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Abstract

There has been steady growth in the adoption of Unmanned Aerial Vehicle (UAV) swarms by operators due to their time
and cost benefits. However, this kind of system faces an important problem, which is the calculation of many optimal paths
for each UAV. Solving this problem would allow control of many UAVs without human intervention while saving battery
between recharges and performing several tasks simultaneously. The main aim is to develop a Reinforcement Learning based
system capable of calculating the optimal flight path for a UAV swarm. This method stands out for its ability to learn through
trial and error, allowing the model to adjust itself. The aim of these paths is to achieve full coverage of an overflight area for
tasks such as field prospection, regardless of map size and the number of UAVs in the swarm. It is not necessary to establish
targets or to have any previous knowledge other than the given map. Experiments have been conducted to determine whether
it is optimal to establish a single control for all UAVs in the swarm or a control for each UAV. The results show that it is
better to use one control for all UAVs because of the shorter flight time. In addition, the flight time is greatly affected by the
size of the map. The results give starting points for future research, such as finding the optimal map size for each situation.

Keywords UAV swarm - Path planning - Reinforcement learning - Q-Learning - Artificial neural network - Agriculture

1 Introduction

New applications of Unmanned Aerial Vehicle (UAV or
drones) swarms are developed nearly every day for different
problems, such as crop monitoring [1, 2], forestry activities
[3], space exploration [4, 5], or military and rescue missions
[6]. The main reason for that popularity lies in the advan-
tages offered by UAVs, such as low cost, great maneu-
verability, safety, and convenient size for certain kinds of
maneuvers [7]. However, they also have disadvantages, the
main one being battery consumption, which limits flight
time. When UAVs are used in a group or swarm, their flight
time limitations are reduced. In other words, several UAVs
flying simultaneously allows many tasks to be carried out in
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less time because flight paths are shorter (Fig. 1). The flight
paths of each UAV are shorter when multiple UAVs fly at
the same time (Fig. 1d) than if one UAV has to fly over the
complete flight environment (Fig. 1c). This minimizes the
probability that the UAVs’ battery capacities will be insuffi-
cient to allow them to fly over the terrain. As a result of the
lower energy usage, there is a lower risk of a UAV crashing
in the middle of an activity, resulting in less damage.

The use of UAV swarms can also provide fault tolerance.
If only one UAV is used and it crashes, the activity must be
stopped. However, if there are several UAVs, the surviving
UAVs could assume all or part of the duties of the fallen
UAV. This ensures that the work is completed to the best of
our ability. Suspending a process when a job is urgent, such
as in an emergency or a rescue operation, is difficult since
time is of the essence. As a solution, even if one of the UAVs
fails, the rescue can continue when using swarms of UAVs.

When the first flight tests were conducted, as many
operators as UAVs were required, significantly increasing
the operational costs. More recently, advances have been
registered in the creation of algorithms [8] and telecommu-
nications [9] necessary for the control of the entire swarm
with only one user capable of executing the systems. These
advances grant better and faster communications between
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Fig.1 When a swarm of three
UAV5s is used instead of a single
UAV, the number of cells visited
drastically changes. When one
UAV is used alone, it visits a
disproportionately large number
of cells compared with the
number of cells it would visit if
used in conjunction with other
UAVs. If the map size is too
extensive, the UAV may not be
able to visit as many cells
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UAVs and grant the fast calculation of collision avoidance
paths, so that less human intervention is required if there
is any risk. Thus, the operation is less expensive because it
requires fewer personnel.

To deal with the complexity of this kind of development,
in Swarm Intelligence, different algorithms are proposed
that are capable of simultaneously coordinating numerous
agents. This coordination is based on a group of individuals
that follows common simple rules in a self-organized and
robust way [10].

Today, some of these path planning algorithms have mi-
litary applications. The few civilian applications are usually
to follow or reach targets, such as mapping paths through
cities [11]. There are few systems oriented to agricultural
and forestry use, specially dedicated to the optimization of
the field prospecting tasks. Table 1 lists ten publications that
demonstrate how different systems solve the Path Planning
problem in various scenarios.

The aim of this paper is to use Q-Learning techniques to
build a system for solving the Path Planning problem in 2D
grid-based maps with different numbers of UAVs. The main
contributions of this paper are: 1) a novel system capable
of calculating the optimal flight path for UAVs in a swarm
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for field coverage in prospecting tasks; 2) a system capable
of calculating the flight path of any number of UAVs and
with any map size; 3) one of the few systems capable of
calculating paths without the need to set targets or provide
information other than the actual state of the map; and 4) a
study on the difference in the results of using a global ANN
for all UAVs and using one ANN per UAV.

This paper has the following structure: in Section 2,
there is a brief summary of the current state of the art; in
Section 3, an explanation is given of the technical aspects
necessary for the development of the proposed algorithm;
in Section 4, there is a summary of the results obtained
from the experimentation process; in Section 5, the results
obtained are discussed; in Section 6, the conclusions rea-
ched after reviewing the results obtained are listed; finally,
Section 7, lists the possible works and studies into which the
problem to be addressed can derive.

2 Background

In the state of the art, there are several approaches, two of
which are particularly noteworthy [11]: the first one makes
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Table 1 The two primary types

Publication

Observations

of techniques utilized for Path Technique
Planning problems with UAVs ]
are summarized in the table Reinforcement

below Learning [12]

Evolutionary
Computation [18]

Huang et al. [22]
Perez-Carabaza et al. [23]

Baldazo et al. [13]
Yang et al. [14]
Roudneshin et al. [15]
Luo et al. [16]

Speck et al. [17]

Duan et al. [19]
Zhuo et al. [20]
Olson et al. [21]

Use in emergencies or disasters.

Battery energy is considered for path planning.
Combine UAVs and ground robots.

Requires pretraining phase.

Tested on fixed-wing UAVs.

Duan et al. [19]

Path smoothing is required.

Focused in maximizing coverage while
minimizing flight time.

Flight time is considered.

Paths should be smoothed.

Each example includes an observation to demonstrate the wide range of approaches to the problem

use of Reinforcement Learning (RL) [12]; while the second
one focuses on Evolutionary Computing (EC) [18].

RL algorithms for path planning are the most abundant
in the state of the art. For example, Xie et al. use the Q-
Learning strategy for three-dimensional path planning [24].
The notion of Heuristic Q-Learning was introduced. This
allows a more precise adjustment of the reward depending
on the current state and possible actions, leading to faster
convergence to the optimal result. Deep Q-Learning is
used by Roudneshin et al. to control swarms of UAVs and
heterogeneous robots [15]. Rather than using only UAVs,
this research incorporates a mix of terrestrial robots into
the swarms. However, this is a more challenging problem
of swarm path planning than using only UAVs. Due to the
differences in restrictions faced by air and ground vehicles,
the problem has become more complex to solve. As a result,
a land vehicle is more constrained in its mobility and might
meet non-geographic impediments.

Others, such as Luo et al.,, employ the RL algorithm
known as SARSA [25], where they tested their Deep-
SARSA algorithm in dynamic environments with changing
obstacles [16]. They demonstrate how their system behaves
in different contexts, demonstrating their utility in the real
world. The model requires a pretraining phase, which may
limit its application in unfamiliar situations due to the
time commitment. When generalizing, Speck et al. integrate
object-focused learning with this method in a highly ef-
ficient decentralized way [17]. As it was designed for fixed-
wing UAVs, this capacity for generalization may be limited,
and because these aircraft lack stationary flying capabilities,
the configuration of these UAVs restricts the system’s use to
situations where fixed-wing UAVs are the best option.

On the other hand, there are EC-based methods. For
example, Duan et al. combine a genetic algorithm with the
VND search algorithm [19]. An initial individual is genera-

ted based on the heuristics of its nearest neighbors and the
rest of the initial individuals are configured randomly. The
use of the closest neighbors limits the generation of indivi-
duals. Especially in the case of many equally close neigh-
bors. In that situation, it is necessary to establish a criterion
to determine whether the individual is a member of a group.
Recently, Liu et al. employed Genetic Algorithms to adjust
ANN for flight path generation [26]. Relying only on the
ANN for path computation makes their system dependent
on more parameters than weights. Therefore, other parame-
ters, such as learning rates or adjusting the architecture of
the ANN should be adjusted.

There are other methods applied to path planning with
UAV swarms. For example, Vijayakumari et al. make use of
Particle Swarm Optimization for optimal control of multiple
UAVs in a decentralized way [27]. They manage to simplify
the computation of the problem by means of discretization.
They rely on distances for collision avoidance. Although
this is a dynamic variable, in certain types of non-stationary
flight UAVs, such as fixed-wing UAVs, it does not guarantee
collision avoidance. In these cases, a metric that predicts the
state of the UAV and the obstacle at future moments in time
is of interest and thus makes a decision. Otherwise, the UAV
would continue to move forward while the decision is being
computed. Li et al. make use of Graph Neural Networks
for path computation in robotic systems. Thus, they achieve
more capacity for generalization in the face of new cases
than other more widely used techniques [28]. Since they are
dealing with two ANNS, previous training is necessary in
different and very varied cases. Otherwise, ANNs could be
overfitted in several flight areas and swarm structures.

As has been shown in the associated literature, systems
often require extra map information, such as targets or
distance maps. In addition, they use maps with a fixed
number of cells. The aim of this work is to propose a system
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without the need for extra map information and that works
with any map size.

3 Materials and methods
3.1 Problem formulation

Path Planning issues with multiple vehicles are subject
to several factors in order to ensure standards of control,
cooperation and safe operation while maintaining efficiency
and effectiveness. Therefore, it is necessary to be able to
solve the problems related to these variables as problems
inherent to the main objective.

These problems are (Fig. 2): first, to establish the fligh
t environment; second, to define the UAV movements; third,
to establish the most appropriate technique for path calcu-
lation; fourth, to establish the optimal parameters to solve
the problem; and, finally, to define mechanisms to confirm
the validity of the proposed model and the satisfaction
criteria of the results obtained.

3.2 Flight environments

Despite the existence of well-known tools for flight simu-
lation with UAV swarms, such as AirSim [29], no large
datasets are known to be used by most authors. Previously
published works, described in Section 2, used fixed squared
maps of dimensions between 10x10 and 20x20. The
approach presented in this paper takes a wider point of view
allowing the use of arbitrary polygons as maps, e.g. the one
presented in Fig. 3a. To do this, the following steps have
been followed:

1. The minimum bounding rectangle (MBR) of the map
has to be calculated such as in Fig. 3b. The map polygon
is surrounded by a rectangle of the smallest possible
size based on the combined spatial extent of one or more
selected map features [30]. In this case, based on its
vertices.

2. The resulting MBR is divided into cell, as shown in
Fig. 3c. Cells in the resulting grid have to be labelled as
visitable and non-visitable.

Fig.2 Diagram with the
formulation of Path Planning
problems. It summarizes all the
inherent and necessary problems
to guarantee the validity of the

3.3 Proposed method
3.3.1 Reinforcement learning

Reinforcement Learning (RL) [12] was chosen as the tech-
nique for calculating the optimal path to cover the maps by
the UAVs. With this technique, the agents learn the desired
behavior based on a trial-and-error scheme of tests executed
in an interactive and dynamic environment [12, 31, 32].
The goal is to optimize the behavior of the agent in respect
to a reward signal that is provided by the environment.
The actions of the agent can also affect the environment,
complicating the search for the optimal behavior [33].

All RL algorithms follow a common structure, the only
difference is the learning strategy. There are several types
of these strategies which allow the models to deal with
different problems. For this paper, it has been decided to use
a variant known as Q-Learning [34]. The main motivation is
that, unlike other variants, it does not require a model of the
environment.

3.3.2 Q-Learning

Classic Q-Learning algorithms [34] are a kind of off-policy
RL algorithms, so the agents can use their experience to
learn the values of all the policies in parallel, even when they
can follow only one policy at a time [35]. It follows a model-
free strategy [36], where the agent acquires knowledge
by following a policy only by trial-and-error. In this way,
Q-Learning convergence towards the optimal solution is
greedy, allowing the optimal solution to be reached without
being dependent on the decision-making policy. In other
words, it makes decisions based purely on the environment
surrounding the agent and its interactions with it. In this
way, it is guaranteed that the system can work with different
types of environments without having to search for the
optimal policy that works in all of them. The “Q” in Q-
learning stands for quality, which tries to represent how
useful a given action is in gaining some future reward.

The most well-known advantage of Q-Learning over
other RL techniques is that it can compare the expected
utility of various actions without requiring an environment
model. The ease with which it generalizes environments

PATH
PLANNING

final system
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Y. Y. Y. Y
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Fig.3 (a) Example of the
polygon representing the area of
the indicated field. (b) The same
polygon (blue) surrounded by its
minimum bounding rectangle
(black). The MBR must be as
close as possible to the polygon.
(c) The MBR divided into cells.
The black cell is the starting
point of the UAVs. The gray
cells are those that cannot be
flown over and the white cells
are those that can be flown over

(a) Field polygon

(b) MBR
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without having to model them is the main reason for it ha-
ving been chosen for this research. In addition, the main
difference between these algorithms and other RL algori-
thms is that they determine the best action based on the
values in a table. The table is known as Q-table and the
values as Q-values. These values determine how rewarding
it would be to perform each action given the current state
of the environment. From these values, the action with the
highest value for each state is chosen. Typically, models
are trained by combining their previous predictions with
Bellman’s (1). The equation has different elements: Q(s, a)
is the function that calculates the Q-value for the current
state (s), of the set of states S, and for the giving action
(a), of the set of actions A, r is the reward of the action
taken in that state and it is computed by the reward function
R(s,a), y is the discount factor and arg max, (Q(s’, a’))
is the maximum computed Q-value of the pair (s, a’)
represented as Q(s’, a’). The pair (s, a’) is a potential next
state-action pair. (s’ is the next state and it is given by the
transition function 7 (s, a) which returns the state resulting
from performance of the selected action. The a’, is each
one of the available actions. Through an initial exploration
process, the chosen value for y is 0.91.

O(s,a) < r+yx argme/lx(Q(s/, a’)) €h)

4 6 8 10 12 14 16 18 20

(¢) Grid map

Alternatively, in recent years, a modification has arisen
called Deep Q-learning. This method differs from the
classic Q-Learning [34] in that it seeks to improve the
calculation of the Q table through Machine Learning [37] or
Deep Learning models [38]. The model is able to abstract
enough knowledge to infer the values of the Q table. In
this way, it is possible to overcome Bellman’s Equation bias
issues in some scenarios [39].

The aim is to improve classical Q-Learning by using
small ANNs. In this study, authors chose to use fully
connected ANNs with two layers. Using only two-layer
learning and decision-making usually takes less time com-
pared with convolutional deep ANNSs [40] that other authors
propose in their papers. Therefore, the following steps are
followed in each Q-Learning experiment:

1. Build the ANN model(s) based on the chosen
configuration.

2. Employ the model(s) to determine Q-table values in
order to choose the best action for each UAV in the
swarm.

3. Train the model(s) according to the consequences of
taking each of the selected actions.

4. Select the cases where the flight time required to
explore the entire map is lower.

@ Springer
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Through empirical experimentation, a network formed
by two dense layers [41] has been chosen: the first one
with 167 neurons and linear activation function [42] and the
second one with 4 neurons and softmax activation function.
The chosen optimizer for the ANN was RMSprop [43].
Maps are the only input of the network (Fig. 4). Thus, ANN
does not need more information than that included in the
maps.

From this point, the system could be used in two different
approaches with no clear advantage for either of them. First,
a single ANN is developed and used as the control for each
of the UAVs. Therefore, all UAV's are going to have the same
architecture and weights and their behavior will depend on
the current state of the UAV. On the other hand, each UAV
can have a different ANN, therefore its response would not
only be the result of the state but also of the weights and
architecture codified in it.

In all Q-Learning problems, a part of the actions is made
randomly with a probability epsilon (¢ = 0.47), and with
probability 1 — € the action with the highest Q-value for that
state is taken. The sequence of actions taken by an agent for
a given € until it reaches an end condition (task completed,
end of time...) is known as an episode. In each episode,
the task is restarted from the beginning. As episodes occur
during testing, the € value is reduced multiplying it by a
reduction factor equal to 0.93. In this way, the choice of
actions falls more on the calculated Q-values and less by
random selection. To avoid overfitting, € is prevented from
reaching a value very close to 0 by setting the minimum
value at 0.05. Both values were chosen through a previous
exploratory study.

3.3.3 Rewards
In order to prioritize the UAV to move to unvisited areas,

the reward must be the highest of all, as shown in Table 2.
In addition, it is important that it increases as fewer cells are

Flying map \
@
- >
3
c | e—
Visited cells £
“““ map o
e
X
NEIN

Drones' actual
positions map

Table 2 Assigned rewards to each kind of cell each UAV visits

Reward
New cell base reward 358.74
Visited cell reward —31.14
Non-visitable cell —225.17

The initial values chosen for the rewards by means of a previous
random exploration where the best combinations of rewards have been
selected

left undiscovered (2). This is known as Hill-Climbing [44].
Another reward is required for cells that have already been
visited. Thus, the UAV has a reward in case it is better to fly
over an already visited cell to reach an unvisited one than to
go around it (for example, when there are spurious cells left
unvisited). To prevent UAVs from flying into cells that they
cannot visit, they are given the lowest reward. The choice
of the selected reward values was made through an initial
exploratory process.

visited cells

@

max(rows, columns)
new cell reward = new cell basereward x (1 + —X——

3.3.4 Flying Actions

The possible movements or actions (a) from the set of
actions A that UAVs can take were codified. Thus, all possi-
ble movements are encoded to a discrete list of values.
Despite the natural complexity of UAV flight, the possi-
ble movements have been simplified into straight move-
ments, thereby making it easier to interpret flight paths in
a map divided into cells. Otherwise, a UAV could draw a
curve passing over the corner of a cell without actually pass-
ing through the entire cell. This would create the dilemma of

ﬁ Q-Table Values

Dense Layer 1
Dense Layer 2

Fig.4 Diagram showing how data is processed in the ANN in order to get Q-values of the Q-table for a given state of the environment. The maps
are combined into a multidimensional matrix and then flattened into vectors. These vectors are used to abstract the knowledge for computing

Q-values
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Fig.5 Comparison of curved
movements with straight
movements Curved motions
produce more easily interpreted
flight paths. Moreover, they are
limited to the atomicity of the
map cells

/4

=V

VAN

Y-axis

[/

Y-axis

ZD...

X-axis

(a) Curved movement

whether to mark that cell as visited or not (Fig. 5). Not trac-
ing curves ensures that the graphic data obtained with UAVs
always have the same angle and are easier to combine.

3.3.5 Memory replay

In most of the State of the Art, the experience obtained by
agents from the environment is reinforced with the Mem-
ory Replay technique. Memory Replay is a technique where
the model is trained with a set of stored observations called
memory. The observations contain a variety of information,
such as the actions taken and their reward. It improves sam-
ple efficiency by repeatedly reusing experiences and helps
to stabilize the training of the model [45]. It is important that
the memory contains as many recent observations as possi-
ble, but it has a maximum size in order to optimize com-
putational resources. For this reason, the memory follows a
First-In-First-Out scheme for eliminating old observations.
Each UAV in the group has its own memory. In its
memory, it stores observations with the actions that the UAV

Fig.6 The workflow diagram of
the study. The map data and the
position of the UAVs are read
from a file. The maps that the
system will use are constructed
from the data read. Using the

Flying map

X-axis
(b) Straight movement

itself takes. At no time the actions of other UAVs are stored.
This avoids adding noise to the information. The fact that
an action is not correct for one UAV does not imply that
it is incorrect for the others since they can be in different
positions on the map.

The size of the memory can greatly influence the final
results [46]. For this study, a memory size of 60 actions with
their respective rewards was chosen after an exploration
process. It is important to have a large value with respect
to the number of map cells because in the first iterations of
the process UAVs make many errors. Thus, learning from
most of the errors and training the model multiple times
with them will help to avoid them and, thus, achieve a more
efficient solution.

3.3.6 Workflow
The scheme shown in Fig. 6 summarizes the main workflow

of the proposed method. Starting from the reading of the ini-
tial data, that is the vertices of the area to be covered and

Q-Learning technique, the best o |
possible path is calculated for E ,,,,,, Visited cells Antificial Neural Network
each UAV so that the task is map

—-—) [
completed \

\
/

Drones' initial
positions map

Read data

Compute Maps

Path computing using
Q-Learning

Optimal path for
each drone
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the initial positions of the drones, the maps are recon-
structed. After that, by using those maps, the ANN is trained
with the Q-Learning technique [34]. For part of the exper-
iments a global ANN is used, whereas in another part one
ANN is used per UAV. This is going to determine the best
action for each UAV.

3.4 Battery estimation

As in the works discussed in Section 2, the authors have
not found a standardized method to predict battery power
consumption during flight. This is because the consumption
depends on the UAV configuration and flight conditions.
Normally, most commercial UAVs send to their mobile apps
the amount of energy they have left over at regular intervals.
On the other hand, there is an increasing number of websites
that help to calculate how much battery time is left. The lack
of standardization is due to the influence of many variables.
The incident wind, the number of direction changes, speed,
and many other variables greatly affect the flight time.

As a solution to the problem of battery consumption, the
swarm is forced to find a solution in the time corresponding
to the minimum remaining battery time among the UAVs of
the swarm. In this way, it is expected that in a limited time
the UAVs will try to get as close as possible to the desired
solution. In this study, it has been assumed that the UAVs
all have a maximum energy load that allows them to fly for
30 minutes because no realistic calculation of the remaining
battery life has been found.

3.5 Performance measures

As for performance measures, the most common ones will
be taken into account: the time needed to find the solution,
the percentage of correct actions out of all actions taken, and
the evolution of the map coverage.

It is necessary to find a system that solves the problem
as quickly as possible. Thus, it will require less operator
time and battery consumption when used in real fields. Low
battery consumption indicates that the paths are as short as
possible. In addition, due to the charging time of the UAV
batteries, low battery consumption might allow the user to
do more work without having to stop charging the batteries.
This makes it the measure of greatest interest and the most
commonly chosen one. For this purpose, we will look for
the episodes with the shortest execution time (E7'), which
is computed as the difference between the actual time when
the episode finished or T E; and the actual time when the
episode started or T Eg (3). It is important to compute this
coverage for each action taken in each individual episode
in order to obtain the curve that relates the change in the
number of cells discovered by the agents versus the number
of total actions that they carry out. The greater the growth of

@ Springer

the curve means that fewer movements are needed to reach
the solution. This implies that the paths they take have fewer
cycles and are therefore more efficient. In Fig. 7 there is
an example plot of the curve for one ANN per UAV using
two UAVs. By comparison with using the same ANN for all
UAVs (a global ANN), its growth is higher, and it reaches
total coverage much faster.

ET =TE, —-TEy 3)

Even though time is used as a measure of performance, it
is also needed for calculating the length of the paths UAVs

1.0 7
. /

0.8 4

0.6

0.4

Map coverage

0.2

0.0 T T T T T T T T
0 25 50 75 100 125 150 175
Actions taken

(a) One ANN per UAV

1.0

0.8 1

0.6 1

Map coverage

0.4

0.2 1

0.0 T T T T T T
0 50 100 150 200 250

Actions taken

(b) A global ANN

Fig.7 Example of curves of the evolution of map coverage (y-axis) as
a function of the number of actions taken by two UAVs (x-axis). The
dashed line represents the coverage growth trend. Comparing the case
of one ANN per UAV with a global ANN it can be seen that the case
with a global ANN takes more actions to fly over the whole map
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take for each episode. Depending on the configuration of the
UAV and the way the UAV flies, the battery consumption
can vary greatly. Therefore, it is interesting for the path to
be as short as possible. It can be understood as the largest
possible number of valid actions to be taken. Valid actions
have been defined as those where a new cell is discovered.
That is, without loops or passing through cells that cannot
be visited. Therefore, it is of interest to know the fraction
(PA) of valid actions (V A) out of all the actions taken by
the UAVs (T A) (Eq. 4). The closer to 1, the better.

VA

PA=_—
TA

“

Knowing how the total map coverage evolves makes
it possible to distinguish which methods are better. It is
calculated as the fraction of cells that have been visited
divided by the total number of cells. Sometimes, the
operational resources available (number of UAVs, battery
levels, etc.) might not be sufficient to overfly the selected
terrain in its entirety. Even so, in such cases, it is important
to cover as large an area as possible. That is, a system
in which it is able to get closer and closer to 100% map
coverage is ideal. The closer to 1, the better.

4 Results

A set of combinations of map sizes and number of UAVs has
been defined for conducting the experiments and subsequent
analysis of the results. For the analysis of the results
obtained, factors such as the evolution of the time required
to explore the map and the percentage of actions performed
by each UAV have been taken into account.

Fig.8 Illustrative diagram
showing the relationship
between the ANN and the UAV
in the two proposed approaches:
an ANN per UAV and a global
ANN. The training process is
the same, only the relationship
between the model or models
and the UAVs changes. In the
case of an ANN per UAYV, the
same ANN architecture is
maintained, only the weights
change

(a) One ANN per UAV

4.1 Experiment design

To test the capabilities of the system proposed in this paper,
25 experiments have been designed. In each of them, the
configuration of the ANNS, the number of UAVs, and the
size of the map are different.

The experiments were carried out in a square cell map as
in those cited in Section 2.

The aim of this experiment is to identify the best
controller for the UAVs. There are two approaches at this
point: one ANN per UAV and one ANN for all UAVs
(Fig. 8). Both approaches were compared using the same
maps and the same UAVS. The results are listed in Table 3.
As can be seen in the table, the experiments with one ANN
per UAV have been omitted when there is only a single UAV.
Using one ANN for only one UAV would be the same as
using a global ANN for only one UAV. Therefore, it has
been simplified to execute only once with a global ANN for
one UAV and it is referred to as baseline (Fig. 9). Thus, it is
taken as the starting point of the experimentation taking it
as the simplest case, which is to control a single UAV.

Since it is important for the system to operate with any
number of UAVs, each selected map type was tested with an
increasing number of UAVs. To be more precise, separate
experiments have been performed with 1, 2, and 3 UAVs.
Thus, it is proved that the system can adapt to a different
number of UAVs.

As in the papers mentioned in Section 2, all the maps
chosen are grid maps. The experiments were performed with
5x5, 6x6, 7x7, 8x8, and 9x9 cell grid maps. Having
different map sizes provides insight into the capabilities of
the system in the face of unfixed map sizes.

In addition, the number of cells in the chosen flight
environment is smaller than other cited papers. The cost of
flying over large maps is a major constraint. By making one

J%\
"r‘%"'ﬂ =
=

(b) A global ANN
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Table 3 Table with the 45 experiments performed

Approach Map size Number of UAVs

Baseline 5x5 1 UAV
6x6 1 UAV
Tx7 1 UAV
8x8 1 UAV
9%9 1 UAV

2 UAVs
3 UAVs
4 UAVs
5 UAVs
6x6 2 UAVs
3 UAVs
4 UAVs
5 UAVs
Tx7 2 UAVs
3 UAVs
4 UAVs
5 UAVs
8x8 2 UAVs
3 UAVs
4 UAVs
5 UAVs
9%9 2 UAVs
3 UAVs
4 UAVs
5 UAVs

One ANN per UAV 5x5

2 UAVs
3 UAVs
4 UAVs
5 UAVs
6x6 2 UAVs
3 UAVs
4 UAVs
5 UAVs
Tx7 2 UAVs
3 UAVs
4 UAVs
5 UAVs
8x8 2 UAVs
3 UAVs
4 UAVs
5 UAVs
9x9 2 UAVs
3 UAVs
4 UAVs
5 UAVs

Global ANN 5x5

Each one of them with different configuration. The experiments for an
ANN per UAV for a single UAV have been omitted because it is the
same as using a global network for a single UAV

@ Springer

stop per cell to photograph the surface of the map each cell
contains means that in very large maps the UAVs have to
make numerous stops, considerably affecting their battery.
Dividing the map into fewer cells reduces the number of
stops and starts made by each UAV decreasing their energy
consumption.

Another factor to consider is the area of land that each
cell represents. The larger, the better, the more information
each image contains and the more favorable it is for further
processing. These cells must contain an adequate surface
area size for each type of activity performed. For example,
in tasks such as water stress [47], in which one flies at a
height of 12 meters, the area size of the map contained in
each cell is enormous.

In many countries the distance from the position to which
it flies is limited by the height at which a UAV can fly.
For example, in many European countries it is 500 meters
or additional measures would have to be taken that not all
operators can overcome [48]. Therefore, as it is known that
the terrain cannot be too large for the system to be used in a
generic way, it is not necessary to use maps with numerous
cells. For example, 400-cell maps, such as those used in
some papers described in Section 2.

4.2 Experimental results

The results indicate that a global ANN is usually the best
choice because usually it has the fastest solutions, specially
in larger maps (Table 4). Although it is slower on several
cases like 5x5 cell maps for 3 or more UAVs, it is only by
a few seconds. When using larger maps, the model needs
more time to find a solution regardless of the number of
UAVs. This is due to the size of the exploration tree. That is,
the larger the map, the more possible path combinations the
ANNS have to evaluate. Usually, when using 3 UAVs these
exploration times are slower than when using 2 UAVs. It is
not a problem since it is often a few seconds and, the more
UAVs, the easier it is to reassign the task of a fallen UAV to
the others.

In all the experiments conducted the map has been
completely covered at least once. The total number of
episodes in an experiment where UAVs fly over all cells in
the map is usually higher when a global ANN is used. This
is indicative of the robustness of the ANN configuration
for the problem. Having a greater number of solutions
demonstrates that the system is learning and is able to find
solutions as the randomness component € is reduced.

Regarding the evolution of the flight paths (Fig. 10), it
was found to be highly dependent on the initialization and
random component of all Q-Learning problems. In other
words, if many wrong decisions are made from the outset,
in the long-run this negatively affects future decisions. In
the example of Fig. 10, the UAVs keep flying over the cells
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Fig.9 Diagram of how the
experiments are conducted for
each map. Initially, the system is
tested with a given map and a
single UAV. If a solution is
obtained, the number of UAVs is
increased as the system is able
to solve the problem for that
map. For the experiments, it is
differentiated to use a single
ANN for all UAVs and a global
ANN

BASELINE
(1 UAV)

at the left of the map. In this case, the UAVs started the flight
by taking many actions that resulted in passing through the
cells on the left side. An excess of these actions caused the
UAVs to barely fly over other cells. In addition, the inner-
most cells are the least visited, and there are even some
cells that have never been visited. This situation leads to
understand that the proposed model identifies better the
navigable cells of the edges because they have fewer neigh-
bors. It is also worth noting that the cell at the bottom right
has been visited when one of its neighbors has not. This
reinforces the idea that the proposed model had better per-
formance on cells on the left edge, which causes that when
a cell is on the right edge it did not know how to behave.

Having solutions with different map sizes and different
numbers of UAVs confirms that the system is generic
enough to work under different conditions. To the best of
our knowledge, this is the only paper that can do that. Other
papers only work with predefined map sizes [49-51].

If we take the times for each configuration of number
of UAVs and ANNs we see that they follow a Gaussian
distribution according to the Shapiro-Wilk test [52] with a
significance level («) of 5% (Table 5).

Since it was shown that all distributions were Gaussian,
we chose the ANOVA statistical significance test [53]. Thus,
we can know if the results present significant differences
that allow us to decide which option is more appropriate.
According to the results listed in Table 6, the solutions of
the ANOVA test are significantly different for a 5% signi-
ficance level, so it can be understood that there are substan-
tial changes when applying some solutions or others. Consi-
dering the result of applying the same test to all distributions
except Baseline we have also observed that they are
significantly different for the same significance level. This
reinforces the idea that using a global ANN for all UAVs is
significantly better than using a per UAV ANN. Unlike the
Baseline case, employing more than one UAV guarantees
a level of fault tolerance. Therefore, we can conclude that
using a single ANN for the whole swarm is the best con-

GLOBAL ANN U U
E\ E\
ONE ANN PER UAV E\ E\

3 UAVS

2 UAVS

-

ol

3 UAVS

2 UAVS

figuration and that using more than one UAV reduces the
risk during operation.

4.3 Required time evolution

The speed to cover the entire map is also reflected in the
time measure. Many episodes have a run time of 30 min.
These coincide with the cases in which the entire map is
not covered. However, when this is not the case, the time
required decreases as the training advances. It can be seen
that it is highly dependent on the size of the map and the
number of UAVs (Fig. 11). In many cases, once the overall
minimum is reached, the results worsen significantly. It is
caused by the noise introduced by the random component of
the chosen method. Because of this, the sequence of steps
that is optimal is that of the episode of the sequence that
finds the solution in the shortest time.

The evolution of the time taken by a fixed number of
UAVs to find the solution on different maps is highly
dependent on the size of the map. In Fig. 12, an example
plot with 2 UAVs is shown in which it can be seen that the
time curve shows more growth than the curve of the number
of cells in a map.

4.4 Taken actions evolution

The fraction of the actions where a new cell was discovered,
also known as valid actions, among those taken shows diffe-
rent behavior. Therefore, this factor should be taken into
account, as it also determines whether the system makes
too many errors or takes too many cycles. The more UAVs,
the more actions are performed, decreasing the overall per-
centage of valid actions among all actions taken (Fig. 13).
In the initial episodes, the UAVs take a lot of wrong actions.
The accumulation of this number of failures impairs the
percentage of valid actions taken over the total number of
actions. In theory, this is not a problem, since the desired
solution is reached faster in the next episode.

@ Springer
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Table4 Summary table with the observed results of the experiments

Map size Number of UAVs One ANN per UAV Global ANN
5%5 1 00:00:40 00:00:40
(28 found solutions out of 30 episodes) (28 found solutions out of 30 episodes)
2 00:02:09 00:01:32
(26 found solutions out of 30 episodes) (29 found solutions out of 30 episodes)
3 00:01:10 00:01:29
(27 found solutions out of 30 episodes) (25 found solutions out of 30 episodes)
4 00:01:07 00:01:59
(23 found solutions out of 30 episodes) (13 found solutions out of 30 episodes)
5 00:01:16 00:02:21
(24 found solutions out of 30 episodes) (16 found solutions out of 30 episodes)
6x6 1 00:02:38 00:02:38
(28 found solutions out of 30 episodes) (28 found solutions out of 30 episodes)
2 00:04:23 00:02:12
(7 found solutions out of 30 episodes) (22 found solutions out of 30 episodes)
3 00:04:27 00:04:39
(12 found solutions out of 30 episodes) (14 found solutions out of 30 episodes)
4 00:02:55 00:03:16
(16 found solutions out of 30 episodes) (6 found solutions out of 30 episodes)
5 00:04:32 00:03:55
(13 found solutions out of 30 episodes) (12 found solutions out of 30 episodes)
Tx7 1 00:03:14 00:03:14
(24 found solutions out of 30 episodes) (24 found solutions out of 30 episodes)
2 00:06:17 (9 found solutions out of 30 00:06:16 (14 found solutions out of 30
episodes) episodes)
3 00:07:01 00:06:51
(12 found solutions out of 30 episodes) (9 found solutions out of 30 episodes)
4 00:07:59 00:11:47
(4 found solutions out of 30 episodes) (4 found solutions out of 30 episodes)
5 00:04:35 00:10:09
(7 found solutions out of 30 episodes) (7 found solutions out of 30 episodes)
8x8 1 00:07:37 00:07:37
(9 found solutions out of 30 episodes) (9 found solutions out of 30 episodes)
2 00:19:31 00:14:14
(2 found solutions out of 30 episodes) (5 found solutions out of 30 episodes)
3 00:16:58 00:13:52
(2 found solutions out of 30 episodes) (5 found solutions out of 30 episodes)
4 00:10:16 00:08:17
(3 found solutions out of 30 episodes) (6 found solutions out of 30 episodes)
5 00:13:50 00:21:18
(2 found solutions out of 30 episodes) (2 found solutions out of 30 episodes)
9x9 1 00:12:17 00:12:17
(8 found solutions out of 30 episodes) (8 found solutions out of 30 episodes)
2 00:24:45 00:16:15
(1 found solutions out of 30 episodes) (2 found solutions out of 30 episodes)
3 00:20:53 00:20:27
(1 found solutions out of 30 episodes) (1 found solutions out of 30 episodes)
4 00:17:21 00:22:09
(2 found solutions out of 30 episodes) (1 found solutions out of 30 episodes)
5 00:27:56 00:18:27

(1 found solutions out of 30 episodes)

(1 found solutions out of 30 episodes)

Results are displayed with the minimum time in each configuration needed for finding a solution. As in the papers discussed in Section 2, the
results shown here are those obtained from a single execution due to the computational and time costs of averaging the results of multiple runs
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Fig. 10 Example of a heatmap
reflecting the number of times a
UAV passes through each cell.
In the first actions UAV's take
from the beginning, the model
took the wrong sequence of
initial movements. This caused
the UAVs to have a preference
for crossing the left edge, thus
consuming most of the time. In
this way, many cells inside are
left unvisited

0

The improvement of having more errors at the beginning
comes from the fact that the map exploration tree is covered
faster due to the simultaneous flight of the UAVs. As
the exploration tree is covered faster, more information is
extracted. Therefore, usually more UAVs in a swarm means
that the task is performed faster in future episodes (Table 4).
If it is slower, it may be an indicator that more episodes
are needed to obtain a better solution. The computational
cost is very high considering that it is only a few seconds or
minutes slower.

Table 5 Summary table with the p-values resulting from the Saphiro-
Wilk test [52]

Distribution p-value
Baseline 0.5013
Global ANN for 2 UAVs 0.2596
Global ANN for 3 UAVs 0.6719
Global ANN for 4 UAVs 0.4792
Global ANN for 5 UAVs 0.4287
2 UAVs with an ANN per UAV 0.2312
3 UAVs with an ANN per UAV 0.4887
4 UAVs with an ANN per UAV 0.7522
5 UAVs with an ANN per UAV 0.1788

For a significance level of 5%, all distributions are Gaussian

5 Discussion

This paper, like the other publications in Section 2, suggests
the usage of ANNs based on dense layers. This type of
layer has also shown the ability to coordinate groups of
UAVs. Some authors, such as Liu et al., have already
tested the capabilities of fully connected ANNs in Path
Planning problems with UAVs. Moreover, being trained in
each case with the memory of each UAV it seems to be
able to assign correct actions to the UAVs without extracting
spatial information from the map like Convolutional Neural
Networks (CNN). As a result, it appears that using networks
that need automatic feature extraction, such as CNN, as
employed by other authors, is no longer necessary. Because
they have already extracted spatial features from the maps,
these networks have a slower training time. It may mean that

Table 6 Comparative table of the p-values obtained by performing an
ANOVA test [53]

p-value
All distributions 0.9698
All distributions except baseline 0.9968

Even without the Baseline distribution (1 UAV) the distributions are
still significantly different at a 5% significance level
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Fig. 11 Example of two plots
with the evolution of the hours
(y-axis) consumed as the
episodes elapse (x-axis) for
different maps. In both cases, it
can be seen that the solution
with the shortest time can be
followed by episodes with worse 02
results. The optimal results are
those episodes with the shortest
duration. The shortest time
implies that it is the one with the
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0.1
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0.3
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0 6 12 18 30

. . 24
least number of incorrect actions Episode

and the least number of loops

the most important thing may not be the spatial relationship
of the map, but the sequence of movements of each UAV
without the noise of the actions taken by the other UAVs.

As in other papers in the state of the art, the system has
been tested on squared cell maps. Unlike the other papers,
it has been tested on different map sizes, not on fixed-size
maps [54, 55]. The maps used do not present additional
information, like those used in the other papers. That is, it
is not necessary to add more information, such as targets
or distance maps, so it is not necessary to make previous
studies of the map.

Since using a single global ANN for all UAVs usually re-
quires less time than using one ANN per UAYV, this indicates
that the appropriate configuration is to use a global ANN.
This means that paths calculated using a global network
have fewer errors and loops, indicating that the paths are as
direct as possible. The more direct they are, the shorter they

36

(a) 6x6 cell map

42 48 0 5 10 15 25 30 35 40

20
Episode

(b) 8x8 cell map

are, therefore they are more optimal. In other multi-agent
problems global ANNs were the best option, like in the
paper by Mnih et al. with their A3C algorithm [56]. Despite
this, some authors, including Wang et al., have proved the
effectiveness of systems that use an ANN per UAV [57].

The overall percentage of correct actions taken decreases
with the increase in UAVs. This is due to the fact that
in the first episodes too many wrong actions are taken
because the agents do not have much knowledge. Despite
this, the solution is sometimes reached in less time due to
the simultaneity of their flight and, the more UAVs, the more
fault tolerance is ensured in case a UAV not being able to
continue its flight.

The time taken to explore the entire map is strongly
affected by the number of cells on the map. The rise in the
time taken exceeds the growth of the number of cells of the
maps used in the experiments. This is mainly due to the size

Fig. 12 Comparison of the
growth of the curve of the time 80 - - 16
taken for each map with respect
to the growth of the curve of the
number of cells contained in L 14
each map. The growth is greater 70
in the time curve. Specifically,
starting from the map of 8x8 12
cells "
T 607 3
it - 10 %
P ‘J
T [
2 50 1 g 5
£ =
é‘ =
-6
40 A
-4
30 A
-2
T T T T T
5x5 map 6x6 map 7X7 map 8x8 map 9x9 map
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Experiment evolution with 2 UAVs
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Fig. 13 Percentage of non-error

actions (y-axis) taken by each
UAV over the course of the
episodes (x-axis). Each line of a
different color symbolizes a
UAV. The more UAVs the lower
the percentage. This percentage
is affected by the sum of the
errors of all UAVs together.
When taking the first actions
UAVs make many mistakes. This

Valid taken actions percentages

~ e AN AL_A _

—— agent 0
agent 1

valid taken actions percentages

accumulation of errors hurts the ° 5 0
percentage of valid actions taken
by the UAVs as a whole

of the exploration space that ANN faces in order to find the
best paths. The greater the number of cells, the larger the
space. In addition, we have to add the sequences of the UAV
paths, whether they are one or more. That is, a path has to
be a correct sequence of adjacent and fully navigable cells,
which adds complexity to the system by having to maintain
this consistency as there are more and more cells. This is
why the higher the number cells, the more time the ANN
requires for obtaining correct pathways.

6 Conclusions

This paper puts forward a system capable of calculating the
paths with the shortest flight time for UAV swarms using
Q-Learning [35] techniques. To enhance the capabilities of
these techniques, decision-making is done with the help of
fully connected ANNs. Employing a single global ANN
for all UAVs presents more solutions in less time. Finding
models that find solutions quickly makes the system more
portable to different systems. In this way, users will find it
more convenient to use since money does not have to be
spent on expensive systems. Typically, the cost savings can
be invested in improving UAV features such as battery life
by users.

The system is capable of achieving satisfactory results
with squared cell maps of different sizes. The evolution of
the time required to find a solution increases faster than

15 20
Episodes

(a) 1 UAV

Valid taken actions percentages

20 30 40
Episodes

(b) 2 UAVs

25 30 35 0 10

— agent 0

agent 1
—— agent2
0.8

0.6

04

0.2

0.0 -
0 10 20 30
Episodes

(c) 3 UAVs

the increase in the number of cells in each experiment
regardless of the number of UAVs in the swarm. Therefore,
it is necessary to adapt the size of the map to the activity
to be carried out in order to get the best results possible.
Tasks that imply high altitude do not need as many cells
because their sensors capture a large part of the terrain in
each cell. Reducing the number of cells allows the system
to make better and faster decisions due to the smaller
exploration space. Other state of the art systems divide the
map into a fixed size, which is typically a very large number
of cells in the case of a very large map. Because there
are more alternative optimal paths to explore for the map,
the time it takes to find a solution and the computational
cost of processing the maps are higher, and in many cases
unnecessary.

It is not necessary to provide additional information on
the map to direct the paths. Therefore, the system can
calculate the optimal paths using only the information of
the cell map, the current position of the UAVs on the map,
and the evolution of the flight paths along the map. Using
so little information avoids having to know the terrain in
advance. If information is to be added to guide the UAV
paths, it is necessary to make such a study. Therefore, many
users may end up discarding the use of the system due to this
additional difficulty. On the other hand, if it is necessary to
guide the paths, the system can be biased because user errors
can be made that prevent better paths from being found. The
disadvantage of not employing targets, as other authors in
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the state of the art have done, is that the algorithm is scan-
dependent. Because it is so reliant, it is vital to establish
algorithm parameters that are as accurate as possible in
order to minimize problems with path computations.

The ideal swarm size can also be determined by looking
at the change in the time it takes to fly through a map for
each swarm size. For example, if a swarm takes less time
to do a task than a larger swarm would, it is understood
that investing in more UAVs is unnecessary because the
task can be solved in less time and at a lower cost with
fewer UAVs. In other publications, authors test their systems
with a fixed number of UAVs and do not compare this to
testing with just one UAV. Furthermore, if the terrain is
relatively small, having a large number of UAVs may be
excessive and counterproductive. The more UAVs used, the
more paths must be computed. If fewer UAVs are used,
however, outcomes can be achieved in less time and with
less computational resources. Furthermore, using fewer
UAVs minimizes the risk of collision.

Due to the atomicity of the movements that each UAV
can make, it is not necessary to make a smooth path. Unlike
other publications in the state of the art [58], it is not
necessary to spend computational time smoothing the path.
In addition to this advantage, the movements are simpler if
there is no path smoothing, so it is not necessary to compute
parameters such as the UAV’s yaw angle or tilt angle. On
the other hand, paths without smoothing have sharper turns
that increase the UAV’s battery consumption, so there is
no guarantee that consumption is minimized as much as
possible.

Finally, the limitations of this system include the fact that
the flight height is not considered in the calculation of the
paths. In theory, this is not a problem if the working height
is high enough to avoid obstacles. On the other hand, if two
UAVs flying at the same altitude are in the same cell, the
wind thrust or turbulence that one may generate to the other
is not considered. These winds or turbulences do not usually
distort the paths to a great extent, but they can increase the
battery consumption because the UAV needs more power to
be able to overcome these environmental disturbances.

7 Future work

This paper is a starting point, laying out some bases for the
creation of other systems capable of working on different
maps. In this way, generic systems with commercial
potential can be obtained.

In the future, efforts will be made to improve these results
and a study on the optimal initial distribution of the UAVs on
the map should be carried out. Also, models will be trained
on cell maps optimally divided according to the resolution
of the UAV cameras.

@ Springer

Future developments will include experiments with 3D
maps in which more movements, such as pitch and roll, will
be possible.

Experiments will be made with maps with obstacles in
order to help agents learn how to reduce the risks during the
flight. Obstacles can be fixed obstacles (trees, poles, etc.) or
dynamic obstacles (birds, other UAVs, etc.).
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