward NN, which has 9 decision param-
eters and 2 outputs. The transfer functions of the second
and third layers are Sigmoid and Purelin, respectively. The

Fig. 6 The evolution of some weights and thresholds during the learning process
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Fig. 7 Prediction output of DC power consumption from the PFNN, EPFNN, UPFNN and MSFNN

number of NN’s training iterations is set to 100. To main-
tain a certain precision and calculation speed, the second
layer uses 9 neurons to form a 9-9-2 neural network struc-
ture in the experiment. In a consistent experimental object
and environment, different models among PFNN, EPFNN,
UPFNN and MSFNN are performed to predict technical
indicators of the real-world EAP.

4.2 Analysis and discussion of experimental results

The following experimental results of the multiobjective
prediction model based on the EAP all come from the PFNN,
EPFNN, UPFNN and MSFNN algorithms. All process sam-
ples use the daily data shown in Table 2, and the experiment
platform uses MATLAB R2014b (CPU: i7-9750H; RAM:
8.00GB; GPU: GTX 1660 Ti).

InFig. 6,we select someweights and thresholds (suchasω∗
11,

a1, ω∗∗
11 and b1) represented in (3) to graphically show the

evolution during the learning process. Figs. 7 and 8 show the
fitting effects of DC power consumption and current effi-
ciency by establishing the multiobjective prediction model
for the EAP based on the above four algorithms. Figure 9
shows the comprehensive comparison effects of using the

above four algorithms to predict the performance indicators
(DC power consumption and current efficiency) of the EAP
system.

Figure 10(a) intuitively shows the relative error percent-
age of the DC power consumption when using the four
algorithms to predict the EAP model; Fig. 10(b) depicts the
relative error percentage of the current efficiency when pre-
dicting the EAP system model based on the 4 algorithms. It
can be seen that the relative error of the MSFNN algorithm
is smaller than that of the other models, which demonstrates
that the fitting effect of the MSFNN is better than that of the
other three models. According to the experimental results, it
has been verified that it is feasible to combine the MSF and
the NN. Overall, the performance of the MSFNN model is
more in line with the true characteristics of the EAP.

Table 3 compares different indicators from the multi-
objective prediction models established by the above four
algorithms, which shows six different evaluation criteria
[42]. By analyzing Table 3, we can see that the predicted
error in the PFNNmodel is larger than other models, and the
predicted error value from the MSFNN process model is the
smallest, indicating that the MSFNN’s prediction accuracy
is quite high. Meanwhile, it can also be confirmed from the
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Fig. 8 Prediction output of current efficiency from PFNN, EPFNN, UPFNN and MSFNN

side angle that the MSF technique plays a significant role in
exploring the optimal model, which helps to further improve
model performance and finally obtains the best parameter
estimation values.

The significance nonparametric tests [47, 48] (i.e.,
Wilcoxon rank-sum test, Friedman test and Nemenyi test),
which are an effective tool to verify the effectiveness of the
developed framework, are adopted to analyze the significant
difference of different algorithms. The test results with
the MSFNN model as the comparison object have been
shown in Table 4. It can be seen from the verification result
that the developed framework has a significant difference
compared with other algorithms. Furthermore, the time
and space complexity of different algorithms are also
analyzed and shown in Table 4. It indicates that although the
MSFNN is obtained by constantly optimizing the PFNN,
the corresponding complexity does not grow due to it.
Therefore, the superiority of the proposed algorithm is
reflected once again.

SSE =
T∑

i=1

(yi − y)2 (23)

MSE = 1

T

T∑
i=1

(yi − y)2 (24)

RMSE =
√√√√ 1

T

T∑
i=1

(yi − y)2 (25)

where yi is the predicted value of testing samples; y is the
true value of testing samples; and T is the number of testing
sample groups.

To better evaluate the prediction performance of different
models and reduce the influence of overfitting on the
proposed model, Tables 5 and 6 respectively give the
statistical results of relevant performance indexes from
DC power consumption and current efficiency based on
k-fold cross-validation [49] with k = 10. The evaluation
criteria include the mean absolute error (MAE), the mean
relative error (MRE), and the correlation coefficient (R)
[50]. Table 7 shows the statistical analysis results based on
Tables 5 and 6, which better analyzes the 10 independent
cross-validation tests of different algorithms. In Table 7,
the comparison indicators include seven different levels.
Based on the results, it can be seen that each indicator of
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Fig. 9 Comparison of multi-objective prediction effects from the PFNN, EPFNN, UPFNN and MSFNN

Fig. 10 The relative error percentage of different multi-objective prediction models
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Table 3 The comparison of related performance indicators from different models

Model Category Comparison of absolute error indicators in testing sets

Max Min Average SSE MSE RMSE

MLR Power consumption 1085.5 10.789 561.05 3.4098 × 107 4.3715 × 105 661.17

(Kw.h/t-Al)

Current efficiency (%) 17.529 0.3206 9.0028 5.6903 × 103 72.952 8.5412

NLMR Power consumption 918.52 6.2576 448.01 1.8367 × 107 2.3548 × 105 485.26

(Kw.h/t-Al)

Current efficiency (%) 12.722 0.2799 6.9537 3.6040 × 103 46.205 6.7974

PFNN Power consumption 604.15 1.5680 314.95 7.8429 × 106 1.0055 × 105 317.02

(Kw.h/t-Al)

Current efficiency (%) 8.8220 0.1588 4.4567 2.6931 × 103 34.527 5.8760

EPFNN Power consumption 375.61 1.0267 186.05 3.7932 × 106 4.8631 × 104 220.52

(Kw.h/t-Al)

Current efficiency (%) 4.7600 0.1199 2.4582 761.01 9.7566 3.1236

UPFNN Power consumption 180.44 2.5138 98.472 1.2670 × 106 1.6277 × 104 127.58

(Kw.h/t-Al)

Current efficiency (%) 2.1035 0.0429 1.0261 105.61 1.3540 1.1636

MSFNN Power consumption 122.58 1.2663 68.520 3.5010 × 105 4.4885 × 103 66.996

(Kw.h/t-Al)

Current efficiency (%) 0.8410 7.8523 × 10−4 0.4033 8.4786 0.1087 0.3297

The related performance indicators based on multiple linear regression (MLR, Fashoto et al, 2021) [43], multiple nonlinear regression (NLMR,
Wen et al, 2021) [44], Particle filter neural network (PFNN, Qin et al, 2020) [14], Extended particle filter neural network (EPFNN, Jiang et al,
2021) [45] and Unscented particle filter neural network (UPFNN, Wang et al, 2020) [46] are added to Tables 3 and 4

the MSFNN algorithm is superior to other algorithms. The
effectiveness of the proposed algorithm is proven again.

MAE = 1

n

n∑
i=1

|yi − ŷi | (26)

MRE = 1

n

n∑
i=1

| ŷi − yi

yi

| (27)

R =
∑n

i=1(ŷi − yi)(yi − ȳ)√∑n
i=1(ŷi − yi)

∑n
i=1(yi − ȳ)

(28)

where yi is the true value of testing samples; ŷi is the pre-
dicted value of testing samples; ȳi is the average value of
yi ; and n is the group number of testing samples.

Due to the complex production process of aluminum
electrolysis, the cell condition information has dynamic
and time-varying characteristics. To further verify the
compensation ability of the proposed method for parameter
variations and disturbance signals, different disturbances of
5%, 10% and 15% are artificially imposed on each model
[4], as shown in Fig. 11(a)–(c). It is obvious from Fig. 11
that the DC energy consumption and current efficiency of
the MSFNN can still resist the influence on the interference

Table 4 The comparison of
related performance indicators
from different models

Model Category Significant nonparametric test (p − value) Algorithm complexity

Wilcoxon rank-sum test Friedman test Nemenyi test Time Space

MLR 7.11 × 10−3 6.16 × 10−4 2.28 × 10−5 O(n3) O(1)

NLMR 4.54 × 10−3 4.89 × 10−4 5.62 × 10−4 O(n3) O(1)

PFNN 2.26 × 10−3 1.57 × 10−4 1.85 × 10−4 O(n3) O(n)

EPFNN 9.33 × 10−2 5.13 × 10−3 8.46 × 10−3 O(n3) O(n)

UPFNN 7.92 × 10−2 3.49 × 10−3 5.98 × 10−3 O(n3) O(n)

MSFNN \ \ \ O(n3) O(n)
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Table 7 The statistical analysis of performance indexes from 10
independent cross-validation tests

Evaluation Model Category Average Min Max Std Median Lower Upper

Criteria quantile quantile

MAE PFNN Power consumption 3.9867 3.0564 4.6275 0.4727 4.0305 3.8428 4.2919

(Kw.h/t-Al)

Current efficiency (%) 0.0620 0.0599 0.0793 0.0052 0.0680 0.0650 0.0708

EPFNN Power consumption 2.6423 2.1346 2.9465 0.2541 2.7467 2.5658 2.7658

(Kw.h/t-Al)

Current efficiency (%) 0.0369 0.0336 0.0411 0.0023 0.0371 0.0354 0.0382

UPFNN Power consumption 1.4719 1.3864 1.6137 0.0675 1.4721 1.4154 1.4987

(Kw.h/t-Al)

Current efficiency (%) 0.0145 0.0135 0.0152 0.0006 0.0146 0.0139 0.0151

MSFNN Power consumption 0.8441 0.7928 0.8956 0.0326 0.8452 0.8143 0.8712

(Kw.h/t-Al)

Current efficiency (%) 0.0061 0.0054 0.0069 0.0004 0.0061 0.0058 0.0064

MRE PFNN Power consumption 0.0285 0.0198 0.0285 0.0025 0.0262 0.0250 0.0276

(Kw.h/t-Al)

Current efficiency (%) 0.0549 0.0453 0.0636 0.0059 0.0552 0.0515 0.0559

EPFNN Power consumption 0.0149 0.0149 0.0170 0.0007 0.0162 0.0157 0.0168

(Kw.h/t-Al)

Current efficiency (%) 0.0271 0.0243 0.0305 0.0019 0.0269 0.0254 0.0286

UPFNN Power consumption 0.0091 0.0085 0.0103 0.0005 0.0089 0.0088 0.0093

(Kw.h/t-Al)

Current efficiency (%) 0.0114 0.0092 0.0148 0.0016 0.0109 0.0106 0.0122

MSFNN Power consumption 0.0059 0.0050 0.0069 0.0006 0.0058 0.0054 0.0062

(Kw.h/t-Al)

Current efficiency (%) 0.0044 0.0036 0.0050 0.0004 0.0046 0.0041 0.0048

R PFNN Power consumption 0.9146 0.8863 0.9556 0.0214 0.9112 0.8964 0.9267

(Kw.h/t-Al)

Current efficiency (%) 0.6502 0.5869 0.7279 0.0465 0.6489 0.6078 0.6778

EPFNN Power consumption 0.9512 0.9163 0.9712 0.0160 0.9489 0.9425 0.9662

(Kw.h/t-Al)

Current efficiency (%) 0.8758 0.8349 0.9073 0.0219 0.8806 0.8647 0.8925

UPFNN Power consumption 0.9897 0.9808 0.9982 0.0055 0.9886 0.9859 0.9948

(Kw.h/t-Al)

Current efficiency (%) 0.9767 0.9648 0.9834 0.0058 0.9779 0.9742 0.9811

MSFNN Power consumption 0.9947 0.9893 0.9990 0.0032 0.9954 0.9925 0.9975

(Kw.h/t-Al)

Current efficiency (%) 0.9976 0.9954 0.9990 0.0012 0.9977 0.9970 0.9987

signal of electrolytic cell to a certain extent, indicating the
advancement and effectiveness of this method.

By discussing the above experimental results, the
fundamental reasons why the proposed method has better
results than other methods are analyzed as follows:

(1) Although PFNN can handle nonlinear and non-
Gaussian parameter estimation problems, the accuracy
of the PFNN algorithm will gradually decrease with an
increasing number of sampling particles. The main reason

is the degradation of particles, that is, the weights of
most particles decrease in the iterative process of particle
updating. And MSFNN uses Sigma points obtained by UT
method to guide the importance function, thus reducing the
number of sampling particles and weakening the influence
of particle degradation.

(2) The EPFNN uses the EKF to obtain sampling
points for updating the importance function of the PF,
while MSFNN proposes “multi-source filter” to update the
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Fig. 11 The compensation ability of different methods in parameters variations and interference signals

importance function of the PF by using UTmethod to obtain
Sigma points. Because EKF approximates linear estimation
by discarding higher-order terms, its accuracy is poorer than
that of UKF based on UT method.

(3) The UPFNN and MSFNN take into account the
mean and variance of Sigma points obtained by UT method

instead of the real mean and variance to achieve continuous
sampling distribution. However, MSFNN constructs an
important function F(x) based on density kernel estimation,
which gets rid of the previous filtering problem that the
importance function is almost always represented by the
Gaussian distribution N(x̄, σ ) established by the mean x̄
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and variance σ of samples. It expands the application
range of the filtering algorithm and reduces the algorithm
sensitivity to mixed noise.

5 Conclusion

A multi-source filter neural network (MSFNN) algorithm
is developed for exploring the system model’s predictive
potential. To apply the algorithm to an environment with
mixed noise, the MSF technique is presented first. The
MSF utilizes the mean and variance in the UKF to optimize
the PF’s importance function based on the density kernel
estimation method. Then, the MSF employs the particles
to evaluate the weights and thresholds of the NN. Finally,
a multiobjective incremental learning prediction model
based on the MSFNN for EAP systems is established.
The performance comparison between the MSFNN and

other electrolytic aluminium models established by the
PFNN, EPFNN, and UPFNN algorithms shows that
the multiobjective incremental learning model established
by the MSFNN has high prediction accuracy and low
sensitivity to noise interference, which greatly improves the
adaptability of the EAP model.

However, this method is only applicable to the situa-
tion where the production data is available and the oper-
ation parameters are controllable. Moreover, although the
MSFNN algorithm alleviates particle degradation, this prob-
lem still exists. In the future, the clustering kernel function
smoothing method will be explored to overcome the prob-
lems of particle shortages in the MSFNN algorithm and the
construction of deep filtering networks.

Appendix A: Pseudocode for MSFNN
algorithm
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Appendix B: Robustness analysis of MSFNN
algorithm

Taking (2) as the research object, inspired by the proof of
UKF [51] and PF [52, 53] convergence, we further prove the
robustness of the MSFNN algorithm.Def. 1 The importance
function constructed by density kernel estimation is F(·).
q(ωi

k|xi
k−1, yk) = F(·) (29)

Def. 2 The importance function F̂ (·) is obtained by
optimizing F(·) with UKF’s mean and variance.

q(ωi
k|xi

k−1, yk) = F̂ (·) (30)

Def. 3 The function ϕ in space Lk,p can be expressed as

‖ϕ(ωk)‖k,p = [
∫

Lk,p

|ϕ(ωk)|pFk|k(ωk)]
1
p (31)

where ω represents the weights and thresholds of MSFNN
algorithm and ϕ(·) is an arbitrary function.

Hypothesis 1 [54] Assuming that the measurement
sequence yk is known, and the parameter βk in MSFNN
satisfies the following formula.

(Fk|k−1(ωk), p(yk|ωk)) > βk > 0 (32)

Hypothesis 2 [54] When k > 0

‖p(yk|ωk)K(ωk|ωk−1)/G(ωk|ωk−1, yk)‖ = ‖ρ‖ < ∞
(33)

‖p(yk|ωk)‖ = ‖g‖ < ∞ (34)

Lemma 1WhenHypothesis 1-2 are satisfied, if ϕ(ωk) ∈
Lk,p, then

(K(ωk|ωk−1), g(yk, ωk)|ϕ(ωk)|p)1/p ∈ Lk−1,p (35)

The following Lemmas are drawn under Hypothesis 1
and Hypothesis 2.

Lemma 2 When Hypothesis 1-2 are satisfied, the
following two formulas hold.

E[((FN
0|0(ω0), ϕ(ω0)) − (F0|0(ω0), ϕ(ω0)))

4]

≤ b∗
0|0(ϕ(ω0))

N2
(36)

E[(FN
0|0(ω0), ϕ(ω0))

4] ≤ m∗
0|0(ϕ(ω0)) (37)

where b and m are arbitrary infinite decimals. Lemma 2
shows that the initialization phase of MSFNN before UKF
optimization is convergent.

Lemma 3 When Hypothesis 1-2 are satisfied, the
following two formulas hold.

E[((FN
k−1|k−1(ωk−1), ϕ(ωk−1))

−(Fk−1|k−1(ωk−1), ϕ(ωk−1)))
4]

≤ b∗
k−1|k−1(ϕ(ωk−1))

N2
(38)

E[(FN
k−1|k−1(ωk−1), ϕ(ωk−1))

4] ≤ m∗
k−1|k−1(ϕ(ωk−1))

(39)
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After UKF optimization, the following two formulas
hold.

E[((F̂ N
k|k−1(ω0:k), ρ(ωk, yk)ϕ(ωk))

−(F̂k|k−1(ωk), g(yk, ωk)ϕ(ωk)))
4]

≤ bk|k−1(ϕ(ωk))

N2
(40)

E[(F̂ N
k|k−1(ωk), ρ(ωk, yk)ϕ(ωk))

4] ≤ mk|k−1(ϕ(ωk)) (41)

Lemma 4 When Hypothesis 1-2 are satisfied, the
following two formulas hold.

E[((F̂ N
k|k−1(ωk), ρ(ωk, yk)ϕ(ωk))

−(F̂k|k−1(ωk), g(yk, ωk)ϕ(ωk)))
4]

≤ b∗∗
k|k−1(ϕ(ωk))

N2
(42)

E[(F̂ N
k|k−1(ωk), ρ(ωk, yk)ϕ(ωk))

4] ≤ m∗∗
k|k−1(ϕ(ωk)) (43)

Lemmas 3-4 indicate that MSFNN is convergent in the
prediction phase from moment k-1 to k.

Lemma 5 When Hypothesis 1-2 are satisfied, the
probability satisfies the following formula.

P [ 1
N

N∑
i=1

ρ(ω
(i)
k|k−1, yk) < γk] ≤ dk

N2
(44)

And when N ≥ [d0.5
k ] + 1,

P [ 1
N

N∑
i=1

ρ(ω
(i)
k|k−1, yk) < γk] ≤ dk

|[d0.5
k ] + 1|2 < 1 (45)

Lemma 6 When Hypothesis 1-2 are satisfied, the
following two formulas hold.

E[((F̂ N
k|k−1(ωk), ρ(ωk, yk)ϕ(ωk))

−(F̂k|k−1(ωk), g(yk, ωk)ϕ(ωk)))
4]

≤ b∗
k|k−1(ϕ(ωk))

N2
(46)

E[(F̂ N
k|k−1(ωk), ρ(ωk, yk)ϕ(ωk))

4] ≤ m∗
k|k−1(ϕ(ωk)) (47)

Lemma 7 When Hypothesis 1-2 are satisfied, the
following two formulas hold.

E[((F̂ N
k|k(ωk), ϕ(ωk)) − (F̂k|k(ωk), ϕ(ωk)))

4]

≤ b∗
k|k(ϕ(ωk))

N2
(48)

E[(F̂ N
k|k(ωk), ϕ(ωk))

4] ≤ m∗
k|k(ϕ(ωk)) (49)

Lemmas 6-7 indicate that MSFNN is still convergent
after residual resampling.

Lemma 8 When Hypothesis 1-2 are satisfied, the
following two formulas hold.

E[((F̂ N
k|k(ωk), ϕ(ωk)) − (F̂k|k(ωk), ϕ(ωk)))

4]
≤ bk|k(ϕ(ωk))

N2
(50)

E[(F̂ N
k|k(ωk), ϕ(ωk))

4] ≤ mk|k(ϕ(ωk)) (51)

According to Lemmas 2-8, the following conclusions can
be drawn.

Conclusion 1 When Hypothesis 1-2 are satisfied, the
following formula holds for any ϕ(ωk) ∈ Lk,4:

eN
MSFNN [ϕ(ωk)] → eoptimal[ϕ(ωk)] a.s. (52)

To sum up, MSFNN obtained in this paper is convergent.
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