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Abstract
Several performance metrics are currently available to evaluate the performance of Machine Learning (ML) models in clas-
sification problems. ML models are usually assessed using a single measure because it facilitates the comparison between 
several models. However, there is no silver bullet since each performance metric emphasizes a different aspect of the clas-
sification. Thus, the choice depends on the particular requirements and characteristics of the problem. An additional problem 
arises in multi-class classification problems, since most of the well-known metrics are only directly applicable to binary 
classification problems. In this paper, we propose the General Performance Score (GPS), a methodological approach to 
build performance metrics for binary and multi-class classification problems. The basic idea behind GPS is to combine a set 
of individual metrics, penalising low values in any of them. Thus, users can combine several performance metrics that are 
relevant in the particular problem based on their preferences obtaining a conservative combination. Different GPS-based 
performance metrics are compared with alternatives in classification problems using real and simulated datasets. The met-
rics built using the proposed method improve the stability and explainability of the usual performance metrics. Finally, the 
GPS brings benefits in both new research lines and practical usage, where performance metrics tailored for each particular 
problem are considered.

Keywords Performance metrics · Binary classification · Multi-class classification · Combination of information · 
Explainability

1 Introduction

Supervised Learning is the set of Machine Learning (ML) 
techniques that use labelled data. The task of these techniques 
is to learn a function that maps an input to a label, learning 
from examples of input-label pairs. When the label is cat-
egorical, the task addressed by these methods is referred to 

as classification. Based on the characteristics of the labels, 
several types of classification problems are defined: binary, 
multi-class, multi-labelled, and hierarchical [24].

In the literature, there are several metrics to evaluate the 
performance of ML models in classification problems [25]. 
Most of these metrics are defined for binary classification, 
of which some can be generalised for more than two classes. 
In practice, data analysts focus mainly on selecting the algo-
rithm with the best predictive performance, disregarding the 
selection of the specific performance metric [6]. However, 
no general performance metric exists. Consequently, the 
proper definition of a performance metric, based on the 
problem domain and requirements, is crucial. Performance 
metrics are used to rank ML models and to evaluate if the 
selected one meets the classification requirements. There-
fore, the choice of the right metric is crucial, especially 
when the cost of misclassification varies between classes.

In general, given a classification ML model, the informa-
tion regarding its performance is summarised into a confu-
sion matrix. This matrix is built by comparing the observed 
and predicted classes for a set of observations. It contains all 
the information needed to calculate most of the classification 
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performance metrics. Among them, Accuracy (ACC) is one 
of the most common. It represents the ratio of correctly pre-
dicted observations. However, in many binary classification 
problems, alternative measures that combine two metrics 
regarding the classification task in both classes are more 
appropriate.

In this paper, several performance metrics used in clas-
sification problems are discussed. The General Performance 
Score (GPS), a new family of classification metrics, is pre-
sented. The GPS is obtained from the combination of several 
metrics estimated through a K × K confusion matrix, with 
K ≥ 2 . Therefore, this family of metrics performs for both 
binary and multi-class classification. Several instances of 
GPS are presented and compared with well-known alterna-
tive metrics from a theoretical and practical level.

The main contributions of the paper are listed as follows:

– A novel family of performance metrics, GPS, is devel-
oped for both binary and multi-class classification.

– GPS is configurable depending on the problem domain 
by combining appropriate performance metrics.

– GPS performance metrics allow a high explainability of 
the performance of the ML models.

The rest of the paper is structured as follows. Section 2 
presents an overview of binary and multi-class classifica-
tion metrics based on the confusion matrix. The proposed 
metrics family is described in Section 3 for both binary and 
multi-class classification. Experiments on simulated and real 
case studies with different number of classes are detailed in 
Section 4. Finally, Section 5 concludes and provides further 
research lines.

2  State of the art

2.1  Binary classification

In a binary classification problem, with classes −1 and +1 , the 
performance metrics achieved by the selected ML classifier 
are obtained from the well-known 2 × 2 confusion matrix (see 
Table 1). This matrix relates the observed values to the ones 
predicted by the classifier. Notice that many ML models return 
probabilities. In these cases, a threshold on these probabilities 
can be used to obtain binary predictions. The elements of a 
confusion matrix are:

– True Positive (TP): the observed +1 instances that are 
predicted as +1.

– True Negative (TN): the observed −1 instances that are 
predicted as −1.

– False Positive (FP): the observed −1 instances but pre-
dicted as +1.

– False Negative (FN): the observed +1 instances but pre-
dicted as −1.

FP and FN are also known as type I and type II errors, 
respectively. The relative importance of these errors depends 
on the problem under consideration [5, 21]. For instance, in 
anomaly detection problems, the number of observed +1 is 
usually much smaller than the number of observed −1 . On 
the one hand, the FP are false alarms that should be treated 
by the system. This implies several actions with an associ-
ated cost. On the other hand, the FN are those anomalies that 
are not detected by the system and thus, could potentially 
damage it.

The performance metrics that can be obtained from a con-
fusion matrix are summarised in Table 2. The most intuitive 
one is the ACC  [9], which represents the ratio of correctly 
predicted instances among all instances in the dataset. The 
complementary metric is the Error Rate (ERR), which evalu-
ates the model by its proportion of incorrect predictions. 
Both metrics are commonly used by researchers to select a 
model. However, these two metrics turn out to be an over-
optimistic estimation of the ability of the classifier over the 

Table 1  Confusion matrix for binary classification

Table 2  Performance metrics based on a confusion matrix

Symbol Metric Formula

ACC Accuracy TP+TN

TP+TN+FP+FN

ERR Error Rate FP+FN

TP+TN+FP+FN

PPV Precision TP

TP+FP

TPR Sensitivity/Recall TP

TP+FN

TNR Specificity TN

TN+FP

NPV Negative Predictive Value TN

TN+FN

BA Balanced Accuracy TPR+TNR

2

GM Geometric Mean (TPR ⋅ TNR)1∕2

FM Fowlkes-Mallows Index (PPV ⋅ TPR)1∕2

F+
1

F+
1
-score 2 ⋅

PPV⋅TPR

PPV+TPR

F−
1

F−
1
-score 2 ⋅

NPV⋅TNR

NPV+TNR

MK Markedness PPV + NPV − 1

BM Bookmaker Informedness TPR + TNR − 1

UPM Unified Performance 
Measure

2 ⋅
F+
1
⋅F−

1

F+
1
+F−

1

MCC Matthews Correlation 
Coefficient

TP⋅TN−FP⋅FN

((TP+FP)⋅(TP+FN)⋅(TN+FP)⋅(TN+FN))1∕2

KP Cohen’s Kappa ACC

ACC+
(TP+TN)⋅(FP+FN)

2⋅(TP⋅TN−FP⋅FN)
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majority class [4]. Consequently, they are sensitive to imbal-
anced data.

The Precision, also known as Positive Predictive Value 
(PPV), can be considered as the probability of success when 
an instance is classified as +1 . The Sensitivity, also known as 
Recall or True Positive Rate (TPR), can be understood as the 
probability that an observed +1 is classified as +1 by the ML 
classifier. The Specificity, also known as True Negative Rate 
(TNR), is the proportion of −1 instances that are correctly 
predicted. Similarly, the Negative Predictive Value (NPV) is 
the proportion of −1 instances correctly classified by the ML 
classifier. The main drawback of these metrics is that they do 
not consider all the confusion matrix elements. For exam-
ple, the Sensitivity only focuses on positive examples, while 
Specificity only focuses on the negative ones. The main goal 
of ML classifiers is to improve the Sensitivity, without los-
ing the Specificity. However, there is a trade-off between 
these two metrics since increasing the Sensitivity implies 
a decrease in the Specificity and vice versa. The same rela-
tionship appears between Sensitivity and Precision. Besides, 
Precision and NPV are sensitive to imbalanced data. Each of 
these four metrics cannot be used separately to evaluate the 
performance of a ML method because none of them takes 
into consideration the entire confusion matrix. This is, they 
do not take into account all information that the classifier 
provides. Hence, these metrics are adequate for capturing 
a partial perspective of the classifier performance, but are 
individually insufficient.

Regarding the four basic metrics, given three of them, the 
remaining fourth can be obtained. For instance, given PPV, 
TPR, and TNR, the NPV is defined as follows:

The Balanced Accuracy (BA) is the arithmetic mean of 
Sensitivity and Specificity. That is, the average of two rates: 
positive instances correctly classified and negative instances 
correctly classified. The BA, unlike Accuracy, is robust for 
evaluating classifiers over imbalanced datasets.

Another useful metric is the geometric mean of Sensitiv-
ity and Specificity, konwn as Geometric Mean (GM) [25]. It 
can be used both with balanced and imbalanced data. Like-
wise, Fowlkes-Mallows Index (FM) [12] is defined as the 
geometric mean of Sensitivity and Precision. In contrast to 
GM, FM will approach zero with a random classification.

Notice that the harmonic mean is more intuitive than the 
arithmetic mean when computing a mean of ratios. Thus, the 
F+
1
 (usually called F1-score [23]) is defined as the harmonic 

mean of Precision and Recall. Therefore, to achieve a high 
F+
1
 value, it is necessary to have both high values of Preci-

sion and Recall. Even though the F+
1
 is popular in statistics, 

it can be misleading since it does not consider the TN. Thus, 

(1)NPV =
1

1 +
(1−PPV)

PPV

TPR

(1−TPR)

TNR

(1−TNR)

this performance metric does not consider the ratio of −1 
instances correctly classified by the ML classifier. Besides, 
F+
1
 is not invariant to class swapping.
Furthermore, it is possible to define the F−

1
 [22] as the 

harmonic mean of Specificity and NPV. The F−
1
 is a trade-

off between the success of predicting an observation as −1 
and the ratio of right predictions in the negative class. The 
F−
1
 has the same strengths and weaknesses as the F+

1
 , but 

focusing on the negative class. That is, it considers the TN 
but not the TP.

Markedness (MK) is defined as the distance of the sum 
of Precision and NPV to 1, while Bookmaker Informedness 
(BM) is defined as the distance between 1 and the sum of 
Specificity and Sensitivity [20]. Again, both measures com-
plement each other, but do not provide an overall view of the 
different perspectives provided by the four metrics involved 
in their definitions. MK is sensitive to changes in data distri-
butions and, hence, it is not appropriate for imbalanced data 
[25]. On the contrary, BM is suitable with imbalanced data. 
Nevertheless, it does not change concerning the differences 
between Specificity and Sensitivity [25].

In [22], a new metric that considers all the elements in the 
confusion matrix has been recently proposed. The Unified 
Performance Measure (UPM) is defined as the harmonic 
mean of F+

1
 and F−

1
 . Thus, UPM assess the performance on 

both the positive and the negative class. This performance 
metric has high values only when the four fundamental met-
rics, PPV, TPR, PNR, and NPV, also have high values. In 
addition, UPM is suitable with imbalanced data [22].

In the same way, Matthews Correlation Coefficient 
(MCC) [16] also includes all the elements of the confusion 
matrix. MCC is defined as the geometric mean of the regres-
sion coefficients of the problem and its dual. It can be also 
formulated as follows:

However, MCC differs from the above-mentioned metrics 
as it takes values in the range [−1, 1] . On the one hand, 
MCC = 1 means that both classes are perfectly classi-
fied, as it occurs in the alternative metrics. On the other 
hand, MCC = −1 reveals a total disagreement between the 
observed and the predicted classes. MCC = 0 indicates a 
random prediction. It has been proven that MCC is not as 
stable as UPM [22].

The Cohen’s Kappa coefficient measures the accord-
ance between the ML classifier and the observed classes as 
follows:

(2)MCC =
1 −

FP⋅FN

TP⋅TN

(PPV ⋅ TPR ⋅ TNR ⋅ NPV)1∕2

(3)KP =
ACC − Pr(e)

1 − Pr(e)
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where Pr(e) is the hypothetical probability of agreement by 
chance, using the observed data to calculate the probabili-
ties that each observer will randomly rank each category. 
The Cohen’s Kappa coefficient also takes values from −1 to 
+1 . The Cohen’s kappa coefficient is more informative than 
Accuracy when working with imbalanced data. However, it 
is likely to give low values for imbalanced data [2].

Finally, the Receiver Operating Characteristics (ROC) 
graph is a technique for visualising, organising, and selecting 
classifiers based on their performance [8]. In this case, a set 
of confusion matrices is obtained by modifying parameters 
in the model. ROC graphs are two-dimensional representa-
tions in which two inversely related variables are plotted. For 
instance, TPR is usually plotted versus False Positive Rate 
(FPR) ( FPR = 1 − TNR ). These two metrics are calculated 
for each confusion matrix. Then, the ROC curve is plot-
ted with TPR against the FPR where TPR is on the y-axis 
and FPR is on the x-axis. The Area Under the ROC Curve 
(AUC) [3] is the performance metric obtained from ROC. 
It is defined as the proportion of the unit square under the 
ROC curve. Thus, it takes values in the range [0, 1]. No real-
istic classifier should have an AUC  less than 0.50. Although 
the AUC  is generally used, it presents some drawbacks. For 
instance, the AUC  lacks clinical interpretability because it 
does not reflect when diagnostic tests are presented in terms 
of gains and losses to individual patients [13].

2.2  Multi‑class classification

Consider a multi-class classification problem with K classes 
to be predicted by a ML classifier. As in the binary clas-
sification, most performance metrics are obtained from the 
confusion matrix (see Table 3). In this matrix, the element 
Cij ( i, j = 1,… ,K ) represents the number of the elements in 
class j classified as class i.

A common approach when dealing with multi-class clas-
sification problems is the One vs Rest technique [1]. It con-
sists on facing each of the classes against the rest of them. 
Thus, the model is trained and evaluated on a binary setting 

where one of the classes is set to positive and the others to 
negative. This process is repeated for all classes obtaining a 
binary confusion matrix for each class. An instance of this 
approach is the generalisation of F+

1
 to multi-class classifica-

tion, the Macro − F+
1
 [19]:

where F+
1,i

 is the F+
1

 value obtained from the confusion 
matrix when the i-th class is faced against the rest of the 
classes. Analogously, Macro-Precision, Macro-Recall, 
Macro − F−

1
 , and Macro-Accuracy can be defined. Notice 

that Macro − F+
1
 is an arithmetic mean of harmonic means.

An alternative to macro averages are micro averages. 
Since a FP for a given class is a FN for another class, all 
errors are considered the same in multi-class micro averages. 
The same reasoning applies to TP and TN. Thus, FP = FN 
and TP = TN . In this context, the Micro-Accuracy (or multi-
class accuracy) is defined as the ratio between the correctly 
predicted instances and the dataset size. Furthermore, the 
Micro-Accuracy equals the Micro-Recall, the Micro-Preci-
sion, and the Micro-F1 . When the dataset is imbalanced, 
Micro-Accuracy provides an overoptimistic estimation of the 
classifier performance over the majority class. Notice that 
these metrics are invariant to class swapping since TP = TN 
and FP = FN.

There are also specific approaches to extend binary met-
rics to a multi-class setting such as multi-class MCC [10] 
and multi-class Cohen’s Kappa coefficient [11]. Considering 
the K × K confusion matrix in Table 3, MCCK for multi-
class classification is defined as:

The range of multi-class MCC is different from the binary 
MCC. In this case, the minimum value might be between −1 
and 0 depending on the labels distribution, while the maxi-
mum value is the same.

Regarding the multi-class Cohen’s Kappa coefficient, it 
is defined as follows:

where pk =
∑K

i
Cki and tk =

∑K

i
Cik.

MCC and Cohen’s Kappa are close in multi-class clas-
sification. The only difference between them is that the 
denominator is slightly lower in Cohen’s Kappa coefficient, 
justifying slightly higher final scores.

(4)
Macro − F+

1
=

K
∑

i=1

F+
1,i

n
,

(5)MCCK =

∑

ijl CiiCjl − CijCli

(
∑

i(
∑

j Cij

∑

j�i� ,i�≠i Ci�j� ))
1∕2(

∑

i(
∑

j Cji

∑

j�i� ,i�≠i Cj�i� ))
1∕2

(6)KP =

∑K

k
Ckk ⋅

∑K

i

∑K

j
Cij −

∑K

k
pk ⋅ tk

(
∑K

i

∑K

j
Cij)

2 −
∑K

k
pk ⋅ tk

Table 3  Confusion matrix for multi-class classification
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3  General Performance Score

Several performance metrics to evaluate ML classifiers have 
been presented in the previous section. However, in some 
cases it is necessary to jointly consider a set of metrics that 
emphasise different aspects of the classifier. Thus, it is nec-
essary to define an approach that combines a set of metrics 
into a single one. In this section, GPS, an approach to per-
form this combination, is presented.
Definition 1 Let p1,⋯ , pn be n different performance met-
rics that describe the output of a ML model for a classifi-
cation task, then the General Performance Score (GPS) is 
defined as follows:

Notice that the GPS is the harmonic mean of the set of 
different performance metrics p1,⋯ , pn . The harmonic mean 
is a measure of central tendency, which is useful when aver-
aging rates like those obtained from the confusion matrix.

It can be proven that the GPS is also equal to:

The GPS has the following properties:

Property 1 When the set of n performance metrics are 
defined in [0, 1], the GPS is maximum, i.e., equal to 1, ⟺ 
all the performance metrics are maximum, i.e., equal to 1.

Property 2 GPS is equal to 0, if at least one performance 
metric is equal to 0.

Notice that the harmonic mean minimises the impact of 
large values while maximizing the impact of small values. 
Therefore, high values of GPS denotes that all of the the 
involved metrics have high values. Furthermore, it is pos-
sible to calculate the GPS standard deviation based on the 
standard deviation of the harmonic mean [17].

Property 3 The standard deviation of GPS is:

It is clear that the standard deviation is minimum (and 
takes the zero value) when all the performance metrics ( pi ) 

(7)
GPS(p1,… , pn) =

n
n
∑

i=1

1

pi

(8)
GPS(p1,… , pn) =

n ⋅
n
∏

i=1

pi

n
∑

j=1

n
∏

i = 1

i ≠ j

pi

(9)sd(GPS) =
GPS2

(n − 1)

√

√

√

√

n
∑

i=1

(

1

pi
−

1

GPS

)2

are the same. To study the maximum value for sd(GPS), first 
consider the binary case.
Property 4 Given two performance metrics, the standard 
deviation of GPS is maximum when one of the metrics is 1 
and the other is 1

3
 . In this case, GPS= 1

2
 , and sd(GPS) = 1

2
√

2

.

Proof Given two performance metrics p1 and p2 , the maxi-
mum distance between them is achieved when one metric is 
equal to 1 and the other is equal to 0. However, in that case, 
the sd(GPS) is not defined. To examine the maximum of the 
function, let x = 1∕p1 and y = 1∕p2 . Thus, x, y ≥ 1 . Without 
loss of generality, we assume that x ≥ y . Then, the GPS is:

and the sd(GPS) is:

The partial derivatives of the previous expression are:

Given that x ≥ y , we require that x = 3y . Thus, when y = 1 , 
the derivative is 0 at x = 3 . That is, p1 = 1∕3 , and p2 = 1 . In 
such a case, GPS =

2⋅1∕3

1+1∕3
=

1

2
 , and sd(GPS) = 1

2
√

2
 . Figure 1 

shows the value for the sd(GPS) at x ∈ [1, 100] and 
y ∈ [1, 10] . Figure 1 shows the value for the sd(GPS) for all 
the values of x in [1, 100] at several values of y. It can be 
shown that the maximum is achieved for y = 1 , x = 3.

It is straightforward to show the following property.

Property 5 Given a set of n performance metrics p1,… , pn , 
the standard deviation of GPS is maximum when pi = 1 
∀i = 1,… , n − 1 , and pn =

1

n+1
 . In such a case, GPS= 1

2
 , and 

sd(GPS) =
1

4

√

n

n−1
.

Proof Let be xi = 1∕pi . Since pi ≤ 1 , then xi ≥ 1 ,∀i . Let be 
s =

∑n

i=1
xi . Then, GPS = n∕s , and

In order to maximise this expression, s needs to be as small 
as possible. Then xi maximise the difference to the mean 

(10)
2

x + y

(11)2 ⋅
√

2 ⋅
(x − y)

(x + y)2

(12)fx(x, y) =2 ⋅
√

2 ⋅
(3 ⋅ y − x)

(x + y)3

(13)fy(x, y) =2 ⋅
√

2 ⋅
(y − 3 ⋅ x)

(x + y)3

sd(GPS) =
n2

s2(n − 1)

√

√

√

√

n
∑

i=1

(

xi − s∕n
)2

12053



 I. M. De Diego et al.

1 3

value s/n for all i. To minimise s, xi = 1 ,∀i < n . Thus, 
s = xn + n − 1 . Now, the standard deviation is:

The derivative of this expression is:

The root of the derivative is xn = n + 1 . Through the second 
derivative it can be demonstrated that it is a maximum. Thus, 
the standard deviation of GPS is achieved for xi = 1 ,∀i < n , 
and xn = n + 1 . Therefore, GPS =

n

n−1+n+1
=

1

2
 , and 

sd(GPS) =
1

4

√

n

n−1
.

3.1  Binary classification

In binary classification, a well-known particular case of GPS 
is the F+

1
-score. It corresponds to GPS parameterised with 

the Precision (PPV) and Recall (TPR):

On the other hand, the F−
1
-score is GPS parameterised with 

the Specificity (TNR) and Negative Predictive Value (NPV):

sd(GPS) =
n
2

(x
n
+ n − 1)2(n − 1)

√

(n − 1)

(

x
n
+ n − 1

n
− 1

)2

+

(

x
n
+ n − 1

n
− x

n

)2

=
n
2

(x
n
+ n − 1)2(n − 1)

√

(n − 1)

(

x
n
− 1

n

)2

+ (n − 1)2
(

x
n
− 1

n

)2

=
n
2

(x
n
+ n − 1)2(n − 1)

√

n(n − 1)

(

x
n
− 1

n

)2

=
(x

n
− 1)

(x
n
+ n − 1)2

n

√

n

n − 1

�sd(GPS)

�xn
= −

(xn − (n + 1))

(xn + n − 1)3
n

√

n

n − 1

(14)GPS(PPV , TPR) = F+
1
= 2 ⋅

PPV ⋅ TPR

PPV + TPR

(15)GPS(NPV , TNR) = F−
1
= 2 ⋅

NPV ⋅ TNR

NPV + TNR

The UPM [22] is another performance metric that belongs 
to the GPS family. The UPM is equals to GPS parameterised 
with Precision (PPV), Recall (TPR), Specificity (TNR) and 
Negative Predictive Value (NPV):

Given that the combined harmonic mean of two sets of vari-
ables is equal to the harmonic mean of the harmonic means 
of the two sets [18], the previous expression can be easily 
simplified to:

This instance of GPS overcomes one of the main shortcom-
ings of the F+

1
 and F−

1
 , which is that they do not consider 

TP and TN, respectively. Thus, both metrics are mislead-
ing for imbalanced classes. Further, it performs properly for 
imbalanced classification problems, since it is built using 
information regarding the performance of a classifier on both 
classes. In addition, it improves the stability and explain-
ability of the existing metrics [22].

Another possible instance of GPS is the combination of 
the Specificity (TNR) and Sensitivity (TPR):

This same combination is performed by the GM and BA 
(see Section 2) that use the geometric and arithmetic mean, 
respectively. Since the harmonic mean is lower or equal than 
the geometric mean, and the geometric mean is lower or 
equal than the arithmetic mean, then:

(16)

GPS(PPV , TPR, TNR,NPV) = UPM

=4 ⋅
PPV ⋅ TPR ⋅ TNR ⋅ NPV

PPV ⋅ TPR ⋅ NPV + PPV ⋅ TPR ⋅ TNR + NPV ⋅ TNR ⋅ PPV + NPV ⋅ TNR ⋅ TPR

(17)

GPS(PPV , TPR, TNR,NPV) = GPS(F+
1
,F−

1
) = 2 ⋅

F+
1
⋅ F−

1

F+
1
+ F−

1

(18)GPS(TPR,TNR) = 2 ⋅
TPR ⋅ TNR

TPR + TNR

Fig. 1  The standard deviation 
of GPS when two performance 
metrics are considered: (a) 3D 
representation. (b) Standard 
deviation for a fixed y 
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Let us consider two different ML models: ML1 and ML2 . 
Let the performances of these models be as follows: 
Specificity = 0.4 and Sensitivity = 0.6 , for ML1 , and 
Specificity = 0.1 and Sensitivity = 0.9 , for ML2 . On the one 
hand, notice that BA = 0.5 for both models. On the other 
hand, GM is equal to 0.49 and 0.30 for ML1 and ML2 , respec-
tively, penalising the low value of Specificity. The proposed 
GPS results are: 0.48 and 0.18 for ML1 and ML2 , respec-
tively. Thus, as explained before, it can be seen that GPS is 
more sensitive to smaller values than to larger values in the 
involved metrics.

3.2  Multi‑class classification

In this section, several instances of GPS in a multi-class 
classification problem are discussed. Lets consider a multi-
class confusion matrix with K-classes (see Table 3). Apply-
ing a technique for switching from multi-class confusion 
matrices to binary matrices, it is possible to obtain K differ-
ent binary confusion matrices. For instance, in this case the 
One vs Rest technique is used. Let be UPMk (k in 1,… ,K ) 
the calculated UPM for each of these K confusion matrices. 
Then, GPS can be parameterised with UPMk in order to cre-
ate a multi-class performance metric as follows:

Consider a uniform confusion matrix such that all the ele-
ments in the matrix are equal, the following property can 
be defined:

Property 6 Given a K-class classification problem. The 
value of GPSUPM for a uniform confusion matrix is:

Proof Let consider all the elements in the uniform confusion 
matrix equal to x. First, notice that all UPMs in a uniform 
confusion matrix are equal. Since GPSUPM is an harmonic 
mean of the UPMs, its value is equal to the value of the 
UPMs. Thus, it is enough to calculate one UPM. The UPMk 
in a uniform confusion matrix is equal to: 

(19)GPS(TPR,TNR) ≤ GM ≤ BA

(20)
GPSUPM = GPS(UPM1,UPM2,… ,UPMk) =

K ⋅

K
∏

k=1

UPMk

K
∑

k�=1

K
∏

k = 1

k ≠ k
�

UPMk

(21)2 ⋅
(K − 1)

K2

The Precision and Recall are 1
K
 , and the NPV and Specific-

ity are (K−1)2

(K−1)2+(K−1)
=

K−1

K
 . Then, UPM is equal to:

As an example, let us consider a 3-classes classification 
problem. The 3 × 3 multi-class confusion matrix can be 
divided into 3 binary confusion sub-matrices (see Table 4). 
Then, GPS(UPM1,UPM2,UPM3) is defined as follows:

Notice that in the particular case of ordered classes, the con-
fusion matrix in Table 4b could be omitted. When the order 
is relevant, merging the first and last classes could be mean-
ingless for the application domain perspective. Then, the 
GPS implementation parameterised with UPM for ordered 
classes is defined as follows:

4

1

1∕K
+

1

1∕K
+

1

(K−1)∕K
+

1

(K−1)∕K

=
4

2 ⋅ K + 2 ⋅
K

K−1

= 2 ⋅
(K − 1)

K2

(22)
GPSUPM = GPS(UPM1,UPM2,UPM3) =

3 ⋅

3
∏

k=1

UPMk

3
∑

k�=1

3
∏

k = 1

k ≠ k
�

UPMk

(23)GPS(UPM1,UPM3) = 2 ⋅
UPM1 ⋅ UPM3

UPM1 + UPM3

Table 4  Binary confusion sub-matrices from a 3 × 3 confusion matrix
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Furthermore, alternative context-aware definitions of per-
formance metrics could be useful. For instance, consider a 
multi-class classification problem where only the Recall of 
each class is relevant. Thus, the base metrics are:

In such a case, GPS is defined as follows:

Notice that when K = 2 , then GPSRecall is equal to the har-
monic mean of Specificity and Sensitivity, presented in (18).

4  Experiments

In this section, several experiments on real and artificial 
datasets are considered. The properties and performance of 
GPS-based metrics are discussed and compared with alter-
native performance metrics. The first and second experi-
ments consider a binary classification problem with simu-
lated confusion matrices and real datasets, respectively. 
In the third experiment, a battery of simulated confusion 
matrices obtained from a multi-class classification problem 
is considered. Finally, in the fourth experiment, several defi-
nitions of GPS for two real dataset in multi-class classifica-
tion problem are explored.

4.1  Simulated confusion matrices in binary 
classification

In this experiment, five confusion matrices are generated 
to compare GPS-based metrics against several alternatives. 
These confusion matrices are reported in Table 5. The con-
fusion matrix a) presents a good classifier with adequate 
results in both classes. The confusion matrix b) is a random 
confusion matrix with the same values in all its cells. In the 
confusion matrices c) and d) only one class is correctly clas-
sified, negative class in c) and positive class in d). Finally, 
the confusion matrix e) presents a conservative classifier 
(most of the model predictions are negative) in an imbal-
anced dataset (most of the instances are positive).

Table  6 shows the results of the metrics for 
these confusion matrices. In this experiment, the 
GPS(PPV, TPR, TNR, NPV) has been considered. First, 
when the classification model works properly, as in a), all 

Recallk =
Ckk

∑K

k�=1
Ck�,k

, k = 1,… ,K.

(24)
GPS

Recall
= GPS(Recall1,… ,Recall

k
) =

K ⋅

K
�

k=1

Recall
k

K
∑

k�=1

K
∏

k = 1

k ≠ k
�

Recall
k

metrics achieve high values. The GPS instance presents low 
values in the confusion matrices c), d) and e) since at least 
one of its performance metrics presents low values. Regard-
ing the random confusion matrix b), the GPS value is 0.5. It 
is interesting to remark that in this case, all the performance 
metrics used in its definition have the same value. Thus, the 
standard deviation of GPS is 0.0.

In confusion matrix e), the Precision and Specificity are 
very high, but the Recall and NPV are very low. In addi-
tion, it can be observed in the confusion matrices c) and d) 
that these metrics are sensitive to swapping the classes and 
to imbalanced data. The Balanced Accuracy obtains very 
similar values for the last four confusion matrices, although 
they represent totally different scenarios. It can be observed 
that the F+

1
 and the F−

1
 metrics are sensible to imbalanced 

data. In the confusion matrix c), F− achieves a high value 
while the positive class is almost entirely misclassified. On 
the other hand, in confusion matrix d), F+

1
 achieves a high 

value while the negative class is almost entirely misclassi-
fied. Moreover, they are sensitive to swapping the classes. 
The Geometric Mean value in the confusion matrices c) 
and d) is similar to the random confusion matrix b). The 
Fowlkes-Mallows Index obtains very similar values to F+

1
 . 

Table 5  Simulated 2 × 2 
confusion matrices

TN FN FP TP

a) 40 10 10 40
b) 25 25 25 25
c) 90 4 5 1
d) 1 5 4 90
e) 5 94 0 1

Table 6  Performance metrics in the simulated binary confusion 
matrices

a) b) c) d) e)

Accuracy 0.80 0.50 0.91 0.91 0.06
Precision 0.80 0.50 0.17 0.96 1.00
Sensitivity/Recall 0.80 0.50 0.20 0.95 0.01
Specificity 0.80 0.50 0.95 0.20 1.00
NPV 0.80 0.50 0.96 0.17 0.05
Balanced Accuracy 0.80 0.50 0.57 0.57 0.50
F+
1
-score 0.80 0.50 0.18 0.95 0.02

F−
1
-score 0.80 0.50 0.95 0.18 0.09

Geometric Mean 0.80 0.50 0.43 0.43 0.10
Fowlkes-Mallows Index 0.80 0.50 0.18 0.95 0.10
Markedness 0.60 0.00 0.12 0.12 0.05
Bookmaker Informedness 0.60 0.00 0.15 0.15 0.01
Cohen’s Kappa 0.60 0.00 0.13 0.13 0.00
MCC 0.60 0.00 0.13 0.13 0.02
GPS 0.80 0.50 0.30 0.30 0.03
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Both Markedness, Bookmaker Informedness and Cohen’s 
Kappa get low values for the last three confusion matrices, 
and 0.00 for the random confusion matrix b). Given the low 
performance on the non-predominant class, GPS achieves 
values lower than 0.50 for the confusion matrices c) and d). 
However, MCC achieves higher values for these confusion 
matrices (0.13 in both cases) than for the random confusion 
matrix b) (0.00). Moreover, MCC returns similar values for 
the confusion matrices b) (random) and a) (high Precision 
and low Recall).

4.2  Binary classification with real datasets

The performance of GPS for binary classification is also 
evaluated on several real datasets from the UCI Machine 
Learning Repository [7]. In this experiment, the following 
datasets are considered:

– Pima Indians and Vote datasets: two imbalanced datasets 
for the positive class.

– Ionosphere: an imbalanced dataset for the negative class.
– Sonar: a balanced dataset.
– Adult and Credit datasets: two very imbalanced datasets 

for the positive class
– Hepatitis: a very imbalanced dataset for the negative 

class.

Each dataset has been randomly split into two sets: training 
(80%) and testing (20%) sets. A Random Forest (RF) model 
with the following parameters has been trained on the train-
ing set: number of trees equals to 500, each tree grows to 
the maximum number of terminal nodes as possible, and the 
square root of the number of variables in the dataset is used 
as the number of variables randomly sampled as candidates 
at each split. Then, the metrics MCC and GPS are estimated 
over the testing sets. This process is repeated 100 times. 
Finally, the global performance metric values are obtained 
as the mean of the 100 performance score in the testing sets. 
The Mean, Standard Deivation (SD) and Coefficient of Vari-
ation (CV) for both GPS and MCC are shown in Table 7.

The correlation between both metrics is very high (Pear-
son correlation coefficient equals 0.98). However, GPS pre-
sents a lower standard deviation, which indicates that GPS 
is more stable. Furthermore, MCC obtains higher CV values, 
meaning that it is more dispersed than GPS. In addition, 
the GPS is easier to interpret since it is defined in the range 
[0, 1] as most performance metrics. Thus, it can be con-
cluded that the proposed ML model performs properly for 
Vote and Ionosphere datasets. Better classifiers could prob-
ably be found for Sonar, Adult, and Pima Indians datasets. 
Finally, given the low values for GPS, the proposed classi-
fication technique shows a poor performance for Credit and 
Hepatitis datasets.

4.3  Simulated confusion matrices in multi‑class 
classification

In this experiment, different simulated 3 × 3 confusion matri-
ces are generated and presented in Table 8. The confusion 
matrices a) and b), show good classifiers on balanced data-
sets. The confusion matrices c) and d) correspond to very 
high imbalanced data. The confusion matrices e) and f) cor-
respond to classifiers on imbalanced data. In the confusion 
matrix g) results from a bad classifier are presented. Finally, 
the confusion matrices h) and i) show very bad classifiers, 
completely wrong in their predictions. The following metrics 
have been calculated: Accuracy, Macro-Accuracy, Macro-
Precision, Macro-Recall, Macro-F

+
1  , Macro-F

−
1  , Micro-F+

1
 , 

Micro-F−
1
 , MCC and GPS

UPM
.

Table 9 shows the results of the metrics for these multi-
class confusion matrices. First, when the classes are bal-
anced and the classification error is not high, as in a) and 
b), all performance metrics achieve higher values. Notice 
that the metrics Accuracy, Micro-F+

1  and Micro-F−
1  have the 

same results for all the proposed confusion matrices. In the 
confusion matrices c) and d), corresponding to imbalanced 
data, ACC  and Macro-Accuracy are unreliable measures for 
model performance. The good performance of the model 
for the majority class implies high ACC  and Macro-Accu-
racy, even when the performance of the model is low for 

Table 7  Mean, Standard 
Deviation (SD) and Coefficient 
of Variation (CV) of the 
performance metrics GPS and 
MCC for real datasets

GPS MCC

Mean SD CV Mean SD CV

Pima Indians 0.71 0.06 0.08 0.46 0.07 0.15
Sonar 0.82 0.06 0.07 0.67 0.11 0.16
Ionosphere 0.92 0.03 0.03 0.85 0.06 0.07
Hepatitis 0.56 0.18 0.32 0.37 0.19 0.51
Vote 0.95 0.02 0.02 0.90 0.05 0.06
Adult 0.79 0.00 0.00 0.60 0.00 0.00
Credit 0.61 0.01 0.02 0.39 0.01 0.03
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the other classes. By contrast, GPS
UPM

 penalises the poor 
performance of the model in any of the classes.

The GPS
UPM

 obtains the lowest possible value when all 
observations are wrongly classified. The GPSUPM is simi-
lar in the confusion matrices a) and c). Nevertheless, its 
standard deviation is minimum in a) 0.0, but 0.15 in c). This 
evinces a non-homogeneous performance along the different 
classes in the problem. The same occurs in cases b) (stand-
ard deviation 0.0) and e) (standard deviation 0.07). Note 
that following Property 5, the maximum standard deviation 
is 0.31. The GPSUPM value for confusion matrix g) implies 
a near-random performance. In fact, notice that the expected 
random value in each element of the diagonal is equal to the 
observed value 50 (450 observations to be distributed in 9 
cells). Following Property 6, the GPSUPM for a uniform 3 × 3 
confusion matrix is 4/9.

The confusion matrices h) and i) show non-zero values 
for Macro-F−

1  , even though all the observations are misclas-
sified. In these two confusion matrices, MCC obtains differ-
ent values. Moreover, negative MCC values are difficult to 
interpret. This difficulty arises from the fact that the mini-
mum MCC value depends on the distribution of the observed 
label. Finally, Cohen’s Kappa coefficient achieves similar 
results to MCC in all the cases except for the example i). 

In that case, Cohen’s Kappa coefficient performs similar to 
GPS providing the same values for h) and i).

4.4  Multi‑class classification with real datasets

In the last experiment, GPS-based metrics are evaluated 
on multi-class datasets. Firstly, the three classes Connect-4 
dataset [7] is used. Secondly, the four classes Vehicle dataset 
[7] is considered. Both datasets have been divided in training 
set (80%) to fit a ML model and testing set (20%).

In the Connect-4 dataset, a RF model with the following 
parameters has been trained on the training set: number of 
trees equals to 500, each tree grows to the maximum num-
ber of terminal nodes as possible, and the square root of the 
number of variables in the dataset is used as the number of 
variables randomly sampled as candidates at each split. For 
each observation in the testing set, the ML model returns the 
probability of belonging to each class. Given these probabili-
ties, different thresholds are used to classify the elements. 
Thus, a set of confusion matrices is obtained.

Three GPS-based instances are considered to show 
that it can be built up depending on the particular prob-
lem specifications. First, the GPS

UPM
 as a summary metric 

is calculated. Next, the GPSRecall is considered as a metric 
that focuses on the relevant instances retrieved from all the 

Table 8  Simulated 
3 × 3

 
confusion matrices C11

C12 C13 C21 C22 C23 C31 C32 C33

a) 90 10 10 10 90 10 10 10 90
b) 90 30 30 30 90 30 30 30 90
c) 30 0 30 0 9000 0 30 0 9000
d) 30 0 30 0 30 0 30 0 9000
e) 90 60 0 60 90 0 30 30 90
f) 90 60 0 60 90 60 0 60 90
g) 50 100 0 0 50 100 100 0 50
h) 0 150 0 0 0 150 150 0 0
i) 0 150 150 0 0 0 150 0 0

Table 9  Performance metric 
values in the simulated 3 × 3 
confusion matrices

a) b) c) d) e) f) g) h) i)

ACC 0.82 0.60 1.00 0.99 0.60 0.53 0.33 0.00 0.00
Macro-Accuracy 0.88 0.73 1.00 0.99 0.73 0.69 0.55 0.33 0.33
Macro-Precision 0.82 0.60 0.83 0.83 0.60 0.54 0.33 0.00 0.00
Macro-Recall 0.82 0.60 0.83 0.83 0.67 0.54 0.33 0.00 0.00
Macro-F+

1
0.82 0.60 0.83 0.83 0.61 0.54 0.33 0.00 0.00

Macro-F
−
1 0.91 0.80 1.00 0.89 0.79 0.75 0.67 0.50 0.43

Micro-F+
1

0.82 0.60 1.00 0.99 0.60 0.53 0.33 0.00 0.00
Micro-F−

1
0.82 0.60 1.00 0.99 0.60 0.53 0.33 0.00 0.00

Cohen’s Kappa 0.73 0.40 0.99 0.66 0.40 0.28 0.00 −0.50 −0.50
MCC 0.73 0.40 0.99 0.66 0.41 0.28 0.00 −0.50 −0.61
GPSUPM 0.86 0.68 0.86 0.80 0.68 0.62 0.44 0.00 0.00
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relevant instances of all the classes in the problem. Finally, 
the GPSRecall,Precision3 is considered. In this case, it is calcu-
lated from the three Recalls and the Precision of class 3.

In Table 10, the confusion matrices that maximise the 
GPS

UPM
 , the GPS

Recall
 and the GPSRecall,Precision3 values 

respectively in the test dataset are presented. Table 11 shows 
the value of the metrics for each of confusion matrix. Notice 
that, in this case:

The GPSUPM achieves its maximum value, 0.69 ± 0.08 , 
in the confusion matrix a). The standard deviation of GPS 
has been calculated using Property 3 in Section 3. Notice 
that the range of the six basic metrics (three Precisions and 
three Recalls) is minimal for this case: a) 0.56, b) 0.64, c) 
0.75. When only the Recalls are relevant, the maximum of 
GPS

Recall
 is 0.67 ± 0.07 , corresponding to confusion matrix 

b). Since the Precisions are not considered, they can have 
more extreme values (range equals 0.64), while less extreme 
values are allowed for the Recalls (range equals 0.21). 
Finally, when the GPSRecall,Precision3 is used, a higher value of 
Precision3 is obtained. In this case, the maximum value is 
achieved in confusion matrix c), ( 0.72 ± 0.08).

Secondly, GPS-based metrics are evaluated on the Vehi-
cle dataset. In this case, the ML model selected is a Support 
Vector Machines (SVM) with linear kernel and cost equals 
to 1. For each observation in the testing set, the ML model 
returns the probability of belonging to each class. Given 
these probabilities, different thresholds are used to classify 
the elements. Thus, a set of confusion matrices is obtained.

In this case, six different GPS-based instances are con-
sidered to show that the classifier predictions that maximise 
the chosen performance metric will differ, depending on 
the GPS definition, leading to different confusion matrices. 

Precisionk =
Ckk

∑3

k�=1
Ck,k�

, k = 1,… , 3.

First, the GPS
UPM

 as a summary metric is calculated. Next, 
the GPSNPV is considered as a metric that measures the pro-
portion of negative samples that were correctly classified 
respect to the total number of negative predicted samples. 
Later, the GPS

Precision
 is considered as the inverse NPV, 

which represents the proportion of positive samples that 
were correctly classified with respect the total number of 
positive predicted samples. After, the GPSNPV ,Precision1 is con-
sidered. In this case, it is calculated from the four NPVs and 
the Precision of class 1. Then, the GPS

Recall
 is considered as 

a metric that focuses on the relevant instances retrieved from 
all relevant instances of all classes of the problem. Finally, 
the GPS

Recall,Precision4
 is presented to show the changes related 

to the increase in the Precision of class 4.
In Table 12, the confusion matrices in the test dataset, 

obtained from the maximization of the different GPS-based 
instances are presented. GPSRecall , and the GPSRecall,Precision4 
values respectively in the test dataset are presented. Table 13 
shows the values of the metrics for each confusion matrix.

The confusion matrix a) maximises GPSUPM , being the 
maximum value 0.12 ± 0.04 . The standard deviation of GPS 

Table 10  Confusion matrices 
obtained from the maximization 
of different GPS-based 
in-stances in the Connect-4 
dataset

Table 11  Performance metrics in the confusion matrices from the 
Connect-4 dataset. In bold, the maximum in each metric

a) b) c)

Precision1 0.33 0.27 0.21

Precision2
0.78 0.72 0.62

Precision3 0.88 0.91 0.96
Recall1 0.47 0.58 0.71
Recall2 0.62 0.66 0.70
Recall3 0.89 0.79 0.60
GPSUPM 0.69 0.68 0.62
GPSRecall 0.62 0.67 0.66
GPSRecall,Precision3 0.67 0.71 0.72
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has been calculated using Property 3 in Section 3. When 
only the NPV is relevant, the maximum of GPS

NPV
 is 0.80, 

corresponding to the confusion matrix b). Notice the signifi-
cant differences between the confusion matrices, depend-
ing on the chosen performance metric. In this case, since 
the Recalls are not considered, they can have more extreme 
values (range equals 1.00), whereas less extreme values are 
allowed for the Specificity (range equals 0.36). When only 
the Precisions are relevant, the maximum of GPSPrecision is 
0.07 ± 0.09 , corresponding to confusion matrix c). The con-
fusion matrix d) is the result of maximising GPSNPV ,Precision1 . 
The solution is similar to the obtained when GPSNPV is cho-
sen as performance metric (confusion matrix b)). How-
ever, in d) a high value of Precision1 is required (0.81 vs 
0.54). The ML classifier chooses the thresholds to maximise 
GPS

Recall
 resulting in confusion matrix e), where the maxi-

mum value is 0.06 ± 0.11 . The confusion matrix f) is the 
achieved solution when the Precision in class 4 is added to 
the above definition of GPSRecall . As expected, the main dif-
ferences between confusion matrices e) and f) are presented 
in class 4, increasing the corresponding Precision from 0.02 
to 0.11, and the corresponding Recall from 0.02 to 0.15.

5  Conclusions

In this paper, the GPS, a novel family of performance met-
rics for binary and multi-class classification problems, has 
been presented. It is defined as the combination of a set 
of performance metrics using the harmonic mean. The har-
monic mean is a natural choice to combine values represent-
ing ratios, such as those from the confusion matrix. Besides, 
it generates conservative combinations since it penalises low 
values. Thus, data analysts can develop different metrics tai-
lored for the problem domain and the domain-expert goals 
based on GPS.

Several instances of GPS have been presented and com-
pared with various state-of-the-art performance metrics in 
both binary and multi-class classification problems. It has 
been shown that it is possible to use different instances of 
GPS depending on the particular problem specifications. 
These definitions lead to different class predictions from the 
classifier. Therefore, to different confusion matrices. The 
GPS has proven to be more stable and explainable than the 
alternatives. Further, it has been shown that previous defini-
tions of performance metrics such as F

+
1  , F−

1  and UPM are 
instances of GPS.

Table 12  Confusion matrices 
obtained from the maximization 
of different GPS-based 
instances in the Vehicle dataset
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Future work will focus on performing model selection 
using GPS. Given a set of ML classifiers, different perfor-
mance metrics might lead to a different selection of best 
model. In this context, the effect of GPS-based metrics in 
the selection process could be evaluated. In addition, a sen-
sitivity analysis to study the effect of different misclassifica-
tion costs and different techniques to build binary matrices 
in multi-class problems will be carried out in the future. 
Further analysis will be carried out on the classification of 
datasets with a large number of categories. Notice that as the 
number of categories grows, the number of possible defini-
tions of performance metrics that can be derived from the 
one proposed in this paper increases. Thus, a future research 
line would be to carry out a comparative study of the differ-
ent solutions achieved through the chosen metrics within a 
specific problem. Furthermore, instances of GPS for multi-
labelled, hierarchical, and non-square confusion matrices 
classification will be developed. The latter corresponds to 
binary classification problems where an output with more 
than two options is more informative. For instance, in a sys-
tem that predicts if a patient will die in a given surgery, an 
output such as high-risk, medium-risk, and low-risk is more 
informative than a binary output. Finally, future work will 
focus on the use of the method when the data are in tensor 
form [14, 15].
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