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Abstract
Nowadays, most recommender systems are based on a centralized architecture, which can cause crucial issues in terms of 
trust, privacy, dependability, and costs. In this paper, we propose a decentralized and distributed MANET-based (Mobile 
Ad-hoc NETwork) recommender system for open facilities. The system is based on mobile devices that collect sensor data 
about users locations to derive implicit ratings that are used for collaborative filtering recommendations. The mechanisms 
of deriving ratings and propagating them in a MANET network are discussed in detail. Finally, extensive experiments dem-
onstrate the suitability of the approach in terms of different performance metrics.

Keywords  Context-aware recommender systems · Location-based systems · MANET · ad-hoc networks · Open systems

1  Introduction

During the last decade, mobile devices has changed the way 
people interact with their environment. Built-in sensors and 
the high processing power can provide users with intelligent 
applications that exploit their current context.

Context-aware Recommender Systems (CARS) [1] form 
a new class of intelligent applications that infer the user’s 
context from environmental features to provide refined rec-
ommendations that contribute to a personalized user experi-
ence. In particular, location-based CARS in open facilities 
such as museums, fairs, or general urban spaces, can benefit 
from the insights gained from sensor data about the current 
user’s location. These might be used to derive more accu-
rate recommendations to users in domains where location 
is a significant context attribute. This is the case in open 
facilities or urban open spaces where users are free to move 
around in search of items that satisfy their needs, and in 
which the set of users in the area changes over time (users 
may join or leave at will).

Problem description Common recommender systems do 
not exploit the manifold capabilities of distributed smart-
phone-based system architectures. Instead, most recom-
mender systems rely on a centralized architecture: they make 
use of a server that acts as a central authority, collects the 
relevant data from all users, and calculates individual recom-
mendations for all of them. We claim that such centralized 
recommender systems suffer from the following significant 
issues:

–	 Trust issues: users must trust that the recommendations 
received from a server are trustworthy and appropri-
ate without knowing how they were calculated. This 
demands a big leap of faith, as centralized recommenda-
tion systems used in commercial areas such as online 
marketplaces or accommodation websites often skew 
recommendation results by giving more visibility to pro-
moted items. In general, users would prefer to have more 
control over the recommendation process.

–	 Privacy issues: usually, users do not like to submit their 
data to a central authority, that might be interested and 
capable of exploiting their data for commercial purposes. 
Rather, they prefer that no single recommender server 
is owner of all data. Moreover, in general, users want to 
have complete control over their data and decide with 
whom they share their ratings. But centralized recom-
mendation systems force users to provide them with their 
personal recommendations. They can calculate recom-
mendations only for users whose ratings they know.
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–	 Rating acquisition issues: any recommender system 
needs to know the user’s preferences to derive better 
personalized recommendations. Most systems attempt to 
learn preferences by asking the users to give ratings for 
items they visited/consumed. However, people usually do 
not want to give explicit feedback all the time, because it 
is overwhelming and time-consuming.

–	 Dependability issues: as in all server-centric architec-
tures, a central recommendation server that stores all 
relevant data creates a bottleneck in the system and a 
single point of failure. The functionality of the system 
completely depends on the performance and availability 
of this server. In case of a break-down or a drop in per-
formance, the entire recommender system can no longer 
continue to function.1 In particular, for mission-critical 
applications and in emergency situations, server break-
downs, power outages or server overloads can cause criti-
cal problems [4, 5, 23].

–	 Costs issues: furthermore, sever-based architectures 
cause significant costs for setting-up an appropriate 
infrastructure and maintenance. Especially in temporary 
events such as fairs, high installation and maintenance 
costs are not affordable.

Contribution In this paper, we propose a decentralized and 
distributed MANET-based (Mobile Ad-hoc NETwork) rec-
ommender system for open spaces, which addresses the 
issues of traditional centralized recommender systems, 
namely trust, privacy, dependability and maintenance.

A MANET is a multi-hop wireless network whose nodes 
consist of mobile devices that can move freely and that does 
not require any server infrastructure [12]. In the proposed 
MANET-based system, each user uses an own instance of 
the recommender system running on her personal smart-
phone device. If users meet, they exchange their ratings, 
building in a step-by-step manner the database for the rec-
ommendation algorithm.

We claim that our distributed recommender system 
approach copes with the above-mentioned issues:

–	 Trust: in our approach, users can trust the recommenda-
tions because they run the recommendation algorithm 
themselves and also rank its results themselves. So, they 
can be sure that the ranking of recommendations will not 
be skewed by the interests of any other party.

–	 Privacy: in the MANET-based system, users do not have 
to disclosure their data to a central authority that might 
misuse their data, but only to persons they encounter by 

coincidence. In particular, they are required to publish 
only low-sensitive and anonymized data that does not 
cause much harm in case of loss. Especially cautious 
users who do not want to disclose their own ratings can 
still use the system.2

–	 Rating acquisition: instead of forcing the user to con-
tinuously provide ratings to the system, we propose an 
approach, where ratings are implicitly derived. Ratings 
are calculated automatically and without any user inter-
action by measuring the sojourn times in front of items.

–	 Dependability: a MANET-based system architecture 
increases the reliability of the system, because there is 
no centralized server, i.e. no single point of failure.

–	 Costs: a smartphone-based architecture provides a low-
cost solution without any specific server and network 
infrastructure that requires extensive maintenance.

To our knowledge, there is no comparable approach that 
exploits the capabilities of a smartphone-based MANET to 
build a trustworthy, reliable, and cost-effective recommenda-
tion system with implicit ratings.

Note that the goal of the approach is not outperform-
ing traditional centralized CF recommender systems but to 
overcome the problems stated above by using a distributed 
solution. In the following, we will show in detail how these 
goals can be achieved.

The paper is organized as follows. In Section 2 we give 
a short overview of our system architecture. Section 3 puts 
forward the conceptual framework the paper is based on, 
and discusses the key mechanisms for our MANET-based 
recommender system. Then, in Section 4, we present the 
results of extensive experiments to evaluate our approach. 
Section 5 refers to the related work existing in the literature. 
Finally, we summarize the paper and discuss some future 
lines of work in Section 6.

2 � Architecture overview

In this section, we will give a short overview of our approach 
of a distributed Context-aware Recommender System 
(CARS). Before going into details in the subsequent sec-
tions, we outline the crucial properties of our architecture:

–	 MANET: our recommender system approach relies on 
a MANET (Mobile Adhoc NETwork) architecture that 
forms a peer-to-peer (P2P) system composed of the 
user smartphones. This implies that the users move in 
an open space so that they could encounter each other 

1  Of course, various sophisticated mechanisms such as server repli-
cation and load-balancing can avoid these problems. But in practice, 
often simpler architectures are deployed.

2  Of Course, this assumes that there are enough other users that share 
their data.
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while walking around. Each smartphone incorporates a 
recommender system in order to provide its owner with 
valuable suggestions. The MANET-approach provides 
all users with a high amount of autonomy, as well as 
complete independence from any centralized technical 
infrastructure.

–	 Collaborative filtering: we assume a collaborative filter-
ing (CF) approach, which calculates recommendations 
by exploiting the collaborative power of ratings provided 
by multiple users. Collaborative recommender systems 
recognize commonalities between users on the basis of 
their ratings, and generate new recommendations based 
on inter-user comparisons. Collaborative filtering is the 
most familiar and most-established recommender tech-
nology in commercial systems[9]. In contrast to other 
approaches such as content-based recommendations, no 
elaborate domain-specific models of user profiles and 
item content must be developed, what makes CF rather 
easy to implement [2].

–	 Distributed data: because MANETs do not rely on serv-
ers, all the data required for CF is stored in a distributed 
manner on the MANET nodes. The user smartphones 
not only hold their own ratings, but also ratings given by 
other users. Since CF requires a large number of ratings 
from many other users to calculate appropriate recom-
mendations, ratings have to be stored redundantly on 
numerous nodes.

–	 Multi-hop data exchange: in MANETs, ratings from other 
users can be received through a direct transfer between 
neighboring nodes when they encounter3. In order to get 
data from nodes that have not met directly but are further 
away, MANETs allow data to be exchanged in a multi-
hop manner: data is transferred over multiple nodes to 
reach a user outside the range of coverage. Therefore, two 
nodes can be considered connected, if there is a multi-
hop connection between them.

–	 Implicit ratings: a major problem of CF is deriving user 
ratings. Usually, people do not want to give continuously 
explicit feedback, so that more subtle and less invasive 
techniques should be used for reasoning their personal 
preferences. A possible solution is to infer user pref-
erences from more abundant implicit feedback, which 
extracts opinions by observing user behavior [19]. 
Because our MANET-based recommender system is 
based on smart devices, it appears obvious to exploit 
their sensors to monitor user activities. As application 
scenario, we will present a recommender system for 
open facilities such as museums, fairs or zoos. For such 
surroundings, we propose to measure how long people 

stay in front of items for estimating their preferences. In 
past works, we implemented a recommender system for 
a museum [17] with a server-based architecture, which 
derives implicit ratings from visitor’s movement data.4

Figure 1 gives an example of a MANET system at a cer-
tain time instant. There are six users, all of them running 
their own recommender system with a CF algorithm on a 
smartphone. Each recommender system has its private data 
storage for ratings, which are own ratings derived from the 
smartphone’s movements and ratings received from other 
users. If two users are passing in transmission range (for 
instance user A and user C) they are able to exchange their 
ratings. Users without any neighbor, such as user F, are 
isolated and must limit themselves to the data they already 
have, until they encounter other users in the near future. In 
the example, users B and D cannot exchange data directly, 
because they are out of range, but they can perform a data 
transfer via the MANET multi-hop mechanism using user 
E as intermediary node.

We show in Figure 2 the workflow of the system from 
a user’s perspective using a BPMN-like notation5. When 
running the recommender system, three different events 
may occur. (i) If the user visits an item, her sojourn time 
in front of the item is measured to derive a new rating for 

Fig. 1   Nodes in a MANET-based recommender system at a certain 
time instant

3  For instance, if they are within range for establishing a Bluetooth 
connection.

4  The approach presented here is not bound to this form of implicit 
ratings. Of course, also explicit ratings of other forms of implicit rat-
ings can be applied.
5  https://​bpmn.​org
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her. This rating is used to complete the user’s profile of her 
and inserted to her corresponding rating knowledge base. 
(ii) If the user meets some other users in her vicinity, she 
exchanges her data with them. The data she has received 
from others is then added to her rating database. (iii) If the 
user wants the system to recommend where to go next, she 
trigggers a CF recommendation algorithm that makes use 
of her rating knowledge base. This workflow is executed in 
an infinite event loop, as long as the user is in the facility.

In the following section, we will discuss in detail how to 
implement the aspects addressed.

3 � MANET‑based recommendation 
mechanism

In this section, we will describe the recommendation mech-
anisms of our proposed CARS from the perspective of a 
particular MANET node, i.e. a user interested in appropri-
ate recommendations. Figure 3 shows the four stages of the 
recommendation process executed on each user smartphone. 

1.	 Derive (implicit) ratings: as a crucial foundation of our 
CF-based recommender, each user must provide appro-
priate ratings reflecting her personal preferences. As 
already mentioned, we let the system to implicitly cal-
culate a user’s ratings by exploiting her movement data.

2.	 Rating dissemination: because own ratings are not suf-
ficient for CF-based recommendations, users must get 
ratings from others. The rating dissemination concept 
describes how ratings are exchanged and propagated 
between MANET users to enhance their knowledge 
about opinions and preferences in the open space.

3.	 Data fusion: in a data fusion step, data received from 
other users must be merged with the information already 
stored in the device. In particular, the validity period of 
ratings must be taken into account. In public spaces, 
older data often has no relevance, since only recently 
monitored ratings describe the current situation.

4.	 Calculate recommendations: in a final step, recom-
mendations are calculated by a CF algorithm, such as 
user-based collaborative filtering. The main idea is to 
recommend a certain user those items that other users 
with similar tastes liked in the past. The similarity on 
taste of two users is calculated based on the similarity 
in their rating history.

The remainder of this section is devoted to consideration of 
each of these stages.

3.1 � Stage 1: Derive (implicit) ratings

In this subsection, we explore in more detail how implicit 
ratings can be determined based on a user’s movements.6 
The main idea is that the longer a user stays in front of an 
item the more she likes this particular item; i.e. the rating on 
an item by a user is estimated by the sojourn time she spends 
close to the item. Therefore, the longer the time user spends 
close to the item the higher the estimated rating will be. In 
order to derive a meaningful rating, the average behavior of 

Fig. 2   Workflow in the 
MANET-based recommender 
from a user’s perspective

Fig. 3   Stages of the MANET 
recommendation mechanism 
from a user’s perspective

6  Again, note that this is only one example of a possible rating mech-
anism. Ratings could also be given explicitly by users, or implicitly 
by observing other user behavior than movements.
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this user must be taken into account, e.g. whether she tends 
to spend a long time or a short time in front of items.

Interpreting user’s sojourn times as ratings requires three 
steps of data preparation: (i) tracking user’s movements, (ii) 
data cleaning of useless data for calculating sojourn times 
and (iii) normalizing the times to make them comparable. 
Note that we have already implemented a proof of concept of 
this approach based on a beacon infrastructure in a museum 
scenario [18].

3.1.1 � Tracking user movements

We assume the use of iBeacon technology to monitor user 
localization7. A beacon is just a small device located at a 
well-known position, which sends a unique ID in a certain 
frequency8 via Bluetooth LE. This beacon ID can be read 
by any smartphone within range9 that scans its surroundings 
for beacon signals at a predefined frequency, e.g. once per 
second.

Figure 4 shows a situation, where a user is in the range 
of three different beacons, each beacon corresponding to 
a certain item. Now her smartphone reads the beacon sig-
nals and receives for each beacon its ID and signal strength, 
the so-called RSSI (received signal strength indicator). It is 
assumed that the beacon with the highest RSSI value is the 
closest one10 that determines the user’s position at the asso-
ciated item. As users move through the space, the signals 
from the scanned beacons change and the beacon with the 
strongest signal defines the user’s new position.

The beacon data can be used to specify the sequence path 
of user u in the space, which is the sequence of IDs from the 

beacons u has passed so far with the corresponding arrival 
times:

where, IDu
i
 denotes the ID of the i-th beacon in the trajectory 

of user u, and tu
i
 the corresponding arrival time.

Note that for open facilities, other technologies such as 
GPS [24] or Wi-Fi tracking techniques might be used sepa-
rately (or combined) along with a beacon infrastructure to 
know about users’ location. For the sake of simplicity we 
only assume a beacon infrastructure to validate the approach.

3.1.2 � Calculating sojourn times

Now, we can easily determine the sojourn time of user u at 
a certain item i by calculating the difference �u

i
 between the 

arrival times at item i and at the the subsequent item i + 1 in 
the user’s path as shown in Eq. 2.

All �u
i,i+1

 values below a certain threshold should not be con-
sidered, because very short times occur when users pass by 
items without special attention, i.e. no rating is necessary. 
Therefore, we clean the data by using Eq. 3,

where �(u, i, i + 1) is a function that approximates the walk-
ing time of user u for going from beacon i to beacon i + 1 , 
and Θ is a threshold time for considering the sojourn time 
as relevant.11 In this way, each user determines the times 
she has spend at various items, which yields a list of sojourn 

(1)path(u) = {(IDu
1
, tu
1
), (IDu

2
, tu
2
), ..., (IDu

n
, tu
n
)}

(2)�u
i,i+1

= tu
i+1

− tu
i

(3)

sui =

{
�u
i,i+1

− �(u, i, i + 1) �� deltau
i,i+1

− �(u, i, i + 1) ≥ Θ

0 ���������

Fig. 4   Using Beacons for user 
localization

7  https://developer.apple.com/ibeacon/
8  For instance, 5 times per second.
9  Depending on the application scenario, the beacon range could be 
adjusted.
10  Normally, the smartphone repeatedly collects beacon signals over 
a longer time interval (between 1 and 2 seconds) to compensate for 
signal jitter

11  Note that � function might take into account different factors, such 
as the distance between items, the regular walking pace of user u or 
the occupancy of the area.
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times �
�
= {sui1 , sui2 , ..., suim} of user u, where m denotes the 

number of items the user has already visited.

3.1.3 � Calculate ratings

For understanding and classifying a sojourn time as a rating 
it must be normalized with regards to the average behavior 
of a user. There are users that tend to contemplate a long 
time at an item, while others tend to jump quickly from one 
item to another (which does not necessarily mean worse user 
satisfaction). Therefore, we have to apply a normalization 
step to smooth those potential different types of behavior. 
We use a z-score normalization approach calculating zui 
according to the following formula:

with �u representing the mean of all non-zero sojourn times 
of a user u, �u standing for the corresponding standard devia-
tion, and sui denoting the measured sojourn time of user u at 
item i. As a result of stage 1, each smartphone maintains a 
set of normalized sojourn times.12 Each zui can be considered 
as the rating given to item i by user u. Obviously, equation 4 
can be used to back-calculate normalized ratings to sojourn 
times.

3.2 � Stage 2: Rating dissemination

As long as there are not enough ratings, traditional collabo-
rative filtering methods cannot be applied: i.e. CF suffers 
from the cold-start problem [14]. Meaningful recommenda-
tions are highly dependent on the amount of ratings available 
to a user. In our system, users also need to collect data for 
some time after entering the open space before a recom-
mendation can be made.

Therefore, a key issue of CF-based recommender systems 
is to provide all participants with as many ratings from other 
participants as possible.13 The dissemination of ratings is not 
a problem in server-based systems, where all data is avail-
able at a central point without redundancy. In MANETs, 
however, it is more difficult to ensure that data is propagated 
to other nodes.

For a given node, the amount of ratings available for cal-
culating recommendations depends on (i) how many other 
nodes it has met directly and (ii) how many ratings it has 
received via multi-hop propagation from more distant nodes. 
For propagating ratings, our MANET-based recommender 

(4)zui =
sui − �u

�u

system requires a suitable dissemination mechanism that 
achieves high node connectivity so that users can mutually 
benefit from their ratings.

In contrast to a centralized CF approach, each user has 
less data available, but that data may be of more relevance. 
With our approach, the information exchanged tends to be 
more current and reflects the interests of users that are in 
that very moment in the facility (or are recently gone). In 
addition, the data usually originates from the surrounding 
area, because it has arrived via few MANET hops. Thus, the 
approach primarily considers recent and nearby ratings. For 
example, in the zoo scenario, exhibits should be detected 
that are nearby and of particular interest to the user in the 
current time period (e.g., a panda that just woke up from 
her nap). Whether the benefits of newer and more local data 
outweigh a larger data set depends on the application sce-
nario, in particular how fast the state of the open facility is 
changing significantly.

3.2.1 � MANET routing protocol

MANET routing protocols must balance connectivity against 
message overhead. In general, the messages are send redun-
dantly to supply as many nodes as possible with data. But 
too generous forwarding of messages, e.g. via broadcast, 
results in a massive amount of messages with the same con-
tent. The so-called broadcast storm causes a large amount of 
redundant messages that consume scarce resources such as 
bandwidth and power and may cause contention [26].

Figure 5 gives an example for a MANET with 10 nodes. 
In the graph, nodes are connected with an arrow, if they 
are in range for data exchange.14 Assuming that we want 
to transfer the ratings of node B to node E, there are two 
different routes with 3 hops: r1 = (B → C → D → E) and 
r2 = (B → F → D → E) ; and one route requiring 5 hops: 

Fig. 5   Routing in MANETs

13  Of course, CF recommendation requires also enough ratings from 
the own user to understand her preferences.

14  To make data propagation in the picture more clear, we used unidi-
rectional arrows, but of course data exchange is bidirectional.

12  Note that this type of normalization ensures z
ui

 is derived from a 
normal distribution N(��

u
= 0, ��

u
= 1).
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r3 = (B → F → I → J → G → E) . In total, the ratings 
of node B are propagated over 9 hops15, but with perfect 
knowledge of the network topology, only 3 hops would be 
necessary.

TTL controlled flooding: A simple approach to avoid the 
unmanageable flooding of MANETs with messages is the 
well-known Time-to-live (TTL) mechanism [8]. TTL defines 
the maximum number of hops that a message may be propa-
gated in the network. For implementing TTL mechanism in 
MANETs, each message contains a TTL field, which serves 
as a counter. When a message is created, the TTL counter 
is initialized with the maximum allowed number of hops. 
Every time the message is sent, the counter is decremented. 
Incoming messages with TTL = 0 are not propagated further.

The TTL value controls the connectivity between nodes 
in the MANET. An optimal TTL value is difficult to choose 
and strongly depends on the application scenario. In the 
example of Fig. 5, the route r3 is too long and not available, 
if TTL = 3 has been chosen. With a smaller TTL = 2 there is 
no route available to connect nodes B and E. In general, in 
densely populated open spaces, users will have no problem 
obtaining sufficient ratings with small TTLs, even through 
direct encounters. However, in sparsely populated areas, a 
larger TTL is required to enable connection between distant 
nodes over longer multi-hop routes. As a general strategy, 
the TTL value must be increased if a user does not have 
enough ratings available.

Similarity-based flooding: Another approach to avoid 
message overload is similarity-based flooding. Because 
users are mainly interested in the preferences of users who 
are similar to themselves, they maintain an overlay network 
connecting them only with users with the same preferences. 
Then, messages are only exchanged between similar users, 
so less messages are spread across the network and need to 
be processed at each node.

The similarity �(u, v) between two users u and v can be 
estimated according to the Pearson correlation index as 
shown in eq. 5.

where zui , zvi are the ratings of item i given by user u and user 
v, respectively (according to equation 4). Note that equa-
tion 5 considers only items that have been rated by both 
users, i.e. item i ∈ Iu ∩ Iv , where Iu is the set of exhibits vis-
ited by user u so far. The Pearson index calculates the degree 

(5)�(u, v) =

∑
i∈Iu∩Iv

zui ⋅ zvi
�∑

i∈Iu∩Iv
z2
ui

�∑
i∈Iu∩Iv

z2
vi

of likeness between two users by comparing the ratings of 
those items that the two users have in common.

To establish a similarity-based overlay network, the node 
of a user u forwards messages from a user v only if similarity 
𝜌(u, v) > 𝜓 , i.e. from users whose similarity is above a cer-
tain threshold � . The threshold � controls the connectivity 
of the overlay network. If � has a value near to 1, only very 
similar users may exchange data. Again, an optimal value 
depends on the application scenario. If there are enough 
similar users in the facility, a high value can be selected. 
Otherwise, a smaller � provides users with enough ratings, 
but which may be less relevant, because they come from 
more diverse users.

3.2.2 � Message format

For enabling collaborative filtering, a MANET node associ-
ated to user u has to send messages �u containing the follow-
ing information:

First, some meta data is necessary to enable MANET routing 
including a message identifier id to avoid message duplicity, 
a timestamp t to allow discarding of old messages and a TTL 
field used as described above. The payload itself includes 
a user identifier uid indicating the user who triggered the 
message, and the rating matrix �u = [zvi] , which contains 
all ratings known to user u. A matrix entry zvi is the rating 
given to item i by user v, which is calculated according to 
equation 4.

3.2.3 � Triggering rating dissemination

There are different policies to decide when a should prop-
agate her ratings. Generally, the dissemination should be 
triggered when a new situation has occurred. The following 
trigger events can be distinguished:

–	 Elapsed Time Window: the device of user u periodically 
sends a rating message �u with a certain frequency � . 
Technically, this approach checks at fixed time intervals, 
whether the user is within range of yet unknown users. 
This way, a user detects other passing-by users.

–	 New Rating Available: a dissemination of the rating mes-
sages �u takes place, if the user has received new ratings 
from other users, or if she has finished her visit at an item 
and can calculate a new rating of her own. Here, new rat-
ing information is propagated without any latency.

–	 New Area Detected: as soon as a user has entered a new 
area of the facility, she searches for users within range 
who are still unknown to her in order to exchange ratings.

(6)�u = (id, t, TTL, uid,�u)

15  If we assume that the same message is not exchanged several times 
between the same nodes, e.g. the exchange B → F is not done for 
each of the three routes.
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Note that each device decides when sending information to 
others. Therefore, there is no synchronicity among users to 
exchange their rating data.

3.3 � Stage 3: Data fusion

In a data fusion step, ratings received from other users are 
combined with the information already stored in the device. 
This means, that the rating matrix �u = [zvi] , which con-
tains all the ratings the device owner u knows so far, must 
be merged with matrices �v contained in the data messages 
received from other users v.

The dimension of matrix �u is |U| × |I| with the number 
of items |I| and the number of users |U|. If the total num-
bers of users and items are unknown in advance, the matrix 
dimension can grow over time. In most recommendation sce-
narios |U| ≫ |I| holds, because the number of users grows 
continuously while the number of items remains more or less 
the same. Furthermore, the matrix �u is usually sparse, i.e. it 
contains many zero entries. This corresponds to the fact that 
users rate only a small fraction of the available items.16

If a device owned by user u receives a new rating matrix 
�
v from another user v just encountered, the following steps 

are executed: 

1.	 For implementing similarity-based flooding, matrix 
�
v is used to calculate similarity �(u, v) due to Pearson 

correlation as described by eq. 5. Only ratings from 
users with a similarity beyond a certain threshold � are 
accepted and integrated in �u.17

2.	 If user v is similar to user u, each entry zwi of the matrix 
�
v is inserted into matrix �u . It can happen that there is 

already an entry at position (w, i) in �u , namely when 
the rating zwi has already arrived over another MANET 
route. But because we assume that each user gives a rat-
ing only once, inconsistencies cannot occur.

In public spaces, older data often has no relevance, since 
only recently submitted ratings describe the current situa-
tion. In a zoo, for example, visitors are interested only in the 
current situation at an enclosure and not what it looked like 
a few hours ago. Implementing such a mechanism requires 
knowing at what time a rating was issued. Then in a cleaning 
step, all ratings older than an application-specific threshold 
can be removed from the matrix �u.

3.4 � Stage 4: Calculating recommendations

There are various methods for calculating CF-based recom-
mendations. The most prominent ones are user-base col-
laborative filtering (UBCF) and item-based collaborative 
filtering (IBCF). Because IBCF has some advantage in 
recommender scenarios with much more users than items 
[22], here we will consider IBCF.18 The calculation of IBCF 
recommendations works as follows [32]: 

1.	 First, similarities between items are calculated by using 
zvi-ratings in �u . Among several possibilities, the simi-
larity wi,i′ between to items i and i′ can be computed by 
the Adjusted Cosine function: 

 in which v ∈ Ui ∩ Ui� represents a user v that visited 
both items, where Ui is the set of users that have already 
visited item i.

2.	 To calculate the prediction ẑu,i′ of the rating a user u 
gives to a yet unvisited item i Eq. 8 is used. 

 where Iu denotes the set of exhibits the user u has 
already visited. Finally, we would calculate the predicted 
sojourn time ŝui′ by rearranging eq. 4. 

One of the main common problems when dealing with col-
laborative filtering approaches is the so-called cold-start 
problem; that is, users need some time to receive accurate 
recommendations, due to the lack of own personal experi-
ences. Since the recommender mechanism in our approach 
works with the user’s partial view of the environment (built 
from information exchanged), it also needs some more time 
to use collected information to be combined with own expe-
rience. This means that in our MANET-based approach, the 
dissemination of rating data might be slower than in a cen-
tralized architecture.

Depending on how many people are in the open space, 
the cold start phase may therefore take longer until enough 

(7)wi,i� =

∑
v∈Ui∩Ui�

zvi ⋅ zvi�
�∑

v∈Ui∩Ui�
z2
vi

�∑
v∈Ui∩Ui�

z2
vi�

(8)ẑu,i� =

∑
i∈Iu

w(i, i�) ⋅ zui
∑

i∈Iu
w(i, i�)

(9)ŝui� = ẑui� ⋅ 𝜎u + 𝜇u

18  IBCF solves some issues related to: (i) the scalability of the system 
(systems containing more users than items) and (ii) efficiency (only 
calculates similarities between items instead of between users such 
as in user-based approaches). Furthermore, it tends to be more stable, 
since changes in user profiles are supposed to occur more frequently 
than in item profiles.

16  For the sake of brevity, we do not consider optimized data struc-
tures for the sparse matrices �u.
17  Or at least the data of user v should not be forwarded to other 
users.
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ratings have arrived at a user. Although beyond the scope of 
this paper, there is a large body of work in the literature that 
attempts to mitigate this problem in CF approaches[9, 14, 
15], any of which could be used for our distributed approach.

3.5 � Privacy issues

Recommender systems based on collaborative filtering 
always face privacy issues, as they require users to share 
their personal ratings with others. Although the aspects to 
take into account depend to a great extent on the domain 
(e.g. there is much work done in the health domain [36]), in 
order to evaluate privacy, we have to consider (i) the sensi-
tivity of data that a user is required to disclose and (ii) who 
is granted access to the data. Data sensitivity In our system, 
the data disclosed by users is of low sensitivity. First, the 
information exchanged is always anonymous, since the mes-
sages contain only an artificial user id that could be created 
by a UUID generator. This ensures anonymity, since user ids 
do not link to any information about the real users.

Furthermore as depicted in eq. 6, a message contains a Zu 
user-item matrix with the normalized ratings that are known 
to the sender so far, accompanied by some meta data such 
as message id, timestamp, and TTL value. It is important 
to remark that location-based services may also be sensi-
tive to tracking issues for users [11, 39]. Note that in our 
system, there are no timestamps for rating informations, so 
users’ routes cannot be tracked. Overall, the disclosed data 
cannot be used to derive any unique characteristics of the 
user such as name, address, or personal preferences. It can 
be assumed that it does not cause serious harm if the data is 
lost. Considering the evaluation scheme in [33], we claim 
that data sensitivity of our system belongs to category III 
’Low Sensitivity’, i.e. loss of such data would not affect the 
person. Data access In our MANET-based system, users do 
not have to submit their data to a central authority that might 
be interested and capable to exploit the data for commercial 
purposes. This also means that there is no instance in the 
system that owns all rating data. Instead, users share their 
data only with people they encounter by coincidence and 
who are unlikely to have the capability to access and misuse 
the data.

Furthermore, users have the control over the informa-
tion they exchange. They can decide what information they 
share with others, e.g. the could reveal only their k favorite 
items to others. In particular, the system could allow users 
to act only as intermediaries, meaning that they share only 
other users’ ratings, but not their own. Nevertheless even 
such a user can calculate recommendations because the CF 
algorithms run on her private smartphone, which is the only 
one using her own ratings. This is an advantage over a cen-
tralized architecture where users are forced to reveal their 

personal ratings in order to receive a recommendation19. 
Because no private, in particular no rating data is shown 
to the user, we claim our system provides data visibility of 
category ’Low’ according to [33].

In summary, our MANET-based recommender addresses 
privacy by using anonymous data of low sensitivity. Fur-
thermore, there is no central authority that has access to 
all data; instead a user can control for herself what data she 
wants to reveal.

Fig. 6   Overview of the routing process

19  Of course, this only works if enough users provide their rating data 
generously.
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3.6 � Summary – Routing protocol

Figure 6 gives an overview over the entire MANET recom-
mendation process (using the BPMN notation20) and shows 
how the different parts fit together.

Each smartphone is executing three different subproc-
esses concurrently in an endless loop:

–	 Calculating implicit ratings: a movement event, such as 
a GPS position change or a new beacon reading, triggers 
the calculation of ratings. According to subsection 3.1 
this requires tracking the movements (e.g. assigning posi-
tions to items), calculating the sojourn time in front of an 
item and normalizing it to derive the rating. Finally, the 
new derived rating is inserted into the rating matrix �u.

The other two subprocesses are started if a trigger event 
(according to subsection 3.2.3) has occurred and afterwards 
a neighbor in range has been found. After connecting with an 
encountered user v, the message containing her rating data 
matrix �v is loaded. Afterwards, the similarity with user v 
is calculated, as well as the the TTL counter is decremented 
(according to subsection 3.2.1). Now, concurrently, the next 
two steps make use of the new rating data:

–	 Calculate recommendations: The data in �v is inserted 
into the own rating matrix �u (according to section 3.3). 
In the subsequent step, �u is used to calculate ratings 
based on IBCF as discussed in section  3.4). These rat-
ings will be used to hopefully make appropriate recom-
mendations to the owner of the device.

–	 Sending valid data to encountered neighbors: the user’s 
data stored in �u can be sent to neighbor users in range. 
Before sending it is checked that the data still has a 
TTL > 0 and eventually if the neighbor user is similar. 
Otherwise, the data may be discarded.

4 � Experiments

In order to exhaustively test our approach we conducted 
an extensive set of simulation experiments. The resulting 
understanding is the basis for the practical operation of the 
system.

4.1 � Application scenario

We have embraced a public zoo as an application sce-
nario. We assume zoo visitors are equipped with any sort 
of mobile devices (e.g. an smartphone or a tablet) running 

the recommender system we have presented above, and are 
strolling around and linger in front of open-air enclosures 
with different animals.

The recommendation app monitors the precise trajec-
tory of its user by using a beacon infrastructure as already 
explained in section 3 in more detail21. The user trajectory, 
in particular the sojourn time spent by the visitor around the 
enclosures, is used to derive implicit ratings in the owner 
device.

The zoo scenario also illustrates an advantages of a 
MANET approach: because multi-hop communication in 
MANETs is restricted by the TTL threshold, the ratings a 
user receives tend to come from surrounding areas, because 
they arrived in limited number of hops. Thus it is more likely 
that the recommended enclosures are within reach.

4.2 � Simulation

The simulator was implemented using the Repast Simphony 
framework22. To evaluate our approach, we conducted vari-
ous simulation experiments based on the following set-up.

4.2.1 � System Model

Repast allows modeling the ground plan of the zoo facility 
as a 2-D grid of dimensions n × m . Each grid cell may be 
occupied by any number of visitors at the same time. Besides 
the spatial constraints, the simulation setup allows to tune 
some other important parameters:

–	 Enclosures: some of the grid cells may contain enclo-
sures. We assume a number of ne enclosures, randomly 
distributed in the grid. For categorizing enclosures, we 
assume that each enclosure k corresponds with one pref-
erence category pk ∈ P.

–	 Preference Categories  are defined by a set 
P = {p1, p2, ..., pn} . In the zoo scenario, preferences cor-
respond with generic animal categories. For instance this 
might be P = {birds, fishes, reptiles, predators, ...}.

–	 Preference Profiles Pu of a user u is an ordered 
set representing preference categories in which u 
is interested. For instance, the preference profile 
Pu = {predators, reptiles, birds, ...} determines the order 
predators ≻i reptiles ≻i birds ≻i ... where ≻i stands for 
an preference operator, i.e. the user is more interested in 
predators than in reptiles.

22  https://repast.github.io20  https://www.bpmn.org

21  As this scenarios refers to an open-air facility , we suggest beacon 
technology might be combined with GPS, so yielding more precise 
positions. Nevertheless, comparing different location technologies is 
out of the scope of this paper.
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4.2.2 � Visitor behavior

In our model, zoo visitors behave as follows:

–	 User Life Cycle: when the simulation starts, a number of 
visitors is created, entering the facility through the main 
gate. We assume there is only one entrance gate. For 
understanding the impact of different visitor occupancy 
on the quality of our approach, we define a capacity C of 
visitors, i.e. we assume a constant number of visitors in 
the zoo. After the capacity is reached in a transient start-
ing phase, a new visitor can only enter when another one 
has left. Visitor behavior consists of moving around and 
staying in front of some enclosures observing animals, 
before she leaves the facility (allowing another visitor to 
enter).

–	 User Movement: users move around according to two 
different strategies:

–	 Stochastic path: each visitor visits enclosures follow-
ing a random path. When leaving an enclosure a new 
random suggestion is derived for the visitor.

–	 Recommended path: visitors follow an IBCF 
approach to obtain the next suggested enclosure to 
visit. In the cold start phase, when visitors have just 
entered the facility and not much information is yet 
available to make accurate recommendations, a ran-
dom recommendation is made.

–	 Rating exchange: after each simulator time tick, visitors 
exchange their rating data according to the rules already 
described in section 3, in particular considering the 
TTLs. Data is exchanged between those visitors that are 
in range, i.e. they are in the same cell or in neighbor cells.

4.2.3 � Time behavior

For calculating the sojourn time of a user in a certain 
grid cell we have to distinguish two different situations: i) 
whether a cell is empty or if it contains an enclosure the user 
is not interested in (not suggested by any of both strategies 
for user movement above), she is staying only a short time 
in the cell representing the time for passing to the next cell; 
ii) however, if the cell contains an enclosure the visitor is 
interested in, then a specific sojourn time is drawn using the 
following mechanism:

–	 A behavior profile B is assigned to each user to dis-
tinguish visitors with different behaviors. This reflects 
the fact that some visitors tend to stay longer in front 
of enclosures than others (even if they all liked them). 
A behavior profile specifies the mean sojourn time a 
visitor spends at an enclosure belonging to a certain cat-

egory of her preference profile. It is formalized as an 
ordered set Bp = {b1, b2, bn} with bj representing the 
average sojourn time the visitor spends at an enclose 
belonging to the category of preference pj . For instance, 
Bslow = {16, 8, 4, 2, ...} means that on average, a user 
with this profile spends 16 minutes at enclosures of her 
favorite category of preference, 8 minutes at her next-
favorite category, and so on. A behavior profile for a fast 
user Bfast just defines smaller average sojourn times such 
as Bfast = {8, 4, 2, 1, ...} meaning that compared with slow 
users, visitors stay only half the time at the enclosures. 
This could also allow configure simulations with visitors 
with different capabilities, e.g. visitors with physical dis-
abilities, different age-ranged visitors, etc. For the evalu-
ation three different behavior profiles for visitors have 
been defined: a fast, a slow, and a medium behavior (in 
between the average paces of the other two).

–	 Sojourn times: the sojourn time sue of user u at enclosure 
e is drawn using a Gaussian distribution. If an enclo-
sure has the preference category that corresponds with 
position i in user’s u preference profile, then the sojourn 
time is drawn by using i-th entry in the user’s behavior 
profile as mean value. For instance, user u with the Pu 
preference profile described above and the Bslow behavior 
profile waits on average 16 minutes in front of predators, 
8 minutes in front of reptiles, and so on. We introduce 
some variability with the standard deviation that defines 
the Gaussian distribution. As we will explain below, this 
is an input parameter for the simulation setup.

4.3 � Performance metrics

We use two different metrics to measure performance in 
each simulation scenario. On the one hand, we calculate 
the predicted time error, i.e. the difference between the pre-
dicted sojourn time the visitor stands in front of an enclosure 
and the actual sojourn time she actually spent (see eq. 10).

On the other hand, we use the Root Mean Squared Error 
(RMSE) as a metric calculated as follows:

considering the square root of the mean square difference 
between measured sojourn times su,e and the predicted ŝu,e 
sojourn times. Note that ||Stest|| is the number of values in 
the test data set and that the RMSE value is normalized by 
dividing it by the difference between the maximum and 
minimum sojourn time in the matrix ( smax − smin).

(10)𝜉ue = |ŝue − sue|

(11)RMSE =

�
1

�Stest� ⋅
∑

sue∈Stest
(ŝue − sue)

2

(smax − smin)
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4.4 � Experimental setup and results

We conducted a large set of experiments to evaluate our 
approach. As different features may influence the behavior 
of users in the system, we have studied how each of them 
affects the visitors’ performance over time. Following we 
present the different input parameters for the simulations:

Facility dimensions It defines the grid dimensions for 
the simulation facility ground. Each cell may accept more 
than one visitor. For the sake of simplicity we only consider 
squared grids set to 50x50 in every scenario. We have car-
ried out experiments changing this input parameter. How-
ever, we have noticed this does not entail significant perfor-
mance variability according to the obtained outcomes.

Maximum number of visitors It represents the number 
of different visitors that enter the facility during the simula-
tions. If this parameter is set to n, then when the n-th visitor 
enters the facility the simulation ends.

Number of enclosures It represents the number of 
enclosures exhibited in the zoo. Enclosures are randomly 
placed in the grid at the beginning of each experiment. 
Two different enclosures cannot occupy the same grid 
cell. Again, for the sake of simplicity we only consider 
scenarios with a fixed number of 50 enclosures.

Visitor capacity It defines the constant number of visi-
tors in the facility at the same time. When a visitor leaves 
a new one enters the facility.

Visits before exit This parameter controls the visitor 
life cycle in the facility, since it defines the percentage of 
enclosures (out of the total number of existing enclosures 
in the zoo) that must be visited before leaving the facil-
ity. This parameter allows tuning the time visitors spend 
in the zoo. Once this value is reached by a visitor, she is 
automatically forced to leave the simulation.

Standard deviation This allows representing stochastic 
variations in the visitor behavior in order to draw sojourn 
times (from their behavior profile according to her pref-
erences using the Gaussian distribution). This value is 

Table 1   Experimental setup

Maximum number of visitors 50, 100, 500, 1000, 10000
Number of enclosures 50, 100, 200, 500
Visitor capacity 25, 50, 100
Visits before exit 30%, 50%, 70%
Std. deviation 30%, 50%, 70%
TTL 1, 3, 5, 7, 9, 15

Table 2   Avg. prediction time 
error and avg. RMSE

Prediction error RMSE

CF-G CF-L BLR CF-G CF-L BLR

50 52.951 55.135 66.943 0.645 0.673 0.913
100 53.378 55.246 67.665 0.658 0.680 0.915

# visitors 500 55.761 56.508 79.488 0.695 0.702 1.107
1000 54.246 54.875 77.001 0.675 0.681 1.081
10000 50.705 51.999 73.852 0.635 0.650 1.039 

Facility capacity 25 46.185 48.594 68.737 0.777 0.817 1.261
50 52.396 54.524 70.467 0.770 0.859 1.214
100 47.769 52.223 56.861 0.582 0.634 0.710 

Visits before exit 30% 71.260 78.829 81.496 0.720 0.805 0.908
50% 57.408 58.761 77.087 0.711 0.728 1.070
70% 50.567 51.571 72.721 0.714 0.728 1.151 

Std. deviation 30% 60.255 60.501 77.649 0.821 0.895 1.403
50% 55.709 56.978 76.886 0.910 0.930 1.391
70% 51.574 53.410 74.596 0.875 0.903 1.366 

TTL 1 53.553 54.411 71.708 0.806 0.873 1.271
3 52.730 54.286 77.923 0.876 0.900 1.409
5 52.761 53.008 76.949 0.873 0.875 1.384
7 50.246 51.028 70.357 0.840 0.851 1.288
9 49.605 50.040 73.029 0.817 0.823 1.323
15 50.852 51.792 73.894 0.838 0.852 1.337
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represented as a percentage with regards to the mean 
value.

TTL It represents the number of hops a message takes 
among the visitors. This limitation prevents from message 
flooding.

The effect of these parameters is exhaustively tested with 
a large set of different experimental setups, trying different 
input parameter values as shown in Table 1.

In these experiments we compare three different 
approaches to suggest visitors the next enclosure to visit:

–	 CF-G: a traditional IBCF approach with kNN selection, 
using a global user-item matrix containing all sojourn 
times of the current visitors in the facility. This approach 
represents a server-based architecture.

–	 CF-L: each visitor uses its own user-item normalized 
sojourn time matrix ( � ), combining her own visit expe-
riences along with information exchanged with other 
visitors during their stay. The recommendation tech-
nique remains the same for every visitor (IBCF with kNN 
selection). This approach represents our MANET-based 
architecture.

–	 BLR: a baseline method, merely a random recommenda-
tion among the set of enclosures for any visitor.

Note that in any of the above recommendation methods once 
a visitor is recommended an enclosure, this cannot be sug-
gested ever again.

As this experimental section is focused on the recommen-
dation performance for visitors with a distributed approach 

Fig. 7   Results for different total 
number of visitors (Prediction 
error)
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in the proposed scenario, we only use one triggering rating 
dissemination policy. Visitor devices adhere to a ’elapsed 
time window’ policy set to 1 to broadcast their local infor-
mation, i.e. each visitor is able to receive and broadcast local 
information at every time tick. In the same line, messages 
are broadcast and received by any visitor in range. Since 
in this scenario we have not identified a message overload, 
testing other policies to reduce message flooding, such as a 
similarity-based flooding (as explained in Section 3.2.1) are 
not necessary.

Table 2 summarizes results for the different experimen-
tal setups as well as different recommendation methods. 
Average prediction errors and RMSE are presented. As 
expected, CF-G and CF-L outperform BRL method. The 

CF-G approach can be seen as an optimal method, since the 
collaborative filtering is calculated with the information of 
all current visitors in the system, CF-L achieves close-to-
optimal results, which proves a MANET approach is effec-
tive in this type of scenarios.

As it can be observed, the number of visitors does not 
entail significant differences on the metrics observed. 
Regarding TTL, results confirm that an increase in the num-
ber of hops a message can be forwarded allows to reach 
more visitors, so enhancing the recommendation accuracy. 
However, we identify that there is an upper limit in which a 
rise of TTL does not entail a better performance in terms of 
prediction time error.

Fig. 8   Results for TTL param-
eter (Prediction error)
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For a more visual understanding of the results, Figure 7 
shows how the variation in the total number of visitors 
affects the visitors’ performance over time. As can be seen, 
CF-L curve follows the same trend as the CF-G curve and in 
turn clearly outperforms the BLR curve. In fact, CF-L and 
CF-G overlap most of the time, so assuring that information 
exchange of local information may offer an equivalent solu-
tion to recommendation problems, overcoming some impor-
tant problems of centralised systems though, as stated in the 
Introduction.

Regarding how TTL parameter affects visitor perfor-
mance over time, Figure 8 shows the curves for the differ-
ent experiments using the three proposed recommendation 
methods, in terms of predicted time error. Note that peaks in 
the curves are due to the openness of the scenario, in which 
visitors leave the facility and new ones occupy their places. 
Newcomers need a period to get accurate recommendations 
(classic cold-start problems). Although not all visitors stay 
the same time in the system, all of them are constrained to 
visit the same percentage of enclosures before leaving, that 
is the reason why some periods are more likely to contain a 
significant number of leavings and enterings.

For a deeper look into the rest of experiments, all of them 
are displayed in Appendix A.

5 � Related work

There is not much work in the literature about using MANET 
as a way of implementing distributed recommender systems. 
Instead, there is some work that uses recommender systems 
to control information exchange in MANETs, trying to pre-
vent nodes from exchanging messages with misbehaving 
counterparts [34, 35].

Nevertheless, in recent times some efforts have been 
made to use MANET techniques to enable informa-
tion exchange in distributed recommender systems. 
For instance, in [7] authors use a MANET approach to 
exchange ratings among visitors in a museum. In that, users 
exchange the individual rating right after visiting an art-
work and suggestions provided by the recommender system 
contain a trajectory, taking into account some other contex-
tual factors. In our case, the complete sojourn times matrix 
is exchanged between visitors, what helps visitor’s mobile 
device to have a more complete information to issue rec-
ommendations in less time. This is particularly important 
in open facilities in which large distances between visitors 
make it more unlikely to ran into each other to exchange 
data.

Although the idea might be considered quite similar, in 
that approach visitors exchange explicit ratings and calculate 
recommended trajectories, instead of working with implicit 
recommendations and single suggestions.

Other works focus on peer-to-peer approaches for recom-
mendation environments. As an example, in [37] authors put 
forwards various data exchange methods among users for the 
tourism domain. Again, information exchanged in messages 
is related to explicit ratings users store. In the same line [13] 
presents a P2P approach based on gossip mechanisms to share 
the information in a pervasive environment. However, in an 
open environment, in which the network topology frequently 
changes, we believe a MANET approach is more suitable.

Techniques for extracting implicit feedback in recom-
mendation environments have been researched during last 
decades [20]. As we do, most of these works attempt to infer 
user feedback to incorporate the knowledge in collaborative 
filtering models [18]. For instance, in [27] a system for rec-
ommending electronic books is presented. Authors use the 
user’s interaction with the system to infer an implicit rating 
that is then fed into the recommendation process. In our case, 
we do not work on an online environment but on a physi-
cal one, so an infrastructure (e.g. a beacon infrastructure) is 
needed to calculate the sojourn times. The work presented 
in [10] goes a step beyond since it attempts to combine both 
implicit and explicit feedback in order to provide more accu-
rate recommendations by using matrix factorization tech-
niques. We consider this type of approaches unfeasible in 
some domains: in scenarios in which the number of items/
exhibits to be visited is high it seems unrealistic to bother the 
users to rate every thing they visited. Other approaches also 
try to address the use of implicit feedback by using Bayesian 
techniques in order to approximate the user behavior [16, 29]. 
In our case, we focus on a pervasive environment where visi-
tors have their own mobile device that can be used to monitor 
the times visitors spend close to an item.

Movement patterns in open spaces are also studied 
in [11]. The authors use location data from cell phones 
to derive a periodic and social mobility model. Looking 
at movements of individuals over a larger period of time, 
typical patterns can be detected, such as a particular person 
going to her workplace every weekday morning at 8:00, or 
having a network of close friends that she visits regularly. 
Instead in our work, we consider open facilities that may be 
visited only once. Therefore, it is not possible to find regu-
lar repeating patterns of movements: people’s movements 
depend on their preferences and are strongly influenced by 
current situation in the facility.

In [39], a recommender system for Points of Interests 
(POI) based on sentimental and spatial characteristics of 
locations is presented. Using sentiment analysis of micro-
blog posts, sentimental features are inferred for each POI. In 
combination with spatial features such as geographical loca-
tion, individual recommendations can be provided. Unlike 
our system, this approach relies on much more input from 
users, here in form of microblog posts to derive their senti-
ments about a POI. Our system has no further information 
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about users other than their sojourn times. Therefore, this 
approach cannot be easily applied to our system.

An important issue to be considered in MANET is pri-
vacy. We assume in this paper that users may share their 
local information with other users in the facility. However, 
this assumption could become more complex, since infor-
mation disclosure is user dependent and law-related issues 
may emerge. An example of work in this line can be found 
in [28]. More specific work in the literature uses randomized 
dissemination protocols [6] to achieve privacy or consider 
privacy in large-scale social networks [38]. In [25], the 
authors propose a trusted service for handling users’ infor-
mation, where users can configure the data sharing policy.

Fake ratings are another important concern when deal-
ing with CF-based recommender systems. The effects and 
mechanisms to keep users from tampering with ratings to 
make users miscalculate predictions on unknown items has 
been studied in the literature [3, 30]. One of the key prob-
lems of introducing malicious ratings into a CF system is 
how fast (and how far) those ratings spread among the users. 
However, unlike a centralized approach, our MANET-based 
architecture prevents spoofed ratings from spreading quickly 
through the system. First, introducing malicious or fake rat-
ings into our approach is not straightforward. User ratings 
are based on sojourn times and inferred by the recommender 
system running in the user’s mobile device. They cannot not 
simply be entered directly by the user.

Nevertheless, even if malicious rating injection attacks 
are still possible, they would have a less harmful effect 
than in a centralized approach. In centralized systems, 
there is a unique rating data pool, which is used for the 
calculation of all subsequent ratings predictions. From the 
exact moment a user injects a malicious rating into the sys-
tem, this is used for the collaborative rating calculations 
for all users of the recommender system, since they all use 
the same user-item rating matrix.

Since users in our approach only share the information 
they have so far (a partial view of the user-rating item matrix), 
the propagation of a malicious rating should take longer – on 
average – than in a centralized approach. Moreover, some 
malicious ratings might never reach some users, depending 
on the route users take in the facility (due to the propagation 
control used by means of the TTL field in messages).

Most of the work on distributed recommender systems 
has been focused on the domain of tourism due to several 
factors: the amount of available data sets, high economic 
impact, and an easily understood domain, just to mention a 
few. In [21] authors explore the future avenues on the use 
of information technology in the field of tourism. One of 
the main applications is on the availability of user-oriented 
applications with embedded recommender systems to pro-
vide with accurate suggestions to users. For a complete 
review of the use of recommender systems for tourism, 
please see [31].

Fig. 9   Results for different facil-
ity capacities (Prediction error)
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Fig. 10   Results for visits before 
exit parameter (Prediction error)

Fig. 11   Results for std. devia-
tion parameter (Prediction error)
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6 � Conclusions

In this paper, we present a novel recommendation approach 
based on a decentralized and distributed MANET model 
for rating dissemination in open facilities. Visitors of open 
facilities can use their mobile devices to calculate recom-
mendations through collaborative filtering in combination 
with information from other visitors they have encoun-
tered. An exhaustive set of experiments have been car-
ried out, confirming that this type of techniques, besides 
alleviating classic problems of centralized systems, such 
as dependability, trust concerns, privacy issues or solution 
costs, also reaches close-to-optimal performance, in terms 
of predicted time error and RMSE metrics.

As future avenues of research we plan to test the MANET-
based approach using other techniques for message-forward-
ing, e.g. similarity-based flooding to control information 
exchange among similar visitors. Moreover, the presented 
approach could be used to calculate recommended trajecto-
ries instead of single suggestions. This might be of particular 
interest when there exist time constraints for users. Another 
interesting step would be to look at other recommenda-
tion techniques, such as matrix factorization, to examine 
the extent to which MANET-based recommender systems 
depend on the recommender method used underneath.

Furthermore, other domains are also planned to be 
explored, particularly indoor facilities where user location 
must be more accurate.

Fig. 12   Results for different 
total number of visitors (RMSE)
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Appendix A: Other results

This appendix contains graphical plots for every 

experiment carried out for the empirical evaluation of the 
approach, except those already presented in Section 4 (Fig-
ure 9, 10, 11, 12, 13, 14, 15 and 16).

Fig. 13   Results for different 
facility capacities (RMSE)

Fig. 14   Results for visits before 
exit parameter (RMSE)
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