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Abstract
Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a label-rich source domain to an unlabeled target
domain with a different but related distribution. Optimal Transport (OT) based Wasserstein distance has recently been used
to measure and reduce the domain discrepancy in virtue of its robustness in distance measurement. However, the inaccurate
estimation of the transport cost between samples is harmful to the fine-grained domain alignment. This paper proposes
Decomposed-Distance Weighted Optimal Transport (DDW-OT) method for better adaptation. Technically, according to the
clustering-based prototype generation (CPG), DDW-OT constructs a decomposed-distance reweighing matrix to revise the
original inaccurate transport distance on sample-level, which conjoins the category uncertainty of the target samples and the
correlation degree of category between domains. Besides, the dual-OT solver takes neural netw11 orks to parameterize the
dual variables and alleviate the computation cost. DDW-OT also allocated an explicit class-conditional alignment strategy to
enhance transfer performance. Extensive experiments on benchmarks demonstrate the effectiveness of the proposed method.

Keywords Optimal transport · Unsupervised domain adaptation · Deep clustering · Wasserstein distance

1 Introduction

Currently, machine learning has been used in multiple appli-
cations and industries [20, 27, 33]. In recent years, the
rapid improvement of computing power has promoted the
development of deep learning algorithms. Deep Neural Net-
work (DNN) has the ability to model complex relationships,
and the large-scale labeled datasets make it learn specific
representations across a variety of learning tasks [31, 50,
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54]. However, the well-trained deep learning models cannot
perform well on unlabeled new datasets (or domains) due
to their differences in probability distributions. Unsuper-
vised Domain Adaptation (UDA) comes up as an appealing
way to solve this domain shift problem, which takes into
account samples not only from the labeled source domain
but also the unlabeled target domain. UDA provides plenty
of methods by learning transferable knowledge to general-
ize a target model [46, 48] and has been extended to various
applications [21, 45].

The main idea in UDA is to generate domain-invariant
features and minimize the domain discrepancy. It is
common to use the Maximum Mean Discrepancy [30,
31] or the series of the H-divergence [5, 6, 41, 55] to
measure the distance between domains. To preserve the
topology of the data, the Wasserstein metric has been
used in DA with several theoretical guarantees [10, 36].
The OT-based domain divergence, i.e., the total cost of
transporting, accumulates the cost in moving the mass
between distributions. In UDA, the moving cost is often
computed as the square Euclidean distance between samples
in the feature space. While the OT distance has the
strong ability to retain the spatial geometry information of
distributions, the OT-based methods are still impracticable
in the measurement of the intra-class domain discrepancy.
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The inaccurate transport cost matrix always causes class-
level misalignment.

To solve the above problems, we propose decomposed-
distance weighted optimal transport (DDW-OT), an end-to-
end UDA model, which incorporates the spatial structure
of the data distributions for more accurate fine-grained
alignment. Specifically, there are mainly three objectives
in DDW-OT. At first, DDW-OT estimates the prototypical
representations of both domains through clustering and then
constructs a reweighing matrix, which conjoins the category
uncertainty of the target samples and the correlation degree
of category between domains to revise the original coarse
transport cost matrix. For computation efficiency, inspired
by the stochastic OT [43], we employ fully connected neural
networks to parameterize the dual variables and estimates
the domain discrepancy by solving the regularized-OT
problem. Moreover, DDW-OT also allocated an explicit
class-conditional alignment and discriminate strategy to
enhance transfer performance. The contributions of this
paper can be summarized as follows:

(1) We utilize the clustering-based method to generate
relatively reliable prototypical representations for
the target domain instead of using the pseudo
classification probability predicted by the source
model, reducing the negative effect caused by the
sensitivity of inaccurate prediction.

(2) We devise the decomposed-distance based on the
spatial information of samples and the above proto-
typical representations, which precisely characterized
the association between domains in sample-level, and
alleviate intra-class discrepancy implicitly.

(3) The dual variables in the regularized-OT problem are
parameterized by two shallow neural networks and
optimized inside the overall training process. Exper-
imental results show that DDW-OT achieves com-
petitive performance on several benchmark datasets
compared with the latest UDA methods.

2 Related work

UDA has attached increasing attention, and has been divided
mainly into two directions: (1)utilizing a distance metric to
measure and minimize the domain divergence [8, 12, 16, 46,
48] and (2)learning domain invariant feature representations
through adversarial-based methods [15, 42, 44]. Here we
summarize the work most relevant to our proposed method.

Discrepancy-based methods Typical discrepancy-based
methods are usually set out from several aspects [22].
The prevailing approach is the feature-based distribution
alignment, which utilizes a distance metric [31, 46, 48] or

adopt adversarial learning [1, 23, 29, 47] to minimize the
domain discrepancy. The classifier-based adaptation turns
the domain divergence into the disparity measure between
the scores provided by two independent scoring functions
[5, 41, 55, 56]. To obtain fine-grained class-level alignment,
[9, 13, 35] generate prototypes for each category in source
and target domains, and explicitly minimize the distance
between prototypes.

OT for DA Optimal Transport (OT) [37] recently shown
to be an up-and-coming tool to perform DA tasks. OT
consists of mapping two source and target probability
measures with a minimal transportation cost associated
with the so-called Wasserstein distance. In [38], the
authors provide the theoretical guarantee that the divergence
between domains measured by Wasserstein distance can
converge to the generalization bounds. [10] first learns
a transportation plan matching both domains and then
computes a transformation of source samples through
barycentric mapping. Damodaran et al. [12] provides an
end-to-end method that minimizes the divergence between
domains and learning a classifier simultaneously.

In selecting the distance function, it is common
to use the Euclidean metric as distance measurement
to computing the coupling matrix for OT. However,
RWOT [52] points out that the direct use of pure
square Euclidean distance cannot precisely measure the
transmission cost between samples, for the coarse match
probably leads to negative transfer. Furthermore, RWOT
exploited prototypical spatial information and proposed
a weighted optimal transport strategy to achieve the
precise pair-wise transport procedure. Similarly, ETD [26]
computes a re-weighted distance matrix based on the
attention mechanism to adjust the current batch to the
real distribution. Unlike the above cost matrix weighting
algorithm, [25] utilizes the Mahalanobis distance instead of
the Euclidean distance to aligns the subspace generated by
PCA across domains.

OT solver According to some ground cost, OT distances
compute the minimal effort for moving the probability mass
of one distribution to the other, which could be seen as a
linear program in discrete distribution. The prevalent way
to compute discrete OT distance is by solving the so-called
Kantorovitch problem [24]. However, the computation of
the transport plan has an enormous computational cost. A
commonly used approach is to add entropy penalization to
the primal Kantorovitch problem. The Sinkhorn algorithm
[11] can solve the entropy-regularized OT efficiently,
meanwhile differentiable w.r.t. their inputs, enabling used
as a loss function in a machine learning pipeline [12,
52]. Besides, to handle continuous probability measures,
Genevay et al. [4] optimized a “semi-dual” objective
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function through stochastic gradient methods. Arjovsky
et al. [2] first used the dual-objective function to measure the
discrepancy between distributions, with the constraints that
the dual function needs to be constrained by a 1-Lipschitz
function. Seguya et al. [43] proposed a two-step method.
They used a neural network to approximate the optimal map
between the underlying continuous measures and prove the
convergence of the regularized optimal plan.

In this paper, we concentrate on the objective function
derived by regularized-OT distances rather than the
optimal transport plan. We neglect the sparsity that the
regularization terms bring and solve the regularized dual OT
problem by parameterizing the dual variables with neural
networks.

3Methodology

Firstly, we introduce the formulation of the problem.
Suppose we are given a set of labeled source data
Xs = {(xs

i , y
s
i )}ns

i=1, including ns samples associated
with class labels ys

i ∈ {1, 2, ..., K}, and a target domain
set Xt = {xt

j }nt

j=1 of nt samples with unknown labels.
Notably, it is supposed that the source and target samples
have the same dimension xs(t) ∈ Rd and contain the
same classes K but are drawn from different probability
distributions. The discrepancy between the two probability

distributions makes the classifier learned on the source
domain cannot be directly adapted to the target domain with
robustness. Deep learning methods have been introduced
to learn a transferable model and finding domain-invariant
representations to overcome the domain shift, which is a
particularly challenging aspect of the UDA tasks.

Our method originates from the discrepancy-based meth-
ods, which simultaneously optimizing the classifier and
minimizing the distance between the marginal distribu-
tions of the two domains. To be specific, we use the
OT distance to depict the discrepancy loss. The architec-
ture of Decomposed-Distance Weighted Optimal Transport
(DDW-OT) is illustrated in Fig. 1. Apart from the pri-
mary pipeline, our proposed DDW-OTmethod including the
Clustering-based Prototype Generation (CPG) module and
compute the DDW matrix to reweigh the original distance
C. Meanwhile, the Dual-OT solver is used to measure the
discrepancy between domains.

3.1 Optimal transport revisit

Optimal transport (OT) is a powerful computational tool
to measure the difference of probability distributions. The
original formulation of OT was first proposed by Monge,
which searched for a map to minimize the total cost between
distributions. Under the domain adaptation scene, the
source and target domains are two distinct joint probability

Fig. 1 The framework of the proposed DDW-OT. The shared fea-
ture extractor Gθ maps the domains into a common latent space. The
CPG module generates the prototypical representations As , At and
further used to compute a DDW matrix W to reweigh the original

OT distance C. Finally, the dual-OT solver takes the features of both
domains together with the reweigh-OT distance to measure the domain
discrepancy
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distributions, noted as Ωs and Ωt , where Ω is a measure
space. We can estimate the empirical distributions μs and
μt through finite discrete samples.

Kantorovich [24] formulation of OT is a convex
relaxation of the Monge problem, which is cast as a linear
program:

OT (μs, μt ) := minT ∈U(μs,μt ) < T , C > (1)

where U is the transportation couplings between distribu-
tions:

U(μs, μt ) := {T ∈ R
ns×nt+ : T 1nt = μs, T

�1ns = μt } (2)

and C ∈ Rns×nt is a cost matrix. whenever the cost C

is a norm raised to the power p, it is referred to as the
Wasserstein distance:

OT (μs, μt )
1
p : =

(
inf

T ∈U

∫
Ωs×Ωt

d(xs, xt )
pdT (xs, xt )

) 1
p

= inf
xs∈μs,xt∈μt

{(
E d(xs, xt )

p)
1
p

)}
(3)

where c(xs, xt ) = d(xs, xt )
p. Experimentally, to compute

optimal transportation, the best result is usually obtained
when choosing the square Euclidean distance as the distance
function between two locations [10], i.e. p = 2.

3.2 Decomposed-distance weighted OT

In this section, we begin with the clustering-based
prototype generation method, which accurately estimates
the prototypical representations of the target domain without
the error accumulation brought by explicit pseudo-label
predictions. We then propose the decomposed-distance of
samples between source and target domain based on the
above prototypical information. Finally, we combine the
two-parts distance and construct a weighting matrix to
refine the primal Euclidean distance and derive the authentic
OT distance between domains.

3.2.1 Clustering-based prototype generation

In UDA, it is prevailing to align the marginal distributions to
learn domain-invariant features between domains. However,
the neglect of category information leads to the misalign-
ment of samples in different categories. Prototype-based
class-conditioned domain alignment [9, 35] is proposed to
address this problem. The most common class-level align-
ment method is achieved by narrowing the distance of
prototypical representations of the same class. The proto-
typical information is derived by the mean embedding of
samples within the same category. The main limitation of
this method is that the unlabeled target domain’s proto-

typical representations rely on the predicted pseudo-labels,
which is inaccurately caused by error accumulation.

Recently, the clustering method combined with the
neural network has been widely used in many scenes [3,
53]. The clustering-based DA approaches [13, 14] grouping
the unlabeled target samples likely belong to the same class,
under the hypothesis that the embedding vectors generated
by an embedding function could be seen as multiple
discriminative clusters in a high-dimensional feature space.
We utilize the spherical K-means [17] clustering method to
generate relatively reliable prototypical representations for
the target domain without relying on the pseudo-labels.

The learning of prototypical representations alternates
with the parameter optimization of the classification
network. To be specific, in each training epoch, we
first derive all the embedding vectors of training data
from both domains through the feature extractor, and
then we perform the clustering-based methods to generate
prototypical representations. In the first iteration, the initial
centers At = {at

i }Ki=1 are randomly selected from the
embedding vector G(Xt) of target samples Xt = {xt

j }nt

j=1.
The number of clusters is set as the number of classes K

in the label space. To obtain stable clusters, we aim to
minimize the objective function :

J (I, at ) =
nt∑

i=1

K∑
j=1

Iij dist (xt
i , a

t
j ) (4)

where Iij =
{
1, j = argminj ||xt

i − at
j ||

0, otherwise
to indicate

whether the target sample xt
i is assigned to the cluster

at
j . During clustering, we take the commonly used cosine

dissimilarity as the distance measurement function between

samples, i.e. dist (xt
i , a

t
j ) = 1

2 (1 − <xt
i ,a

t
j >

||xt
i ||||at

j || ). The overall

clustering process is iteratively into two steps and repeat
until convergence: (1) Assignment step: assign samples to
the nearest cluster. (2) Update step: set the cluster center
as the mean value of the current samples embedding which
belonging to this cluster.

After clustering, we derive K clusters on target samples,
and the label of each cluster could be assigned based
on the distance to each source prototype. The source
prototypical representation is the mean value of the source
samples embedding of each class:As = {as

k}Kk=1 =
1

|Ss
k |

∑
xs
i ∈Ss

k
G(xs

i ; θ), where Ss
k denotes the sets of source

samples from class k. Therefore, assigning labels to target
clusters based on the distance between source and target
prototypes is equivalent to solving the minimum weight
matching problem in bipartite graphs [34]. The process
of clustering-based prototype generation is graphically
illustrated in Fig. 2.
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Fig. 2 The process of Clustering-based Prototype Generation (CPG).
Firstly, according to the representations of target samples, K clusters
are obtained and the representations of the cluster centers are derived.

Then, assign the category labels to each target cluster under the con-
dition that the total distance of the prototypes between domains is
minimum

3.2.2 Two parts of decomposed-distance

When using OT-based Earth-mover (EM) distance to depict
the divergence between domains, it is critical to accurately
estimate the transport cost matrix to capture the geometric
characteristics of the discrete samples’ feature distribution.
The traditional method commonly use Euclidean distance
as the transport cost, shown in Fig. 3(a). However,
samples at the edge of distribution are most likely closer
to the samples of distinct classes in this setting. The
inaccurate measurement will establish a large proportion
of transport between different class distributions among
domains, resulting in class-level domain misalignment. To
overcome this issue, we propose the decomposed-distance,
which illustrated in Fig. 3(c), and further use it to refine the
original cost matrix. See Section 3.2.3 for details.

Intuitively, the decomposed-distance is a compromise
between the target domain’s prototypical distribution and
the intra-domain structure. The first part of the decomposed-
distance estimates the category uncertainty of the target
samples. Specifically, according to the target prototypical
representations At ∈ R

K×d obtained in Section 3.2.1,

where d is the dimension of representations. We derive an
uncertainty matrix Munc ∈ R

b×K as:

Munc(x
t
j , a

t
i ) =

exp

{
−

∥∥∥G(xt
j ) − at

i

∥∥∥2
2

}

∑K
c=1 exp

{
−

∥∥∥G(xt
j ) − at

c

∥∥∥2
2

} (5)

where b represents the batch size in the training step.
The second part of the decomposed-distance depicts the

intra-domain structure based on prototypical information of
each domain. We assume that each target sample is assigned
to the nearest cluster, i.e., each xt

i in the current batch can be
represented by its corresponding prototypical representation
at
i . Similarly, each source sample xs

j can be represented by
its class prototype as

j . The intra-domain correlation matrix

Mcor ∈ R
n×K is defined as:

Mcor(a
t
i , a

s
j ) =

exp

{
−

∥∥∥at
i − as

j

∥∥∥2
2

}

∑K
c=1 exp

{
− ∥∥at

i − as
c

∥∥2
2

} (6)

Fig. 3 Illustration of the proposed Decomposed-distance. Green
arrow: True distance. Red arrow: Wrong distance. Black dash arrow:
corresponding prototype. (a) Squared Euclidean distance between
samples. The drawback is that the target samples at the edge of the
distribution (dark dot) may be less distant to the source samples

from other categories. (b) Replace the source samples with the corre-
sponding prototype, but still len (green)>len(red). (c) The proposed
decomposed-distance. The combination of the two-parts distance
achieves reasonable estimation
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In the next section, we construct a weight refined matrix
based on the decomposed-distance mentioned above to
estimate the actual OT distance between domains.

3.2.3 Decomposed-distance weight matrix

First of all, based on the uncertainty matrix Munc and the
intra-domain correlation matrix Mcor introduced in the last
section, we combine the two parts of decomposed matrix
as M ∈ R

n×K . This matrix contains the distance between
each target sample in the current batch and each prototypical
representation of the source domain:

M(xt
j , a

s) = λMunc + (1 − λ)Mcor (7)

where λ is a trade-off parameter of two components. The
decomposed-distance formed by uncertainty matrix Munc

and intra-domain correlation matrix Mcor prevent the single
relationship between the target sample and the prototypical
representations of the source domain, which is shown in
Fig. 3(b).

Then, in order to derive the reweigh matrix W ∈
R

n×n adapted to the current training batch, the select(.)
function is used to pick out the columns in M(xt

j , a
s)

with the set B containing the category index of the source
domain that appears in the current batch. In addition, the
distance between samples is negatively correlated with the
correlation degree. The reweigh matrixW can be defined as:

W(xs
i , x

t
j ) = 1 − selectB(M(xt

j , a
s))T (8)

Here, for the reweighing matrix W , to avoid the over
smoothing brought by the softmax, we design an average
temperature softmax which originated from [19]. The set
T contains several temperature hyper-parameters to control
the sparsity of W . In experiments, T = {T1, T2, T3} =
{5, 10, 25} is recommended.

Wij = 1

M

M∑
m=1

exp(wij · (−Tm))∑n
j=1 exp(wij · (−Tm))

(9)

Furthermore, the reweigh matrix W is used to refine the
original transport cost matrix C in (1), and construct an
accurate OT-based domain discrepancy in consideration of
intra-domain structure:

OT (μs, μt ) := minT ∈U(μs,μt ) < T , C · W > (10)

3.3 Dual OT algorithm

Previous methods used to find a push-forward nonlinear
transformation T [10] or a coupling matrix γ [12, 52] and
construct an objective function based on them so as to
reduce the domain discrepancy. However, the generation
of a specific transport plan is redundant if the OT-based
distance can be calculated directly. Fortunately, according to

Fenchel-Rockafellar’s duality theorem, the goal of reducing
the domain discrepancy is equivalent to optimizing the dual
regularized OT [43] as:

supE(Xs,Xt )∼μ×ν[u(Xs)+v(Xt )+Fε(u(Xs), v(Xt ))] (11)

where u and v are dual variables, Fε is a penalty term. In
this paper, the L2 regularization is used instead of entropy
regularization by virtue of its stability in convergence
without exponential terms. Moreover, it has a smaller
approximation error than the entropy reg. when in the same
ε [7]:

Fε(u(Xs), v(Xt )) = − 1

4ε
(u(Xs) + v(Xt ) − C(Xs, Xt ))2

(12)

The regularized dual OT problem can be solved by
stochastic OT computation [43] by optimizing the dual
variables u and v. The dual variables needs to be
parameterized so as to carry out the optimization. In
this paper, we utilize two shallow fully connected neural
networks Pφ and Qϕ to approximate the dual variables u

and v, respectively, with the computational complexity of
O(b2). The optimization is shown in Algorithm 1. Formally,
the domain discrepancy based on the regularized dual OT
can be represented as:

Ld(φ, ϕ) = supE[P(G(Xs);φ) + Q(G(Xt);ϕ)

+Fε(P (G(Xs);φ), Q(G(Xt );ϕ))] (13)

3.4 Optimization

In this section, we present the overall algorithm flow of
DDW-OT. We first define the classification loss of the
source domain:

Lcls = 1

ns

ns∑
i=1

l(F (G(xs
i ; θ); η), ys

i ) (14)

where l is a cross-entropy loss.
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According to the class centers of both domains, we
introduce an explicit class alignment loss Lc as:

Lc(a
s
i , â

t
j ) = 1

|K|2
K∑

i=1

K∑
j=1

[δij‖as
i − ât

j‖22

+(1 − δij )max(0, m − ‖as
i − ât

j‖22))] (15)

where δij =
{
1, i = j

0, i �= j
. Here, ât

j is defined by taking

the average of all embedding vectors with the pseudo label
j , which predicted by the classifier Fη, so as to encourages
the centers from the same class to concentrate together and
pushes the centers from different classes far away from each
other with a distance m at least.

The total objective function of DDW-OT is described as:

minL = Lcls + αLd + βLc (16)

where α, β are trade-off parameters. The optimization
process is shown in Algorithm 2. The basic framework
adopts the process in ETD [26], which optimizes the
parameters in the dual-OT network and the classification
network alternatively.

4 Experiments

4.1 Setups

Datasets Office-31 [40] is a real-world dataset which is
used widely in domain adaptation task. It contains 4110
images from 31 categories composed of three distinct
domains: Amazon (A), DSLR (D), Webcam (W), which
collected images download from amazon.com, taken by

digital SLR camera and web camera, respectively. We
analyze all six transfer tasks across domains: A→W, A→D,
D→W, D→A, W→D and W→A.

OfficeHome [49] is a challenging adaptation dataset,
which consists of images from four domains: Art (Ar),
Clipart (Cl), Product (Pr), and Real World (Rw), containing
15500 images in 65 categories and overall 12 transfer tasks.

ImageCLEF-DA consists of three dissimilar domains:
ImageNet ILSVRC 2012 (I), Pascal VOC 2012 (P), and
Caltech-256 (C). The number of images is balance across
domains, including 600 images of 12 categories, including
six transfer tasks: I→P, P→I , I→C, C→I, C→P and P→C.

VisDA-2017 is a challenging large-scale synthetic-to-
real dataset, including more than 200k images across 12
categories in the training, validation, and testing domains. In
this paper, we take the training images as the source domain
and the validation images as the target domain.

Implementation details All experiments are implemented
by the Pytorch framework. The Resnet-50 [18] pretrained on
ImageNet [39] is used as our backbone networks, which also
equipped with domain-specific batch normalization layers.
The mini-batch size is set as 16/30/30/30 per domain for
Office-31/OfficeHome/Image-CLEF-DA/VisDA-2017. We
utilize stochastic gradient descent (SGD) for the training
of feature extractor layers Gθ and FC layers Fη with
a momentum of 0.9 with the learning rate lr1 adjusted
following lr1 = lr0

(1+mp)n
, where p linearly increases from 0

to 1. The initial learning rate lr0 is set as 0.0005, m=10, and
n=0.75, but for VisDA-2017, n=2.25. For the optimization
of dual-OT network Pφ and Qϕ , we use Adam optimizer
with the initial learning rate lr2 = 0.003. For the trade-off
parameters, we set λ=0.5, α=1 and β=0.1, regularization
value ε=1, and the constrain margin m=20.

Compared methods To empirically evaluate the advantage
of DDW-OT, our approach is compared with several series
of methods. We cite the performance of these methods
reported in their corresponding papers for a fair comparison.
(1)MMD-based models: DAN [28], JAN [31], DWL [51].
(2)Adversarial-based models: DANN [1], ADDA [47],
CDAN [29]. (3)OT-based models: Deep-JDOT [12], ETD
[26]. Approaches mentioned above are all proposed for
learning domain-invariant features for UDA.

4.2 Results and comparison

Table 1 exhibits the results on six tasks from Office-31.
As can be seen, all UDA methods outperform ResNet-
50, which is only trained by source samples. Overall, our
proposed DDW-OT achieves the best performance among
these baselines and is better than all comparison methods
on half of the transfer tasks. Notably, DDW-OT improves
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Table 1 Results (accuracy %) on Office-31 for UDA. The best method is emphasized in bold

Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 [18] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DANN [1] 84.5 96.8 99.4 77.5 66.2 64.8 81.6

ADDA [47] 86.2 96.8 99.1 78.8 69.5 68.5 83.2

JAN [31] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

CDAN [29] 93.1 98.2 100.0 89.8 70.1 68.0 86.6

Deep-JDOT [12] 88.9 98.5 99.6 88.2 72.1 70.1 86.2

ETD [26] 92.1 100.0 100.0 88.0 71.0 67.8 86.2

DWL [51] 89.2 99.2 100.0 91.2 73.1 69.8 87.1

DDW-OT 92.1 100.0 100.0 90.8 73.9 68.5 87.6

the accuracy on D→A from 72.1% to 73.9%, under the
condition that source domain D only has a relatively small
amount of samples compared with the target domain A.
These results suggest that our method is able to capture
the spatial location information and perform adaptation
effectively on the target domain.

Table 2 shows the detailed results on 12 transfer tasks
of the OfficeHome dataset. We can see that DDW-OT
outperforms other compared approaches in 9 out of 12
transfer tasks. In particular, DDW-OT can improve difficult
tasks, such as 57.6% to 65.3% on Cl→Ar, and boosts
accuracy on easier tasks 5.6% for Ar→Pr and 4.3% for
Cl→Pr.

For the ImageCLEF-DA task, the experiment accuracy
is shown in Table 3. It is worth noting that in P→I,
DDW-OT shows less transfer efficiency. We assume that
it may be caused by the over-dependence on the initial
transport cost estimation due to the inaccurate prototypical
representations. On average, DDW-OT achieves 90.7%,
which is competitive with the latest discrepancy-cased UDA
method DWL [51] and outperforms the state-of-the-art OT-
based method ETD [26].

We further perform an adaptation of DDW-OT on the
VisDA-2017. Table 4 shows the classification accuracy of

12 categories. Our model achieves 79.3% on average, which
is higher than 77.1% of the DWL. Notably, DWL adjusts
the weight of discriminability loss to control the degree
of discriminability. Compared with DWL, our DDW-OT
pays more attention to the computational process of inter-
domain discrepancy. Besides, VisDA-2017 is a large-scale
dataset with a large domain discrepancy, which shows the
effectiveness of our DDW-OT method on large datasets.

4.3 Ablation study

The proposed DDW-OT mainly contains two components:
decomposed-distance weighting strategy on original OT
distance and an explicit class center alignment by operating
prototypical representations. We conduct ablation study
to separate contributions and verify the effectiveness of
each component. The results on OfficeHome are shown in
Table 5. We can observe that compared with the source-
only method, i.e. Lcls , the minimization of the domain
divergence measured by the Euclidean distance-based
original OT can achieve 3.9% improvement on average.
Furthermore, by equipping with the proposed decomposed-
distance weighting strategy (Lcls+αLd ), the model has a
further improvement of accuracy, which demonstrates the

Table 2 Results (accuracy %) on OfficeHome for UDA. The best method is emphasized in bold

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 [18] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [28] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [1] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [31] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN [29] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

Deep-JDOT [12] 39.7 50.4 62.5 39.5 54.3 53.2 36.7 39.2 63.6 52.3 45.4 70.5 50.7

ETD [26] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

DDW-OT 53.2 77.5 82.7 65.3 73.5 75.2 60.5 49.8 79.8 72.4 56.3 83.5 69.2
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Table 3 Results (accuracy %) on ImageCLEF-DA for UDA. The best method is emphasized in bold

Method I→P P→I I→C C→I C→P P→C Avg

ResNet [18] 74.8 83.9 91.5 78.0 65.5 91.27 80.7

DAN [28] 74.8 83.9 91.5 78.0 65.5 91.27 80.7

DANN [1] 75.0 86.0 96.2 87.0 74.3 91.5 85.0

JAN [31] 76.8 88.4 94.8 89.5 74.2 91.7 85.8

CDAN [29] 76.7 90.6 97.0 90.5 74.5 93.5 87.1

ETD [26] 81.0 91.7 97.9 93.3 79.5 95.0 89.7

DWL [51] 82.3 94.8 98.1 92.8 77.9 97.2 90.5

DDW-OT 82.6 92.8 98.5 93.9 79.9 96.7 90.7

effectiveness of the transport cost reconstruction between
source and target samples, deriving more accurate inter-
domain transfer. By adding the explicit class center
alignment loss (Lcls+αLd+βLc), the prototypes which from
the same categories are gathered, and the prototypes from
different categories are separated, making the intra-class
compactness and inter-class separability, and achieving
another improvement of the accuracy.

Effect of clustering-based prototype generation To evalu-
ate the effect of the proposed clustering-based prototype
generation (CPG) module, the experiments conducted from
two aspects, mainly make a comparison with the pseudo-
label-based prototype generation (PPG).

During training, the real prototype for each category Pr

of the target domain can be obtained by computing the
mean value of the embedding features, which is guided by
the ground-truth label of the target domain. Similarly, the
clustering-based prototypes Pc and the pseudo-label-based
prototypes Pp can also obtained through clustering centers
and the pseudo labels generated by the classifier.

We take the real prototypes Pr as the baseline, and
analyze the distance between the estimation to the real. The

distance d(Pc, Pr)obtained by CPG and d(Pp, Pr) obtained
by PPG are calculated as follows:

d(Pc, Pr) = 1

K

K∑
i=1

dist (P i
c , P i

r ); d(Pp, Pr)

= 1

K

K∑
i=1

dist (P i
p, P i

r ) (17)

The visualization of the analysis is shown in Fig. 4. It can
be seen that, the relative distance d(Pc, Pr) of CPG is more
stable than the distance d(Pp, Pr) of PPG. That means, the
inaccurate predicted pseudo label brings more fluctuation to
the prototypes, leading to unreliable estimations.

Furthermore, Table 6 shows the performance of DDW-
OT equipped with CPG or PPG. The comparisons of this
case verify the effectiveness of CPG. The reliable proto-
types bring more stability to the follow-up decomposed-
distance and further boost the transferability of our DDW-
OT method.

Effect of neural network dual variable parameterization To
evaluate the effect of the neural network parameterization,

Table 4 Results (accuracy %) on VisDA-2017 for UDA. The best method is emphasized in bold

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg

ResNet-101 [18] 55.0 53.2 61.8 59.2 80.7 17.8 79.6 31.1 81.1 26.4 73.6 8.6 52.3

DANN [1] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

DAN [28] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

Deep-JDOT [12] 85.4 73.4 77.3 87.3 84.1 64.7 91.5 79.3 91.9 44.4 88.5 61.8 77.4

DWL [51] 90.7 80.2 86.1 67.6 92.4 81.5 86.8 78.0 90.6 57.1 85.6 28.7 77.1

DDW-OT 89.2 77.6 81.7 89.0 87.5 68.4 91.2 81.4 89.3 62.1 89.2 45.3 79.3
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Table 5 Results (accuracy %) of ablation study on OfficeHome. The best method is emphasized in bold

Method Pr→Ar Cl→Pr Cl→Rw Ar→Cl Avg

Lcls 52.4 63.8 66.4 45.6 61.3

Lcls + orig.OT 55.7 69.8 72.9 49.4 65.2

Lcls + αLd 59.8 72.1 74.8 51.3 67.8

Lcls + αLd +βLc 60.5 73.5 75.2 53.2 69.2

we optimized dual variables using an n-dimensional vector
instead of a shallow neural network, where n is the
number of samples in the corresponding domain. When
using vectors, the calculation of inter-domain distance
actually does not consider the high-dimensional embedding
representations of the samples, but only uses the index
of samples in the dataset. We alternately use the vector
parameterization method for dual variables u and v, and also
evaluate the performance of DDW-OT when u and v are
all represented by vectors. Table 7 shows the effect of the
neural network and n-dimensional vector parameterization.
As we can see, the vector parameterization of a single dual
variable is harmful to the performance. However, when both
dual variables are vector parameterized, the performance
gains some improvement.

4.4 Sensitivity analysis

Sensitive of regularized value ε In this experiment, we
evaluate the sensitivity of the ε. Here, ε is a non-negative
real number which weighting the regularization term
increases. Previous experiments show that when ε is too
small, the training of the Dual-OT process cannot converge.
We choose ε from the set {0.05, 0.1, 0.2, 0.5, 1, 2}, and con-
duct on transfer tasks in OfficeHome and ImageCLEF-DA.
The performance is shown in Fig. 5(a). As we can see, the

adaptation performance is stable under the different value
of ε, and achieve slightly better results when ε = 1.

Sensitive of decomposed-distance λ Here we evaluate the
sensitivity of λ in our experiments. λ is a trade-off parameter
across the target domain spatial structure Munc and the
intra-domain category association Mcor . Here we choose λ

from {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. Figure 5(b)(c) shows the
model’s performance under different values. For the transfer
task A→W in Office-31, the increasing weight for Munc is
beneficial to the optimization, while the opposite result is
obtained in task W→A. We assume the reason that Mcor

is relatively more stable and less likely to be affected by
a single sample’s inaccurate representation compared with
Munc. Therefore, in difficult tasks, given more concentrate
on the inaccurate Munc distance caused by the clustering
error may deteriorate the performance.

Sensitive of trade-off parameters α, β The parameters α

and β make a trade-off between the domain discrepancy loss
and the class alignment loss. We fix one of the values α(β)
and perform model under changing another value β(α). The
experiment is performed on several transfer tasks, P→I,
C→P from ImageCLEF-DA, Cl→Pr from OfficeHome,
and D→A from Office-31. The performance is shown in

Fig. 4 The distance between estimate to the real. Experiment on two tasks, W→A from Office-31 and Ar→Cl from OfficeHome, respectively
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Table 6 The effect of clustering-based prototype generation (CPG)
compared with the traditional pseudo label-based prototype generation
(PPG)

Method A→W D→W A→D W→A Avg

CPG 92.1 100 90.8 68.5 87.6

PPG 90.5 98.7 88.1 67.8 85.2

Results (accuracy %) on Office-31 are reported

Fig. 6(b)(c). As we can see, the accuracy decreases when
given extremely high value to α (β), and relatively satisfying
performance is achieved when α=0.5/1 and β=0.1/0.5. For
consistency, we set α=1, β=0.1 for all transfer tasks.

The effect of the network depth for dual variables
As mentioned earlier, we use fully-connected layers
(d→1024(n)→1) to parameterize the dual variables u and
v. Figure 6(a) presents the results under different settings.
As can be seen, DDW-OT achieves relatively stable results
when the dual network depth changes, and the adaptation
ability can not be continuous improved with the increase
of depth. At the same time, a deeper network also brings
more parameters and higher computational complexity.
Therefore, in all other experiments of this paper, we set the
network depth n=3 for the dual variables.

4.5 Visualization and training convergence

Training convergence We evaluate the training stability of
DDW-OT on two tasks, i.e., A→W from Office-31 and
Pr→Rw from OfficeHome. The results are presented in
Fig. 7, including the training loss, the classification accuracy
of both domains, and the clustering-based accuracy on the
target domain within each training epoch. The first ten
epochs include the pre-training stage of the classification
network and the dual-OT network (before the orange dash
line). As we can see, during the pre-training stage, the
training loss drops rapidly. The classification accuracy of
both domains has already reached a relatively high level,
gradually improved and tends to be stable in the following

fine-tuning stage. For the clustering-based classification
accuracy on the target samples, it is all about fluctuating in
the whole training process, but because DDW-OT construct
decomposed-distance on this basis instead of relying solely
on the classification accuracy of this part, it still plays a
positive role in the training process.

Feature visualization We visualize the deep feature of the
last hidden layer by utilizing t-SNE [32] to illustrate the
feature transferability of our method. We perform t-SNE
on task P-C from ImageCLEF-DA and task Pr-Rw from
OfficeHome. The features in Fig. 8(a)(c) are derived from
the source-only model. We can see that the features in the
source domain have a relatively obvious cluster structure. In
contrast, the features of the target domain do not form clear
category boundary and can not be discriminative well. As
we can see, the adaptation process of DDW-OT can make
the target domain features much more compact and well
separated, shown in Fig. 8(b)(d). The above observations
suggest that our method is able to learn the domain invariant
features and reduce the intra-class variations.

5 Conclusion

In this paper, we propose a decomposed-distance weighted
optimal transport method to perform sample-level align-
ment for UDA. To achieve better distance measurement
between domains, we design a new reweighing matrix.
The combination of the two parts of distance considers the
spatial information of the target domain and analyzes the
correlation degree of category between domains. The exten-
sive experiments on several benchmark datasets illustrated
the effectiveness of our method. Although DDW-OT makes
the alignment of both domains at sample level, the accu-
racy of the transport plan is still affected by the inconsistent
sample categories, which are caused by the class distribu-
tion shift in both domains during the batch-wise training.
To further remove the above restriction, the optimal par-
tial transport theory or the specific sample selection strategy

Table 7 The effect of the neural network (NN) and the n-dimensional vector (Vec.) parameterization for dual variables

u v P→I C→P P→C I→P Avg

NN Vec. NN Vec.

� � 92.1 75 94.7 78 87.6

� � 91.8 74.1 93.6 77.8 86.8

� � 91.2 73.3 94.4 77.9 87.1

� � 92.5 80.2 96.7 82.6 90.7

Results (accuracy %) on ImageCLEF-DA are reported
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Fig. 5 (a)Sensitivity of the regularized value ε. (b)(c)Sensitivity of the trade-off parameter λ. Validated on several tasks under different values

Fig. 6 The effect of the network depth for Dual-OT network and trade-off parameters α, β experimented on several tasks

Fig. 7 The evaluation of the training stability, experiments on two tasks. Best viewed in color
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Fig. 8 The t-SNE visualization. (a)(b) are generated from class information of P→C in ImageCLEF-DA. Each color reflects a category. (c)(d) are
generated from domain information of Pr→Rw in OfficeHome. Blue and red shapes represent samples from source and target domain, respectively

may be considered, so as to obtain a more reliable OTmatrix
in an implicit way.
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