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Abstract
With the relaxation of the containment measurements around the globe, monitoring the social distancing in crowded public
spaces is of great importance to prevent a new massive wave of COVID-19 infections. Recent works in that matter have
limited themselves by assessing social distancing in corridors up to small crowds by detecting each person individually,
considering the full body in the image. In this work, we propose a new framework for monitoring the social-distance using
end-to-end Deep Learning, to detect crowds violating social-distancing in wide areas, where important occlusions may
be present. Our framework consists in the creation of new ground truth social distance labels, based on the ground truth
density maps, and the proposal of two different solutions, a density-map-based and a segmentation-based, to detect crowds
violating social-distancing constraints. We assess the results of both approaches by using the generated ground truth from
the PET2009 and CityStreet datasets. We show that our framework performs well at providing the zones where people are
not following the social-distance, even when heavily occluded or far away from the camera, compared to current detection
and tracking approaches.
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1 Introduction

After the outbreak of the COVID-19 pandemic, the whole
world witnessed how the health system was threatened
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to the edge of collapse. Furthermore, due to the previous
lack of a vaccine or even a proper treatment for this new
virus, social-distancing became the only viable strategy
to contain the massive wave of contagions. Nevertheless,
this also came with the price of bringing the economic
activities almost to a complete stop, hence putting the social
and economical stability to a sever risk. Even up to date,
regardless of the successful development of vaccines against
the virus, the global demand is too high, and the logistics
too complicated that we would need to wait some time to
see the world to come back to its normality, not to forget
the always present risk of a virus mutation resistant to the
available vaccines.

In this context, at the unavoidable need to reactivate the
economy and prevent the collapse of society; people, com-
panies and governments have been forced to relax the strict
isolation measurements, in spite of the latent risk of a new
wave of contagions. Accordingly, automatic social-distance
monitoring, also referred as Visual Social Distancing (VSD)
has emerged as an interesting research topic that will assist
authorities to prevent massive contagions while people
slowly recover their normal lifestyle.

/ Published online: 5 April 2022

Applied Intelligence (2022) 52:13824–13838

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03172-5&domain=pdf
http://orcid.org/0000-0002-7416-3190
mailto: diego.mercado@cimat.mx
mailto: javier.gonzalez@cimat.mx
mailto: uziel.jaramillo@cimat.mx


Due to its actual great relevance, a few works have
recently been proposed in order to tackle this problem using
computer vision [1–7]. However, all the precedent solutions
encountered in the literature rely on the same principle idea
of using a state-of-the-art detector to locate each person
individually and calculate their inter-personal distance.
Some of the classical computer vision problems involved
in this kind of solution are object detection, multi-object
tracking, pose estimation, homography transformation,
metric scale and depth estimation, multi-view fusion, etc.

Inspired by the recent success of density maps in the
crowd detection and counting tasks, and in contrast to the
commonly used detect and track approach, we propose
to tackle the VSD problem as a segmentation problem,
and train Deep Neural Networks (DNN) to directly detect
those groups of people not in compliance with social-
distance restrictions, based only on the people’s heads. Also,
we propose an alternative solution using density maps to
detect crowds not in compliance with social-distancing,
using the people’s density information. We believe that
these are unexplored and interesting alternative solutions,
which may offer better performance in wide scenarios
with larger crowds and significant occlusions, which are
common in real urban spaces. To do so, our contributions
are summarized as follows:

– We propose a framework to train DNN to solve the VSD
problem based in either density maps and segmentation
approaches.

– Using the head’s annotations in available public crowds
datasets, and the homography from the camera, we
create the VSD ground truth by removing the social-
distance conforming people.

– Based on the VSD ground truth, we propose a metric to
evaluate the density map and segmentation approaches
for detecting non social-distance conforming crowds.

– To our knowledge, this is the first solution to the
VSD problem by using density maps and segmentation,
which appear as interesting alternatives for wider
scenarios, where larger crowds subject to important
occlusions may be present.

The article is organized as follows: Section 2 presents
a literature review of related works, while in Section 3 we
discuss the VSD problem and provide a formal definition
of social-distance, in Section 4 we explore the framework
to generate the ground truth annotations and to train the
solutions. Then, in Section 5 we detail the training stage,
whereas in Section 6 we present our results and compare
our best solution against two open available solutions in the
state-of-the-art. Finally, in Section 7 we provide our final
conclusions and future work.

2 Related work

Due to the great relevance to help to prevent massive
contagions and recover the most important social and
economical activities without jeopardizing public health,
several VSD solutions are quickly steaming in the literature.
Up to date, all the reported works rely on the same intuitive
principle idea: use a state-of-the-art object detector and find
some sort of inter-personal distance between each individual
instance. The most common detectors for this task are
YOLO-based (You Only Look Once) [1, 2, 4, 7, 8], but
SSD (Single Shot Detector) [5], Mask R-CNN and Faster R-
CNN (Region-based Convolutional Neural Network) have
also been proposed, [2, 6] respectively. Some of these
works [1, 4, 6] further combine the detector with a tracking
algorithm such as DeepSORT [9], in order to improve
time consistency along video streams, further enhancing the
system precision.

In [10] Cristani et al. introduced the VSD problem,
as the automatic estimation of the inter-personal distance
from an image, and the characterization of related people
aggregations. The authors discuss the problem not only as a
geometric one, but also considering the social implications,
and even ethic aspects. Moreover, they identify the most
common strategy for this problem, which consists in
detecting each person individually and track them along a
video stream, while calculating the inter-personal distance
either in image space or in ground space.

Following this principle idea, one of the most interesting
works is the one proposed by Rezaei and Azarmi [1], where
a new DNN based on YOLOv4, called DeepSOCIAL, is
presented for this particular task. There, the same detection
and tracking framework using YOLO-based detectors and
DeepSORT trackers is adopted, but the authors further
assess online infection risk by statistical analyzing the
spatio-temporal data from people’s moving trajectories and
the rate of social distancing violations.

Another interesting work in the same lane is the one
by Yang et al. [2], where a vision-based social distancing
system is studied using either YOLOv4 or Faster R-
CNN detectors in the image plane, then the detections
are projected to the head’s plane, where the inter-personal
distance is retrieved, and non-intrusive audio-visual cues are
send to the crowd in case of social distancing violations.
Furthermore, the authors define the critical social density
for a region of interest, it is, the critical number of people
within an area below which the probability of contagions
can be held close to zero. Finally, the authors released their
implementation as open-source software.

Besides using the same person-by-person detection
strategy, in [8] the authors propose a novel method to
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estimate the inter-personal distance without computing the
homography transformation, which can be useful when
there is not available information about the camera pose.
In this work, the spatial patterns of social distances are
also analyzed along time, by means of heat maps of social
distancing violations.

In parallel with social distancing monitoring, some works
such as [11–13] aim to further assist in the pandemics
control by also detecting whether people are wearing masks
or not. This is an interesting complementary approach that
may be used along with VSD to assess the risk of infections
in certain region, given that people wearing masks are less
prone to contagions.

Although person-by-person detection and tracking has
proven to be a valid solution to the VSD problem, becoming
the most popular, not to say the only, available kind of
solution, it still presents some drawbacks inherent to the
detection itself, particularly in more challenging scenarios
where wider areas and larger crowds are covered, specially
when severe occlusions are present, as is common in
real urban scenarios. In order to attenuate this issue, but
following the same person-to-person detection strategy,
Shao et. al. proposed to use a head detector with PeeleNet
[3], instead of aiming to detect the full body of the person,
resulting in an improvement in cases where important occlu-
sions are considered. Additionally, the authors also consider
the use of an aerial drone to monitor the social distancing.

Nevertheless, other modern deep learning techniques
have proven to be more effective in such scenarios, as
is the case of density maps. Density map generators are
better suited for crowd counting and crowd location since
they are trained to localize human head features, which are
the most visible parts of a person from upper views, for
instance from security cameras or drones, specially when
there are severe occlusions in dense crowds or other type
of visual obstacles [14]. Recently, density maps generators
using Deep Learning have achieved excellent results in
the detection and counting tasks for dense crowds, using
modern techniques such as MCCN (Multi Column Neural
Network) [14]. Current research on density maps not only
includes the design of new architectures [15, 16], but also
the proposal of new loss functions specific to the task [17,
18], counting from images taken from drones far above
the crowd [19], proposing new frameworks where the data
and the neural networks are processed before and after the
training [20], and combining images taken from different
types of cameras [21].

Following these cues, we propose a new framework, and
two different alternative solutions using the same ideas from
density maps (see Fig. 1), where we do not intent to detect
each person individually, but rather directly infer through a

DNN those groups of people that are not in compliance with
the social distance. The first solution consists on a density
map detector, where the people’s density is then used to
evaluate the level of risk of contagions. The second solution
is an end-to-end segmentation algorithm, using either
FCN 7 (Fully Convolutional Network) [22] or U-Net [23] as
a backbone, and particularly tailored to detect those groups
of people that are non conforming with the social distance
restrictions. To do this, we present a method to generate
new annotations on public available crowd datasets, with
labels for people violating the social distance constrain. A
comparison study suggests that our proposed approach is
superior with respect to detect and track available solutions
in scenarios where severe occlusions occur, and the people
is observed from a far away perspective.

Finally, VSD is not the only solution to the social
distancing control problem, other interesting ideas have
been recently explored. For instance, in [24], the authors
propose to use Internet of Things (IoT) technologies, to send
GPS (Global Positioning System) coordinates from personal
mobile phones to detect social distancing violations, and
send warning messages to users violating this restriction.
Alternatively, in [25] the authors present an interesting
work using a legged robot equipped with multiple cameras
and a 3D range laser sensor, to estimate the inter-personal
distance of people around it, and interact with them by
sending human-friendly messages to persuade them to keep
an appropriate social distance.

3 Problem statement

In this paper, the objective is the automatic detection of
groups of people non conforming with the social-distance,
as seen in Fig. 2. For this matter, we consider a set of fixed
cameras C = {c1, c2..., cn} each having a body reference
frame Fci

where i ∈ |C|. The cameras are pointed to
the same scenario with a global reference frame Fw, from
different perspectives. The crowd appears located in Fw, but
we are only interested in the heads’ location, since the head
is the most visible part of the body given a highly occluded
scenario [14]. In that regard, we make the predictions in
the head’s plane P located in the frame of reference Fw

with the center at coordinates P0 = (0, 0, hh), where hh is
the average height of a person. Since the images produced
by the cameras operate in the image plane Ii , we need to
transform the images to the global reference frame in order
to know the distance between each person. With this goal,
we define two transformations; Tci

w the transformation from
the camera frame Fci

to the global frame Fw, better known
as the extrinsic camera parameters, and the transformation
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from the image plane Ii to the camera frame of reference
Fci

, also referred as the intrinsic camera parameters K.

Definition 1 (Social-Distance Compliance (SDC)) Let us
define H = {h0, ...,hn} as the set of the n people present
in the scene, where hi = [xi, yi, zi] represents the i-
th person’s location in the global frame Fw. Then we
can establish the social-distance di for a person i as the
minimum inter-personal Euclidean distance ‖·‖with respect
to any other person in the scene, it is di = minj �=i (‖hi −
hj‖),∀j ∈ [1, ..., n]. A person is considered to be in
compliance with social-distancing (SDC) if and only if
its social-distance is bigger than a security threshold dt

(normally around 2 meters), that is if di > dt , and is
considered not in compliance (NSDC) otherwise.

Then, the main goal is to develop computer vision
algorithms using deep learning, in order to detect those
groups of people from video streams which are not in
compliance with the social-distance constrain (NSDC) (see
Fig. 2). To do so, in the following section we describe a
novel approach based on DNN segmentation.

4 Proposed approach

By applying the coordinate transformations, we can project
the ground truth head annotations from public available
crowd datasets to the head’s plane P and remove the
head labels that are in accordance with the social-distance
constrain. With these new ground truth annotations, we can
generate both density maps and segmentation models to
train a DNN in the head’s plane P or directly in the image
plane I.

In the following subsections, we will describe in detail
the steps to generate the ground truth from the crowd
counting databases and the training procedures for the
density map generator and the segmentation algorithm, for
NSDC density maps.

4.1 Ground truth annotations

In crowd counting, the most common annotations are the
coordinates at the center of the visible part of the head in
an image, since given an extremely dense crowd, it is the
most visible part of the people [14]. By itself, this kind of
annotation is not useful for detecting NSDC crowds since
they do not provide the position of a person with respect
to each other. Knowing this, we project the annotations to
the head’s plane P. Thus, having the transformations Tci

w

and the intrinsic camera parameters K, the projection of the
head annotation in the image plane aI = (xI, yI, 1) onto the

annotation in the head’s plane aP = (xP, yP, hh, 1) is given
by:
⎡
⎢⎢⎣

xP
yP
hh

1

⎤
⎥⎥⎦ = λ(KTci

w)−1

⎡
⎣

xI

yI

1

⎤
⎦ , (1)

where λ is a scale factor. The cases where the expression
KTci

w is invertible are discussed in [26]. Since each camera
in C has a different point of view on the same scene,
the redundant annotations coming from the multiple views
of the same scene can be used to adjust the annotations’
position, and add new annotations that are not visible by
the other cameras, similar to the process described in [22].
Once we have all the annotations in the head’s plane aP , we
manually remove all the people that are correctly following
the social-distancing. In other words, we remain only with
the annotations a∗

P ⊂ aP which are NSDC, as stated in
Definition 1.

Now, we describe how the annotations are used to
generate the ground truth density maps and ground truth
segmentation for training.

4.2 Density map generator

Commonly, the DNN would not be able to learn directly
from the head annotations without a pre-processing stage
[14]. Hence, in this work we use a Gaussian kernel to blur
the head annotations in order to cover features from all the
head, in either the image plane I or the head’s plane P. The
result is known as a density map Dn, which contains the
location and the number of people in an image. The density
maps cover more features of the people’s heads, making it
a more suitable learning objective compared with the single
point annotations. To learn how to generate these density
maps Dn, we use the Late Fusion algorithm from [22]. It
is composed by two DNN, and the sampler module from
the Spatial Transformers Network [27]. The first DNN is
a 7 layers Fully Convolutional Network (FCN 7), which is
used to generate density maps in the image plane. For each
camera in C, a FCN 7 is trained. Once the density maps are
generated for all the cameras, the density maps are projected
to the ground plane using (1), and the sampler module
from [27]. The projected density maps are normalized and
concatenated in a single tensor to be fed into the Fusion
DNN. The module learns to fuse the projected density maps
and remove the deformation caused by the projection [22].
Once the full DNN is trained, a bird-eye-view density map
of the scene can be generated as the projected density map
in the head’s plane P. From the projected density map we
obtain a mask as a visual indicator in where the NSDC
crowds are located. Then, since we also have the number
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Fig. 1 Automatic monitoring
social-distance in wide public
areas using density maps

of people in a region of the image provided by the density
map, hereafter referred as the people count, we classify the
crowds with a risk level and assign a “Danger” or “Warning”
label, like in Fig. 1. Finally, we further purge the detection
by removing the masks that have less than a threshold
number of detected people per area.

4.3 Crowd segmentation

Generating density maps involves two tasks in one, that is,
while a DNN is training, it is learning how to count people
and where the crowd is located in the image plane I or
the head’s plane P. An alternative approach to increase the
detection accuracy of any DNN is to only train them to
localize the crowd. In that regard, we also propose the use of
image segmentation to localize the crowds non conforming
with the social-distance in the image plane I. We employ the
ground truth density maps in the head’s plane P obtained
in the previous stage, in order to generate the ground truth
segmentation. As a first step, we normalize the density
map values and remove all the values of the density map
below a threshold ts , then we use the closing morphological

Fig. 2 Example of an urban scene where a crowd is not in compliance
with social-distancing (NSDC). Only the person farthest to the left is
respecting social-distancing

transformation in order to create a single segmentation with
no gaps between NSDC crowds subgroups. Finally, we
project the segmentation in the head’s plane back to one of
the cameras in the set C using the inverse of (1).

The architectures considered to learn the NSDC crowds
are FCN 7 [22] and U-Net [23]. Despite FCN 7 not being
designed for segmentation, but to produce density maps, it
is still suitable for the segmentation task. FCN 7 produces
its output with only high level features, hence reducing the
overall visual quality of the segmentation. Therefore, the
ground truth segmentation has to be at the same resolution
as the output of the DNN. We use FCN 7 as is given by
Zhang and Chan [22].

Alternatively, we also tested the U-Net architecture in
the crowd segmentation task. This choice comes from its
decoder-encoder architecture, that allows to use the ground
truth segmentation at the same resolution as the input in the
training stage. This produces a better defined segmentation,
while, in theory, improving the precision. The trade-off,
compared with FCN 7, is an increase in inference and
training times.

5 Training stage

In this section, we provide the technical details used for
training the DNN for the task of detecting NSDC crowds
and the metrics to compare the overall performance.

5.1 Metrics

First, we will discuss the metrics used to evaluate the
methods in their respective tasks, crowd counting and
segmentation. Afterwards, we will discuss the metrics
for evaluating the performance of the task of interest,
detecting NSDC crowds. These metrics shall allow us to
compare our different approaches, such as density maps and
segmentation, to solve the VSD problem.
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For the task of crowd counting, Mean Average Error
(MAE) and Mean Square Error (MSE) are the most
commonly used evaluation metrics [28]. MAE and MSE are
defined as follows:

MAE = 1

Q

Q∑
q=1

|Nq − N̂q | (2)

MSE =

√√√√√ 1

Q

Q∑
q=1

|Nq − N̂q |2 (3)

where Q is the total number of images in the set, Nq is the
ground truth people count, q ∈ [1, ..., Q], and N̂q is the
predicted total number of people for the image q. MAE is
used to evaluate the total people count in the image while
MSE highlights big errors, thus MSE is usually bigger than
MAE.

For the segmentation task, the Dice score is often used to
evaluate the trained models. It evaluates the similarity of the
predicted segmentation and the ground truth segmentation,
by calculating the ratio of the size of the overlap between the
predicted segmentation and the ground truth segmentation,
divided by the total area of both segmented regions. More
formally, the Dice score is defined as:

Dice = 2 ∗ T P

2 ∗ T P + FP + FN
(4)

where T P are the true positives, FP are the false positives
and FN are the false negatives, all of them measured
pixel-wise in the segmentation problem.

All of this metrics are sufficient to be used to evaluate
their respective task, but by themselves they do not answer
the question on how good are these methods at detecting
the NSDC crowds while not detecting the SDC people.
In this regard, we use the ground truth density maps of
conforming Dc and non conforming Dn crowds to get how
many people were correctly classified. More formally, we
compute the pixel-wise T P , FP , True Negative (T N) and
FN as follows:

T P = M̂ · Dn (5)

FP = M̂ · Dc (6)

T N = M̂−1 · Dc (7)

FN = M̂−1 · Dn (8)

where M̂ is the predicted segmentation region such that
M̂i,j ∈ {0, 1}, and M̂−1 is the function returning the pixels
not predicted as NSDC. Having defined our TP, FP, TN
and FN, we can use the traditional definitions of precision,
recall, sensitivity and F1 score. Precision, recall and F1
are used to compare the methods based on how well they
captured the NSDC crowds in the scene, and sensitivity for

how well they do not wrongly classified the SDC crowds as
NSDC.

5.2 Datasets

The datasets used for this paper are CityStreet [22]
and PETS2009 [29]. PETS2009 is a multi-view dataset
designed for multiple tasks including crowd counting. In
this dataset, people were told how to move and position
themselves in order to challenge the solutions for the
different tasks for which the dataset was conceived. In
average, each frame contains 20 people per frame. The
dataset is composed of a total of 8 different views, but only
three are considered for the present work. 794 images with
a resolution of 576 × 768 pixels, are used for the purposes
of this paper [29].

On the other hand, CityStreet is a multi-view crowd
counting dataset from which 385 annotated images are used
to train the solutions here proposed. The dataset is taken
from an uncontrolled urban environment where the crowd
moves at will, with a total people count between 50 to
100 people per frame. The images have a resolution of
1520 × 2704 pixels, which we down sample to 480 × 848
for our experimentation. Both datasets provide information
about the camera pose.

5.3 Density maps generators

In order to train the density map generator for our first
solution, we need density maps Dn of NSDC crowds in
both, the head’s plane P and the image plane I, for each
camera in C. For that matter, we set the average head’s
position to hh = 1.75m [22]. Next, to separate the SDC
head annotations from the NSDC, we used a social-distance
threshold dt = 2m for the two crowd datasets, the CityStreet
[22] and the PETS2009 [29], both offering challenging
scenarios in open urban areas, allowing us to test against
different levels of occlusion. Furthermore, both datasets
include information about the camera pose, facilitating the
recovery of the scale λ, and the homography transformation
between planes as stated in (1). Once the safety threshold
dt is defined in meters, we project the head annotations to
the head’s plane P using (1), and calculate the inter-personal
distances between each head annotation, disregarding those
that are SDC, and keeping only NSDC annotations. After we
have separated the head annotations, we produce the density
maps DP

n in the head’s plane P by applying a Gaussian
kernel on the head annotations, in order to increase the
number of head’s features for the network to learn. Note that
it is desirable for the kernel size to be roughly the size of the
head, in order to better characterize it. The size of the kernel
is 5 with a variance σ = 15 for the CityStreet dataset, and
a Gaussian kernel of size 4 with a variance σ = 15 is used
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for the PETS2009 dataset, assuming that the head size, or
kernel size, is on average the same across all the scenes in
real world coordinates. Adaptive kernels can be used instead
in order to relax this assumption [14]. For our segmentation
approach, we generate the NSDC density maps in the image
plane DI

n using a Gaussian kernel of size 10 with a variance
σ = 30 for the CityStreet dataset, and a Gaussian kernel of
size 4 with a variance σ = 15 for the PETS2009 dataset,
selected to generate filled blobs for each NSDC group of
people, reducing the gaps between each group.

In the first stage, a FCN 7 is trained for each camera
in C, where the cardinality is set to |C| = 3, for both
datasets. After a careful tuning, we set the learning rate
lr = 0.001 using the Adam optimizer during 150 epochs.
Next, we freeze all the FCN 7 DNN and train only the
Fusion DNN with a learning rate lr = 1e−4, using the
Adam optimizer during 150 epochs, reducing the learning
rate in case of plateau in the performance validation each
10 epochs, with a patience of 1 and a minimum learning
rate min(lr) = 5e−5. Finally, we perform fine-tuning in the
Late Fusion DNN by unfreezing the FCN 7 models with a
learning rate lr = 5e−5, using the Adam optimizer during
150 epochs, reducing the learning rate in case of plateau in
the performance validation each 10 epochs with a patience
of 0, and a minimum learning rate min(lr) = 5e−6. All of
this hyper parameters were selected empirically, and are the
same for both datasets. Refer to Table 1 for a summary of the
hyper parameters used to train the density map approach.

At inference time, the predicted density map D̂ is
normalized. Then, to generate the predicted segmentation
M̂ , we saturate to 1 all the pixels values that are above
a threshold equal to 20

255 , and set them to 0 otherwise.
Thereafter, we select the masks that contain a people count
estimate bigger than 0.5 and 2 people for the Citystreet and
PETS2009 dataset respectively.

5.4 Segmentation

For the segmentation task, we use the NSDC density map
in the head’s plane Dn, to create our segmentation in the
image plane I. First, we normalize the density maps and set
all the non-zero pixel values to 1, to obtain a binary mask,
since for segmentation we do not require the people count.
Then, we apply a morphological dilation transformation
with a 7 × 7 ones matrix kernel 17×7, and pass it trough

Table 2 Comparison results between the different proposed methods
in the CityStreet dataset

Method Precision Recall Specificity F1

Density map 0.889 0.690 0.743 0.777

FCN 7 0.882 0.730 0.728 0.799

U-Net 0.888 0.748 0.728 0.812

the density map 2 times. Next, we use the morphological
erosion transformation with a kernel equal to a ones matrix
14×4 for the CityStreet dataset, and 15×5 for the PETS20009
dataset, also applying it trough the density map 2 times.
This pre-processing transformations were found empirically
and allow us to obtain uniform blobs, removing small gaps
between them. Finally, we project this segmentation mask
back to the image plane I.

We train the FCN 7 and U-Net models using the Adam
optimizer during 150 epochs, reducing the learning rate in
case of plateau in the performance validation, each single
epoch with a patience of 3 and a minimum learning rate
min(lr) = 1e−8 for both datasets. As for the learning rate,
we set it to lr = 5e−4 and lr = 0.001 for the FCN 7 and
U-Net models respectively.

At inference time, since the segmentation per pixel is
given as a value between 0 and 1, we saturate all the
values above a threshold equal to 0.3 for the CityStreet
dataset, while for the PETS2009 dataset the best results
were obtained by thresholds of 0.6 and 0.9, for the FCN 7
and U-Net respectively. Refer to Table 1 for a summary
of the hyper parameters used to train both segmentation
approaches.

6 Results and discussion

In Tables 2 and 3, we present the quantitative results for
all the approaches proposed in this article, on both datasets
CityStreet and PETS2009. All the algorithms were trained
and evaluated using a computer equipped with a processor
Intel Core i7 9750H paired with a Nvidia RTX 2070 Mobile
GPU.

For the CityStreet dataset, we can appreciate in Table 2
that both FCN 7 and U-Net trained for NSDC crowd
segmentation have similar performance, having the U-Net

Table 1 Hyper parameter selection

Method Learning rate Epochs Fine tuning Threshold

Density map 0.001, Fine tuning: 1e−4 300 Yes 20
255

FCN 7 5e−4 150 No Citystreet: 0.3, PETS2009: 0.6

U-Net 0.001 150 No Citystreet: 0.3, PETS2009: 0.9
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Table 3 Comparison results between the different proposed methods
in the PETS2009 dataset

Method Precision Recall Specificity F1

Density map 0.947 0.575 0.614 0.716

FCN 7 0.910 0.677 0.4780 0.776

U-Net 0.961 0.761 0.618 0.849

as the best overall. We are looking for the method that has
the highest F1 score without leaving the Specificity behind.
Although the density map approach does not stay behind the
U-Net and FCN 7 in both Precision, Specificity and F1, it is
the worst at recalling all the NSDC people inside a scenario,
which can be exemplified in Fig. 3f where it does not detect
the NSDC crowd at the center of the image.

Indeed in Fig. 3 we can observe the results of three
different scenarios from the CityStreet dataset, using the 3
presented methods. The density map colors with yellow and
red the regions where crowds violating the social-distance
constrain are found, according to the risk of contagion
given by the people’s concentration per pixel, yellow for
“warning” and red for “danger”. We can observe that
FCN 7 and U-Net performed almost equally as depicted
on Table 2, each having better performance in different
situations. For example in Fig. 3c we see that the two people
at the lower right were labeled as NSDC, while in Fig. 3d
only one person is partially detected. On the other hand,
in Fig. 3k the FCN 7 model mistakes part of the ground

at the left as a NSDC crowd, while in Fig. 3l this effect is
mitigated.

More in detail, in Fig. 4 we can observe a zoomed image
of the same scenario, from where it is clearer how the U-Net
performs better at detecting the three people at the center of
the image as SDC, while making the same FP mistakes as
the FCN 7 model with the isolated people at the bottom.

For the PETS2009 dataset, we observe from the results
on Table 3 that U-Net showed the best performance overall,
while the density map approach yielded a good result in
Specificity. This could be due to the number of examples
of SDC people being considerable lower with respect to the
NSDC people in the PETS2009 dataset, as seen in Fig. 5,
making the task more challenging. For example, in Fig. 5c, g
and k, the FCN 7 segmentation wrongly detects at least one
conforming person as non conforming, while almost all the
NSDC crowds are correctly segmented as non conforming.
In our density map approach, we can see that it performs
better at not classifying conforming people, although, as
seen in Fig. 5j it has some problems at classifying all
the NSDC people. As for the U-Net model trained for
segmentation, we can encounter the best balance between
correctly classifying NSDC crowds, having some minor
errors around the SDC people, as seen in Fig. 5h, l, mainly
due to being segmented as NSDC with low probability but
removed by the threshold, leaving only the ones with higher
probability.

Also, in Fig. 6 we observe more in detail a zoomed
frame from the PETS2009 dataset. From there, it can be

Fig. 3 Results of the detection of Non Social-Distance Conforming
crowds (NSDC) in the CityStreet dataset. We can see that the Den-
sity map based approach tends to under estimate the non conforming

crowds mostly at the center of the scene. Both FCN 7 and U-Net
perform similarly, with U-Net having the edge
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Fig. 4 Zoomed images from the CityStreet dataset, here we can see that U-Net performed the best out of the three approaches in this scenario,
despite of some False Positive regions

Fig. 5 Results of the detection of Non Social-Distance Conforming crowds (NSDC) in the PETS2009 dataset. U-Net achieves the best visual
results followed by the density map and FCN 7 segmentation

Fig. 6 Zoomed images in the dataset PETS2009. The density map and U-Net segmentation are able to detect fairly well the crowds violating the
social-distance, while FCN 7 trained for segmentation tends to over estimate the location of the crowd
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seen that the density map and U-Net approaches correctly
classified in CityStreet all the NSDC people, failing only
with two people, while the FCN 7 model over estimates
the segmentation and leaves artifacts around the conforming
people.

Finally, we show a video using the U-Net model trained
for segmentation over various video sequences from the
PETS2009 dataset, excluding the ones used for training. The
video can be found at: https://youtu.be/TwzBMKg7h U.

6.1 Comparison to object detection techniques

As previously described, most of the currently available
approaches are based on the idea of first performing object
detection and then measuring the social distance, making
difficult an apples to apples comparison to the work here
proposed. However, by making some concessions, we aim
to make a fair comparison by putting our model in terms
of object detection, and evaluating how well different
approaches are able to find NSDC people in terms of
Average Precision (AP) [30].

Accordingly, we tested our best solution, the U-Net
segmentation, against DeepSOCIAL [1] and Yang et al. [2],
two prominent models in the literature for VSD, and to
our knowledge the only ones that provide openly available
solutions. The evaluation was done in both, the CityStreet
dataset, as well as in three scenarios from the PETS2009 test
set, namely “S1L1 13 57”; “S1L1 13 59”; “S1L2 14 06”,
where different kinds of people distribution and different
levels of occlusion are observed, as depicted in Figs. 7 and 8.

Our main interest is not on the exact location of
people breaking social distancing rules, but in general areas
where this happens. This has the advantage of mitigating
privacy concerns, while finding problematic areas (such as
crosswalk bottlenecks), where procedures can be taken to
alleviate pedestrian congestion. Being so, we take leniently
the location of the head bounding boxes for both approaches
as follows:

In the cases of [1] and [2], we consider head bounding
boxes of 20 × 20 pixels, same as we do for the ground
truth data, at the center-top of the bounding boxes of the
whole person’s body, which the algorithm has found to be

Fig. 7 Comparison analysis between a detector-based solution (Deep-
Social) against our segmentation-based one, for VSD under different
scenarios. For DeepSOCIAL, the people detected that do not com-
ply with social distancing are shown in red bounding boxes, while
those that do comply are presented in green bounding boxes. U-Net
segmentation is overlapped in gray blobs. b shows relatively sparse

pedestrians, where DeepSOCIAL performs well, but there are con-
siderable more occlusions in c affecting the detector performance,
illustrating a key benefit of the U-Net segmentation. d shows a chal-
lenging urban scenario with smaller people’s instances, subject to
sever occlusions, resulting in a poor performance with detector-based
approaches
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Fig. 8 Comparison study between different solutions for the NSDC
crowds detection in a challenging urban scenario from the CityStreet
dataset. a shows the labeled ground truth, where the green bounding
boxes show people respecting the social distancing (SDC) and the red

bounding boxes represent people violating the social distance constrain
(NSDC). b depicts the results obtained by DeepSOCIAL [1], whereas
(c) presents the results from Yang et. al. [2]. U-Net Segmentation is
presented in (d) as a red cloud

breaking social-distancing. This is done in the image plane
I . Then, we project the ground truth annotations to the
image plane I , as obtained in Section 4, and generate the
ground truth NSDC head bounding boxes. Then we measure
AP, using a very low Intersection over Union threshold
(IoU(A, B) = A∩B

A∪B
). The AP is plotted in Fig. 9 for four

test videos using an IoU = 0.1. Blue bars represent the
results obtained by DeepSOCIAL, while the performance
of Yang et. al. is shown with orange bars. The upper error
margin shows the same metric using an IoU = 0.01, which
makes a slight improvement. The lower error margin is the
AP with a IoU = 0.3, empirically showing that even though
the bounding boxes are of an arbitrary size, their estimation
is in the correct region.

Provided that theCitystreet dataset is subject to important
distortions induced by the fish-eye lenses, an appropriate
behavior for the approaches using a detection stage ([1, 2])
requires to make a lens distortion correction pre-processing.
Otherwise, the interpersonal distance computation gets
considerably affected, specially towards the corners of the
frame. Figure 8a–c are examples of the undistorted frames,
whereas Fig. 8d shows a frame as obtained from Citystreet,
with fish-eye lens distortion.

In order to get a fair AP evaluation for the DeepSOCIAL
approach [1], we bypassed its tracking algorithm in the

Citystreet dataset, because in this dataset the frames
are randomly sampled from a video stream, without a
fixed frame rate, handicapping the advantages of using
tracking techniques and affecting the final solution. Hence
the Simple Online and Real-time (SORT) [31] tracking
algorithm is bypassed by giving it very lenient parameters
(given that the full source code for DeepSOCIAL is not
accessible); the minimum number of associated detections
before tracking is initialized equal to zero, with an IoU
threshold equal to 0.01, disregarding the tracking and
remaining only with the detection.

Meanwhile, for our U-Net segmentation approach, a
segmentation map is obtained in the image plane I , and
normalized between [0, 1]. Using the ground truth bounding
boxes location, also in the image plane I , we only consider
the detection as a true positive if the mean value of all
the segmented pixels inside a ground truth bounding box
is above a given threshold. In Fig. 9 (yellow bars), and its
accompanying Table 4, this threshold is set to 0.85. The
lower and upper error margins represent the same metric,
with a threshold of 0.9 and 0.8, respectively.

The quantitative results depicted in Fig. 9 along with
Table 4, showcase the superior performance of our
segmentation-based solution for these scenarios in terms
of AP, for the NSDC detection problem. Please note that
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Fig. 9 Average precision (AP) performance in the NSDC detection
problem, for DeepSOCIAL [1], using the YOLOv4 object detector (in
blue), Yang et al. [2], using Faster R-CNN (in orange), and our U-Net
Segmentation solution (in yellow), using the adaptations described in
Section 6.1. For the test videos PETS2009 View 001; “S1L1 13 57”,
“S1L1 13 59”, “S1L2 14 06” and “CityStreet”, respectively. The
present study suggests that our proposed Segmentation approach
outperforms instance-wise detection strategies on both datasets,
particularly in wider scenarios as the ones presented in CityStreet, or
when larger occlusions are present in PETS2009

we are not measuring the AP performance of the object
detector, but how well the solution finds people violating
the social distance constrain, hence, a few people wrongly
detected may result in important errors for the NSDC AP.
Also, in Fig. 7 we present an example of the performance
of our segmentation-based solution against DeepSOCIAL
for each case study scenario, each showing different people
sparsity and level of occlusion. People detected as NSDC
by DeelpSOCIAL are presented with red bounding boxes,
while SDC people are shown with green boxes (although
we are only evaluating those who are not in compliance).

U-Net segmentation is presented as gray blobs. As seen in
Fig. 7b, in the video sequence “S1L1 13 59” pedestrians
are relatively sparse, consequently, instance-wise detection
approaches, such as [1] and [2], detect most of them
properly. But in the sequences “S1L1 13 57” (Fig. 7a) and
“S1L2 14 06” (Fig. 7c) with considerable more occlusions,
the detectors tend to fail substantially more. Furthermore,
Fig. 8 shows a comparison between the three solutions
over a challenging urban scenario from CityStreet, with
a lot of people moving at will, and subject to important
occlusions. Although the object detectors perform fairly
well in the CityStreet dataset for the people detection task
(see video linked bellow), DeepSOCIAL under-performs in
the NSDC detection task mostly in this dataset, partially
due to its adherence to the tracking algorithm used, but
mainly due to missed detections caused by occlusions
and far away instances. Moreover, both DeepSOCIAL and
Yang et al. use complete body detectors, whilst the social
distance should be measured from head to head, resulting
in inaccuracies on the interpersonal distance computation,
which may become important depending on the people’s
pose, hence leading to errors in the NSDC classification.
Nevertheless, both DeepSOCIAL and Yang et al. have the
advantage of providing concrete bounding boxes of the
people, as well as tracking identifications of the people
breaking social distancing rules, which may come handy for
some applications.

Overall, our segmentation solution appears to perform
better against difficulties such as higher occlusions and
smaller instances, even performing better where there are
a lot of people than in cases where there are only a
few. In conclusion, this study suggests that our proposed
solutions are better suited for this kind of scenarios,
where detectors tend to fail due to occlusions, perspective
variations and size of the “person” instances relative to the
image. A video showcasing the performance of the three

Table 4 Quantitative comparison results in terms of Average Precision (AP) (also shown in Fig. 9), for 3 scenarios of the PETS2009 dataset and
one of the CityStreet dataset. Bold characters highlight the best result for each dataset

Video input Average precision, AP

DeepSOCIAL [%] Yang et al. [%] U-Net [%]

“S1L1 13 57” 58.31 56.01 79.92

“S1L1 13 59” 74.31 58.31 64.15

“S1L2 14 06” 30.04 38.49 87.54

PETS2009 overall 55.56 51.53 76.50

Citystreet 7.08 18.39 43.11

AP is obtained with an IoU threshold of 0.1, DeepSOCIAL is used with YOLOv4 at a resolution of 608 × 608 while Yang et al. uses the Pytorch
default implementation of Faster R-CNN with ResNet-50 (Residual Network). The “S1L2 14 06” segment of the PETS2009 dataset presents the
most crowded case, where object detection implementations struggle the most. While in the “S1L1 13 59” people are more dispersed and can be
found well through these methods. Overall, the U-Net segmentation performs better than those approaches based on object detectors
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approaches in these scenarios is provided at https://youtu.
be/XuQU-zaHMXE

6.2 Discussion

Although the proposed strategies showed promising results,
they are still subject to some limitations, suggesting that the
best solution would depend on the particular scenario, where
low levels of occlusion with larger object instances in the
image would benefit object detectors, while larger scenarios
with higher levels of occlusion and smaller people instances
would be better suited for end-to-end solutions like the ones
proposed in this paper.

On the other hand, provided that our proposed solutions
rely only on head’s features, an upper view is required to
work better, while traditional detectors should work also
with frontal views, although both strategies would struggle
with occlusions. Nonetheless, this should not be an issue
given that aerial drones and most security cameras offer
views from above the head. In particular, our approach
requires a tilt angles between 20◦ and 90◦, measured from
the horizontal plane. We have observed good performance
working around a tilt angle of 45◦, at least at 5m away
from the crowd in order to cover a larger area. Different
particular scenarios, or different camera setups, may require
further tuning to improve the performance, for example
using transfer learning.

Another limitation, on the majority of the available
solutions, is the requirement of knowledge on the camera
pose relative to the ground. This is not a problemmost of the
times, since cameras are normally fixed at a-priori known
locations, or its pose can be recovered from proprioceptive
sensors, such as in drones or even mobile phones. In case the
pose of the camera is unknown, extra computation would
be required to estimate the homography transformation
between planes, for example as in [32].

Also, most of the available solutions rely on the
assumption that people on the scene are about the same
average height, and their heads lie around a common plane
where the inter-personal distance can be computed. This
may be a strong constrain in some scenarios, where the
ground is not flat or it is irregular; when some people
are sitting while others are standing; or when children
are mixed with adults. Nonetheless, we believe that the
proposed solutions will still provide acceptable results for
monitoring applications, provided that we have trained our
algorithms using multi-view fusion which helps to capture
depth information between the annotations, 3d solutions
would probably be better suited for this scenarios, where
there is not a good approximated common plane for the
heads. However, 3d solutions will require special depth
sensors such as stereo cameras or laser scanners, along with

3d annotations, further increasing the complexity of the
solution and the effort required for its deployment.

An important aspect of our proposed framework is its
compatibility with commonly available hardware in public
spaces, where monitoring the social distancing may be of
interest, given that they may be already equipped with
security cameras looking the crowd from above, otherwise
portable cameras mounted on drones can be used instead.
Also, our proposed framework can be easily trained with
any other of the multiple available datasets with people
annotations, as long as the homography transformation is
available or can be computed. Furthermore, our framework
to create density and segmentation maps do not depend
on the neural network algorithm, such that, in future
works, we can propose alternative solutions to tackle the
aforementioned limitations in our current approach, or
update the DNN for segmentation according to the future
state-of-the-art. Indeed, based on the results showed in this
paper, the framework here proposed acts a solid foundation
to the proposal of new algorithms based on density and
segmentation maps.

In summary, the comparison analysis suggests that
the proposed framework offers an interesting alternative
for VSD monitoring, especially when larger occlusions
and smaller people instances are present, where available
detector-based solutions tend to fail. However, it would
seem that the best overall solution would depend on the
particular scenario, or a smart fusion of both approaches.
Furthermore, coupling the VSD problem with mask usage
and gaze detectors would help to better assess the risk of
infection.

7 Conclusions and future work

In this work, we present a new framework to deal with
the visual social distancing problem (VSD). Our framework
proved to be useful at training Deep Neural Networks in
the task of detecting non social-distance conforming crowds
(NSDC), providing promising alternatives to the popular
detect and track approach, specially in wider scenarios with
more people, subject to important occlusions.

Using the proposed framework, we presented two
different solutions to the visual social distancing problem in
wide scenarios, a density-map-based, and a segmentation-
based approach. Furthermore, we evaluated the performance
of these approaches for three different networks, a FCN 7
density map generator, a FCN 7 segmentation and a U-Net
segmentation, proving that solutions based on density maps
or segmentation are capable of learning the notion of social-
distance by providing the ground truth annotation of only
the non-conforming crowds. Moreover, we found that the
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U-Net segmentation showed the best performance out of the
three strategies for both datasets, PETS2009 and CityStreet,
achieving above 0.8 in the F1 score and above 0.6 in
the Specificity score for both datasets. This is probably
because it is a model better suited for the segmentation task.
Meanwhile, the FCN 7 model trained to detect the NSDC
crowds using density maps performed better than FCN 7
trained for segmentation in the PETS2009 dataset, possibly
due to the lack of enough examples of SDC people.

Additionally, a comparison study was carried out
between two state-of-the-art detection-based approaches
and our U-Net segmentation solution, demonstrating better
performance from our U-Net segmentation strategy in both
studied datasets, specially in wide scenarios with high level
of occlusion.

In future works, we aim at improving the results of
our algorithms further evaluating other models. Also, we
would like to provide more information about the distance in
NSDC crowds in the loss function or directly in the model,
and assign a level of risk accordingly. Another interesting
axis of research would be to further detect the people’s gaze
and mask usage to better assess the risk of infection. Finally,
it would be interesting to monitor these crowds using mobile
cameras.

Funding This work was supported by the Mexican National Council
of Science and Technology CONACYT, and the FORDECyT project
296737 “Consorcio en Inteligencia Artificial”.
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