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Abstract
We propose an Inner-Imaging three-dimensional (3D) attentional feature fusion module for a residual network, which is
a simple yet effective approach for residual networks. In our attention module, we constructed a 3D soft attention feature
map to refine the input feature. The map fuses the attentional features from different dimensions, including channel and
spatial axes, to create a 3D attention map. Then, we implemented a feature fusion module to further fuse the attentional
features. Lastly, the attention module outputs a 3D soft attention map that is applied to the residual branch. The attention
module can also model the relationship between attentional features from different dimensions and achieve the interaction
between attentional features. This function allows our attention module to acquire more attentional features. To demonstrate
the effectiveness of our method, extensive experiments were conducted on several computer vision benchmark datasets,
including ImageNet 2012 and Microsoft COCO (MS COCO) 2017 datasets. The experimental results show that our method
performed better than the baseline methods in the tasks of image classification, object detection, and instance segmentation
tasks.

Keywords Attention mechanism · Feature fusion · Object recognition · Residual network

1 Introduction

Convolutional neural networks (CNNs) have created a
significant improvement in representation power, in areas
such as image classification [1–4, 37], object detection
[5–8], and segmentation [9–11]. CNN models designed in
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recent years include GoogleNet [3], DenseNet [4], ResNet
[1], GFNet [12], and PAG-Net [34]. The residual network
(ResNet) performed well during the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2015. ResNet
enabled the network structure to go far deeper and achieve
a higher performance with skip connection. Other strategies
to improve the model’s representation power include
going wider, increasing cardinality, and refining features
dynamically. Another method for improving performance is
the attention mechanism.

The attention mechanism has been studied in areas such
as natural language processing [13, 14], image classification
[15–19], object re-identification [20, 21, 35, 38], and
other domains [22, 23]. The attention mechanism aims
at selectively focusing on specific information. Common
types of attention variants include spatial attention, channel
attention, and self-attention, all of which depend on
different feature dimensions. Channel attention constructs
various channel weight functions and is widely used due
to its simplicity and effectiveness in feature modeling.
In SENet [15], the authors proposed a squeeze-and-
excitation architecture to model the importance of different
channels, and it became a popular tool for improving
model performance. However, when processing different
inputs, global average pooling cannot capture rich input

/ Published online: 13 April 2022

Applied Intelligence (2023) 53:141–152

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03225-9&domain=pdf
http://orcid.org/0000-0003-0236-8135
mailto: wgq@ntu.edu.cn
mailto: ren@is.tokushima-u.ac.jp
mailto: lwj2014@ntu.edu.cn
mailto: sq@ntu.edu.cn


Fig. 1 Proposed inner-imaging 3D attentional feature fusion residual block

patterns and feature diversity. In this paper, we address these
problems by proposing a new attention module and creating
a three-dimensional (3D) soft attention feature map to refine
the input feature.

In our attention module, we focus on fusing attention
features from the channel and spatial dimensions to create
a 3D soft attention feature map. To obtain more attentional
features, we combine the information from the skip
connection branch. Based on these settings, our attention
module can be smoothly embedded into the residual block,
as shown in Fig. 1. We called our attention module Inner-
Imaging 3D Attentional Feature Fusion Residual Network
(3D-AFF-ResNet). It consists of a channel attention
module, a spatial attention module, and a feature fusion
module. The channel attention module squeezes the input
into a 1D vector, focusing on learning the object feature
in channel axes. The spatial attention module compresses
the input feature into a 2D vector, focusing on learning
the object feature in spatial axes, and it also models the
inter-spatial relationship of local spatial features. These two
modules extract features in different dimensions to obtain
the channel and spatial attentional feature, respectively. The
function of the two modules is similar to the CBAM [16],
which proposed a sequential channel and spatial attention
module. However, in our attention module, we combine the
channel and spatial attentional features instead of applying
them sequentially. This allows our attention module to
extract more features. We then fused the features from two
attention modules using element-wise summation to create
a 3D attention feature map. After the summation operation,
the features are feed into the feature fusion module. This
not only improves the non-linear representation ability but
also performs attentional feature interaction from different
dimensions. Then, to address the lack of feature diversity,
we combined the features from the skip connection branch
to extract more spatial attentional features. Evaluating the
results verified the effectiveness of our method. Lastly, we
applied the output of the refined 3D soft attentional feature
map to the residual branch.

To test the validity of our method, we evaluated 3D-
AFF-ResNet on the ImageNet dataset for the task of
image classification and MS COCO dataset for the task of
object detection and segmentation. We used ResNet and
SENet as our baseline models. The evaluations showed that
our method achieved considerablely improved performance
compared to the baseline models. We also constructed
extensive ablation experiments to explore the properties of
our attentional module.

The main contributions of this paper are summarized as
follows:

1) We proposed a 3D soft attention module, which
could refine features more precisely. The experimental
results indicate that our attention module can be
embedded into residual network seamlessly and
improve the model performance significantly for the
tasks of image classification, object detection, and
instance segmentation.

2) To further boost the model’s performance, we designed
the spatial attention module and feature fusion module
and had the attentional feature interaction from
different dimensions.

3) To improve the model’s generalization ability, we
fused the attentional feature from multiple branches
and modeled the relationship of these branches.

The rest of the paper is organized as follows. In Section 2,
we review related works. In Section 3, we introduce our
methodology. In Section 4, we discuss the experimental
results and analysis on the ImageNet and Microsoft COCO
datasets. In Section 5, we focus on the validity of our
approach. In Section 6, we present our conclusions.

2 Related work

First, we discuss multi-branch CNNs. Then, we discuss
the feature fusion method and attention mechanism in
CNNs.
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2.1 Multi-branch convolutional neural networks

The introduction of a bypass path can make the training
less difficult. ResNet [1] adds a identity mapping in each
unit, which enables the model to train with hundreds
of layers. In GoogleNet [3], the author combined the
feature from multiple branches with different kernel
sizes. Inspired by the multiple paths method, W. Liu
et al. [24] also proposed a multi-branch feature fusion
residual block to learn multi-scale features from different
branches. Z. Zheng et al. [25] proposed a multi-branch
discriminator structure based on generative adversarial
network to address imbalance learning for semantic
matching. To explore local information at the final stage
of the learning process, F. Hernández-Luquin et al. [26]
proposed a CNN-based architecture, which is enhanced
by multiple branches module. These models demonstrate
that combining the features from different scales could
improve model performance. In our attention module, we
also utilize the information frommultiple branches to enrich
the extracted features. We also attempted to model the
relationship of these features.

2.2 Feature fusionmethod

The feature fusion method is used in many works to improve
the ability to extract features. In InceptionNets [3, 27, 28],
models fuse features from several branches with different
kernel sizes to enhance the feature diversity. In this manner,
InceptionNets aggregate various features from multiple
branches, each of which is equipped with customized kernel
filters. This gives InceptionNets powerful generalization
ability and allows them to perform well in computer
vision tasks. In residual-style networks [1, 2, 24, 29, 30],
models fuse the features with skip connection to alleviate
the difficulty of training. Feature Pyramid Networks
(FPNs) [31] fuse the features from shallow layers via
skip connections to attain high-resolution and semantically
strong features. In KMSA [36], the authors proposed a
general framework to transform multi-view data into one
channel by kernel space. These models demonstrate the
effectiveness of the feature fusion method. Our attention
module also uses this method to fuse features from the
residual branch and the skip connection branch.

2.3 Attentionmechanism in CNNs

In recent years, attention mechanisms have been used in
a range of tasks, from object re-identification [20, 21] to
neural machine translation [13]. The attention mechanism
intensifies the useful information and simultaneously
suppresses less useful information. CNNs are widely used
in the field of computer vision, and the attention mechanism

further improves their performance. Guan et al. [22]
proposed an innovative cascade convolution neural network
with a particular spatial-channel noise attention unit to
separate fixed pattern noise and recover the real scene. Z.
Yan et al. [39] proposed a feature attention network to
refine important feature and learn the correlations among
convolutional features. Other researchers have focused on
designing lightweight attention architectures to increase
model performance. In SENet [15], the authors introduced
a compact module to exploit the inner-channel relationship
with few parameters and a reduced computational burden.
After SENet, more variants were proposed, such as CBAM
[16], SKNet [17], GCNet [18], ECANet [19]. CBAM
introduced spatial attention to improve performance. SKNet
proposed an adaptive selection receptive field size of
neurons with attention mechanism. GCNet proposed a
spatial attention module to replace the original spatial
downsampling process. To reduce the redundancy of dense
connection layers, ECANet introduced a one-dimensional
convolutional layer. In our attention module, we focus on
constructing a 3D attention structure to refine the input
features more precisely.

3Methodology

The Inner-Imaging 3D attentional feature fusion module
consists of three parts, as illustrated in Fig. 1. Xl ∈
RC×H×W is used to represent the l-th layer input feature
map. The channel attention module is used to create a
1D attentional feature vector Mr

c ∈ RC×1×1. The spatial
attention module is used to generate a 2D attention feature
map Mr+s

s ∈ R1×H×W . Then Mr
c and Mr+s

s are fused
by element-wise summation to generate a 3D attentional
feature map M3D ∈ RC×H×W . After the summation
operation, the fused feature is fed into the feature fusion
module, which is used to capture the channel and spatial
attentional feature dependencies with two successive 1 × 1
convolution blocks as Fex . Lastly, we obtain a 3D soft
attentional feature map X3D ∈ RC×H×W , and the weight of
each pixel represents the importance in the residual branch.
The overall Inner-Imaging 3D attentional feature fusion
module process can be formulated as:

M3D = Mr
c ⊕ Mr+s

s (1)

X3D = σ (Fex(M3D, W1, W2)) (2)

Where ⊕ refers to element-wise summation. During
element-wise summation, the attention values are broadcast
(copied) along the channel and spatial dimension. Mr

c

denotes the channel attention feature from the residual
branch, and Mr+s

s denotes the spatial attention from the
residual and skip connection branches.W1 andW2 represent
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the parameters in the feature fusion block, and σ denotes the
sigmoid function.

3.1 Channel attentionmodule

To acquire the channel attentional feature, we follow the
operation in SENet [17] by squeezing the input into a
1D feature vector with a global average pooling layer.
Each feature map from the input can be regarded as
a feature detector that detects the object in the input
image. Therefore, the channel attention is focused on
extracting the global feature from an input image. Average
pooling is a commonly used method for obtaining the
channel information. As shown in Fig. 1, we compress
global information by using an average pooling layer. This
generates the channel context descriptors, and Mr

c denotes
the average-pooled feature from the residual branch.

U = Ftr (Xl) (3)

Mr
c = Fsq (U) = 1

H × W

H∑

i=1

W∑

j=1

uc (i, j) (4)

In (3), Ftr refers to the function of successive convolu-
tional blocks in the residual block, and U represents the
output feature maps. Mr

c ∈ RC×1×1 refers to the squeezed
1D feature vector, and Fsq denotes the function of average
pooling. uc denotes the c-th feature map in U , H represents
the height, and W is the width of the feature map.

The channel attention module squeezes the channel
feature map into a 1D vector. However, this operation cannot
extract spatial features very well and fails to consider the
inter-spatial relationship of local features among feature
maps. We proposed the spatial attention module to address
these problems.

3.2 Spatial attentionmodule

The spatial attention module extracts the spatial features
of the input. We use a convolution layer to compress the
spatial feature into a 2D feature map and to model the
inter-spatial relationship of local features among feature
maps. The compressed 2D feature map from the residual
branch is represented as Mr

s ∈ R1×H×W . To diversify
the extracted features, we fuse the features from the skip
connection branch to improve the normalization ability of
our attention module. We believe that the feature diversity
could improve the model’s generalization ability, and we
proved this hypothesis in our experiments. To keep the
number of parameters low, we fused the features from
multiple branches with an element-wise summation. We
found that the kernel size significantly affects model
performance, which means that an appropriate receptive

field could bring benefits to our attention module. The
spatial attention module can be formulated as:

Mr+s
s = Fconv

(
U ⊕ Xl, W

′) (5)

where Fconv denotes the function of convolution block and
W ′ denotes the parameters. Mr+s

s ∈ R1×H×W represents
the compressed spatial features from the residual and skip
connection branches.

3.3 Feature fusionmodule

The channel and spatial attention modules compute the
attentional feature in a complementary manner, extracting
the feature in different dimensions. As described in the
(1), we use element-wise summation to fuse the features
from two modules, thereby obtaining the 3D fused feature
map M3D ∈ RC×W×H . The pixels in M3D contain the
features from the channel and spatial attention modules.
However, the simplified element-wise summation operation
could not fully fuse these features. To address this problem,
we implement the feature fusion module, which contains
two successive 1 × 1 convolution layers with the ReLU
function to improve the nonlinear representation capability.
In addition, to decrease the number of parameters, we
employ a bottleneck architecture, which reduces the module
complexity. The formula of this module can be represented
as:

X3D = σ (Fex(M3D, W1, W2, d))

= σ (W2δ(M3DW1)) (6)

Where X3D ∈ RC×H×W denotes the output of the
3D soft attention vector, Fex denotes the function of the
feature fusion block, W1 ∈ RC×W×H and W2 ∈ R

C
d

×W×H

denote the parameters of the two 1 × 1 convolution layers,
respectively, and d refers to the reduction ratio.

Finally, the 3D soft attention vector X3D is applied
to the residual branch by performing the element-wise
multiplication operation, and the input Xl is summarized to
the output.

Xl+1 = U ∗ X3D + Xl (7)

Here, Xl+1 represents the output of the l-th residual block.

4 Experiments and analysis

We evaluated our method on two standard benchmark
datasets: ImageNet 2012 for image classification, and MS
COCO for object detection and instance segmentation.
First, we performed extensive ablation studies to thoroughly
exploit the properties of our method. Next, we evaluated
our method on ImageNet, comparing it with the baseline
models, and observed the effect of our approach with our
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Table 1 Comparison of the
channel and spatial attention
from residual and skip
connection branches on
ImageNet

Description Parameters Top-1 Error (%) Top-5 Error (%)

ResNet-50 25.56M 23.39 6.93

ResNet-50 + Mr
c

(SE-ResNet-50)
28.07M 22.84 6.35

ResNet-50 + Mr
c + Mr

s 28.24M 22.51 6.32

ResNet-50 + Mr
c + Mr+s

s

(3D-AFF-ResNet-50)
28.38M 22.20 6.17

ResNet-50 + Mr+s
c + Mr+s

s 28.38M 22.21 6.21

attention module. We then summarized the experimental
results onMSCOCO. The results also demonstrated that our
method outperforms the baseline models, and also verified
our method’s adaptability across different tasks.

4.1 Implementation details

To verify the effectiveness of our design choice, ResNet-
50 was used as the base architecture, and we evaluated the
proposed 3D-AFF-ResNet on the ImageNet 2012 dataset.
ImageNet 2012 consists of 1.2 million images for training
images and 50,000 images for validation with 1000 classes.
We followed the data augmentation and hyperparameter
setting in [1], cropping the input images to 224×224 with
random horizontal flipping. The learning rate was set to 0.1
and dropped every 30 epochs. All models were trained for
100 epochs. We used an SGD optimizer with a momentum
of 0.9, a batch size of 128, and a weight decay of 1e-
4. For training efficiency and to save memory, we use
a mixed-precision training method. For the setting of the
reduction ratio, we followed the selection in the SENet
and set d = 16 for ImageNet 2012. Furthermore, to
demonstrate the generalization of our designing choices,
we also conducted ablation study on CIFAR-100 dataset.
The CIFAR-100 dataset consists of 50,000 training images
and 10,000 testing images with 100 classes. We used the
standard data augmentation strategies as described in [1].
For the reduction ratio, we set d = 4 for CIFAR-100
dataset.

To evaluate our method for the task of object detection
task onMS COCO, we used the Faster R-CNN [8] andMask
R-CNN architectures. For the task of instance segmentation,
we evaluated our method on MS COCO using the Mask
R-CNN architecture. We tested the performance on the
MMDetection toolkit platform, using its default settings.
The short side of the input image was resized to 800 pixels
during the training period. The learning rate was set to
0.005 and was reduced by a factor of 10 at the eighth and
11th epochs, respectively. SGD was used to optimize with a
weight decay of 1e-4, a momentum of 0.9, and a batch size
of 2 per GPU within 12 epochs.

We implemented 3D-AFF-ResNet using PyTorch [32].
All models used in this paper were trained on two Nvidia
Titan RTX GPUs.

4.2 Ablation study

The process of designing our attention module consisted of
three parts. First, we fused the spatial attention feature from
the residual branch to compare it with the baseline models.
Next, we fused the feature from the residual branch and
the skip connection branch to explore the effect of feature
diversity for our attention module. Finally, we searched for
the best kernel size for the spatial attention module.

Feature fusion In the spatial attention module, we com-
pressed the input into a 2D spatial feature map. Experiments
demonstrated that fusing the feature from the spatial atten-
tion module could achieve finer attention inference. The
experimental results are summarized in Tables 1 and 2.
Table 1 shows the ResNet-50 has top-1 and top-5 test error
rates of 23.39% and 6.93%, respectively, on ImageNet 2012.
The ResNet-50 + Mr

c outperforms ResNet-50 significantly.
Notably, the architecture of ResNet-50 + Mr

c is the same as
SE-ResNet-50, which only utilizes the channel attentional
feature from the residual branch. However, the channel
attention feature could not represent the spatial feature, nor
could it consider the inter-spatial relationship of spatial fea-
ture among input feature maps. To address these problems,

Table 2 Comparison of the channel and spatial attention from residual
and skip connection branches on CIFAR-100

Description Parameters Test Error (%)

ResNet-164 1.7M 22.72

ResNet-164 + Mr
c

(SE-ResNet-164)
2.52M 22.00

ResNet-164 + Mr
c + Mr

s 2.59M 21.65

ResNet-164 + Mr
c + Mr+s

s

(3D-AFF-ResNet-164)
2.66M 21.23

ResNet-164 + Mr+s
c + Mr+s

s 2.66M 21.52
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Table 3 Comparison of kernel size in the spatial attention module on
ImageNet

Description Params Top-1 Error (%) Top-5 Error (%)

3D-AFF-ResNet(k = 1) 28.13M 22.38 6.35

3D-AFF-ResNet(k = 3) 28.38M 22.20 6.17

3D-AFF-ResNet(k = 5) 28.86M 22.35 6.27

we constructed the spatial attention module. To demonstrate
the critical nature of the spatial attention feature, we fused
the spatial attention from the residual branch, as ResNet-50
+ Mr

c + Mr
s in Table 1. The top-1 test error rate was reduced

by 0.33%, with a slight increase in the number of parame-
ters compared with SE-ResNet-50. Furthermore, comparing
the experimental results in Table 2, the model also has a
lower test error rate, as it fuses the spatial attention from the
residual branch. The experiments demonstrate that combin-
ing spatial attention with channel attention can enhance the
model’s performance.

Feature diversity We explored a more effective method
for attention-refined features by aggregating the features
from the skip connection branch to reduce the difficulty.
Combining the features from the skip connection branch
enriched the feature diversity and improved the model’s
generalization ability. We fused the features from two
branches by element-wise summation without adding
parameters. From Table 1, we can see that fusing the
features from the skip connection branch, as ResNet-50 +
Mr

c + Mr+s
s (3D-AFF-ResNet-50), further decreased the

test error rate. The 3D-AFF-ResNet-50 has a top-1 test
error rate of 22.20%, outperforming ResNet-50 + Mr

c +
Mr

s by 0.31%. The experimental results in Table 2 also
show that ResNet-164 + Mr

c + Mr+s
s achieved the best

results. The experimental results on ImageNet 2012 and
CIFAR-100 datasets verified that fusing the features from
the skip connection branch in the spatial attention module
was beneficial.

We also explored the effect of feeding the skip
connection into the channel attention modules, as ResNet-
50 + Mr+s

c + Mr+s
s in Table 1 and ResNet-164 + Mr+s

c +
Mr+s

s in Table 2. The tested performance of this was slightly
higher than 3D-AFF-ResNet-50 and 3D-AFF-ResNet-164.
Therefore, we only fed the features from the skip connection
branch into the spatial attention module.

Kernel size in spatial attention module An appropriate
receptive field is necessary to obtain enough features for
our tasks. In our attention module, the spatial attention
module was applied to extract spatial features and model
the inter-spatial relationship of the local spatial features.
Accordingly, we determined that an appropriate receptive

Table 4 Comparison of kernel size in the spatial attention module on
CIFAR-100

Description Params Test Error (%)

3D-AFF-ResNet(k = 1) 2.52M 22.38

3D-AFF-ResNet(k = 3) 2.59M 22.20

3D-AFF-ResNet(k = 5) 2.72M 22.35

field was also critical for our attention module. The
experiments proved this hypothesis.

In our experiments, we compared three different kernel
sizes in spatial attention module: k = 1, k = 3, and
k = 5. We also evaluated these options on ImageNet
2012 and CIFAR-100 datasets. Tables 3 and 4 summarize
the experimental results. The results show that using k =
3 generated the best results. Therefore, the experiments
empirically demonstrated that an appropriate receptive field
is significant for deciding local spatial important regions
and modeling the inter-spatial relationship of local features.
As a result, we used the k = 3 kernel size for our spatial
attention module.

Concatenation or summation In the original 3D-AFF
module, we used the concatenation operation to combine
the features from the residual and skip connection
branches. However, the concatenation operation needed
more parameters and memory during training. Therefore,
we also explored replacing the concatenation operation with
the element-wise summation, as illustrated in Fig. 2(b).
Compared with our original module, this option could save
parameters, but the test error rate (Table 5, 22.35%) was
substantially higher than 3D-AFF-ResNet-50. Therefore,
we chose the concatenation operation to combine features
in our attention module.

Parallel fusion The 3D-AFF module first fused the channel
and spatial features, then used the feature fusion module
to improve the nonlinear ability and fuse the channel and
spatial attentional features. To evaluate the importance
of the feature fusion module for our attention module,
we implemented two parallel fusion architectures, which
performed the multiplication operation to the residual
branch respective, as shown in Fig. 2(c) and (d). We
also compared two different fusing methods: element-wise
summation and concatenation. The two options achieved a
top-1 test error rate of 22.49% and 22.46%, respectively,
which was also higher than 3D-AFF-ResNet-50 but
lower than SENet. Therefore, these ablation experiments
empirically showed the validity of the feature fusion
module, which could fuse the channel and spatial attentional
features even further.
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Fig. 2 Various types of feature
fusion used in Table 5. The grey
arrows indicate the identity
mapping. For simplicity, the BN
layers are omitted here

AvgPool Conv 3x3

Conv 1x1
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(b) 3D-AFF module (summation)
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(c)  Parallel fusion (summation) (d)  Parallel fusion (concatenation)
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C

Sigmoid
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Final module design Our design of the channel and spatial
attentional feature fusion module was based on the results
of the ablation studies. Figure 1 shows our final module, in
which we fused the channel and spatial attentional features;

aggregated the spatial attentional feature from the skip
connection branch to enrich the extracted features; and used
convolution with a kernel size of 3 in the spatial attention
module. Our final module (i.e. 3D-AFF-ResNet-50) has a

Table 5 Testing results on
ImageNet dataset with different
fusing methods

Description Fig. Top-1 Error (%) Top-5 Error (%)

SENet-50 − 22.84 6.35

3D-AFF-ResNet-50 Fig. 2(a) 22.20 6.17

3D-AFF-ResNet-50(summation) Fig. 2(b) 22.35 6.24

Parallel fusion (summation) Fig. 2(c) 22.49 6.28

Parallel fusion (concatenation) Fig. 2(d) 22.46 6.27
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Table 6 Comparison of
baseline methods on ImageNet Method Backbone Params FLOPs Top-1 Error (%) Top-5 Error (%)

ResNet [1] ResNet-34 21.80M 3.68G 26.69 8.60

SENet [15] 21.95M 3.68G 26.13 8.35

ECANet [19] 21.80M 3.68G 25.79 8.17

3D-AFF-ResNet 22.00M 3.73G 25.32 8.04

ResNet [1] ResNet-50 25.56M 4.12G 23.39 6.93

SENet [15] 28.07M 4.13G 22.84 6.35

CBAM [16] 28.07M 4.14G 22.61 6.31

ECANet [19] 25.56M 4.13G 22.70 6.32

3D-AFF-ResNet 28.24M 4.64G 22.20 6.17

ResNet [1] ResNet-101 44.55M 7.85G 23.17 6.52

SENet [15] 49.29M 7.86G 22.38 6.07

CBAM [16] 49.30M 7.88G 21.51 5.69

ECANet [19] 44.55M 7.86G 21.35 5.68

3D-AFF-ResNet 49.65M 8.87G 21.19 5.73

top-1 error rate of 22.20%, which is much lower than that of
the baseline models.

4.3 Image classification on ImageNet

To comprehensively evaluate our method comprehensively,
we employed three widely used CNNs as backbone models:
ResNet-34, ResNet-50, and ResNet-101. We compared
3D-AFF-ResNet with the baseline methods on ImageNet.
As shown in Table 6, our approach outperformed the
baseline models and other state-of-the-art methods. Our
method outperformed SENet by a large margin with only
a few additional parameters. 3D-AFF-ResNet has better
performance than SENet by 0.81%, 0.64%, and 1.19% in
terms of Top-1 test error rate with three different backbones,
respectively. Figure 3 shows the top-1 test error curves

Fig. 3 Top-1 test error curves on ImageNet 2012 dataset by ResNet-
50, SE-ResNet-50, and 3D-AFF-ResNet-50

of the baseline models and 3D-AFF-ResNet-50 during
different epochs. Furthermore, our method achieved a better
performance than CBAM and ECANet. These experimental
results show the effectiveness of our method and the 3D soft
attention feature map. Besides, we also tested the speed at
inference on CPU (AMD Ryzen 7 3700X) with different
method, and the time consumption for ResNet-50, SE-
ResNet-50, and 3D-AFF-ResNet-50 are 185, 188, and 209
ms per image, respectively.

4.4 Network visualization with Grad-Cam

To analyze the effectiveness of our method, we used the
Grad-Cam [33] to highlight the important regions for the
task of image classification. Grad-Cam is a visualization
method that uses a gradient to calculate the importance of
the spatial location in convolution layers. Some images were
randomly selected from the ImageNet validation set. By
visualizing the regions that the model regards as important
for predicting a class, we could clearly observe the impact
of our method on model performance. To evaluate the effect
of our attention module, we compared the visualization
results of 3D-AFF-ResNet-50 with SE-ResNet-50. Table 7
shows these results. We observed that the highlighted
region generated by 3D-AFF-ResNet-50 was larger than
SE-ResNet-50, which indicated that our attention module
could enable the model to focus on a wider important region
for image classification.

4.5 Object detection and instance segmentation
onMS COCO

We also conducted the task of object detection on the
MS COCO dataset is also conducted. The dataset includes
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Table 7 Highlighted important regions

Input

SE-ResNet-50

3D-AFF-ResNet-50

Input

SE-ResNet-50

3D-AFF-ResNet-50

Input

SE-ResNet-50

3D-AFF-ResNet-50

118,000 training images (“2017 train”) and 5000 validation
images (“2017 val”). We used our 3D-AFF-ResNet with
FPN [31] as the backbone (ResNet-50) of Faster rcnn and

Mask rcnn. All the models were tested on the MS COCO
validation dataset. Tables 8 and 9 show the experimental
results.

Table 8 Objection detection
results on the COCO val 2017 Method Detector AP AP50 AP75 APS APM APL

ResNet-50 Faster rcnn 37.6 58.4 40.9 21.5 41.4 48.6

SE-ResNet-50 39.0 60.5 42.3 23.4 43.0 49.8

CBAM-50 39.3 60.8 42.4 24.5 43.1 50.5

ECANet-50 39.3 60.8 42.9 23.6 43.0 50.1

3D-AFF-ResNet-50 39.4 60.8 42.6 22.9 43.4 50.8

ResNet-50 Mask rcnn 38.3 59.1 41.8 22.3 41.6 50.2

SE-ResNet-50 39.5 60.7 42.8 23.5 43.3 51.2

CBAM-50 40.0 61.2 43.6 24.3 43.7 52.1

ECANet-50 40.0 61.4 43.4 23.8 43.6 51.1

3D-AFF-ResNet-50 40.3 61.4 43.9 24.0 43.7 52.4
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Table 9 Instance segmentation results with different methods on the
COCO dataset

Method AP AP50 AP75

ResNet-50 34.8 55.9 37.0

SE-ResNet-50 35.6 57.6 37.8

CBAM-50 36.1 57.7 38.6

ECANet-50 36.1 58.0 38.4

3D-AFF-ResNet-50 36.3 58.1 38.5

As shown in Table 8, Faster rcnn and Mask rcnn
were used as our detection method. Here we focused
on demonstrating the effectiveness of plugging the 3D-
AFF module into the baseline network. Because the same
detection method was used in all models, the gains can
only be due to the enhanced representation power, given by
the 3D-AFF module or the spatial attention module. The
experimental results show that 3D-AFF-ResNet-50 achieves
significant improvements over the baseline models, which
demonstrates the generalization ability of the 3D-AFF
module on the task of object detection.

We also evaluated our method for the task of instance
segmentation. Table 9 shows that our approach outper-
formed the baseline models by a considerable margin.
Our approach outperformed ResNet-50 by 1.5% AP and
SE-ResNet-50 by 0.7%, and our model also had better per-
formance than ECANet-50 and CBAM-50. These results
demonstrate the validity of our approach.

5 Discussion

In this section, we discuss the validity of our approach - first
the role of the spatial attention module and then the feature
interaction in our attention module.

Role of spatial attention module As shown in Fig. 2, we
compared several variants of the 3D-AFF module. In these
modules, we explored different methods of fusing the
channel and spatial attentional features. The experimental
results showed that all the variants achieved better
performance than SENet. Therefore, these experiments
demonstrated the hypothesis that local spatial attention
has a critical impact on our attention module, which
could improve the model’s performance significantly. We
also compressed the feature from the residual and skip
connection branches into a 2D vector. Therefore, the vector
not only contained the features from the residual and skip
connection branches but also extracted the dependencies
of the local spatial features. These settings enabled for the
feature fusion module to extract more of the inter-spatial
relationship of local features. Based on this analysis, the

empirical experiments verified that the spatial attention
module could do a good job of extracting the spatial features
and the inter-spatial relationship of local features.

Feature interaction The impact of feature interaction in
our attention module can be looked at from two aspects.
The first is the feature interaction between channel
and spatial attentional features. Figure 2(c) and (d)
show how the proposed parallel fusing attention modules
apply the channel and spatial attentional features to the
residual branch, respectively. Therefore, these modules
are implemented without feature interaction. Compared
to the other cases in Fig. 2, the modules, which were
implemented with the feature fusion module, achieve
lower top-1 and top-5 test error rates, as shown by
the experimental results in Table 5. Therefore, these
experiments empirically demonstrate that the feature
interaction between channel and spatial attentional features
boost the model’s performance. The second aspect is
the feature interaction in the spatial attention module,
which extracts the spatial feature and the inter-spatial
relationship of local spatial features from the residual and
skip connection branches. Based on the above analysis, the
empirical experiments demonstrated that feature interaction
plays a critical role in our attention module.

6 Conclusion

In this work, we propose a light-weight 3D attention module
for residual network. The experiments demonstrated that
our attention module could fuse the channel and spatial
features from the residual and skip connection branches.
Furthermore, our attention module could extract the spatial
features and model the inter-spatial relationship of local
spatial features among input feature maps. Extensive
ablation studies empirically verified the properties of our
attention module. To evaluate the effectiveness of our
method, we tested 3D-AFF-ResNet on the ImageNet 2012
dataset, and the experimental results showed that our
method could achieve better performance than the baseline
methods. We also tested the effect of our method on
other computer vision tasks, including object detection
and instance segmentation. The experimental results also
showed that our method could achieve better performance
than the baseline models in these tasks as well.

In the future, we will try to implement more effective
attention method and apply the method to different domains.
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