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Abstract
Objective: The high incidence of respiratory diseases has dramatically increased the medical burden under the COVID-
19 pandemic in the year 2020. It is of considerable significance to utilize a new generation of information technology to 
improve the artificial intelligence level of respiratory disease diagnosis. Methods: Based on the semi-structured data of 
Chinese Electronic Medical Records (CEMRs) from the China Hospital Pharmacovigilance System, this paper proposed a 
bi-level artificial intelligence model for the risk classification of acute respiratory diseases. It includes two levels. The first 
level is a dedicated design of the “BiLSTM+Dilated Convolution+3D Attention+CRF” deep learning model that is used 
for Chinese Clinical Named Entity Recognition (CCNER) to extract valuable information from the unstructured data in the 
CEMRs. Incorporating the transfer learning and semi-supervised learning technique into the proposed deep learning model 
achieves higher accuracy and efficiency in the CCNER task than the popular “Bert+BiLSTM+CRF” approach. Combining 
the extracted entity data with other structured data in the CEMRs, the second level is a customized XGBoost to realize the 
risk classification of acute respiratory diseases. Results: The empirical study shows that the proposed model could provide 
practical technical support for improving diagnostic accuracy. Conclusion: Our study provides a proof-of-concept for imple-
menting a hybrid artificial intelligence-based system as a tool to aid clinicians in tackling CEMR data and enhancing the 
diagnostic evaluation under diagnostic uncertainty.

Keywords Acute respiratory diseases · Risk classification · Deep learning · Chinese clinical named entity recognition · 
Artificial intelligence

1 Introduction

With the increasing number of the aging population and 
pollution changes in the external environment, respiratory 
diseases have significantly increased in terms of morbidity, 
disability rate, and mortality. Respiratory disease is defined 
as any of the diseases and disorders of the airways and the 
lungs that affect human respiration. It may affect any of the 
structures and organs that have to do with breathing, includ-
ing the nasal cavities, the pharynx (or throat), the larynx, 
the trachea (or windpipe), the bronchi and bronchioles, the 
tissues of the lungs, and the respiratory muscles of the chest 
cage (www. brita nnica. com/ scien ce/ respi ratory- disea se). In 
the year 2020, acute respiratory diseases have become the 
focus of attention under the COVID-19 pandemic. It is found 
that predictive diagnosis of severe asthma, severe pneumo-
nia, and lung cancer are critical problems in the clinical 
treatment of patients with acute respiratory diseases [1].
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However, early warning of acute respiratory disease is 
still challenging because of three facts. Firstly, although 
the accumulated medical data that contains vast informa-
tion about the patient’s admission to the hospital has been 
increasing exponentially every year in the information age, 
it is still difficult to securely integrate the separated large-
scale clinical data about acute respiratory diseases from 
the distributed database. Secondly, the medical data (e.g., 
the long-term/temporary prescriptions, diagnostic infor-
mation, nursing records, examinations, surgical records, 
and transfer records) is stored in different forms, namely, 
unstructured text, semi-structured multi-media, and struc-
tured Entity-Relation (E-R) database [2]. Using a single 
analysis technique cannot identify complex factors and 
will lead to inaccurate classifications. Thirdly, the diag-
nosis of severe patients is usually performed based on the 
experience, medical knowledge, and skills of clinicians, 
which will lead to a significant difference in the speed and 
accuracy of treatment. Given the characteristics of acute 
respiratory diseases, its clinical medication is complex, 
and its treatment cost is prohibitive. Simultaneously, it is 
difficult for hospitals to judge the relationship between the 
comprehensive treatment of drugs and clinical outcomes. 
At present, effective risk classification of acute respiratory 
diseases is in a significant absence.

Advanced artificial intelligence models, including deep 
learning algorithms, are gradually introduced for clini-
cal data mining and classification of severe diseases [3]. 
Based on a large number of real Chinese Electronic Medi-
cal Records (CEMRs) from the China Hospital Pharma-
covigilance System, this study establishes a bi-level arti-
ficial intelligence model for an early warning platform of 
acute respiratory diseases. Firstly, a dedicated design of 
the “BiLSTM+Dilated Convolution+3D Attention+CRF” 
deep learning model is established to realize Chinese clini-
cal named entity recognition from the unstructured data 
in CEMRs. This module achieves high accuracy through 
a mixed-use of bi-directional Long Short-Term Memory 
neural network, dilated convolution, self-attention, con-
ditional random field, transfer learning, word vector mod-
eling, character vector modeling, and semi-supervised 
learning. The proposed module reduces the workload of 
manual data annotation and lays the foundation for practi-
cal data mining of acute respiratory disease. Secondly, 
combining the extracted entity data with other structured 
data in the CEMRs, a comprehensive risk classification 
module of acute respiratory disease is established based 
on a customized XGBoost algorithm. This module could 
identify the pathogenic factors of acute respiratory dis-
eases and make early warning of the risk. In practical 
application, it provides clinicians with scientific references 
for diagnosis and treatment decision-making.

The rest of this paper is organized as follows. After a liter-
ature review on the artificial intelligence research for disease 
diagnosis in Section 1, Section 3 presents a hybrid artificial 
intelligence framework for risk classification of acute res-
piratory diseases. Then, key enabling techniques, including 
deep learning-based Chinese clinical named entity recogni-
tion, and risk classification of acute respiratory diseases, are 
discussed in Section 4 and 5, respectively. Experiments and 
discussions are presented in Section 6 to verify the proposed 
model. Finally, the conclusions are presented in Section 7.

2  Literature review

Electronic medical records (EMRs) reduce the storage cost 
of paper-based medical records [4]. Sweeney [5] proposed 
an anonymized EMR system, accelerating the de-privacy 
of EMR in the medical field. The de-privacy of EMRs can 
further accelerate the research on diseases without worry-
ing about disclosing patients’ privacy. Information extrac-
tion from unstructured data in EMRs is to identify some 
critical entities from the text for further use. Traditionally, 
information extraction uses rule-based reasoning methods, 
but the disadvantage of these methods is that each data type 
requires a set of unique rules [6]. Beyond the information 
extraction function, the artificial intelligence-based disease 
diagnosis and prediction could be categorized into disease 
classification & diagnosis, tendency judgment, occurrence 
prediction, and risk classification [7]. Table 1 provides an 
overview of the themes, data types (e.g., EMRs and Mag-
netic Resonance Imaging (MRI)), and artificial intelligence 
models (e.g., convolutional neural network (CNN) and Long 
short-term memory (LSTM)) for various disease diagno-
ses and prediction. For instance, 1) use natural language 
processing technique for extracting the pathogenic factors 
from the unstructured medical data; 2) capture the changes 
and potential development direction of patients’ disease by 
combining the diagnosis and treatment information in mul-
tiple periods; 3) find the risk factors affecting the disease 
from large-scale medical data, and identify the correlation 
of influencing factors. Although machine learning classifiers 
have already demonstrated excellent image-based diagnoses, 
analysis of diverse unstructured EMR data remains chal-
lenging [27].

Accurate information extraction from unstructured EMRs 
is the foundation of efficient risk classification. The clini-
cal named entity recognition is a crucial task in information 
extraction, usually modeled as a sequence labeling problem. 
Machine learning algorithms, including the hidden Markov 
model, maximum entropy Markov model, bidirectional LSTM, 
conditional random field, and BERT embedding, are widely 
adopted [28]. Incorporating artificial intelligence technologies 
into the early warning of disease risk will help improve the 
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efficiency and accuracy of medical diagnosis. These models 
have achieved excellent results in improving medical qual-
ity, reducing mortality and morbidity, and reducing medical 
expenses. This research presents a mixed-use of bi-directional 
LSTM, dilated convolution, self-attention, conditional random 
field, transfer learning, and semi-supervised learning for risk 
classification of acute respiratory diseases.

3  Framework of the bi‑level artificial 
intelligence model

The data size of unstructured text in the CEMR of each 
patient varies largely from a dozen of words to thousands 
of words. We have tried directly to build a deep learning 

Table 1  Artificial intelligence models for disease diagnosis and prediction

Function Theme Disease type Artificial intelligence 
models

Data Type Ref.

Information extraction Extract valuable informa-
tion

Myocardial infarction Gaussian naïve Bayes-
based active balancing 
mechanism

Imbalanced electrocardio-
gram data

[8]

Medical data processing Beta-lactam allergy Fast incremental decision 
tree

EMRs [9]

Classification & diagnosis Classification of chronic 
diseases

Chronic diseases Hybrid deep learning EMRs [10]

Classification of cardiac 
disorder

Cardiac disorder Adaptive neuro-fuzzy 
inference system

Electrocardiogram signals [11]

Detect Covid-19 disease Covid-19 disease CNN Chest X-ray images [12]
Infer illness and predict 

outcomes
Diabetes and mental 

health
LSTM EMRs [13]

Brain disease prognosis Brain disease Weakly-supervised CNN MRI and clinical scores [14]
Tendency judgment Infection rates of COVID-

19
COVID-19 LSTM EMRs [15]

Rehabilitation progress Rehabilitation CNN Movement data [16]
Dynamic changes in 

disease
Congenital heart disease Bayesian classification Cardiopathy data [17]

Transcriptional effects of 
mutations

Mutations Hybrid deep learning DNA sequence [18]

Mortality detection in 
ICU

Unspecified Deep learning and rule-
based reasoning

EMRs [19]

Occurrence prediction Cognitive impairment 
conversion prediction

Dementia Hybrid CNN MRI [20]

Predict postoperative 
morbidity

Heart disease Ensemble model EMRs [21]

Predict the occurrence of 
a disease

Multicategory-multifacto-
rial disease

Generalized artificial 
intelligence strategy

EMRs [22]

Risk prediction Predict the risk level of 
the disease

Multivariate disease Deep learning model EMRs [23]

Stratify the clinical risks 
of acute coronary 
syndrome

Acute coronary syndrome Regularized stacked 
denoising auto-encoder 
model

EMRs [24]

Disease risk prediction Unspecified Multimodal data-based 
recurrent CNN

Semi-structured EMRs [25]

Multiple disease risk 
prediction

Multiple diseases Directed disease network 
and recommendation 
system

EMRs [26]
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model based on unstructured text data in the CEMR. How-
ever, the classification accuracy is poor and far from sat-
isfactory because there exist distracting information and 
useless information in unstructured text data in the CEMR, 
besides it is quite difficult to establish an effective input 
data modeling due to the wide range of the data size of 
unstructured text. Therefore, based on a large number of 
semi-structured data of CEMRs from the China Hospi-
tal Pharmacovigilance System, this study proposes a bi-
level artificial intelligence model for risk classification of 
acute respiratory diseases. As shown in Fig. 1, the pro-
posed model includes two modules. Firstly, a hybrid deep 
learning module is established to realize Chinese clinical 
named entity recognition from the unstructured data in 
CEMRs. To improve the efficiency and accuracy of named 
entity recognition, key techniques such as self-attention, 
transfer learning, and semi-supervised learning mecha-
nism are introduced. Integrating the extracted entity data 
with other structured data in the CEMRs, the second part 
is a customized XGBoost [29] module to mine the struc-
tured CEMRs data to realize the risk classification of acute 
respiratory diseases.

The highlight of the proposed model is threefold:

a) Combination of Chinese word vector (trigram and 
bigram) and Chinese character/token vector (unigram): 
The word vector is introduced to avoid ambiguity in the 
Chinese language model, while the character vector con-
tains more semantic information.

b) Elaborated design of neural network: The structure of 
the neural network is crucial to information extraction. 
The bi-directional Long Short-Term Memory neural net-
work, conditional random field, and dilated convolution 
are integrated.

c) Transfer learning strategy: To achieve better precision 
without massive data, the labeled data from the China 
Conference on Knowledge Graph and Semantic Com-
puting (CCKS) 2017 (https:// biend ata. xyz/ compe tition/ 
CCKS2 017_2/) is used to pretrain parameters to make 
the neural network more suitable for the CMER data. 
The purpose of transfer learning is to perform pretrain-
ing of the model and then transfer to the new data in the 
same field, which can speed up the training process.

d) Semi-supervised strategy: The semi-supervised tech-
nique is introduced into the neural network model to 
achieve a reasonable accuracy rate in a small amount 
of EMR data. The training set is expanded with self-
semi-supervised learning. Semi-supervised learning can 

Fig. 1  The bi-level workflow of the risk classification of acute respiratory diseases
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reduce the dependence on human labeling data and real-
ize real artificial intelligence.

4  Deep learning‑based Chinese clinical 
named entity recognition

A dedicated design of the “BiLSTM+Dilated 
Convolution+3D Attention+CRF” deep learning model 
is presented for Chinese clinical named entity recognition 
(CCNER) of CEMR. The CCNER is to identify and extract 
the individual entities (including entity type and entity 
boundary) about the patient’s physical condition, clini-
cian’s diagnosis, and treatment from the unstructured data 
of CEMRs.

A. Data modeling for deep learning

The data under research comes from the semi-structured 
CEMRs (i.e., Chinese Electronic Medical Records) of real 
patients with acute respiratory diseases in China Hospital 
Pharmacovigilance System (CHPS) established based on 
the National Adverse Drug Reaction Reporting System 
of China. CEMRs contain the patient’s diagnosis, time of 
admission, description of the illness, description of physical 
condition, and other relevant clinical information. As shown 
in Fig. 2, the CEMRs in CHPS could be categorized into 
unstructured text data and structured E-R data (e.g., age, 
gender, temperature) [30].

1) Chinese electronic medical records

Through the analysis of CEMR data, the entities to be 
extracted are divided into the following five commonly-used 
categories:

1) Examination (检查和检验). It includes biopsy, chest 
Computed Tomography, MRI, and other examination 
that are conducted to detect the patient’s physical condi-
tion.

2) Symptom (症状与体征). It represents a patient’s current 
physical state and often contains the manifestation situ-
ation or precursor of some diseases. For example, dizzi-
ness, vomiting, coughing, sputum, and other symptoms 
as vital disease signs, from which the clinician can infer 
the disease and severity of these symptoms.

3) Disease (疾病与诊断). It records the patient’s health 
status, which is an essential feature of data mining in 
the later stage, such as tumor shadow, lung cancer, dif-
ferentiated adenocarcinoma, and other diseases.

4) Treatment (治疗). It refers to the treatment measures 
for the disease. The effectiveness of the drug (e.g., 
chemotherapy, pemetrexacin, libitol, and carboplatin 
chemotherapy) and the accuracy of the application can 
be compared after the treatment.

5) Anatomy (身体部位). Some descriptions of the patient’s 
body parts correlate with the disease, such as alveolar 
walls, lungs, right maxillary sinus, and other body parts.

In terms of entity categories, it is necessary to ensure no 
duplication/ambiguity or mutual inclusion among entities. 
In the CCNER, two kinds of entities, namely, disease and 
symptom, attract more attention. There are some pre-nega-
tive words and uncertain modifiers, such as untouched (未

Fig. 2  Data modeling and encoding of the unstructured text data in the CEMRs

J. Leng et al.13118

1 3



 

触及) and undiscovered (未发现), will change the semantic 
connotation. It is also critical to capture the features and 
meaning of such pre-negative words or modifiers.

2) Data annotation and encoding for generating training 
samples

The annotation of the patient’s CEMR is to identify and 
mark the critical entities of diseases, symptoms, examina-
tions, anatomy, and treatment. The annotation algorithm 
is developed based on the YEDDA (https:// github. com/ 
johnz haoxi ao/ YEDDA) in the Python3.5 environment. The 
annotation algorithm CEMR will generate a “.ann” file. A 
conversion script is also written to convert it to the training 
set of the deep learning algorithm with Python3.5. Figure 2 
shows how to convert the text-type clinical data into train-
ing samples.

A critical step in data preprocessing of training samples 
is encoding the word into the vector. There are no ortho-
graphic boundaries between words in Chinese, which is the 
main difficulty of working with Chinese computationally 
(in addition to the bewildering array of encodings used for 
Chinese and the simplified/traditional script controversy). 
A Chinese word (e.g., “咳嗽”) frequently consists of two, 
three, or more Chinese characters (e.g., “咳”, “嗽”). The 
Chinese character/token features include the semantic infor-
mation of the word. The word-based method may cause mis-
takes of segmentation, which will result in lexical-semantic 
ambiguity. The character-based method can avoid semantic 
deviation brought by the segmentation error in the word-
based method. A combination of Chinese word vector and 
Chinese character vector brings better semantic information 
of the training CEMR data to the deep neural network.

Word embedding is used to preserve the semantic infor-
mation of the high-dimensional sparse vector through low-
dimensional space mapping in the context [31]. Traditional 
one-hot encoding of word and character is of high dimen-
sion and sparse vector. Other encoding methods, such as 
word2vec (code. google. com/ archi ve/p/ word2 vec/), Fastext 
(fasttext.cc/), GloVe (github. com/ stanf ordnlp/ GloVe), Emlo 
(allen nlp. org/ elmo), and Bert (github. com/ google- resea rch/ 
bert), can effectively map words into the low-dimensional 
vector space as well as capture the semantic information. 
This study conducts comparative experiments among vari-
ous word embedding methods, and FastText is selected to 
search for a number of related medical term corpus for unsu-
pervised word vector training in CCNER.

B. Design of deep neural network

CCNER is a multi-label classification task [10] that needs 
a feature extraction algorithm to capture entity type and 
entity boundary, and thus to capture context semantics and 

word semantics. A hybrid deep learning module is presented 
to identify: 1) whether the word is an entity or not, 2) which 
entity type it is, and 3) where the boundary (the beginning 
and the end) of the recognized entity is.

1) Architecture of hybrid deep learning module for CCNER

In the named entity recognition task, it is a common 
practice to use a neural network to extract context seman-
tic information, then classify it through a full connection 
layer, and finally, use the conditional random field (CRF) 
layer for sequence constraint to improve accuracy [32]. The 
neural network predicts the entity category and boundary of 
the word through the full connection layer. The CRF layer 
learns the transfer probability in the text, calculates the loss 
function, and then performs the backpropagation to update 
the weight of each layer of the network. Figure 3 illustrates 
the network structure of an innovative “BiLSTM+Dilated 
Convolution+3D Attention+CRF” hybrid deep learning 
(HDL) module for CCNER designed in this paper.

The proposed deep learning-based CCNER module con-
tains a four-layer bi-directional Long Short-Term Memory 
neural network (BiLSTM), bi-layer Dilated Convolution, 
a Self-Attention Layer, and a CRF Layer. The BiLSTM 
is more suitable for extracting features of long sequences 
than the Transformer [33] (which ultimately abandoned the 
circulation mechanism of RNN and adopted a way of self-
attention for global processing), because the computation of 
Transformer increases when the sequence changes to length 
[34]. The absolute position-coding of the Transformer can-
not capture word order, leading to a reduction in the captur-
ing ability of long sequences. In the sequence problem of 
the named entity recognition task, the transmission of time 
step in BiLSTM takes more consideration of the sequential 
relation of words than the absolute position-coding of Trans-
former. Two layers of Dilated Convolution are added for 
expanding receptive fields at the end of BiLSTM to capture 
both the local context semantic information and correlation 
feature among the words.

The use of BiLSTM enhances the ability to capture the 
context semantics than a single LSTM. Traditional LSTM 
neural network usually suffers from the locality in the 
semantic extraction of text because of its long-term depend-
ence. The CCNER requires global information in solving the 
task of named entity recognition. A feature-weighted clas-
sification using an attention mechanism can better capture 
semantic information for a named entity recognition task. 
Therefore, the self-attention mechanism and CRF layer are 
used in the proposed HDL-based CCNER module to cap-
ture and repair the correlation between global information 
in feature extraction.

On the one hand, a 3D-attention layer is built to conduct 
a global weighting to find the importance of the features 
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extracted from the words. It does not rely on the fixed 
influence of words, which avoids the shortcomings of the 
local information extraction in BiLSTM. On the other 
hand, the SoftMax function is conventionally used as map-
ping to 0–1 interval in the last layer of the neural network, 
which will lead to a weak correlation between labels. To 
obtain the correlation between labels in the CCNER task, 
CRF is used in HDL to perform normalization to remove 
a constraint on the use of global information to repair cor-
relation for labels, and consequently, the algorithm robust-
ness will be improved.

Notably, as shown in Fig. 3, the number of parameters 
in the proposed HDL module is about 20 million, which is 
much less than the 130 million parameters of the widely-used 
Bert+BiLSTM+CRF model. Thus, the forward reasoning 
time of HDL is much faster than the Bert+BiLSTM+CRF 

model, which is more suitable for online usage than the 
Bert+BiLSTM+CRF model.

2) Four-layer BiLSTM

BiLSTM is a combination of the forward directional 
LSTM and the backward directional LSTM. LSTM sub-
stantially alleviates the gradient disappearance of traditional 
Recursive Neural Network (RNN), and LSTM can effec-
tively alleviate the long-term dependence by improving the 
implicit structure of traditional RNN and thus could capture 
more extended sequence semantics. LSTM has three gated 
structures, namely, the input gate, the forget gate, and the 
output gate.

The input gate decides to let how much new information 
get into the BiLSTM cell state updated from St − 1 state to 

Fig. 3  The network structure of the “BiLSTM+Dilated Convolution+3D Attention+CRF” model for CCNER
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St. The forget gate is a smart design in BiLSTM, which can 
alleviate the long-term dependence and enable the CCNER 
model to capture more extended context semantics. The for-
get gate is responsible for getting rid of some unimportant 
information. The characteristics of the Sigmoid function also 
determine the function of the forget gate: 1 is to retain all 
information ultimately, and vice versa. For example, in terms 
of predicting the next word in CCNER, the current BiLSTM 
cell already contains subject information, where the pronoun 
is picked out; and the model can capture a more extended 
sequence by trying to choose to forget the old subject when 
it captures the new subject to alleviate long-term depend-
ency. The output gate controls the final output and will also 
remove some information of the cell state that does not need 
to be output. It maps the state information through the Tanh 
layer to the values between −1 and 1, and multiplies these 
values by the previous Sigmoid function to get the output 
information.

In BiLSTM, the forward LSTM network computes the 
hidden state ��⃗ht of the left context of the sentence at the word 
Xt, while a backward LSTM network reads the same sen-
tence in reverse and outputs �⃖�ht given the right context. These 
two vectors are concatenated to form the hidden state of a 
BiLSTM network, i.e., ht =

[
��⃗ht; �⃖�ht

]
 , which can make use of 

(1)it = �
(
Wi ∙

[
ht−1,Xt

]
+ bi

)

(2)St = tanh
(
WS ∙

[
ht−1,Xt

]
+ bS

)

(3)ft = �
(
Wf ∙

[
ht−1,Xt

]
+ bf

)

(4)Ot = �
(
W0

[
ht−1,Xt

]
+ b0

)

(5)ht = Ot ∗ tanh
(
St
)

more sentence-level information. Table 2 provides an over-
view of the notations used in the four-layer BiLSTM 
module.

To better capture the contextual semantic information, we 
need to add more neural layers to capture the context. After 
dozens of experiments in the CCNER module for informa-
tion extraction, the results show that the loss will dramati-
cally increase when the layer number of BiLSTM is greater 
than 4. The dimension of the first layer is 512, which is the 
maximum word width of the Bert module. The dimensions 
of the hidden layers were usually halved layer by layer. It is 
tuned based on performance on the validation dataset (also 
called a trial-and-error approach). Moreover, the computa-
tion time increases exponentially with the increase of the 
parameter number. Along with the increasing layer num-
ber of the HDL model, the large-scale parameters are more 
likely to cause an overfitting issue. To avoid the overfitting 
problem, regularized Dropout layers need to be added to the 
BiLSTM to reduce the complexity of parameter adjustment 
and thereby speed up the model convergence.

3) Bi-layer dilated convolution

In the CCNER task, each word of a sentence is mapped 
into a vector. Each word will affect the accuracy of the 
named entity recognition task. Extracting each entity needs 
the analysis of contextual information. To avoid information 
loss in the sampling process, a bi-layer of dilated convolu-
tion is incorporated into the HDL module to capture more 
extensive context information of the next sentence.

In the conventional convolution, the sliding window scan-
ning of the input position is used to extract local correlation, 
and the convolution translation is performed by sliding win-
dow movement. The dilated convolution is used in the HDL 
module to make the receptive field of convolution increase 
via a filling of 0 between the convolution spaces, while the 
size of the convolution matrix itself remains unchanged [35]. 
Different sizes of kernels (e.g., 3 and 7) are tested to cap-
ture context information of various granularities. In this way, 
convolution captures a broader range of data features to scan 
and find the relationship between sentences.

The bi-layer of dilated convolution entrusts probability 
information to each word of the input sentence, which is 
consistent with the position information assigned to each 
word by the BiLSTM layer. Then, it is transmitted to the 
3D-attention layer, which can be decoded using the Viterbi 
algorithm to find the optimal path.

4) Self-attention layer

The CCNER needs to not only focus on local information 
but also to capture holistic context information. BiLSTM 
relieves long-term dependence to a certain extent, but a more 

Table 2  Notations used in the four-layer BiLSTM module

Notations Implications

St The state of the current BiLSTM cell
it The new information getting into the BiLSTM cell state
σ The Sigmoid function
ft The forgotten information in the BiLSTM cell state
Xt The input of the current BiLSTM cell
bi, bS, bf, b0 The bias in three gates of the current BiLSTM cell
Wi, WS, Wf The weights in three gates of the current BiLSTM cell
Ot The output information in the BiLSTM cell state
ht − 1, ht The output of the previous and current BiLSTM cell

h
t
=

[
��⃗h
t
; �⃖�h

t

]
Two vectors (forward and backward) to form the hidden 

state of a BiLSTM network
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prolonged dependence will make the BiLSTM inefficient. 
The learning and training in the BiLSTM model are not par-
allel because the current state of BiLSTM depends on the 
previous state. The attention mechanism can achieve parallel 
training to cut down dependence on the previous information 
and thus improve the efficiency of training [20]. A widely-
used encoder-decoder self-attention mechanism [36] is intro-
duced to extract some crucial features of data and to mitigate 
longer-term dependence in the HDL module. The encoder 
will translate sentences into vectors, and then the decoder 
decrypts the vector, which reduces the loss of information.

The computation logic of the self-attention mechanism is 
shown in Fig. 4. The bottom layer of the self-attention mod-
ule of HDL is a mapping of Query, Key, and Value. Phase 1 
input the Query multiplied by Key to get the weight of each 
Key’s Value. In Phase 2, a SoftMax function is used for 0–1 
interval mapping. Phase 3 do product between Query and 
Key to calculate the similarity (the higher the similarity and 
the matching degree, the greater the weight), and then the 
weighted sum is multiplied by Value to calculate the Value 
of Attention, which can calculate the weight of each word 
in the text and give more weight to essential feature words.

The advantage of the self-attention mechanism is to 
capture global information. However, the disadvantage of 
the attention mechanism is that it cannot consider the char-
acteristics of a sequential relationship because all features 
are parallel processing. The absolute cosine positional cod-
ing used in Bert also suffers from some shortcomings [37]. 
Therefore, a FastText-based complex embedding technique 
is used in HDL to get rid of a pretrain-finetune discrepancy.

5) Output CRF layer

To obtain the correlation between labels in the CCNER 
task, CRF is used in HDL to perform normalization to 
remove a constraint and repair correlation for labels, and 
consequently, the model robustness will be improved. The 
CRF is a kind of undirected probabilistic graph model. 
Under the condition of P(Y| X) (X as the input and Y as 
the output), Y can be used as a sequence label. Using (the 
regularization of) the maximum likelihood estimation on 
the training data, the maximal Y could be calculated under 
the conditional probability P(Y| X). The conditional prob-
ability of a conditional random field is calculated using the 
following formula:

where m represents the maximum number of clusters. Ci 
represents the ith largest cluster. xCi

 and yCi
 represent the 

random vector corresponding to the cluster vertex, respec-
tively. φ denotes the potential function. Z(x) represents the 
normalized function.

There is a correlation among the observation sequence 
in a large number of training data, and thus a simple fea-
ture function cannot capture all the entities in CCNER 
tasks. Compared to the hidden Markov chain model that 
quickly falls into the local optimal results, CRF calcu-
lates conditional probability through the input data and 
makes normalization of global information to solve the 

(6)p(y|x) = 1

Z(x)

m∏

i=1

�i

(
yCi

, xCi

)

(7)Z(x) =
∑

y
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�i

(
yCi

, xCi

)

Fig. 4  The computation logic of 
the self-attention mechanism
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annotation bias problem, which is suitable for named 
entity recognition task.

 III. Key techniques for achieving high accuracy in HDL

The transfer learning and semi-supervised learning tech-
nique are used to improve the performance of the proposed 
HDL module.

1) Transfer learning mechanism

The pretraining and finetuning is a popular trick in deep 
learning models, which require massive data to be trained. 
Generating the training data requires too much workforce to 
do the labeling job. Moreover, high-quality labeled data is 
challenging to obtain. Transfer learning can achieve excel-
lent results even with a small amount of annotation data 
[38]. Pretraining the model weights based on a similar pub-
lic dataset can achieve reasonable accuracy. For instance, 
Bert’s pretraining is a time-consuming task, and Google 
uses a large amount of Tensor Processing Unit (TPU) for 
pretraining Bert in millions of high-quality corpus. Ordi-
nary companies use transfer learning on these pretrained 
models in finetuning their data for the weights, which can 
achieve outstanding accuracy on a small amount of labeled 
data and significantly reduce the computation complexity. 
At present, there are many pretraining models in the field 
of natural language processing, such as EMLO (allen nlp. 
org/ elmo), BERT (github. com/ google- resea rch/ bert), GPT 
(github. com/ openai/ gpt-3), and XLNET (github. com/ zihan 
gdai/ xlnet). When doing some downstream tasks, higher 
accuracy can be achieved by finetuning models.

This study uses the Chinese electronic medical record 
dataset from CCKS 2017 (biendata.xyz/competition/
CCKS2017_2/) to perform a pretraining of the proposed 
HDL module. The test evaluation shows the accuracy of 
the pretrained HDL module is up to 92%, which is compa-
rable in accuracy with other algorithms [39, 40]. Then, the 
pretrained HDL is transferred using labeled CCNER data 
from CHPS.

2) Semi-supervised learning mechanism

Another technique for achieving high accuracy in HDL is 
the semi-supervised learning mechanism. Semi-supervised 
learning is to use unlabeled data for marking, and then train 
with the labeled data to increase the scale of training data 
[41]. Semi-supervised learning can be summarized into 
three categories: 1) pretraining with unlabeled data (includ-
ing unsupervised or pseudo-supervised pretraining), then 
finetuning with label data; 2) Semi-supervised algorithm 
based on network features (use labeled data to train the net-
work, then use the trained network features to classify the 
unlabeled data, and finally select some useful unlabeled data 

to add to the training set); and 3) make the network work in 
self-training semi-supervised fashion (use the trained net-
work to predict the label of unlabeled data).

The semi-supervised learning strategy in the HDL mod-
ule is a kind of pseudo-supervised pretraining on unlabeled 
data. The principle is to inject the pseudo-label data that 
could obtain a high level of confidence in the training set. It 
can improve a few percentage points of classification accu-
racy on the named entity recognition task of CEMR and 
reduce workforce to expand the training set.

5  Risk classification of acute respiratory 
diseases

This section introduces a machine learning module for the 
risk classification of acute respiratory diseases.

A. Data modeling for risk classification

A changing or deteriorating process from minor/mild 
respiratory disease to acute respiratory disease will hap-
pen if the patient doesn’t take countermeasures. Therefore, 
the occurrence of acute respiratory disease deteriorated 
from minor/mild respiratory disease should be predicted in 
advance. The Risk Level is defined as illustrated in Fig. 6 
and will be predicted as an early warning of acute respira-
tory disease. The data label for classification is the patient’s 
risk level. The risk classification is a multi-grade classifica-
tion [42] from the patient’s various indicators and symp-
toms description as well as previous treatment information. 
Capturing the relationship between the clinical data and the 
final illness from multiple dimensions is critical to find the 
potential factors related to the disease and thus to predict the 
risk level of the patient’s disease. As shown in Fig. 5, the 
data modeling for risk classification is based on the extracted 
entity data and other structured data in the CEMRs.

There exists some scoring method for making a com-
prehensive judgment of the patient’s ability to act illness 
severity. Figure 6 presents a definition of risk level based 
on the well-known Zubrod-Ecog-WHO Performance Score 
(ZPS) method and the Karnofsky Performance Score (KPS) 
method [43]. The KPS is a functional status score method. 
The higher the score, the better the health status. This scor-
ing method is designed based on an investigation in The First 
Affiliated Hospital of Guangzhou Medical University, which 
is a well-known hospital in the respiratory disease treatment 
area in China. This scoring method has been embedded 
in the database of the China Hospital Pharmacovigilance 
System.

Generally, a score above 80 is considered non-depend-
ent and can live on its own without the care of others. A 
score from 50 to 70 is classified as semi-dependent and 
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occasionally requires the care of others. A score below 
50 is considered as unable to live on their own. The ZPS 
score shows the behavioral ability score in the treatment 
of severe diseases such as lung cancer. By referring to the 
KPS and ZPS method, this study defines four risk levels of 
acute respiratory diseases, namely, Normal (Level 0), Low 
Risk (Level 1), Moderate Risk (Level 2), and High Risk 

(Level 3) to indicate the patient’s illness. Level 0 could 
be mapped into score 100 in KPS and 0 in ZPS. Level 1 
could be mapped into a score of 80–100 in KPS and 1 in 
ZPS. Level 2 could be mapped into a score of 50–80 in 
KPS and 2–3 in ZPS, which needs to be tracked to see if it 
goes to a high-risk level, and further intensive treatment 
is needed. Level 3 could be mapped into scores 0–50 in 

Fig. 5  The data structure of 
training samples in the risk clas-
sification model

Fig. 6  Definition of risk level for early warning of acute respiratory disease
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KPS and 4–5 in ZPS, which needs the highest level of 
individual attention.

B. Customized XGBoost for risk classification

Risk warning of disease is essentially a multi-label clas-
sification of risk levels. There are many classification algo-
rithms in machine learning, such as logistic regression, sup-
port vector machine, random forest, and XGBoost algorithm 
[29]. Logistic regression is a widely used algorithm that cal-
culates output variables by discretizing the characteristics of 
input variables. Logistic Regression is of low computation 
complexity and is commonly used as a benchmark model. 
Support Vector Machine (SVM) algorithm has excellent 
generalization performance in the case of a small number 
of samples. SVM algorithm cannot be trained in a parallel 
manner, so it is not suitable for large-scale sample train-
ing. Random Forest algorithm is a robust classifier formed 
by several weak classifier groups. It not only improves the 
classification ability of the decision tree but also avoids the 
problem that the decision tree is easy to overfit.

XGBoost algorithm is an integrated learning method sim-
ilar to the random forest algorithm, which uses integrated 
learning to upgrade the weak classifier to the robust classi-
fier. XGBoost is designed to use Boost thinking to promote 
and reduce data bias, and the model is extremely robust. 
Therefore, the XGBoost algorithm is used as the kernel of 
the disease risk classification model in this paper. Table 3 
provides the XGBoost, together with the parameters used in 
the risk warning of HDL.

The reason why the XGBoost performs training quickly 
is that the continuous processing of features can find the best 
segmentation point for feature pre-sorting, and block stor-
age can store the data in memory respectively for each col-
umn. XGBoost algorithm is an improvement of the Gradient 
Boosting Decision Tree (GBDT) algorithm [44]. XGBoost 

includes a level-wise undifferentiated splitting of all sub-
nodes of the same layer each time. Instead of adopting 
GBDT’s violent method, the XGBoost algorithm uses the 
feature pre-sorting technique and then performs the multi-
threaded parallel computation to improve the training speed. 
Since pre-sorting is column storage, it is stored in persistent 
memory for accelerating the reads and writes in the training 
phase, making XGBoost perform excellently.

6  Experiments and discussions

To the best of our knowledge, there is no similar hybrid sys-
tem for risk classification of acute respiratory diseases based 
on semi-structured CEMRs. Therefore, the performance 
analysis of the presented system against state-of-the-art 
architectures is conducted from two aspects independently. 
The CCNER module is evaluated based on a comparison 
with Bert+BiLSTM+CRF and other basic models. The risk-
predictor is evaluated based on a comparison with Logistic 
regression, SVM, and Random Forest.

A. Data source and pre-processing

This research is driven by the increasing need to predict 
the risk level of acute respiratory diseases under the COVID-
19 pandemic. The research was carried out for three types 
of acute respiratory diseases, namely lung cancer, severe 
pneumonia, and severe asthma. The high mortality rate of 
these three types of acute respiratory diseases, if detected 
and treated early, will be significantly reduced.

The data under research comes from the CHPS (i.e., 
China Hospital Pharmacovigilance System) established 
based on the National Adverse Drug Reaction Reporting 
System (Fig. 7). It includes a massive medical database 
combined with artificial intelligence models to promote the 
prevention and control of severe respiratory diseases and 
reduce mortality. All CEMRs are unified in the writing form 
and include information such as age, gender, symptoms, 
past medical history, family medical history, and examina-
tion. Figure 7 also shows some examples of training data 
labeled with the risk level of the disease. Figure 8 provides 
the screenshots in the CCNER implementation designed in 
this paper.

The deep learning algorithm is susceptible to the miss-
ing values of the data. The missing values must be filled in 
before importing algorithm training. For the numerical value 
type, this paper uses the median filling method to avoid the 
interference effect brought by extreme value. For text types, 
special symbols or similar semantics based on the model 
classification results are used to fill the missing values. If 
there is no suitable value to fill or there is too much missing, 
this piece of information will be omitted directly to ensure 

Table 3  The implementation detail of the customized XGBoost 
model
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Fig. 7  Screenshots and training samples in the China Hospital Pharmacovigilance System

Fig. 8  Recognized entities from unstructured CEMR and the model response time
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data quality. Simple category information can be directly 
converted into numerical data. The pre-process of Chinese 
word segmentation is conducted using a tool named jieba 
(github. com/ fxsjy/ jieba). For text information (e.g., symp-
tom description), text vectorization such as TF-IDF, Fast-
Text, and Word2Vec can be used. Here, TF-IDF (i.e., term 
frequency-inverse document frequency, github. com/ jkern/ 
tf- idf) is used for text vectorization. Because TF-IDF pro-
duces a sparse matrix that needs to be reduced to a dense 
matrix, the Truncated Singular Value Decomposition (SVD, 
github. com/ ethz- asl/ trunc ated_ svd_ solver) method is used to 
reduce the dimension of the sparse matrix.

The proposed algorithm is written based on Python3.5 
and Keras deep learning framework (keras.io/), including 
libraries such as Numpy, Pandas, and Sklearn. The FastText 
algorithm (fasttext.cc/) in the Gensim library is called to 
train the professional word library word vector in CCNER. 
The hardware platform for training is a server with Intel 
Xeon CPU and Tesla P100 16G GPU.

B. Experiments and discussions on CCNER

A total of 13,786 labeled medical records are collected 
for conducting the experiments on the proposed CCNER 
modes. The widely-used “Bert + BiLSTM + CRF” (BBLC) 
model [40] is introduced as the benchmark. 11,000 records 
are used as a training set and the rest 2786 records as the 
test set. The accuracy of the CCNER model is evaluated by 
identifying whether the entity types and entity boundary is 
right or not. The confusion matrix is built for the distinction 
between false positive and negative errors. However, in the 
face of a large number of data, it is difficult to measure the 
model’s merits just by counting the number. It will also take 
too much space to include the confusion matrix. Therefore, 
for a concise reason, this paper directly presents the results 
on the Precision rate, Recall rate, and the F1 index to evalu-
ate the performance of CCNER models. Table 4 shows the 
results of experimental CCNER models.

The results show that the proposed HDL module 
(i.e., BiLSTM + Dilated Convolution +3D Attention + 
CRF + transfer learning + word vector + character vector 
+ semi-supervised learning) work best among all CCNER 
models. The basic model BLDAC (i.e., BiLSTM + Dilated 

Convolution +3D Attention + CRF) is underperformed 
than the BBLC model because the neural network scale of 
the former model (20 million parameters) is smaller than 
the later model (130 million parameters). The performance 
of the BBLC model is lower than the “BLDAC + transfer 
learning + word vector + character vector” method because 
the preliminary training of Bert Chinese model uses general 
Chinese language text. Thus, the obtained character vector is 
underperformed than that of the “BLDAC + transfer learn-
ing + word vector + character vector” obtained in profes-
sional medical vocabulary. The combination of word vector 
and character vector can mine the corpus of semantic infor-
mation in-depth. The semi-supervised learning technique 
can automate the annotation to a large number of unlabeled 
CEMRs, and thereby expanding the scale of training samples 
for the HDL module. The semi-supervised learning tech-
nique improves the basic model to enhance the ability to 
capture more semantic information, and thus achieve higher 
precision of entity extraction.

Table 5 provides the precision rate, recall rate, F1 results 
of the proposed HDL module under five categories of the 
entity identification of acute respiratory diseases. The results 
show that the recall rate of the Disease entity type is low. 
The main reason is that some entities of disease and diag-
nosis are not covered in the training set, leading to some 
diseases not being well recognized.

Table 4 shows the precision rate, recall rate, F1 index of 
the extraction of three diseases, namely lung cancer, severe 
pulmonary, and severe asthma, which are included in the 
Disease entity categories. The average precision rate, recall 
rate, and F1 values of these three respiratory diseases are 
mapped into the Disease entity row in Table 4. Based on 
the analysis of the results in Table 6, the reasons why the 

Table 4  Comparison of 
experimental CCNER models

Models Precision Recall F1

BBLC 88.40 86.71 87.55
BLDAC 81.45 79.60 80.51
BLDAC+transfer learning 90.20 87.42 88.78
BLDAC+transfer learning+word vector+character vector 92.42 88.55 90.44
HDL (BLDAC +transfer learning+word vector+character 

vector+semi-supervised learning)
94.12 90.38 92.21

Table 5  CCNER results for different entity types

Entity Type Precision Recall F1

Examination 93.40 91.30 92.34
Symptoms 92.50 92.72 92.61
Disease 93.25 85.97 89.46
Anatomy 95.88 90.45 93.1
Treatment 95.57 91.46 93.47
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accuracy of lung cancer is better than that of severe pneu-
monia and severe asthma are explored. It is found that the 
data scale of lung cancer in the training set is much more 
than the other two categories. In the process of training, the 
model learns more about lung cancer.

As shown in Fig. 8, the information extraction speed of 
CCNER is 17 ms due to the fast speed of forward-reasoning 
of the HDL module, which lays a solid foundation for prac-
tical usage. The advantages of the proposed HDL module 
are three-fold:

a) Reduction in forward-reasoning time. The model param-
eters of the HDL module were 20 million, while the 
model parameters of the “Bert + BiLSTM + CRF” 
model were as high as 130 million. The response time 
of HDL was guaranteed to be 20 milliseconds when only 
using CPU for the forward reasoning, while the response 
time of the “Bert + BiLSTM + CRF” model was more 
than 1 s. The epochs threshold of training is 100, and 
it usually takes no more than 35 epochs to finish the 
training process. The stopping criteria for training the 
CCNER is that the loss value is less than  10−5 for five 
batches in a row.

b) Reduction in model training time. Bert Chinese model 
is trained three days on Chinese Wikipedia corpora by 
Google using four hundred TPU clusters. It will con-
sume more than ten hours for finetuning one epoch of 
the “Bert + BiLSTM + CRF” model if using the Telas 
P100 GPU. The proposed HDL module needs only three 
hours to complete the training on the Telas P100 GPU.

c) Improvement in model accuracy. The HDL module 
achieves the highest F1 index among all the compared 
models because it introduces the transfer learning in 
the professional medical training corpus for obtaining 
prior knowledge, semi-supervised learning to enlarge 
the training dataset, and a combination of Chinese word 
vector and Chinese character vector for better capturing 
the semantics and context.

 III. Experiments and discussions on the risk classification 
model

The extracted entities are combined with the exist-
ing structured data (Age, Gender, Temperature, Pulse, 

Respiratory Rate, Blood Pressure) to form the input data of 
the risk classification model. Especially, the extracted Dis-
ease and Anatomy are combined to form new dimensions 
of input data, namely, Past Medical History and the Family 
Medical History (if any) of the patient. Finally, the input 
data includes the Age, Gender, Temperature, Pulse, Res-
piratory Rate (RR), Blood Pressure (BP), Family Medical 
History (FMH), Past Medical History (PMH), Symptom, 
Examination, Treatment.

The performance of risk classification models combined 
with different CCNER approaches is evaluated to see if the 
extracted information is meaningful. This disease risk clas-
sification model uses three indicators, namely, error rate, F1 
index, and Area Under Curve (AUC), to comprehensively 
evaluate the performance of these models, including the 
Logistic Regression [45], Support Vector Machine [46], 
Random Forest [47], and the Customized XGBoost. The F1 
value and AUC are two indicators that reasonably reflect 
the performance of model classification and generalization. 
AUC could avoid the evaluation deviation caused by the 
unbalanced datasets [48]. A total of 1235 pieces of data were 
labeled with the risk level. The data were divided into 1000 
pieces of training&verification set and 235 pieces of the test 
set, respectively. To avoid the influence of data variance and 
data distribution, ten-fold cross-validation was adopted to 
split the training set and verification set, and stratified sam-
pling was carried out for the training set.

Table 7 provides an overview of the performance of these 
four models before and after the proposed HDL model is 
used. The lower the error rate, the better the performance of 
the risk classification model.

The results show that the performance of these four mod-
els improves a lot after the proposed HDL model is used, and 
the error rate has been lowered a lot. Secondly, the custom-
ized XGBoost is better compared with Logistic Regression, 
Support Vector Machine, and Random Forest. Thirdly, the 
customized XGBoost could mine the implicit information by 
a feature-importance ranking mechanism. The advantage of 
using the XGBoost algorithm is that it is relatively straight-
forward to get the importance score for each feature after 

Table 6  Identification results of three types of acute respiratory dis-
eases

Disease Type Precision Recall F1

Lung cancer 94.30 87.10 90.54
Severe pneumonia 92.50 85.14 88.67
Severe asthma 92.95 85.69 89.17

Table 7  Performance comparison of different model combinations

Type Methods Error rate AUC F1

BBLC-based Logistic Regression 0.3563 0.7005 0.7465
Support Vector Machine 0.2706 0.7292 0.7568
Random Forest 0.2419 0.7534 0.7815
Customized XGBoost 0.2131 0.7992 0.8075

HDL-based Logistic Regression 0.2546 0.7378 0.7863
Support Vector Machine 0.2234 0.7681 0.8077
Random Forest 0.1623 0.8357 0.8548
Customized XGBoost 0.1012 0.8639 0.8927
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the decision tree is created. Feature importance is calcu-
lated by the number of improved performance measures at 
each feature split point in a single decision tree, with nodes 
responsible for weighting and recording times. The greater 
the performance measure of a feature to improve the split 
point (the closer to the root node), the greater the weight. 
The more selected by the decision tree, the more important 
the feature becomes [29]. Finally, the weighted sum of the 
results of a feature in all the decision trees is averaged to 
obtain the importance score. The results of the ranking of 
factors influencing the risk level using the XGBoost show 
that symptoms (0.31), age (0.17), body temperature (0.18), 
FMH (0.16), and PMH (0.16) have a significant impact on 
a patient’s disease risk. Clinicians need to pay more atten-
tion to these patients and give timely treatment to prevent 
disease progression.

Table 8 further shows the results of risk classification 
based on HDL and Customized XGBoost in different acute 
respiratory disease subgroups, namely, lung cancer, severe 
pulmonary, and severe asthma. Comparing the last row data 
in Table 7 with Table 8, the performance in discriminat-
ing patients’ risk levels with different risks within a disease 
subgroup is slightly lower than that in the holistic model 
(mixing all three disease subgroups). In another word, the 
good performance of the proposed model benefits from the 
outstanding capability in discriminating patients with dif-
ferent acute respiratory diseases, as well as discriminating 
patients’ risk levels within a disease subgroup. The reason 
is that although the data modeling of acute respiratory dis-
ease data is unified in this study, the risk factors in different 
disease subgroups are different, which results in difficulty 
in generalizing different underlying risk classification pat-
terns into a single neural network. Establishing multiple risk 
classification models for different acute respiratory disease 
subgroups may be a good choice in the practical implemen-
tation of the proposed model.

 IV. Discussions on the integrated system

For the unstructured text-type CEMR data, the critical 
information is extracted through named entity recognition, 
which lays a foundation for collecting more related data for 
the follow-up risk classification task. Since the PMH and 
FMH that contain the extracted Disease and Anatomy are 
highly correlated with the risk (0.55 for PMH and 0.51 for 

FMH), the additional information extracted by the CCNER 
is critical for the risk classification.

Early warning of acute respiratory diseases is critical for 
preventing lung cancer and severe asthma. Integrating cut-
ting-edge deep learning algorithms, this study automates the 
accurate extraction of critical information from unstructured 
medical data for risk classification of severe respiratory dis-
eases. It provides technical support for relieving them from 
heavy work intensity in analyzing the unstructured medical 
records. Moreover, this study also discovered the critical fac-
tors related to the risk of severe respiratory diseases, which 
provides clinicians with scientific references for diagnosis 
and treatment decisions. With the increase of follow-up 
CEMR data, the classification model will become more 
accurate for the disease risk classification.

7  Conclusions

This paper proposed a hybrid artificial intelligence system 
to extract and analyze multiple types of Chinese clinical 
data for the risk classification of acute respiratory diseases. 
The contribution of this paper is that a dedicated design of 
the “BiLSTM+Dilated Convolution+3D Attention+CRF” 
deep learning model is proposed to extract entities from 
unstructured medical data, which achieves higher accu-
racy and efficiency in the CCNER task than the popular 
“Bert+BiLSTM+CRF” approach. The cutting-edge artificial 
intelligence techniques, including transfer learning and semi-
supervised learning, are introduced to improve the accuracy 
of named entity recognition. Combining the extracted entity 
data with other structured data in the CEMRs, a customized 
XGBoost is used to predict the risk of respiratory disease. 
The empirical study shows that the proposed model could 
provide practical technical support for improving diagnostic 
accuracy. Our study provides a proof-of-concept for imple-
menting a hybrid artificial intelligence-based system as a 
tool to aid clinicians in tackling CEMR data and enhancing 
the diagnostic evaluation under diagnostic uncertainty.

With the increase of medical data, the proposed hybrid 
artificial intelligent system will be more accurate for 
disease risk classification. Here are three directions for 
further research. Firstly, the data modeling of the risk 
classification model for acute respiratory diseases is not 
comprehensive enough, and more dimensions of medical 
records should be introduced so that the model can learn 
more features and make a more accurate classification. 
Secondly, either in the task of named entity recognition 
of medical data or in the risk classification of disease, the 
amount of training data needs to be further enlarged to 
achieve better classification accuracy. Thirdly, in the infor-
mation age, the privacy issue is a social concern. Incorpo-
rating the secure multi-party computing technique into the 

Table 8  Risk classification in different disease subgroups

Disease Type Error rate AUC F1

Lung cancer 0.1011 0.8576 0.8940
Severe pneumonia 0.1028 0.8380 0.8597
Severe asthma 0.1041 0.8058 0.8315

Bi-level artificial intelligence model for risk classification of acute respiratory diseases… 13129

1 3



transfer learning based on the encrypted CMER data from 
the distributed database is also a potential research direc-
tion. Fourthly, more research effort will be paid in knowl-
edge discovery of disease diagnosis based on a preliminary 
analysis of the correlation between influencing factors of 
patients’ disease.
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