
https://doi.org/10.1007/s10489-022-03256-2

Bat4CEP: a bat algorithm for mining of complex event processing
rules

Ralf Bruns1 · Jürgen Dunkel1

Accepted: 15 January 2022
© The Author(s) 2022

Abstract
Complex Event Processing (CEP) is a modern software technology for the dynamic analysis of continuous data streams.
CEP is able of searching extremely large data streams in real time for the presence of event patterns. So far, specifying
event patterns of CEP rules is still a manual task based on the expertise of domain experts. This paper presents a novel bat-
inspired swarm algorithm for automatically mining CEP rule patterns that express the relevant causal and temporal relations
hidden in data streams. The basic suitability and performance of the approach is proven by extensive evaluation with both
synthetically generated data and real data from the traffic domain.

Keywords Bat algorithm · Swarm algorithm · Rule learning · Complex event processing

1 Introduction

Today, companies as well as public and private organiza-
tions face the challenge of dealing with huge amounts of
data, the volume of which has grown enormously in the last
decade and will continue to rise rapidly in the future. Smart-
phones, sensor networks, industry 4.0, the internet of things,
or information from social networks are causing an increas-
ing flood of data. One particular challenge is the increasing
need to evaluate streams of continuously arriving data.

The future viability of an institution strongly depends on
its ability to extract the significant information value for
its core business from the volume of data and to derive
qualified decisions from it.

Complex Event Processing (CEP) is a software tech-
nology for the dynamic analysis of massive data streams
in real-time [1, 2]. CEP allows the specification of situa-
tions of interest in terms of event patterns to express causal,

� Ralf Bruns
ralf.bruns@hs-hannover.de

Jürgen Dunkel
juergen.dunkel@hs-hannover.de

1 Department of Computer Science, Hannover University of
Applied Sciences and Arts, Ricklinger Stadtweg 120, 30459
Hannover, Germany

temporal, spatial and other relationships between data ele-
ments (called events in CEP). The data streams must be
continuously examined for these event patterns (event pat-
tern matching) in order to detect an occurrence of a relevant
situation. In CEP, event patterns are expressed by means
of user-defined rules, formulated in a so-called Event Pro-
cessing Language (EPL). An EPL is a Domain-Specific
Language (DSL) [3, 4] tailored to model CEP rules on a
user-friendly level of abstraction.

So far, specifying rule patterns is still a manual task
based on the expertise of domain experts. But defining
event patterns requires a very deep understanding of
the application domain. In particular, knowledge about
the relevant events, their temporal dependencies, and the
relations between selected event attributes must be taken
into account. When an application domain is characterized
by highly dynamic changes then user-defined rules may
be even impossible. Machine learning approaches for
automatic rule pattern extraction is still an open research
problem [5, 6].

Bat4CEP is a novel approach for mining CEP rules that
express the relevant causal and temporal relations hidden
in data streams. We propose an innovative bat-inspired
swarm algorithm for automatically defining CEP rules. The
algorithm utilizes an advanced syntax tree encoding of
candidate rules, taking into account the specific language
constructs of common EPLs. Based on previous solution
candidates, new candidate rules are derived in a probabilistic
and swarm-based manner. In the course of numerous

/ Published online: 11 March 2022

Applied Intelligence (2022) 52:15143–15163

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03256-2&domain=pdf
http://orcid.org/0000-0001-5842-4218
mailto: ralf.bruns@hs-hannover.de
mailto: juergen.dunkel@hs-hannover.de


iterations, better and better candidate rules are to be
generated by adaptating bat-specific random flight and local
search operators. The performance of the approach is proven
in extensive experiments with synthetically generated data
as well as with real data from the traffic domain.

The rest of the paper is organized as follows: The
following two sections define the problem of learning CEP
rules and discuss the related work. The fourth section
introduces the basic concepts of bat algorithms. Section 5
presents the Bat4CEP approach with all its building blocks.
Then, Section 6 provides the results of experimental
evaluation and discusses some implementation issues. The
last section summarizes the most significant features of the
approach and provides a brief outlook to future research.

2 Problem of mining CEP rules

The objective of our approach is to reveal the hidden causal
and temporal relationships between the events in a data
stream that lead to a specific situation of interest [7].

In CEP, the meaning of events is expressed in so-called
event processing rules (CEP rules) specified in a declarative
Event Processing Language (EPL).

A rule consists of two parts: (i) the condition part
specifies declaratively an event pattern that corresponds to
a situation of interest; (ii) the action part determines the
operation to be performed in this particular situation (e.g.
simply notifying the user) [8].

Well-known professional open source CEP rule engines
are Esper1 and Siddhi2.

For example, let us assume that a production machine
permanently emits data about its operational status. A
situation of interest would be a machine breakdown that
should desirably be predicted before it happens. What we
are looking for is a CEP rule that describes the relation
between the observations (e.g. sensor measurements,
operational data) and the situation that should be detected
(e.g. machine breakdown).

CEP rules are usually formulated manually by domain
experts. However, domain experts often do not know pre-
cisely the underlying dependencies in the data. Moreover,
in many application domains, there are no experts available
who could formulate a rule.

The objective of our approach is to automatically learn
CEP rules out of historical data streams, depicted in phase 1
of Fig. 1. A machine breakdown could be concluded by the
operational data provided by the machine. For instance, if a
temperature warning event is emitted from a machine part

1http://www.espertech.com/esper/
2https://github.com/siddhi-io/

(V alveX3) with a temperature higher than 70 and, followed
within 1min, a water supply problem event is detected for
the same machine part then a machine breakdown event
might be imminent. A prerequisite for the learning approach
is that the situation of interest, here the machine breakdown,
is marked as a label at the appropriate position in the
historical data.

Once an event pattern has been learned, a corresponding
CEP rule can be derived to analyze a live data stream in
order to predict the occurrence of a situation of interest
before it actually happens (phase 2 in Fig. 1). Automatic rule
learning is desirable and can lead to new and unexpected
insights when it comes to finding implicit dependencies in
the data that are still unknown to experts.

Although the various CEP engines and their EPLs differ
considerably, common features can be identified in the event
models used and the operators applicable for formulating
the event patterns [8, 9]:

• Event types and attributes: A data stream consists of
a temporal sequence of event instances each belonging
to a certain event type. Each event type defines the
set of attributes allowed for all its instances. E.g.,
event type T emperatureWarning contains the two
attributes name and temp. Alias names are defined with
the keyword as in order to distinguish several event
instances of the same type.

• Operators on event types: The events in an event pattern
can be correlated by different operators: ∧, ∨, →, ¬.
In Fig. 1, the event condition (T emperatureWarning

→ WaterSupplyEvent) is formulated (i.e. an event of
type T emperatureWarning is followed in time by an
event of type WaterSupplyEvent).

• Operators on attributes: Conditional expressions on
attributes can be specified by common logical (∧, ∨,
¬) and numerical comparison and arithmetic operators:
>, <, =, +, -, etc. In Fig. 1, the attribute t .name

can be dereferenced to the instance of an event of
type T emperatureWarning using its alias name t .
The attribute condition defines that the name attribute
of event instance t and the name attribute of event
instance w must have the same value and, in addition,
the temp attribute of t must have a value greater than
the threshold 70.

• Aggregation functions: Aggregation functions combine
the attribute values of a defined set of events, e.g. all
events that occurred over a certain time period, such as
all T emperatureWarning events in the last 5 minutes.
Typical aggregation functions are: avg() calculates the
average value of an attribute value, sum() calculates
the sum of an attribute value, min() and max() return
the minimum and maximum of the attribute value,
respectively.

15144 R. Bruns and J. Dunkel

http://www.espertech.com/esper/
https://github.com/siddhi-io/


• Sliding windows: A sliding window restricts the number
of events to excerpts from the event stream. The size of
a sliding window is defined by its type and value. Two
different window types can be distinguished: A length
window of length n considers only the last n events of
the stream. A time window considers only those events
that occurred in the defined time period. For instance,
in Fig. 1, a time window is defined to include all events
that occurred in the last 1 minute, specifying that a
WaterSupplyEvent must follow a TempWarning within
1 minute.

The Bat4CEP approach presented in the following is
designed to learn CEP rules comprising the most common
language constructs for event processing rules.

3 Related work

This section discusses previous swarm-based metaheuristics
for learning association rules as well as the state of the art
in learning CEP rules.

Association analysis and association rule mining (ARM)
is a well-established approach in machine learning. An
association rule describes correlations between a set of
items that occur together. Thus, the objective of an
association analysis is to determine items that imply the
occurrence of other items in a transaction.

Mining CEP rules can be considered as a more complex
form of association rule mining. CEP rules offer a more
complex rule structure than association rules, because they
rely on a more expressive EPL (see discussion in Section 2).

Moreover, with grammatical inference another problem
related to the problem of rule learning is discussed.

3.1 Swarm-basedmetaheuristics learning of
association rules

Next to conventional techniques like Apriori [10], FP-
Growth [11], or C4.5 [12] several proposals attempt to
tackle the problem of learning association rules by swarm-
based optimization algorithms. Within these algorithms the
rule classification problem is formulated as an objective
function and the swarm-based algorithm is used to optimize
this function, i.e. to generate as good association rules as
possible.

Several approaches apply particle swarm optimization
(PSO) [13–15] where each particle represents a solution
candidate (either a single association rule or a rule set).

Ant colony algorithms belong to the most popular swarm
algorithms. The AntMiner system [16] applies the ant
algorithm for ARM, where each path traversed by an ant
represents a solution candidate (= an association rule).
Some extensions of the AntMiner approach have been
published [17, 18].

The positive learning results achieved by the different
swarm algorithms prove that swarm-based metaheuristics
are a promising technique for advanced rule learning tasks.

3.2 Bat algorithm for classification and association
rule learning

Although bat-inspired algorithms are a rather new meta-
heuristic, they have already been applied in early
approaches to classification problems and rule mining.
Khan and Sahai [19] propose a bat algorithm in combi-
nation with fuzzy logic for clustering. Damodaram and
Valarmathis [20] use bat metaheuristic for the classification
of phishing website by association rules. Mining association

Fig. 1 Learning problem of
CEP rules

15145Bat4CEP: a bat algorithm for mining of complex event processing rules



rules by bat algorithm is investigated in the work of Song
et al. [21] and Heraguemi et al. [22, 23]. The positions of
the bats represent the candidate rules on which specialized
actualization operators are applied.

3.3 Grammatical inference

Grammatical inference is a problem related to the problem
of rule learning. The objective of grammatical inference is
to infer a grammatical structure from a set of examples,
i.e., to identify the correct syntax of a language or, with its
extension semantic inference, also to derive the semantics of
a language [24]. Different machine learning methods [24] as
well as evolutionary algorithms/ genetic programming [25]
or memetic algorithms [26] have been applied to this
problem. However, the CEP rule learning problem has a
different objective. In CEP rule learning, the grammar of
the rule language is known in advance (see the EPL in
Section 2), and instead a particular rule (or, more precisely,
an event pattern) is searched for in order to detect a
particular situation of interest.

3.4 Machine learning of CEP rules

Recently, some approaches have been published that are
specifically designed for automatically mining CEP rules
in data streams [27] and explore machine learning for
CEP [28].

Frömmgen et al. [29] and Weiss and Hirsh [30] learn
event patterns with restricted expressivity. They examine
simplified languages for specifying patterns that do not
comprise the language scope of common CEP event
processing languages.

Semi-automatic machine learning approaches for rule
pattern detection are proposed by [31, 32]. Both approaches
combine manual intervention of a domain expert and
automatic learning techniques. The drawback of semi-
automatic approaches is that the learning outcome heavily
relies on human expertise. In addition to semi-automated
rule mining, Pielmeier et al. [33] proposes to apply
mathematical optimization methods to optimize the values
of rule parameters.

Several proposals rely on rule-based classifiers for
rule extraction. The applicability of the established rule-
based classifiers One-R, RIPPER, PART, DTNB, Ridor,
and NNGE are investigated by Mehdiyev et al. [34]. The
investigated classifiers classify the data elements in the
data streams into different classes. Petersen et al. [35]
propose a hybrid approach of rule-based classifiers and k-
means algorithm that can derive labels for unlabelled data
on the one hand and automatically generate CEP rules on
the other. Similar to [35], the ARECEP framework [27]
tackles data labeling and automatic rule extraction together.

For this task, ARECEP integrates several deep learning
methods, such as LSTM, CNN, or RNN, for data stream
labeling, as well as several rule-based classifiers, such as
PART, DT, FURIA and others, for rule extraction. The good
experimental results of the above mentioned approaches
show that CEP rule patterns can in principle be learned by
rule-based classifiers.

The iCEP framework by Margara et al. [5] aims to
automatically learn predictive CEP rules from historical
traces. The main idea is to decompose the rule learning
problem into sub-problems each handled by a dedicated
submodule. The different constituents of a rule pattern are
then learned by ad-hoc learning algorithms.

Mousheimish et al. [7, 36] implemented the autoCEP
system to automatically generate CEP rules. The algorithm
learns so-called shapelets, that build patterns of minimum
possible length to classify the data. In a second step, these
shapelets are transformed into CEP rules. The system uses a
brute-force shapelet extraction algorithm [6]. The autoCEP
approach aims to learn a rule set for all types of classes in
order to predict their future occurrence.

In [37], we presented a genetic programming (GP)
approach for rule learning. The GP approach evolves a pop-
ulation of CEP rules, represented as advanced syntax trees,
over multiple generations and applies particular genetic
crossover and mutation operators to them. Our Bat4CEP,
described below, shares similar rule representation and rule
manipulation operators with the GP-based approach, but
Bat4CEP is based on a completely different metaheuristic
using flight and search operators controlled by loudness and
pulse rate. Bat4CEP contributes a substantial extension of
our work in [37], because it supports a larger solution space
due to a more complex CEP rule language and outperforms
the solution quality.

Although first approaches have been published, auto-
matic learning of CEP rules continues to be an open research
problem [5, 34]. Until now, proactive CEP by means of auto-
matically generated rules still remains a vision [7]. As far
as we know, swarm algorithms have not yet been applied to
the CEP rule extraction problem.

4 Basics of bat algorithm

In 2010, Xin-She Yang developed a new bat-inspired
algorithm [38]. The proposed Bat Algorithm (BA) is a
metaheuristic algorithm based on the echolocation behavior
of bats, which simulates bat abilities to detect and hunt preys
and to avoid obstacles even at complete darkness.

The bats emit a sound pulse and listen for the echo
bouncing back from surrounding objects. Each pulse has a
very short duration and is sent with a predefined frequency.
Bats adjust automatically loudness and pulse rate to control

15146 R. Bruns and J. Dunkel



the search for prey. The closer the bat position to the
prey the better. For a given optimization problem, the
bat position represents a solution of the problem under
investigation.

4.1 Basic bat algorithm in pseudo code

Each bat i is specified at time t by its position xt
i , its velocity

vt
i , its frequency f t

i , its pulse rate rt
i and its loudness at

i in a
d-dimensional continuous search space [38].

For each bat, its position is updated and attribute values
are adjusted individually at each time step. The basic steps
of the BA are shown in pseudo code in Algorithm 1
(according to [38]).

4.2 Generation of new solutions: random flight and
local search

Two different ways of changing the position of bats
(equivalent to creating a new candidate solution) can be
distinguished: Either flying randomly around its current
position or performing a local search around one of the best
solutions so far.

4.2.1 Random flight operator

The random flight explores the search space around the
current bat position. At time step t , the new position of bat
xt
i is the movement from its previous position xt−1

i with its
current velocity vt

i (based on its frequency f t
i ).

f t
i = fmin + (fmax − fmin)β (1)

vt
i = vt−1

i + (xt−1
i − x∗)f t

i (2)

xt
i = xt−1

i + vt
i (3)

Frequency f t
i is calculated for each bat i in each time step

t using the equation (1). It influences the calculation of the
velocity vt

i in the same time step t . Its initial value must be
in the range of the problem domain and β ∈ [0, 1] indicates
a random number.

Velocity is calculated from the bat’s previous velocity
as well as the distance between the bat’s previous position
and the current global best position x∗ of all n bats and its
frequency (2).

The new position of a bat is its old position shifted by the
new velocity (3).

Thus, the movements of the bats offer some similarity
to the movement of the particles in particle swarm
optimization (PSO) metaheuristic, where frequency controls
the pace and range of the particle movements [13].

4.2.2 Local search operator

In order to increase the diversity of possible solutions,
for each bat that meets the requirements in rows 12-15
in Algorithm 1, a new candidate solution is generated by
a random walk around the current global best solution of
all n bats (or a solution selected among the current best
solutions).

xt
i = x∗ + εat (4)

With x∗ is the global best position, ε ∈ [-1, 1] is a random
number and at is the average loudness over all bats in
iteration t .

In local search, badly positioned bats or bats that have not
been able to improve their position over several iterations
perform a local search to find the prey near the swarm’s best
bat.

4.3 Control of search: loudness and pulse rate

Pulse rate and loudness of a bat i serve as indicators for the
quality of the position/solution xt

i . They guide the relation

15147Bat4CEP: a bat algorithm for mining of complex event processing rules



between exploitation and exploration of the search space as
a function of the bat’s distance from the target.

The pulse rate rt
i guides the local search. The greater the

pulse rate is, the closer the bat is to the prey. Thus, the pulse
rate of a bat increases with a better solution, which results
in a smaller probability of a local search (rows 12-15 in
Algorithm 1).

The loudness at
i decreases with increasing proximity to

the target. It is used for the acceptance of the position as the
new global best position.

If a new global best solution is found, for bat i the
pulse rate is increased and the loudness is decreased as
follows:

rt+1
i = r0

i [1 − exp(−γ t)] (5)

at+1
i = αat

i (6)

where α and γ are constants.
At the initialization step of the algorithm (rows 3-6 in

Algorithm 1), each bat should have different, randomly
generated values of loudness and pulse rate (see [38] for
more details).

Only if a new solution is better than the previous one, its
loudness (it is decreased) and its pulse rate (it is increased)
will be updated.

By adjusting the loudness and pulse rate in each iteration
and for each bat individually, the bat algorithm balances
between exploration (global search for searching new
regions) and exploitation (local search in the neighborhood
of promising previous solutions) during the search process.
For this reason, the pulse rate emission rates and the
loudness essentially provide a mechanism for automatic
control and auto zooming in the region with promising
solutions [39].

4.4 Application areas of bat algorithm

The BA metaheuristic has already been successfully applied
to several problem domains. On the one hand, to contin-
uous optimization problems like economic load dispatch
problem [40], parameter estimation [41], diagnosing dis-
eases [42]. On the other hand, to discrete/combinatorial
optimization problems like traveling salesman prob-
lem [43], job shop scheduling [44], patient bed assignment
problem [45], or human pose estimation [46]. Moreover,
first approaches exist for learning association rules, see
Chapter 3. A comprehensive overview of application areas
can be found in [39, 47].

5 Bat4CEP: Applying bat algorithm
to learning of CEP rules

5.1 Bat algorithm for rule learning: general
approach

In this paper, we present Bat4CEP, a bat algorithm for
automatically learning CEP rules by exploiting historical
data streams. Our goal is to learn causal and temporal
relationships between primitive events, which correspond
to a certain situation of interest. In CEP terms, such
a situation is represented by generating a new complex
event, for instance a machine breakdown, fraud incident, or
emergency situation event.

The core idea of our approach is to map of the CEP rule
learning problem described in Section 2 to an optimization
problem: That is, finding the best CEP rule that detects
a particular situation of interest in a data stream out of
the search space of all possible CEP rules. Through this
mapping of problems, an optimization algorithm such as
bat algorithm can be used to find a solution to the learning
problem.

For learning CEP rules with BA we have to adapt the
bat-inspired metaheuristics to the specifics of CEP rule
learning. We try to keep the main features of the canonical
bat algorithm (as introduced on the previous section) and to
limit our changes to the adjustments absolutely necessary
for the tackled discrete problem. The essential adjustments
affect the bat attributes as well as all equations and
operations, which we will describe in the following section
in detail. In [48] a simplified initial version of the approach
was developed.

5.2 Solution space: bat positions

The solution space in our problem is the set of all possible
CEP rules meaningful for the given set of primitive events
emitted in the event stream. Therefore, a bat position in
the solution space corresponds to a certain CEP rule. This
means that in Bat4CEP, a certain CEP rule is considered
as the position xt

i of bat i at time t . 3 The size of the
solution space is determined by the operators of the EPL
(see Section 2) and by the particular event types in the data
stream under investigation.

A key issue is how to represent solution candidates,
i.e. CEP rules in Bat4CEP. There are various ways to
encode a certain CEP rule: e.g. as a string or as a
number. However, we have decided to encode CEP rules as

3In the case of CEP rule learning, a solution is always represented by
a single, individual rule.

15148 R. Bruns and J. Dunkel



Fig. 2 Example of rule encoding
with ECT, ACT and Window

Window

T as t W as w

t.0 w.0 t.1 t.70

Rule Encoding

type size

TCATCE

syntax trees. The syntax tree encoding is well-established
in Genetic Programming [49] and provides us with more
semantic knowledge about the structure of a rule, which
is helpful when modifying the rule in a meaningful way.
In [37], we presented a different approach to rule learning
based on genetic programming that also uses a syntax tree
representation of candidate rules.

As an example for the syntax tree encoding, we
consider the rule introduced in Fig. 1 indicating a machine
breakdown. This sample rule can be written in a pseudo CEP
language as follows:

CONDITION
(T as t → W as w) ∧ (t.0 = w.0 ∧ t.1 > 70)
ACTION new CE

The rule considers two events, one of event type T and
the other of type W , and assigns the alias names t and w to
them.4 The rule condition is fulfilled, if an event instance
of type T occurs followed in time by an event of type W

and the first attribute of both events carry an equal value
as well as the second attribute of t has a value greater
than the constant value 70. If the rule fires then a new
complex event of type CE is generated, which here is the
MachineBreakdownEvent in Fig. 1.

Figure 2 shows the general tree representation of a
CEP rule, which represents the above sample rule. Each
rule component is mapped to a particular tree node. The
encoding of an entire CEP rule is represented by three
syntax trees: (1) condition part 1: event types, (2) condition
part 2: attribute conditions, and (3) sliding window:5 6

4Event types are marked by capital letters, alias names by lower
case letters (numbered if necessary). Attributes of an event instance
t are either numbered (starting with 0): t .0, t .1, t .2, etc., or have
domain-specific names.
5The action part of a CEP rule is not part of the encoding. This is
not necessary, because we restrict our approach to the generation of a
single complex event as the only kind of action clause.
6The inner nodes of the tree are the common EPL operators applicable
to formulate the event pattern, similar to the set of functions F in

1. Event Condition Tree (ECT): The condition part of an
event pattern consists of a combination of several event
types and event instances, e.g. (T → W ). The ECT
encodes event conditions as rule subtrees. The possible
event algebra operators (∧, ∨, →, ¬) are represented as
inner nodes and the event types as leaves of the syntax
tree. Figure 2 depicts the ECT of the above sample rule
with the event condition (T as t → W as w). The inner
node is the temporal sequence operator (→), which has
two operands as child nodes, one event instance of type
T and the other of type W . Alias names are assigned
either to distinguish two event instances of the same
type or to refer the ACT conditions to instances in the
ECT.

2. Attribute Condition Tree (ACT): The event pattern may
contain further conditions to restrict attribute values.
The ACT also encodes attribute conditions as a rule
subtree. Attribute conditions constrain the state of event
instances, e.g. the equivalence of attribute values or
that an attribute value exceeds a threshold. The unique
relation of an attribute to the event instance it belongs
to is achieved by alias names. In the example, the
attributes t .0 and t .1 in the ACT can be dereferenced
to the event instance of type T in the corresponding
ECT. An ACT can only refer to aliases already
defined in the ECT. The common logical and numerical
comparison/arithmetic operators (∧, ∨, ¬, >, <, =, +,
-, etc.) are available to formulate attribute conditions.
Moreover, certain attribute values can be aggregated by
common aggregation functions like avg(), sum(), etc.
The root node of the ACT must either be an operator or
an aggregation function.

3. Sliding Window: A sliding windows is defined by its
type, which is either a length window or a time window,
and its size.

GP. The leaves of the syntax tree are the event types, attributes and
constants, similar to the set of terminals T in GP.

15149Bat4CEP: a bat algorithm for mining of complex event processing rules



The possible operators of ECT and ACT subtrees are
determined by the EPL as described in Section 2. An ECT
is a mandatory component of every rule, whereas an ACT is
optional. In the pseudo code representation, the ECT and the
ACT parts of a rule condition are implicitly connected via a
logical and-operator (∧). In case no ACT exists, its part in
the (implicit) and-operator is assumed as true. The syntax
tree encoding has to respect various constraints to ensure
that a tree can only be mapped to a valid and executable CEP
rule.

5.3 Preprocessing step

The Bat4CEP approach requires a preprocessing step to
extract meta information about the event data from the
training data stream. This data is used for generating or
modifying the ECT and ACT parts of a CEP rule. For
constructing ECT and ACT, we have to determine the set of
all event types and all event attributes with their observed
value ranges. For creating or modifying sliding windows,
the time interval covered by the entire event stream and the
total number of events is determined. This necessary meta
information is obtained by parsing the training data stream
with the historical trace.7

5.4 Flying bats

Obviously, the movement of a bat i between two positions
xt
i and xt+1

i is a crucial part of BA. As presented in
Section 5.2, a bat position in Bat4CEP is a certain CEP
rule. As described in the original work [38], a bat flight
changes the location of a particular bat. Thus, in Bat4CEP, a
bat movement can be considered as changing one CEP rule
(starting position) to another CEP rule (target position).

For changing a CEP rule represented by a syntax tree, a
randomly selected tree node is modified. According to the
type of the selected node and its position in the syntax tree,
one of the following modification steps can be processed:8

• Changing a window: Given a window node, the modifi-
cation operation changes with a certain probability the
type of the window (from length to time or vice versa)
and generates randomly a new window size.

• Changing an ECT: An ECT node is replaced by either
(i) a random event type and, as a consequence, the
previous subtree under the replaced node is erased, or
by (ii) a new random event operator while retaining
the child nodes of the previous operator. If an event

7While the function set F is implemented fix, the set of terminals T is
automatically extracted from the training data stream.
8The rule manipulation operators of the GP approach in [37] had to be
adapted to the Bat metaheuristic.

type node has been replaced by an operator, missing
operands are drawn from the set of all event types.
Note that changing event types in the ECT can cause
incorrect ACT conditions: for instance, if the ACT uses
an event alias name, which has disappeared due to an
ECT modification. In such a case, an ACT repair step
takes place replacing invalid alias names by new and
randomly chosen valid ones.

Figure 3 gives an example of an ECT modification.
The selected node is the root node of the ECT
subtree (marked in dark grey) representing the temporal
sequence operator (→), which is replaced by the
randomly chosen ∧-operator. The original operands
(here the event types A and B) are preserved.

• Changing an ACT: For changing a certain ACT node
we have to distinguish the following ACT node types:
logical operators, comparison operators and operands.

– If the selected node represents a logical
operator (∧, ∨ and ¬) it could be replaced by
(i) another randomly drawn logical operator.
In this case, the original operands are retained.
(ii) As another possibility, the original logical
operator is replaced by a comparison operator
(<, >, ≤, ≥, =) or aggregate function
(avg(), sum(), etc.) along with new randomly
drawn operands (event attributes or numerical
constants). In case the number of operands
of the new operator differs from that of the
replaced operator, a repair step is performed:
either one of the original operands is deleted or
a missing operand is randomly created.

– A node with a comparison operator (<,
>, ≤, ≥, =) can just be replaced by
another randomly chosen comparison operator.
Aggregate functions are treated in the same
way.

– An operand node can be changed to another
event attribute matching the ECT part of the
rule. If the selected operand node is on the
right-hand side of a comparison operator, it can
also be changed to a constant value (out of
the value range of the left-hand side operand).
Changing operands can cause inconsistencies,
if the numerical value of constant value lies
outside the value range of the corresponding
attribute. In this case, a new constant value is
drawn randomly out of the valid value range.

In Bat4CEP, the distance of a bat flight can be considered
as the number of modification steps that has been processed.
A long flight means that the the target position is far away,
i.e. the rule has to be changed in several parts or the above
steps are applied several times, respectively.

15150 R. Bruns and J. Dunkel



Fig. 3 Node modifying on event
condition tree

A B

Original candidate rule

ECT ACT Window

A B

Mutated candidate rule

TCATCE Window

5.5 Evaluating bat positions

During the Bat4CEP learning process, each bat position
must be evaluated, i.e. we want to know, how far it is from
an optimal solution. Because in Bat4CEP each bat position
corresponds to a particular CEP rule, we have to quantify
the quality (or fitness) of this rule.

A CEP rule can be considered as good, if it detects all
situations of interests (and not others) in a data stream. As
described in Section 2 and depicted in Fig. 1, the training
data contains labels (or complex events) representing the
occurrences of situations of interest. These complex events
indicate the exact time instants at which the CEP rule
to be learned should fire. The more often it fires at the
correct (and only at the correct) positions in the training data
stream, the better.

In order to quantify the quality of a given rule, it must be
applied to the training data stream to identify the times at
which the rule fires. By comparing the firing times with the
positions of the labels, we compute the quality values recall
and precision:9

1. recall = T P/(T P + FN) specifies the proportion of
complex events in the examined data stream that are
successfully found by the candidate rule. A recall of 1.0
is optimal because the candidate rule finds all complex
events.

2. precision = T P/(T P +FP) specifies the proportion
of complex events retrieved by the candidate rule that
are correct, i.e. they relate to a complex event in the
examined data. A precision of 1.0 is optimal because
the candidate rule fires only at correct times.

The calculation of the rule quality uses the common F1-
score to blend the different values of recall and precision
providing an aggregated measure of the rule quality. A
perfect rule yields a F1-score of 1.0, when precision and
recall both are 1.0.

9TP (True Positive rate): measures how often the rule does fire at the
right positions, TN (True Negative rate): measures how often the rule
does not fire when it should not, FP (False Positive rate): measures
how often the rule does fire although it should not, FN (False Negative
rate): measures how often the rule does not fire although it should

F1 = 2 ∗ precision ∗ recall

precision + recall
(7)

5.6 Bat4CEP: steps and operations

The Bat4CEP algorithm follows the general idea of the
original BA and controls the movement of a swarm of bats
by the parameters: frequency fi , velocity vi , pulse rate ri
and loudness ai , which are all together defining the behav-
ior of bat i. The movement of a certain bat i is determined
by the causal chain: fi → vi → xi where xi notes the new
position of bat i. It is assumed that all bats change their
positions in fixed time steps t (as in the standard BA).

Frequency: The frequency f t
i controls how the velocity

of a bat i is changed. It is calculated by simplifying (1).
As suggested in [38], we set fmin = 0 and β ∈ [0, 1] as
a random number. The maximum frequency fmax can be
chosen arbitrarily.

f t
i = fmax · β (8)

Velocity For calculating the bat velocity vi we adapt (2).
In particular, the distance between the current bat position
xt−1
i and the position x∗ of the best located bat in (1),

is substituted by the difference between the corresponding
F1-scores (given by (7)):

vt
i = vt−1

i + (F1(xt−1
i ) − F1(x∗)) · f t

i (9)

Note that in each step, the bat velocity is decreased, because
the F1-score of the best bat F1(x∗) is always greater than
that of the current bat position F1(xt−1

i ). This means that a
bat starts flying fast but gets slower, when moving towards
a better solution.

Controlling the flight – Loudness and Pulse Rate As
described in the original bat algorithm [38], loudness at

i and
pulse rate rt

i control the bats behavior. Note that only if a
new bat position proves to be the new best global position
x∗, loudness and pulse rate are recalculated.

• The pulse rate rt
i controls the decision whether a bat

i performs a local search. According to (5), the pulse

15151Bat4CEP: a bat algorithm for mining of complex event processing rules



rate rt
i is calculated by rt+1

i = r0
i [1 − exp(−γ t)]. As

suggested in [38], we choose r0
i ∈ [0, 1] and γ = 0.9.10

In every time step, a random number rand ∈ [0, 1]
is drawn. Only if rand > rt

i is valid, a local search
is performed. Because rt

i is increasing over time and
converging to r0

i , the probability of a local search is
decreasing over time. (This makes sense, because the
bat is approaching a better position.)

• The loudness at
i is calculated from the average loudness

of the former time step by (6) as: at+1
i = α · at

i with
α = 0.9 as suggested in [38] and a0

i > 2. First, the
loudness determines the extend to which the global best
CEP rule is changed during a local search.11 Because
at
i is continuously decreasing and converging to 0, the

number of modification steps is getting smaller over
time.

Secondly, the acceptance of a flight destination as
new best global position depends on loudness. For this
purpose at

i is compared with a random number drawn
from rand ∈ [0, a0]. Only if rand < at

i holds, a
new bat position xt

i with better F1-score than F1(x∗) is
chosen as the new global best solution x∗. This means
that the probability of changing the global best solution
is decreasing over time.

Random flight As in the original bat algorithm [38], the
velocity is used for deriving the destination of a bat’s flight,
i.e. how much the position of the bat is changed (see (3)). In
Bat4CEP, we consider �

f
v the truncated difference between

the current bat’s i frequency f t
i and its velocity vt

i . Then

the value of �
f
v determines the number of modifications

steps (see Section 5.4) that are processed on the rule that
represents the bat’s location of origin:

�f
v = 	f t

i − vt
i 
 (10)

For instance, with frequency f t
i = 5.2 and velocity vt

i = 2.1

the truncated difference �
f
v = 3 means that 3 modification

operations have to be processed on the rule corresponding
to the current bat position xt

i .

Local search A local search starts the bat flight from the so
far best global solution. Using (4), the flight’s target position
is given by xt

i = x∗ + ε · at with the best global position
x∗, the average loudness of all bats at and a random number
ε ∈ [0, 1]. If we transfer this operation to Bat4CEP, then the
global best CEP rule (corresponding with x∗) is changed by
a number of modification steps (see Section 5.4), which is
given by the truncated value of 	ε · at
.

10In our experiments, we achieved best results with a pulse rate
between 0.1 and 0.3.
11as explained in the subsequent subparagraph

Note that applying a number of modification steps to a
candidate rule corresponds to a flight as described in Section
5.4.

5.7 Initializing bat swarm

In an initial step, a bat swarm must be generated, i.e. a
set of bats located at positions representing valid and
executable CEP rules well distributed over the entire
problem space. The generated candidate CEP rules rely on
the meta information gathered during the preprocessing step
described in Section 5.3. The mandatory and optional rule
components are randomly generated for each bat:

1. Window generation: Sliding windows are created at
random: At first, the initialization procedure randomly
chooses a window type assuming that length and time
windows appear with the same probability. At second,
the window size is randomly determined taking the
boundaries observed in the preprocessing step into
account.

2. Event Condition Tree generation: The ECT subtree
is generated by applying the common ramped half-
and-half method [50]. One half of the bat swarm
is initialized by fully filled ECTs with a predefined
maximum depth of the syntax tree. As long as the
maximum depth has not been reached, the procedure
draws uniformly an operator from the set of event
condition operators and continues to generate the
operands as subtrees (event types or again event
condition operators). The other half of the swarm is
created by the grow method, which produces partially
filled trees with a lower depth, i.e. the generated
rules are shorter. Ramped half-and-half initialization
produces a swarm representing a set of initial CEP rules
of great diversity that will converge to more promising
results during the Bat4CEP learning process.

3. Attribute Condition Tree generation: Not every rule
has to specify attribute conditions. Thus, the ACT
subtree is optional and may be omitted during swarm
initialization. Bat4CEP uses a fixed rate to determine
how many bats are equipped with an ACT. Attribute
conditions are created at random by selection of a
comparison operator or an aggregate function and its
suitable operands. Also simple arithmetic expressions
are possible.12 The first operand must be an attribute
of an event type occurring in the ECT, referenced
by an alias already defined in the ECT. The second
operand can either be an event attribute or a (numerical)
constant. The concrete value of a constant is randomly

12As an example, we implemented simple arithmetic expressions with
addition and subtraction operators so far.

15152 R. Bruns and J. Dunkel



chosen out of the value range of the first operand
gathered during the preprocessing step.

The initialization randomly selects possible operators of
the EPL and the current event types of the problem at hand
and generates only valid CEP rules.

5.8 Bat4CEP overview

The steps of the Bat4CEP algorithm are summarized in
pseudo code in Algorithm 2. This algorithm retains the
basic structure of the canonical bat algorithm presented in
Section 4 in Algorithm 1. The necessary adjustments and
extensions for CEP rule learning are incorporated at the
affected statements.

In local search in row 16, a best rule is selected among
the current n% best rules. Please note that the design
of Bat4CEP ensures that only syntactically correct and

executable CEP candidate rules can be generated during the
learning process.

Yang identifies the following three key features as the
reasons for the success of bat algorithms [39]:

• Parameter control: In contrast to other metaheuristic
algorithms, Bat algorithm adjusts the values of param-
eters from iteration to iteration. This automatically
guides the search process from exploration to exploita-
tion.

• Automatic zooming: Bat algorithm has the inbuilt
mechanisms to zoom into promising regions of the
search space. Supported by the automatic move from
exploratory search to local exploitation.

• Change control: Bat algorithm applies the frequency
parameter to influence the extent of changes in a current
solution. This is similar to other swarm algorithms.

The above-mentioned key features also hold for
Bat4CEP, so do the advantages. Bat4CEP exhibits the main
characteristics of the canonical bat algorithm. The very good
performance of Bat4CEP is due to the specific advantages
of the underlying metaheuristic.

6 Experiments and results

We have conducted an extensive number of experiments
to prove the performance of Bat4CEP. In this section, the
obtained experimental results are presented in detail. First,
in Section 6.2, we consider synthetic data streams in order
to systematically investigate the learning of CEP rules of
different complexity. Second, in Section 6.3, we evaluate
our approach on a real-word scenario with traffic data
originating from road sensors in Madrid, Spain. The section
starts with basic details on the setup of the experiments and
concludes with information on key implementation issues.13

6.1 Experiment setting

As already mentioned in Section 2, our approach requires
a training data stream containing labels indicating that a
complex event has occurred, e.g. the historical data stream
with the MachineBreakdownEvent shown in first phase:
pattern learning of Fig. 1. The Bat4CEP algorithm described
in the previous section uses the training data stream to
determine the quality of each candidate rule (= evaluating
bat positions by means of the F1-score in Section 5.5)
in the course of the algorithmic procedure presented in
Algorithm 2.

13The Bat4CEP system is implemented in Java. The source code
and the data sets used in the experiments are available at http://
sw-architecture.inform.hs-hannover.de/files/bat4cep.zip

15153Bat4CEP: a bat algorithm for mining of complex event processing rules

http://sw-architecture.inform.hs-hannover.de/files/bat4cep.zip
http://sw-architecture.inform.hs-hannover.de/files/bat4cep.zip


Labeling For labeling an unlabeled training data stream, a
target rule RT is predefined to be learned by Bat4CEP. This
target rule is executed on the training data stream and inserts
a complex event CE at the appropriate position in the data
stream whenever the event pattern of the target rule matches.
In this way, considering the complex events as labels, we
obtain a labeled training data stream.14

By using the predefined target rule, it is possible to
systematically investigate rules with different levels of
complexity. Thus, it enables us to increase the complexity
of the rule to be learned in a step-by-step manner.

Evaluation process The labeled data stream is used for
performing the experiments and evaluating the quality of
each of the candidate rules that are generated by Bat4CEP.
For this purpose, each candidate rule Rlearn is executed on
the training data stream, comparing its firing times with
the firing times of the target CEP rule RT. By measuring
the TP, TF, FP and FN values as described in Section 5.5,
we can calculate F1-score, precision, and recall values of
rule Rlearn. In this way, the problem of learning a CEP rule
is mapped to an optimization problem: Find a rule Rlearn

with the maximum F1-score for a labelled data stream.
Every independent labelled data stream poses a separate
optimization problem.

For evaluation purpose, we conduct hold-out validation.
Two independent data streams are randomly generated: a
training data set used to run the Bat4CEP learning process
and a test data set used to evaluate how well the best learned
rule Rlearn performs on a different and independent second
data set. The values given for recall and precision in the
tables below report the results obtained on the test data
stream.

Each experiment setting has been run ten times with
different random values. The presented results of an
experiment setting are calculated as the average values over
the ten runs using the recall and precision of the best rule
learned Rlearn in each run.

Bat algorithm control parameters In all experiments
reported in this section, we used the Bat4CEP control
parameters as listed in Table 1. Our algorithm has the
same set of control parameters as the standard BA. The
Bat4CEP algorithm, as shown in Algorithm 2, works with
a swarm size of 500 candidate rules and iterates over 500
time steps at most. We select 5% of the bats in a swarm as
the set of best bats. The concrete values of the parameters
have been determined manually by experimentation. No

14In a real-world scenario, of course, no target rule is known in
advance. In real-world data streams, data labeling can be done in a
variety of ways. For example, manually based on human observations
or automatically by any kind of monitoring device. The performance of
Bat4CEP is completely independent of the way the labeling was done.

Table 1 Control parameters of Bat4CEP algorithm

Control parameter Value

Swarm size 500

Best bats x∗ 5%

Time steps 500

Frequency 2.5

Pulse rate 0.1

Loudness 1

α 0.9

γ 0.9

automatic parameter tuning methods have been applied,
because manual calibration of the algorithm was sufficient
to achieve very good results.

Note that for other experimental settings or different
application scenarios, the parameters of the bat algorithm
may have to be adjusted. Finetuning of model hyperparam-
eters is a common step in all machine learning approaches.

6.2 Performance on synthetic data

Now, we want to investigate the performance of our
approach, in particular for exploring the limits and
capabilities of Bat4CEP. How complex may the rules be that
Bat4CEP is able to find?

Synthetic data For a systematic investigation, we first
produce synthetic training data streams that contain
randomly generated primitive events. Each primitive event
is described by the following information: a timestamp, an
event type and a set of key-value pairs for each attribute. For
instance, [2021-01-21 14:19:31 C:: C.0=4711; C.1=1704]
describes an event of type C with the two attributes: C.0 of
value 4711 and C.1 of value 1704.

The default values of the parameters used for generating
synthetic training and test data streams can be found in
Table 2.

Table 2 Default values of parameters for generating synthetic training
and test data

Data stream parameter Value

Number of event types 10

Distribution of types Uniform

Number of attributes per event 3

Number of primitive events 15,000

Distance between events (in sec) [1,10]

Attribute range [1, 10] or [1, 100]

Number of complex events / labels > 250

15154 R. Bruns and J. Dunkel



Thus, the artificial training and test data streams each
consist of 15,000 primitive events that are instances of
10 different event types. The temporal distance between
successive events is a random value from [1,10] (in
seconds), so the time interval between two consecutive
events is 5 seconds on average. A stream contains at least
250 labels (= corresponding to the situation of interest for
which the relevant event patterns have to be learned).

Learning target rules For each experimental scenario, we
specify a CEP target rule RT of a certain complexity, which
should be learned by Bat4CEP.

This rule RT is then executed on our synthetic data
stream: each time when RT fires, it inserts a label, a complex
event CE, into the training data stream. BatCEP should
now learn a rule that fires at exactly the same places as RT

did. Each individual target rule forms its own separate opti-
mization problem and requires a specific labelled training
data stream.

Table 3 shows some of our results achieved for rules
of increasing complexity.15 Depending on its complexity, a
rule fires between 250 and 850 times on the training data.
The more complex or specific a CEP rule is, the less it will
fire.16

As target CEP rules we have selected a set of typical
event patterns according to the experiments in [37] (rules
1 to 13) supplemented by further operators: The ECT parts
of the rules contain between 2 and 6 different event types
which are combined either by the sequence operator (→),
by the logical conjunction operator (∧), or by the not

operator.
The not operator in ECT specifies the absence of one

event in a matched pattern. This means, for example, that in
rule no. 19 the pattern matches if an event of type A and one
of type C occur in any order, but none of type B between
them. Or in rule no. 20, first an A followed by a C followed
by a D occur and no B between them.

In the ACT parts, we investigated various attribute
conditions:

(i) comparing attribute values between two events with
numerical comparison operators,

(ii) constraining attribute values with numerical thresh-
olds (constant values),

(iii) calculating simple arithmetic expressions (addition
and subtraction operators) and

15In all reported experiments, the window size for each rule is also
learned by Bat4CEP. For the sake of clarity, each rule uses a time
window of 60 seconds not shown in the table.
16Note that it is important that the training data stream contains a
sufficient number of complex events. In our experiment setting, we
achieved good results with more than 250 complex events inserted by
the target rule into the stream.

(iv) combining the corresponding boolean expressions
with logical operators (∧, ∨).

In addition, the rule no. 4 contains a negation operator, e.g. to
state that two attributes of different events must not have the
same value (for instance their IDs must be different).

In total, Table 3 exhibits excellent results. On average
over 10 runs the best rule found by Bat4CEP achieved
always recall and precision values either close to one or it is
one. This means that the learned rule Rlearn finds nearly all
complex events produced by the target rule RT (expressed
by a recall near 1), and that Rlearn nearly never fires at
wrong places, i.e. there is no complex event created by RT

(expressed by a precision near 1).
Even rules with six different event types and six different

attributes in the condition parts (row 11) can be learned
with perfect results. The rule with the worst result is row
13 of Table 3. It consists of a rather complex ECT-ACT
combination, but still has recall and precision values of
0.965 and 0.928, respectively.

To estimate the stability with which our approach delivers
the results over multiple experimental runs, we determined
the 95% confidence intervals. For all rules in Table 3 with
excellent results, we got confidence interval widths smaller
than 1% for the recall and precision values. For the rules
for which Bat4CEP yields slightly worse results (rules 9,
10, 13), we obtained a confidence interval widths between
5% and 9% of the measured values. Rule 8 even had a
confidence width of 16%. This means, that if Bat4CEP has
problems to find a very good rule, the quality of the learned
rules varies more between the different runs. But overall we
can state, that our approach delivers all results with a high
degree of confidence.

Learning aggregation functions A special feature of event
processing languages are the aggregation functions: For
all events of a certain type, which occur within a sliding
window, they aggregate the values of a specific attribute.
In Bat4CEP, we implemented four of the most common
aggregation functions: avg(), sum(), min(), and max().
None of these functions cause any problem for Bat4CEP as
Table 4 shows. Again Bat4CEP learns nearly perfect rules
with very high recall and precision values.

Learning sliding windows Another important concept of a
CEP rule language is sliding windows. The experiments dis-
cussed above learned rules with a fixed-size sliding time
window of 60 seconds (except rules no. 3 and 4 of Table 4).
Table 5 lists the results of experiments with varying window
sizes. We chose two sample rules of different complexity
and varied the window size to 60, 600, 3000, and 6000 sec-
onds: the first rule of Table 4 as well as the sixth rule of
Table 3.

15155Bat4CEP: a bat algorithm for mining of complex event processing rules



Table 3 Bat4CEP results for rules of various complexity

No. ECT ACT Recall Precision

1 A as a → B as b a.0 = b.0 1.0 0.998

2 A as a → B as b a.1 > b.1 0.999 1.0

3 A as a → B as b a.1 < b.1 0.998 1.0

4 A as a → B as b not(a.0 = b.0) 1.0 0.997

5 A as a → B as b a.0 = b.0 ∧ a.1 > b.1 1.0 1.0

6 A as a → B as b → C a.0 = b.0 ∧ a.1 > b.1 0.998 0.997

7 A as a → B as b → C a.0 = b.0 ∧ a.0 = c.0 1.0 0.995

8 (A as a → B as b) ∧ (C as c → D as d) a.0 = b.0 ∧ c.0 = d.0 0.945 0.931

9 (A as a → B as b) ∧ (C as c → D as d a.0 = b.0 ∧ c.1 > d.1 0.964 0.954

10 (A as a → B as b) ∧ (C as c → D as d) a.1 > b.1 ∧ b.1 > c.1 ∧ c.1 > d.1 0.972 0.967

11 A as a ∧ B as b ∧ C as c ∧ D as d ∧ E as e ∧ F as f a.1 > b.1 ∧ c.1 > d.1 ∧ e.0 = f .0 1.0 1.0

12 A as a → B as b a.0 = b.0 ∧ a.1 > b.1 ∧ a.1 > 80 1.0 0.997

13 (A as a → B as b) ∧ (C as c → D as d) a.1 > 60 ∧ b.1 > 60 ∧ c.1 > 60 ∧ d.1 > 60 0.965 0.928

14 A as a → B as b a.0 = b.0 ∨ a.1 > b.1 1.0 1.0

15 A as a → B as b a.1 - b.1 = b.0 1.0 1.0

16 A as a → B as b a.1 + b.1 > 110 1.0 1.0

17 A as a → B as b a.1 - b.1 > a.0 + b.0 1.0 0.997

18 A as a → not B → C as c a.0 = c.0 1.0 1.0

19 (A as a ∧ C as c) ∧ not B a.0 = c.0 1.0 1.0

20 (A as a → C as c → D as d) ∧ not B a.0 = c.0 0.998 0.987

21 A as a → not B → C as c → B as b a.0 = c.0 1.0 0.997

As larger windows contain more events, the fifth column
of the table lists the average number of events per window.

We conducted various experiments with different win-
dow sizes without any significant impact on the excellent
performance of Bat4CEP. Fortunately, the quality of the
results is not affected by changing window sizes or the num-
ber of events in a window, respectively. The larger the win-
dow, the more events it contains (see column Evts in Win).
Once again Bat4CEP yields very good results close to
one.

Increasing the solution space The experiments reported
above rely on synthetic training data streams randomly
generated with the default parameters given in Table 2.

In order to investigate the effect of the size of the solution
space on the performance of the Bat4CEP algorithm,
the data stream generation parameters are varied in the

following. For these experiments we selected two rules of
Table 3 as RT and run different test series:

• rule no. 5: (A as a → B as b ∧ a.0 = b.0 ∧ a.1 > b.1 )
• rule no. 6: (A as a → B as b → C as c ∧ a.0 = b.0 ∧

a.1 > b.1)

On the one hand, we varied the number of event types
from 10 to 80. The results are reported in Table 6. On the
other hand, we varied the number of attributes from 3 to 40.
The results of this test series are reported in Table 7.

In general, increasing the number of event types and the
number of attributes leads to a larger search space in which
it is harder to find a good solution. Considering the rule
no. 5, the enlargement of the search space has only little
influence to the learning result. Bat4CEP stills learns the
rule almost perfectly even with 60 different event types or
40 attributes per event in the training data set.

Table 4 Bat4CEP results for rules with aggregation operators

No. ECT ACT Window Recall Precision

1 A as a a.1 > avg(a.1) 60 1.0 1.0

2 A as a → B as b → C as c a.0 = b.0 ∧ a.1 > avg(b.1) 60 0.993 1.0

3 A as a sum(a.0) > 500 3000 0.996 0.994

4 A as a sum(a.1) > 5000 3000 0.998 0.910

5 A as a → B as b a.1 = min(a.1) ∧ b.1 = max(b.1) 60 0.998 0.935

15156 R. Bruns and J. Dunkel



Table 5 Bat4CEP results for
rules with various window
sizes

No. ECT ACT Window Evts in Win Recall Precision

1 A as a a.1 > avg(a.1) 60 12 1.0 1.0

2 A as a a.1 > avg(a.1) 600 120 0.998 0.999

3 A as a a.1 > avg(a.1) 3000 600 0.991 0.996

4 A as a a.1 > avg(a.1) 6000 1200 0.995 0.997

5 A as a → B as b → C a.0 = b.0 ∧ a.1 > b.1 60 12 1.0 0.996

6 A as a → B as b → C a.0 = b.0 ∧ a.1 > b.1 600 120 1.0 1.0

7 A as a → B as b → C a.0 = b.0 ∧ a.1 > b.1 3000 600 1.0 1.0

8 A as a → B as b → C a.0 = b.0 ∧ a.1 > b.1 6000 1200 1.0 1.0

The rule no. 6 is more complex because it contains one
more event type condition in the ECT. For this rule one
can observe that the larger the search space, the harder it
is to learn the target rule. Up to 40 different event types,
the rule can be learned very well, but if the training data
stream contains 60 or more event types, the values for recall
and precision deteriorate. One reason for deterioration of the
results is that when the number of event types is increased,
the solution space for the ECT grows significantly. The
number of attributes has less impact on rule learning, here a
smaller deterioration of the precision value can be observed.

Examples of learned rule patterns An interesting question
is how the learned rules look like. Of course, in a real
live learning problem, the rule patterns are not known in
advance and have to be extracted by Bat4CEP out of a
labeled training data stream. Therefore, the major quality
criterion of a learning algorithm is how precisely it detects
the relevant patterns in the data stream: the recall and
precision of the learning outcome.

Because each experiment setting has been run ten times
with different random values, also ten different rules have
been found in each experiment. For the sake of clarity, in
the following we selected a typical rule out of the ten runs
for each experiment. Table 8 lists the learned rules Rlearn for
some selected target rules RT of Tables 3, 4, and 5.

The column Occur depicts how often the same rule was
learned in the ten test runs. 100% means that all ten runs

Table 6 Bat4CEP results with different number of event types in data
stream

No. Event Types Rule #5 Rule #6

Recall Precision Recall Precision

1 10 1.0 1.0 1.0 0.998

2 20 1.0 1.0 0.999 0.994

3 40 0.999 0.990 0.975 0.973

4 60 0.990 0.990 0.902 0.845

5 80 0.964 0.938 0.789 0.685

yielded the same rule, while 60% means that six out of ten
runs found the given rule. Especially for the rules 3-4 and
4-5 no particular learned rule really dominated the result.

Moreover, in the table we combined learned rules whose
windows and constants differ only slightly. These rules are
marked by intervals.

It can be stated, that Bat4CEP usually finds learned rules
rather similar to the given target rule. Especially the ECT
part of the pattern is learned in most runs almost exactly.
For simpler rules, e.g. 3-1 to 3-9, also the ACT is learned
exactly. If the rules become more complex, some differences
in the ACT part can be observed. Only for rules 3-4 and
4-5 no typical learning result emerged, because the results
showed several slightly different ACTs. Note that also in
these cases, Bat4CEP learns a rule, which yields perfect
results for precision and recall. This means that for this
training data stream, there are several slightly different rules
that fire in the right places and produce almost the same
results as the target rule.

When learning constants in the ACT, slightly different
values can be observed, marked by using the intervals in the
table. It is not possible to learn the exact threshold values
of event attributes or window sizes used in the target rule if
the observed event stream does not match these values. For
instance, if the target rule contains the condition a.1 > 60,
but only attribute values between [0, 55] and [62, 100] occur
in the stream, then any threshold between 55 and 62 would
yield perfect results.

Table 7 Bat4CEP results with different number of attributes in data
stream

No. Attributes Rule #5 Rule #6

Recall Precision Recall Precision

1 3 1.0 1.0 1.0 0.998

2 6 1.0 1.0 1.0 1.0

3 10 1.0 1.0 0.992 0.981

4 20 0.995 0.919 0.997 0.879

5 40 0.997 0.919 0.988 0.823

15157Bat4CEP: a bat algorithm for mining of complex event processing rules



Ta
bl
e
8

E
xa

m
pl

e
ru

le
pa

tte
rn

s
le

ar
ne

d
by

B
at

4C
E

P

Ta
b-

N
o.

L
ea

rn
ed

E
C

T
L

ea
rn

ed
A

C
T

L
ea

rn
ed

w
in

do
w

O
cc

ur
in

%

3-
1

A
a
s

a
→

B
a
s

b
a

.0
=

b
.0

60
10

0

3-
2

A
a
s

a
→

B
a
s

b
a

.1
>

b
.1

60
80

3-
4

A
a
s

a
→

B
a
s

b
n
o
t(

a
.0

=
b

.0
∧

a
.0

>
b

.3
)

60
30

3-
6

A
a
s

a
→

B
a
s

b
→

C
a

.0
=

b
.0

∧
a

.1
>

b
.1

60
70

3-
9

(A
a
s

a
→

B
a
s

b
)
∧

(C
a
s

c
→

D
a
s

d
)

a
.0

=
b

.0
∧

c
.1

>
d

.1
60

50

3-
11

A
a
s

a
∧

B
a
s

b
∧

C
a
s

c
∧

D
a
s

d
∧

E
a
s

e
∧

F
a
s

f
a

.1
>

b
.1

∧
c
.1

>
d

.1
∧

e
.0

=
f

.0
60

80

3-
12

A
a
s

a
→

B
a
s

b
a

.1
>

[7
0,

80
]
∧

a
.0

=
b

.0
60

50

3-
13

(A
a
s

a
→

B
a
s

b
)
∧

(C
a
s

c
→

D
a
s

d
)

a
.1

>
[5

0,
60

]
∧

b
.1

>
[5

0,
60

]
∧

c
.1

>
[5

0,
60

]
∧

d
.1

>
[5

0,
60

]
60

60

4-
3

A
a
s

a
s
u
m

(a
.0

)
>

[49
9,

50
1]

[2
99

6,
30

02
]

10
0

4-
4

A
a
s

a
s
u
m

(a
.1

)
>

[49
52

,
50

02
]

[3
00

0,
30

04
]

80

4-
5

A
a
s

a
→

B
a
s

b
m

in
(a

.1
)
=

a
.1

∧
m

a
x
(b

.1
)
=

b
.1

60
30

5-
1

A
a
s

a
a

.1
>

a
v
g
(a

.1
)

60
90

5-
3

A
a
s

a
a

.1
>

a
v
g
(a

.1
)

[2
94

0,
31

73
]

90

5-
4

A
a
s

a
a

.1
>

a
v
g
(a

.1
)

[4
84

3,
62

17
]

10
0

It can be seen that very often the exact window size is
found. Especially, the small 60 seconds window used in
the rules of Table 3 is learned exactly in most runs. Large
window sizes are more difficult to learn: they do not form
such a tight boundary, and can be changed more without
affecting when a rule fires, i.e. precision and recall do not
change.

6.3 Performance on real-world traffic data

All experiments presented in the previous section have been
conducted on artificial data under optimal conditions, e.g.
without any noise, missing values, outliers, or incorrect
timestamps. In this section, we would like to investigate how
our approach performs on non-perfect real data.

As a real-world scenario, we applied Bat4CEP on traffic
data collected by the city of Madrid, Spain.17 Loop detector
sensors are distributed in roads all around the city and
measure the traffic flow every 15 minutes. Our goal is
to learn rules that classify the traffic state on a road
segment. In traffic management three different states can
be distinguished: free traffic, dense traffic and congested
traffic.

Among other data, each traffic sensor collects the
following information:

(i) an ID identifying the sensor,
(ii) a timestamp specifying when the data was measured,

(iii) traffic intensity (number of vehicles per hour),
(iv) traffic occupation (percentage to which the loop

detector area is occupied by a vehicle), and
(v) average velocity over all vehicles.

Because the data provided by the sensors is not labeled
with the corresponding traffic state, labeling has to be done
manually. The traffic state can be determined according
to the fundamental diagram of traffic flow theory by rule-
based assignment of traffic classes (see [51]). The traffic
states can be derived as follows:

• free = (occupation < 10 ∧ intensity < 6000 ∧
velocity > 60) OR (occupation < 2 ∧ intensity <

500)

• dense = not (congested or free)
• congested = occupation > 30 ∧ intensity < 6000 ∧

velocity < 40

The above formulae are now used to insert labels into
the sensor data stream that indicate the current state of the
traffic.

The traffic data stream contains only one type of event,
which carries all traffic measurements at a certain time

17Open source traffic data of the city of Madrid can be found in CSV
format on the public data portal: https://datos.madrid.es/portal/site/
egob

15158 R. Bruns and J. Dunkel

https://datos.madrid.es/portal/site/egob
https://datos.madrid.es/portal/site/egob


instance. One measurement event contains three attributes:
(i) inten ∈ [0, 9400] indicating traffic intensity, (ii) occ ∈
[1, 100] indicating traffic occupation, and (iii) veloc ∈ [0,
110] indicating the average velocity.

For our experiments, we selected data from a loop
detector sensor located on the M-30 ring expressway in
Madrid. We run two experiments: The first with the sensor
data measured in the period 01.01.-30.06.2018 (containing
17,338 events) and the second with the data in the period
01.07.-31.12.2018 (containing 16,851 events).

The learning process takes place in three steps, with
three separate rules being learned, one for each traffic state.
Consequently, we need three separate training data streams.
One with labels representing the free state (about 66% of
traffic events), another with labels representing the dense
state (about 30% of traffic events) and a third data set with
congested labels (only 4% of traffic events).

Again, we conduct hold-out validation. We split the data
stream into a training data set and a separate test data set
of almost equal size. Table 9 contains the results of the
Bat4CEP learning process. The presented results are the
results obtained by the best learned rules when applied to
the test data (on average over ten runs).

Since the training data stream contains only events of a
single event type, a learned rule Rlearn has to represent the
traffic flow state via a complex inequation in the ACT. We
receive perfect results for both time periods with very high
F1-score, recall and precision values. The very different
numbers of labels in the training data streams, high for
free traffic and low for congested traffic, have no notable
impact on the learning process. Bat4CEP is able to learn
the appropriate conjunctions of threshold values for the
attributes identifying a certain state.

6.4 Discussion of experimental results

In rows 1 to 13 of Table 3, we have selected the same
set of typical event patterns that has been investigated
with a Genetic Programming (GP) based learning algorithm
in [37]. Although the GP-based approach already obtained
very good learning results, Bat4CEP even outperforms the
GP results for the same rule set.

Table 9 Bat4CEP results of learning traffic flow states

No. Data set State F1-score Recall Precision

1 1st half 2018 free 0.999 0.999 0.999

2 dense 0.985 0.985 0.985

3 congested 0.993 0.990 0.997

4 2nd half 2018 free 0.999 1.0 0.998

5 dense 0.983 0.970 0.996

6 congested 0.995 1.0 0.990

The results are not exactly comparable because slightly
different training data sets with different number of labels
have been used. Nevertheless, it can be stated that the
GP approach performs very well for most rule patterns.
However, there are some critical rule patterns for which
the GP-approach could only achieve recall/ precision values
below 0.9, which is still good but not perfect.

In contrast, Bat4CEP was able to deliver near perfect
results even for the most complex rules with recall/precision
values above 0.928. Thus, Bat4CEP seems to be a very
reliable learning algorithm, regardless the complexity of the
investigated target rules. Moreover, Bat4CEP offers a higher
expressiveness of rules compared to the GP algorithm. In
addition to the standard CEP operators, Bat4CEP is also
capable of learning aggregation functions (avg(), sum(),
min(), and max()), simple arithmetic operators (+ and
−), the OR operator in ACT, and the NOT operator in
ECT which makes the learning task even more challenging.
Overall, Bat4CEP results in a very robust learning algorithm
as it shows no problems with individual rules.

Figure 4 visualizes the convergence of Bat4CEP and GP-
based approach while learning the sample rule no. 12 of
Table 3. The graph shows the results of the F1-score of the
best candidate rule per timestep/generation (calculated as an
average over ten runs each).18

Starting from the best randomly generated candidate rule
of the initial population, both algorithms improve the quality
of the generated rules from timestep to timestep or from
generation to generation, respectively. With Bat4CEP, a
strong increase in solution quality can be observed already
in the first timesteps. An optimal F1-score is reached
after approximately 80 timesteps. In contrast, the GP-based
approach shows a much slower increase in rule quality,
needs much more generations to converge, and, in addition,
achieves a good, but not optimal solution quality in the end.

6.5 Implementation issues

Bat4CEP is implemented in Java and uses the common open
source CEP engine Esper.19 The reported experiments were
run on a cloud infrastructure with 32 processor units and
64 GB RAM. The available processor power is the most
important factor for the runtime of the algorithm.

Due to the characteristics of the underlying bat algorithm,
the number of candidate rules generated during a single
experimental run differs significantly. In every run, the
Bat4CEP algorithm evolves a swarm of 500 bats over (at
most) 500 time steps. It is important to notice that each

18Please note that both algorithms produce a different number of
solutions per timestep/generation.
19https://www.espertech.com/esper/

15159Bat4CEP: a bat algorithm for mining of complex event processing rules

https://www.espertech.com/esper/


Fig. 4 Comparison of
convergence behavior

generated candidate rule has to be deployed in the Esper
engine and then the training data stream has to be analyzed
to determine the F1-score.

For the synthetic data stream, learning the target rules
listed in Table 3 requires the generation of 166,150 to
883,415 candidate rules with a processing time from 5 to
18 minutes. For the real-world traffic scenario, learning the
target rules in Table 9 requires the generation of 45,000
to 1,8261,101 rules with a runtime between 6 to 126
minutes.

Obviously, the learning process requires considerable
computational effort. The more complex a rule the more
candidate rules have to be generated. However, if using a
powerful cloud infrastructure, Bat4CEP is able to learn even
complex rules in acceptable time although in some cases
more than one million candidate rules have to be generated
and evaluated.

The greatest computational effort is caused by the
calculation of fitness: each candidate rule must be run
against the training data stream to calculate TP, TF, FP
and FN values. Therefore, re-evaluation of a rule that
had already been evaluated in the search history should
be avoided. During the evolutionary process, duplicate
rules are especially likely to be generated when the
rule trees are still small. LTMA (Long Term Memory
Assistant for Evolutionary Algorithms) introduced in [52]
is an approach to discover re-visited individuals and
reuse already calculated fitness values. It can significantly
improve the runtime behavior and should be integrated in
next versions of Bat4CEP.

Surrogate models are another well-established approach
to speeding up evolutionary computation [53]. Expensive
exact evaluations are replaced by computationally inexpen-
sive surrogate models. For Bat4CEP, a suitable surrogate

model must approximate the fitness of a candidate rule for
a given training data stream. Finding such an approximate
and computationally cost-effective model is challenging and
beyond the scope of this paper.

7 Conclusion

In this paper, we have successfully developed a new bat-
inspired metaheuristic for the problem of learning CEP
rules. The canonical bat algorithm has been adjusted and
extended for mining CEP rule patterns hidden in massive
data streams. The Bat4CEP algorithm applies the standard
bat algorithm procedure on a swarm of candidate CEP rules
(= bats) and derives new candidate solutions by advanced
modification operators.

The experimental results with synthetic data and real-
world data have proven the feasibility and performance of
Bat4CEP. Even complex rule patterns can be learned nearly
perfectly with Bat4CEP.

In future work, we will focus on investigating the perfor-
mance of Bat4CEP on more real-world application scenar-
ios. And, if necessary, to further extend the expressiveness
of the rule language that can be learned.

Because each bat behaves autonomously to a great
extend, the Bat4CEP algorithm has a high potential to
be parallelized. In some approaches, multiple swarms
that work concurrently have already been successfully
applied in bat algorithms [23, 54]. They propose different
approaches how independently acting bat swarms cooperate
for finding an optimal solution. A further improvement
of the runtime behavior of Bat4CEP could be achieved
by using LTMA (Long Term Memory Assistant for
Evolutionary Algorithms) [52].

15160 R. Bruns and J. Dunkel



Another exciting future line of work would be to investi-
gate some other modern metaheuristics for the rule learning
problem and compare them with Bat4CEP. Some of the
latest population-based metaheuristics which have received
considerable attention and have successfully solved several
real-world problems include whale optimization algorithm
(WOA) for the design of silicon-on-insulator FinFET [55],
bacterial foraging optimization (BFO) for machine learn-
ing [56], and slime mould algorithm (SMA) for tuning of
fuzzy controllers [57], just to name of few.

In addition, hybrid approaches attempt to mitigate the
disadvantages of a single metaheuristic and combine the
advantages of two metaheuristics, e.g. [58].

Acknowledgements We would like to thank our master students
Mr. Rene Knop and Mr. Serif Seremet for their support. Mr. Knop
developed a first version of the approach in his master thesis and Mr.
Seremet provided most of the implementation and experimentation
work.

Author Contributions All authors contributed to the study conception
and design. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Availability of Data and Materials The datasets generated during
and/or analysed during the current study are available at http://
sw-architecture.inform.hs-hannover.de/files/bat4cep.zip

Code Availability The source code of the system is available at http://
sw-architecture.inform.hs-hannover.de/files/bat4cep.zip

Ethics Approval Not applicable

Consent to Participate Not applicable

Consent for Publication Not applicable

Conflict of Interest The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Etzion O, Niblett P (2010) Event processing in action. Manning,
USA

2. Luckham D (2002) The power of events: An introduction
to complex event processing in distributed enterprise systems.
Reading, MA

3. Mernik M, Heering J, Sloane AM (2005) When and how
to develop domain-specific languages. ACM Comput Surv
37(4):316–344. https://doi.org/10.1145/1118890.1118892

4. Kosar T, Bohra S, Mernik M (2016) Domain-specific languages:
a systematic mapping study. Inf Softw Technol 71:77–91.
https://doi.org/10.1016/j.infsof.2015.11.001

5. Margara A, Cugola G, Tamburrelli G (2014) Learning from the
past: Automated rule generation for complex event processing.
In: Proceedings of the 8th ACM international conference on
distributed event-based systems. ACM, pp 47–58

6. Mousheimish R, Taher Y, Zeitouni K (2016) Complex event pro-
cessing for the non-expert with autoCEP: Demo. In: Proceedings
of the 10th ACM international conference on distributed and
event-based systems, DEBS ’16. ACM, New York, pp 340–343

7. Mousheimish R, Taher Y, Zeitouni K (2017) Automatic learning
of predictive CEP rules: Bridging the gat between data mining
and complex event processing. In: Proceedings of the 11th ACM
international conference on distributed and event-based systems,
DEBS ’17. ACM, New York, pp 158–169

8. Cugola G, Margara A (2012) Processing flows of information:
From data stream to complex event processing. ACM Comput
Surv 44(3):15:1–15:62. https://doi.org/10.1145/2187671.2187677

9. Bruns R, Dunkel J (2015) Complex Event Processing: Komplexe
Analyse von massiven Datenströmen mit CEP. Springer Vieweg,
Wiesbaden. in German

10. Agrawal R, Srikant R (1994) Fast algorithms for mining
association rules in large databases. In: Proceedings of the 20th
international conference on very large data bases, VLDB ’94.
Morgan Kaufmann Publishers Inc., San Francisco, pp 487–499

11. Han J, Pei J, Yin Y (2000) Mining frequent patterns
without candidate generation. SIGMOD Rec 29(2):1–12.
https://doi.org/10.1145/335191.335372

12. Quinlan JR (1993) C4.5: Programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco

13. Chen M, Ludwig SA (2012) Discrete particle swarm optimization
with local search strategy for rule classification. In: Fourth
world congress on Nature and Biologically Inspired Computing
(NaBIC), pp 162–167

14. Gupta M, Ram S (2012) Application of weighted particle swarm
optimization in association rule mining. Int J Comput Sci Inf 1

15. Hassani K, Lee WS (2013) An incremental parallel particle
swarm approach for classification rule discovery from dynamic
data. In: 12th international conference on machine learning and
applications, vol 1, pp 430–435

16. Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with
an ant colony optimization algorithm. IEEE Trans Evol Comput
6(4):321–332. https://doi.org/10.1109/TEVC.2002.802452

17. Liu B, Abbas HA, McKay B (2003) Classification rule discovery
with ant colony optimization. In: IEEE/WIC international
conference on intelligent agent technology, 2003. IAT 2003,
pp 83–88

18. Smaldon J, Freitas AA (2006) A new version of the ant-miner
algorithm discovering unordered rule sets. In: Keijzer M (ed) 2006
Genetic and Evolutionary Computation Conference, vol 1. ACM
Press, New York, pp 43–50

19. Khan K, Sahai A (2012) A fuzzy c-means bi-sonar-based
metaheuristic optimization algorithm. Int J Artif Intell Interact
Multimed 1(7):26–32. https://doi.org/10.9781/ijimai.2012.173

15161Bat4CEP: a bat algorithm for mining of complex event processing rules

http://sw-architecture.inform.hs-hannover.de/files/bat4cep.zip
http://sw-architecture.inform.hs-hannover.de/files/bat4cep.zip
http://sw-architecture.inform.hs-hannover.de/files/bat4cep.zip
http://sw-architecture.inform.hs-hannover.de/files/bat4cep.zip
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/335191.335372
https://doi.org/10.1109/TEVC.2002.802452
https://doi.org/10.9781/ijimai.2012.173


20. Damodaram R, Valarmathi ML (2012) Phishing website detection
and optimization using modified bat algorithm. Int J Eng Res Appl
2:870–876

21. Song A, Ding X, Chen J, Li M, Cao W, Pu K (2016) Multi-
objective association rule mining with binary bat algorithm. Intell
Data Anal 20(1):105–128

22. Heraguemi KE, Kamel N, Drias H (2014) Association rule mining
based on bat algorithm. In: Pan L (ed) Bio-Inspired Computing -
Theories and Applications: 9th International Conference, BIC-TA
2014, Wuhan, China, October 16-19, 2014. Proceedings. Springer,
Berlin, pp 182–186

23. Heraguemi KE, Kamel N, Drias H (2016) Multi-swarm
bat algorithm for association rule mining using multi-
ple cooperative strategies. Appl Intell 45(4):1021–1033.
https://doi.org/10.1007/s10489-016-0806-y

24. DeLaHiguera C (2010) Grammatical inference: Learning
automata and grammars. Cambridge University Press, Cambridge

25. Kovačević Ž, Mernik M, Ravber M, Črepinšek M (2020)
From grammar inference to semantic inference—an evolu-
tionary approach. Mathematics,(8), 5. https://doi.org/10.3390/
math8050816

26. Hrnčič D, Mernik M, Bryant BR, Javed F (2012) A memetic gram-
mar inference algorithm for language learning. Appl Soft Comput
12(3):1006–1020. https://doi.org/10.1016/j.asoc.2011.11.024

27. Simsek MU, YildirimOkay F, Ozdemir S (2021) A deep learning-
based cep rule extraction framework for IoT data. The Journal of
Supercomputing. https://doi.org/10.1007/s11227-020-03603-5

28. Wanner J, Wissuchek C, Janiesch C (2020) Machine learning
and complex event processing - a review of real-time data
analytics for the industrial internet of things. Enterprise Model
Inf Syst Architect (EMISAJ) - Int J Conceptual Model 15:1–27.
https://doi.org/10.18417/emisa.15.1

29. Frömmgen A, Rehner R, Lehn M, Buchmann A (2015)
Fossa: Learning ECA rules for adaptive distributed systems. In:
Proceedings of the IEEE International Conference on Autonomic
Computing (ICAC). IEEE, pp 207–210

30. Weiss GM, Hirsh H (1998) Learning to predict rare events in event
sequences. In: Proceedings of the 4th international conference on
knowledge discovery and data mining. AAAI Press, New York,
pp 359–363

31. Sen S, Stojanovic N, Stojanovic L (2010) An approach for iterative
event pattern recommendation. In: Proceedings of the Fourth
ACM international conference on distributed event-based systems,
DEBS ’10. ACM, New York, pp 196–205

32. Turchin Y, Gal A, Wasserkrug S (2009) Tuning complex event
processing rules using the prediction-correction paradigm. In:
Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems, DEBS ’09. ACM, New York,
pp 10:1–10:12

33. Pielmeier J, Braunreuther S, Reinhart G (2018) Approach for
defining rules in the context of complex event processing.
Procedia CIRP 67:8–12. 11th CIRP Conference on Intelligent
Computation in Manufacturing Engineering, 19-21 July 2017,
Gulf of Naples, Italy

34. Mehdiyev N, Krumeich J, Enke D, Werth D, Loos P (2015)
Determination of rule patterns in complex event processing using
machine learning techniques. Procedia Comput Sci 61:395–401

35. Petersen E, Antonio To M, Maag S, Yamga T (2018) An
unsupervised rule generation approach for online complex event
processing. In: IEEE 17th international symposium on network
computing and applications (NCA). IEEE, Cambridge, pp 1–8

36. Mousheimish R, Taher Y, Zeitouni K (2016) Automatic learning
of predictive rules for complex event processing: Doctoral
symposium. In: Proceedings of the 10th ACM international
conference on distributed and event-based systems, DEBS ’16.
ACM, New York, pp 414–417

37. Bruns R, Dunkel J, Offel N (2019) Learning of complex event
processing rules with genetic programming. Expert Syst Appl
129:186–199. https://doi.org/10.1016/j.eswa.2019.04.007

38. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In:
González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds)
Nature Inspired Cooperative Strategies for Optimization (NICSO
2010), studies in computational intelligence. Springer, Berlin,
pp 65–74

39. Yang X-S, He X (2013) Bat algorithm: Literature review
and applications. Int J Bio-Inspired Comput 5(3):141–149.
https://doi.org/10.1504/IJBIC.2013.055093

40. Al-Betar MA, Awadallah MA (2018) Island bat algorithm for
optimization. Expert Syst Appl 107:126–145. https://doi.org/10.
1016/j.eswa.2018.04.024

41. Alsalibi B, Abualigah L, Khader AT (2020) A novel
bat algorithm with dynamic membrane structure for
optimization problems. Appl Intell 51:1992–2017.
https://doi.org/10.1007/s10489-020-01898-8

42. Soliman OS, Elhamd EA (2015) A chaotic levy flights bat
algorithm for diagnosing diabetes mellitus. Int J Comput Appl
111(1):36–42

43. Saji Y, Barkatou M (2021) A discrete bat algorithm based on levy
flights for euclidean traveling salesman problem. Expert Syst Appl
172:114639. https://doi.org/10.1016/j.eswa.2021.114639

44. Dao T-K, Pan T-S, Nguyen T-T, Pan J-S (2018) Paral-
lel bat algorithm for optimizing makespan in job shop
scheduling problems. J Intell Manuf 29(2):451–462.
https://doi.org/10.1007/s10845-015-1121-x

45. Taramasco C, Olivares R, Munoz R, Soto R, Villar M, de
Albuquerque VHC (2019) The patient bed assignment problem
solved by autonomous bat algorithm. Appl Soft Comput
81:105484. https://doi.org/10.1016/j.asoc.2019.105484

46. Akhtar S, Ahmad AR, Abdel-Rahman EM (2012) A metaheuristic
bat-inspired algorithm for full body human pose estimation. In:
Ninth conference on computer and robot vision, pp 369–375

47. Jayabarathi T, Raghunathan T, Gandomi AH (2018) The bat
algorithm, variants and some practical engineering applications: A
review. In: Yang X-S (ed) nature-inspired algorithms and applied
optimization. Springer International Publishing, Cham, pp 313–
330

48. Knop R (2017) Ein Bat-Algorithmus zum Lernen von Complex
Event Processing Regeln aus Ereignisdaten. Master’s Thesis,
Hochschule Hannover, Department of Computer Science

49. Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic
programming Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, UK. With contributions by J. R.
Koza

50. Koza JR (1992) Genetic programming: On the programming of
computers by means of natural selection. MIT Press, Cambridge

51. Helmers M (2018) Analyse von Verkehrssensordaten mit dem
Datamining-Tool WEKA am Beispiel von Realdaten der Stadt
Madrid. Master’s Thesis, Hochschule Hannover, Department of
Computer Science

52. Črepinšek M, Liu S-H, Mernik M, Ravber M (2019) Long term
memory assistance for evolutionary algorithms. Mathematics 7.
https://doi.org/10.3390/math7111129

53. Jin Y (2011) Surrogate-assisted evolutionary computation: Recent
advances and future challenges. Swarm Evol Comput 1(2):61–70.
https://doi.org/10.1016/j.swevo.2011.05.001

54. Wang GG, Chang B, Zhang Z (2015) A multi-swarm bat algorithm
for global optimization. In: IEEE Congress on Evolutionary
Computation (CEC), pp 480–485

55. Kaur G, Gill SS, Rattan M (2020) Whale optimization algorithm
for performance improvement of silicon-on-insulator FinFET. Int
J Artif Intell 18:63–81

15162 R. Bruns and J. Dunkel

https://doi.org/10.1007/s10489-016-0806-y
https://doi.org/10.3390/math8050816
https://doi.org/10.3390/math8050816
https://doi.org/10.1016/j.asoc.2011.11.024
https://doi.org/10.1007/s11227-020-03603-5
https://doi.org/10.18417/emisa.15.1
https://doi.org/10.1016/j.eswa.2019.04.007
https://doi.org/10.1504/IJBIC.2013.055093
https://doi.org/10.1016/j.eswa.2018.04.024
https://doi.org/10.1016/j.eswa.2018.04.024
https://doi.org/10.1007/s10489-020-01898-8
https://doi.org/10.1016/j.eswa.2021.114639
https://doi.org/10.1007/s10845-015-1121-x
https://doi.org/10.1016/j.asoc.2019.105484
http://lulu.com
http://www.gp-field-guide.org.uk
https://doi.org/10.3390/math7111129
https://doi.org/10.1016/j.swevo.2011.05.001


56. Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2020) An enhanced
bacterial foraging optimization and its application for training
kernel extreme learning machine. Appl Soft Comput 86

57. Precup R-E, David R-C, Roman R-C, Szedlak-Stinean A-I,
Petriu EM (2021) Optimal tuning of interval type-2 fuzzy con-
trollers for nonlinear servo systems using slime mould algorithm.
Int J Syst Sci:1–16. https://doi.org/10.1080/00207721.2021.
1927236

58. Elaziz MA, Heidari AA, Fujita H, Moayedi H (2020) A compet-
itive chain-based harris hawks optimizer for global optimization
and multi-level image thresholding problems. Appl Soft Comput
95:106347. https://doi.org/10.1016/j.asoc.2020.106347

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Ralf Bruns is a professor of computer science at the Hochschule
Hannover (University of Applied Sciences and Arts). He received
a Diploma degree and a Doctoral degree in computer science from
University of Oldenburg (Germany). His research interests include
software architecture, complex event processing, evolutionary and
swarm algorithms. Prof. Bruns has authored several research papers
that focus on the application of artificial intelligence techniques to
real-world problems.

Jürgen Dunkel is a professor of computer science at the Hochschule
Hannover (University of Applied Sciences and Arts). He received a
Diploma degree in computer science from University of Dortmund and
a Doctoral degree from University of Hagen (Germany). His research
interests include data stream processing, recommender systems and
swarm algorithms. He is a member of the German Computer Science
Society.

15163Bat4CEP: a bat algorithm for mining of complex event processing rules

https://doi.org/10.1080/00207721.2021.1927236
https://doi.org/10.1080/00207721.2021.1927236
https://doi.org/10.1016/j.asoc.2020.106347

	Bat4CEP: a bat algorithm for mining of complex event processing rules
	Abstract
	Introduction
	Problem of mining CEP rules
	Related work
	Swarm-based metaheuristics learning of association rules
	Bat algorithm for classification and association rule learning
	Grammatical inference
	Machine learning of CEP rules

	Basics of bat algorithm
	Basic bat algorithm in pseudo code
	Generation of new solutions: random flight and local search
	Random flight operator
	Local search operator

	Control of search: loudness and pulse rate
	Application areas of bat algorithm

	Bat4CEP: Applying bat algorithm to learning of CEP rules
	Bat algorithm for rule learning: general approach
	Solution space: bat positions
	Preprocessing step
	Flying bats
	Evaluating bat positions
	Bat4CEP: steps and operations
	Velocity
	Controlling the flight – Loudness and Pulse Rate
	Random flight
	Local search



	Initializing bat swarm
	Bat4CEP overview

	Experiments and results
	Experiment setting
	Labeling
	Evaluation process
	Bat algorithm control parameters



	Performance on synthetic data
	Synthetic data
	Learning target rules
	Learning aggregation functions
	Learning sliding windows
	Increasing the solution space
	Examples of learned rule patterns



	Performance on real-world traffic data
	Discussion of experimental results
	Implementation issues

	Conclusion
	Declarations
	References


