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Abstract
In motor imagery-based brain-computer interfaces (BCIs), the spatial covariance features of electroencephalography (EEG)
signals that lie on Riemannian manifolds are used to enhance the classification performance of motor imagery BCIs.
However, the problem of subject-specific bandpass frequency selection frequently arises in Riemannian manifold-based
methods. In this study, we propose a multiple Riemannian graph fusion (MRGF) model to optimize the subject-specific
frequency band for a Riemannian manifold. After constructing multiple Riemannian graphs corresponding to multiple
bandpass frequency bands, graph embedding based on bilinear mapping and graph fusion based on mutual information were
applied to simultaneously extract the spatial and spectral features of the EEG signals from Riemannian graphs. Furthermore,
with a support vector machine (SVM) classifier performed on learned features, we obtained an efficient algorithm, which
achieves higher classification performance on various datasets, such as BCI competition IIa and in-house BCI datasets. The
proposed methods can also be used in other classification problems with sample data in the form of covariance matrices.

Keywords Motor imagery · Brain-computer interfaces · Riemannian manifold · Mutual information · Support vector
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� Feifei Qi
20-081@gduf.edu.cn

Xiaofeng Xie
xfxie@hainanu.edu.cn

Xiaokun Zou
1833902777@qq.com

Tianyou Yu
auyuty@scut.edu.cn

Rongnian Tang
rn.tang@hainanu.edu.cn

Yao Hou
mrhouyao@163.com

1 Mechanical And Electrical Engineering College,
Hainan University, Hainan Haikou 570228, China

2 College of Automation Science and Engineering,
South China University of Technology,
Guangdong Guangzhou 510641, China

3 School of Internet Finance and Information Engineering,
Guangdong University of Finance, Guangdong Guangzhou
510521, China

1 Introduction

The brain-computer interface (BCI) provides nonmuscular
communication between human brains and external devices
to aid people with motor impairments. It can be used to
control a wheelchair, manipulator or mouse cursor on a
computer screen, after decoding the electroencephalogram
(EEG) signal from the cerebral scalp [1–4]. Different types
of EEG modalities have been used to design multiple BCI
systems [5–8]. Particularly, motor imagery BCI systems
record EEG signals by imagining movements of different
parts of the body, such as, the right hand, left hand, feet
and tongue [9, 10]. The spatial and spectral information of
motor imagery EEG signals can help identify the movement
intention of the body. Therefore, the major challenge in
motor imagery BCIs is the efficient extraction of the spatial
and spectral features of EEG signals.

During the past decade, many methods to extract spatial
and spectral features from motor imagery EEG signals have
been proposed. In particular, the spatial covariance matrices
of EEG signals are commonly used in feature extraction
methods. The two types of feature extraction methods, based
on covariance matrices, are the common spatial pattern (CSP)-
based methods [11, 12] and Riemannian manifold-based

/ Published online: 1 January 2022

Applied Intelligence (2022) 52:9067–9079

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02975-2&domain=pdf
http://orcid.org/0000-0001-6380-2981
mailto: 20-081@gduf.edu.cn
mailto: xfxie@hainanu.edu.cn
mailto: 1833902777@qq.com
mailto: auyuty@scut.edu.cn
mailto: rn.tang@hainanu.edu.cn
mailto: mrhouyao@163.com


methods [13, 14]. CSP-based methods, such as CSP, filter
bankCSP (FBCSP) [15], sub-band CSP (SBCSP) [16], adap-
tive FBCSP (AFBCSP) [17], and the common sparse
spectral-spatial pattern (CSSSP) [18], tend to extract
features using by a spatial filter, which can maximize the
variance in one class while minimizing the variance in the
others. The original CSP obtains the spatial filter under a
large bandpass frequency (8–30 Hz) that contains alpha and
beta waves closely related to motor imagery. CSP strongly
depends on the appropriate selection of subject-specific
frequency bands. However, a large bandpass frequency band
cannot distinguish the contributions of alpha or beta waves.
Several CSP extensions have been proposed to address this
problem. The FBCSP decomposes a larger frequency band
into multiple sub-bands and learns the corresponding spatial
filter on multiple sub-bands. In addition, it selects features
from multiple sub-bands based on mutual information
[15]. The SBCSP first obtains multiple after-filtering EEG
signals by applying a Gabor filter to the multiple sub-
frequency bands and then selecting discriminative features
according to the sub-band score fusion techniques [16].
The AFBCSP designs the time-frequency map of the Fisher
ratio to adaptively choose subject-specific frequency bands
[17]. The CSSSP simultaneously optimizes the spatial filter
and finite impulse response filter to learn the spectral-
spatial features from the EEG signal [18]. Most CSP-based
methods calculate the center of covariance matrices using
the arithmetic mean. However, covariance matrices, with
the symmetric positive definite form, lie in a Riemannian
manifold in nature.

Riemannian manifold-based methods, such as Rieman-
nian CSP [13], tangent space linear discriminant analysis
(TSLDA) [14], bilinear sub-manifold learning (BSML) [19]
and bilinear regularized locality preserving (BRLP) [20],
attempt to project EEG signals from Euclidean space into
Riemannian manifolds, where the relationship of samples
is expressed by the Riemannian distance. Many efficient
Riemannian manifold tools, such as the Riemannian mean
and tangent space, can be applied to enhance the classi-
fication performance of motor imagery. Riemannian CSP
recalculated the center of covariance matrices using the
Riemannian mean and obtained the spatial filter through
solving the joint diagonalization of mean covariance [13].
TSLDA extracted features by mapping the covariance matri-
ces into tangent space, where the distance structure was
consistent with the Riemannian manifold and the relation-
ship between points was linear [14]. BSML designed a
bilinear mapping framework for dimensionality reduction
in covariance matrices. It learned low-dimensionality fea-
tures by maximally preserving the global structure of the
original manifold [19]. In contrast, BRLP is a locality-
preserving dimensionality reduction method that attempts
to preserve the similarities between vertex pairs on the Rie-
mannian graph into embedding [20]. Although Riemannian

manifold-based methods have been proposed to obtain effi-
cient spatial features from EEG signals, they are primarily
designed to project EEG signals into one Riemannian man-
ifold corresponding to a large bandpass frequency, without
considering frequency band selection in the Riemannian
manifold mapping.

To address the issue-faced when using Riemannian mani-
fold-based method, we propose a novel multiple Rieman-
nian graph fusion method to combine multiple Riemannian
manifolds corresponding to multiple bandpass frequency
bands. As covariance matrices contain the spatial informa-
tion of EEG signals, the proposed method attempts to obtain
more spectral information and merge the spatial and spec-
tral feature extraction into a unique framework. This unique
framework is mainly composed of three parts: Rieman-
nian graph construction on multiple frequency bands, graph
embedding, and graph fusion. Many related works on graph
fusion and motor imagery classification have been recently
proposed. In [21], convolutional neural networks and graph
convolutional networks were used to extract image-level
features and relation-aware features from the images. Deep
feature fusion was developed to fuse two types features
to enhance the classifier performance. In [22], an adaptive
spatiotemporal graph convolutional network was proposed
to fully exploit the characteristics of EEG signals in the
time domain and channel correlations in the spatial domain.
In [23], a clustering based on a residual graph convolu-
tional network was proposed to infer the possibility of a
connection between a given node and its neighbors and
achieve high clustering performance. However, the above
methods fuse graphs on Euclidean space and ignore that the
covariance matrices lie on the Riemannian manifold. The
contributions of this study are threefold:

1) A novel framework of multiple graph fusion based on
Riemannian geometry is proposed to extract the spatial
and spectral features in motor imagery BCIs simulta-
neously. The proposed framework can be considered
an extension of Riemannian manifold-based methods.

2) Insightful research on graph processing is proposed.
Our method designs a fusion technique for the parallel
processing of multiple graph embeddings. This is a
significantly improved version of the traditional graph-
embedding method.

3) The proposed method can efficiently alleviate the
overfitting problem in the processing of motor imagery
EEG signals using graph embedding and graph fusion.

The remainder of this paper is organized as follows.
In Section 2, we provide more details on the multiple
Riemannian graph fusion methods. In Section 3, we present
extensive experimental results and discuss the findings.
Finally, in Section 4, the conclusions are presented.
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2Materials andmethods

In this section, some fundamental concepts of the space
of symmetric positive-definite matrices and Riemannian
geometry are briefly reviewed. In addition, the multiple
Riemannian graph fusion method was proposed to learn the
discriminative spectral-spatial features from motor imagery
EEG signals.

2.1 Riemannian geometry

The spatial covariance matrix of the N-channel EEG signal
X ∈ R

N×L is represented by

P = 1

L − 1
XXT (1)

where L is the number of sampled points in EEG trialX. The
covariance matrix P ∈ R

N×N lies in a space of symmetric
positive-definite matrices, defined as

SPD(N) = S(N) ∩ P(N) (2)

where S(N) = {
P ∈ R

N×N,P = PT
}

is the
space of positive-definite matrices and P(N) ={
P ∈ R

N×N, uT Pu > 0, ∀u ∈ R
N

}
is the space of

positive-definite matrices.
The space of symmetric positive-definite matrices

endowed with the Riemannian metric is a differentiable
Riemannian manifold M[24]. The concepts of Riemannian
distance and tangent space play an important role in the
application of Riemannian manifolds. Denoted by two
symmetric positive-definite matrices P1,P2 ∈ SPD(N),
the Riemannian distance is defined as:

δR(P1,P2) =
∥∥∥log(P1

−1P2)

∥∥∥
F

=
[

N∑

i=1

log2βi

] 1
2

, (3)

where || · ||F is the Frobenius norm of a matrix, and βi is the
i-th real eigenvalue of P1

−1P2. The Riemannian distance is
the minimum length of the curve connecting two points on
a Riemannian manifold [25]. It satisfies three fundamental
properties of the metric space: positivity, symmetry, and
triangle inequality [24].

The tangent space of a Riemannian manifold is a linear
space, that can often be used to study the nonlinearity of
manifolds. The tangent space T (N) at P is defined as [26]

T (N)=
{
si=upper

(
P− 1

2 LogP(Pi )P− 1
2

)
∈ R

N(N+1)/2
}

,

(4)

where P is a tangent point, and the upper(·) operator
maintains the upper triangular part of the matrix and vec-
torizes it. The logarithmic mapping operator is denoted

by LogP(Pi ) = P
1
2 log

(
P− 1

2PiP− 1
2

)
P

1
2 . In the neighbor-

hood of P, the Riemannian distance between P and the

nearby point Pi is almost identical to the Euclidean distance
between the corresponding points on tangent space s, si[14]:

δR(P,Pi ) ≈ ‖s − si‖F . (5)

However, the neighborhood of P is a vague area. Generally,
all samples from the dataset can be considered to be neigh-
bors, whereas the mean of all samples is regarded as the
tangent point P. The relationship between the Riemannian
manifold and the tangent space is shown in Fig. 1.

2.2 Multiple Riemannian graph fusion

The framework of multiple Riemannian graph fusion algo-
rithms is presented in Fig. 2. The overall framework
includes a multiple Riemannian graph construction based
on multiple frequency bands, multiple graph embedding
for dimensionality reduction and graph fusion for feature
selection.

2.2.1 Multiple Riemannian graph construction

The selection of an appropriate bandpass frequency band
plays an important role in motor imagery classification.
In this study, the EEG signal X was first bandpass
filtered by three frequency bands–alpha band, beta band
and total band, and the frequency components in the
alpha and beta bands provided the best discrimination
between the left and right-hand movement imagination
[27]. In addition, to capture more information, the EEG
signal was filtered by a large total frequency band that
covered the alpha and beta bands. Three filtered signals
X̃(1), X̃(2), andX̃(3) were projected into three subsets of
the Riemannian manifold (M(1),M(2),M(3)). To learn the
low-dimensional embedding of the Riemannian manifold,
we constructed three Riemannian graphs (G(1)

l ,G(2)
l ,G(3)

l )
corresponding to three subsets on the Riemannian manifold.
For each Riemannian graph Gl = (V, E), the vertices V
comprise all SPD matrices Pi in the l-th subset, and the

Riemannian 

  manifold

Tangent Space

Tangent .
s

Pi

i

δR(P, Pi)

||s − si||F

Riemannian 

   distance

Euclidean

  distance
point

Fig. 1 Riemannian manifold and its tangent space
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Fig. 2 Summary of multiple Riemannian graph fusion (MRGF). 1) multiple Riemannian graph construction based on multiple frequency bands;
2) multiple graph embedding for dimensionality reduction; 3) multiple graph fusion via mutual information

edges E contain adjacency and weights uij . The adjacency
on Gl was designed using k-nearest neighbors with the
Riemannian distance. The weight between two adjacent
points Pi and Pj ∈ V is given by:

uij =
⎧
⎨

⎩
e

−d2
ij

2σ2 if Pi and Pj are neighbors,

0 otherwise

where dij = δR

(
Pi ,Pj

)
and σ is a scaling factor.

2.2.2 Multiple graph embedding

For each Riemannian graph Gl , we expect to design a
bilinear mapping W ∈ R

M×N and WT ∈ R
N×M to learn

a low-dimensional embedding from a subset of Riemannian
manifold. The learned low-dimensional embedding can be
expressed as Ep = WPWT ∈ SPD(M), where P ∈
R

N×N . This embedding is also a Riemannian sub-manifold.
The bilinear mapping matrices have many variations with

different types of property preservation, such as distance
preservation and locality preservation. In this study, we
aim to learn bilinear mapping matrices by preserving the
distance structure between a high-dimensional manifold
and low-dimensional embedding. A reasonable bilinear
mappingW, with respect to the minimum distance loss, can
be obtained by solving the following objective function:

min
W

∑

Pi ,Pj ∈C

∣∣∣δR(Pi ,Pj ) − δR(WPiWT ,WPjWT )

∣∣∣ (6)

where C is the experimental dataset of matrices in the
SPD(N). Eq. (6) can achieve an isometric mapping
between the original Riemannian manifold and the low-
dimensional sub-manifold. δR(Pi ,Pj ) represents the Rie-
mannian distance of points (I, j) on the original Rieman-
nian manifold, and δR(WPiWT ,WPjWT ) is the Rieman-

nian distance of the mapped points on the low-dimensional
sub-manifold. The mapping matrix, learned using by (6),
can best preserve the distance structure between the mani-
fold and its sub-manifold. The solution of (6) is a nonconvex
problem that is difficult to solve. In previous works [19],
we showed that the optimal mapping W of (6) is equiva-
lent to the solution of the joint diagonalization of the mean
covariance in the CSP algorithm. For the two-class clas-
sification problem, the solution to (6) is equivalent to the
mapping error among the between-class and within-class
points. In [19], we proved that the between-class distance
can be approximated as the distance between the means of
two classes set, particularly when the within-class variance
is much smaller than the between-class distance. Therefore,
we approximate optimization (6) as the minimum loss of
distance between the mean covariance of the two classes.
The solution can be obtained by joint diagonalization of the
mean covariance.

2.2.3 Graph fusion

After learning multiple low-dimensional distance-preser-
ving embeddings from multiple subsets, we constructed
three new Riemannian graphs (G(1)

E ,G(2)
E ,G(3)

E ) correspond-
ing to three embeddings. The vertices of GE are comprise
Ep, and the adjacency and weight are calculated using the
Riemannian distance between two points on the embed-
ding. Evidently, GE is close to Gl . However, multiple graphs
include considerable redundant information, which leads
to high computational costs and low classification perfor-
mance. Thus, we propose a multiple graph fusion method
to fuse multiple graphs GE into a unique graph, that con-
tains the most discriminative information from multiple
embeddings.

In this study, multiple graph fusion refers to the fusion
of the corresponding nodes on different graphs. As the SPD
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matrix form of the node on GE is difficult to merge directly,
we proposed vectorization processing for node Ep on GE by

v = upper(E− 1
2 LogE(Ep)E− 1

2 ) (7)

where E is the Riemannian mean of the embedding.
Notably, vectorization processing is a tangent space
mapping in (4). Thus, such vectorization processing can
maximally preserve the structure of the GE using (7).

Next, we used mutual information to fuse the correspond-
ing nodes on different graphs [15]. As shown in (7), a node
on the Riemannian graph is represented by a tangent vector.
In this study, we regarded the multiple-node fusion prob-
lem as an element selection from multiple tangent vectors.
Because mutual information can measure arbitrary relations
between variables and does not depend on transformations
acting on the different variables, we calculated the mutual
information of each element and selected the top k ele-
ments as the final fused nodes. Assume V(1), V(2) and V(3)

are the node matrices of G(1)
E , G(2)

E , and G(3)
E , correspond-

ing to the EEG signal X. The total matrix is formed as
V = [V(1),V(2),V(3)]. The i-th column of V is the concate-
nation of the i-th node on G(1)

E , G(2)
E , and G(3)

E , and the j -th
row on V is the j th element of the EEG signal. The mutual
information of the j -th element can be computed as

Ij = H(y) − H(y|V(j, :)) (8)

where H(·) is the entropy calculation [15] and y is the label
of the EEG signal X. Finally, we fuse the corresponding
node by retaining elements with a high value of mutual infor-
mation and removing elements with a low value. The nodes
of the fusion graph can be regarded as spatial and spectral
features for motor imagery classification. The pseudocode
of the proposed algorithm is presented in Algorithm 1.

3 Results and discussion

In this section, to evaluate the effectiveness of the proposed
MRGF method, the proposed algorithm was tested on
two motor imagery datasets and compared against three
competing methods.

3.1 Experimental setup

3.1.1 Data description

The EEG data used in this study were come from two motor
imagery datasets, that is, the BCI competition IV dataset and
an in-house dataset. The experimental settings of the two
datasets were as follows.

1) 1) Dataset IIa of BCI competition IV included four
types of motor imagery tasks (right hand, left hand,
foot, and tongue imagined movements), which were
performed on nine different subjects (S01-S09). The
experimental protocol for dataset IIa is as follows. At
the beginning of 0-2 s, the computer presented a short
acoustic warning tone. After the sound, the screen
shows an arrow pointing left, right, down, or up for a
period of 1.25 seconds (2-3.25 s). In the period 3.25-6
s, the subjects were asked to perform a motor imagery
task corresponding to the arrow. Finally, a short break
of 1.5 s was given. This dataset consisted of 576 trials,
recorded by 22 EEG channels. For one mental task,
there were 72 training and 72 test trials. The sampling
rate was set at 250 Hz.

2) Our in-house EEG data only included two types of
mental tasks (left/right and imagined movements) that
were performed on seven subjects (A01-A07) with
32 EEG channels. The experimental protocol for the
in-house dataset was set as follows. At the initial
stage 0-2.25 s, the screen remained blank. From 2.25-
4 s, the screen shows a cross to attract the subject’s
visual fixation. In the time period 4-8 s, a left/right
arrow appears and prompts the subject to perform the
required task. This dataset consisted of 234 trials. On
one subject, 117 training and test trials each were
conducted. The sampling rate was set at 250 Hz.

3.1.2 Algorithms evaluated

The MRGF was compared against the following competing
algorithms:

1) A shrinkage estimator-based CSP was used to extract
highly discriminative spatial features, and an enhanced
one versus one structure was used to classify the EEG
signals [28].
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2) DPLM: Low-dimensional features, learned by distance
preserving to local means (DPLM), were used to improve
the performance of motor imagery [29].

3) MEMDBF:Multivariate empirical mode decomposition-
based filtering (MEMDBF) was used to classify EEG
signals into multiple classes [30].

4) ESVL: Ensemble support vector learning (ESVL) was
used for feature combinations to improve classification
performance [31].

5) LDA+TSSM: The LDA classifier was applied in the tan-
gent space of the submanifold (TSSM) learned by the dis-
tance-preserving dimensionality reduction method [19].

6) Hybrid learning of transductive and inductive models
was used to handle non-stationarities in motor imagery
classification [32].

7) FBCSP: The 1st winner method for BCI competition
IV. The recorded EEG signal was band-pass filtered
by multiple sub-frequency bands of 4-8 Hz and 8-
12 Hz..., 36-40 Hz. Then, the CSP algorithm was
used to extract the spatial features from each sub-
band. In addition, discriminative features were selected
from spatial features based on mutual information.
Finally, the naive Bayes Parzen window was used for
classification [15].

8) CSP+LDA+Bayes: The 2nd winner method for BCI
competition IV. The recorded EEG signal was band-
pass filtered at 8-30 Hz. Then, the CSP algorithm was
used to extract spatial features, and Fisher LDA was
used to select features. Finally, a Bayesian classifier
was applied for classification.

9) CSP+SVM: The 3rd winner method on BCI compe-
tition IV. The recorded EEG signal was band-pass fil-
tered at 8-25 Hz. Standard CSP was applied to learn spa-
tial features, and an ensemble support vector machine
was used as a classifier to classify the features.

3.1.3 Parameters setting

The dimensions of embedding were set to 10 for the BCI
competition dataset and 6 for the in-house dataset based on
cross-validation. The number of selected features was set
to 25 and 12. SVM is a built-in function of MATLAB, the
parameters of the SVM classifier are set as linear kernels,
and the penalty factor is set to 1. An analysis of the
parameter settings is included in the following section.

3.2 Results and discussion

3.2.1 Classification results

As the nodes on the fusion graph have capture the spatial
and spectral information of the motor imagery EEG signal,
we regarded the nodes on the fusion graph as the feature

vectors and applied SVM to classify it. To evaluate the
classification performance, we tested the MRGF-SVM
on the BCI competition and in-house datasets. Table 1
shows the kappa value of the MRGF-SVM and the nine
competing algorithms on the BCI competition dataset.
The kappa value is commonly adopted to evaluate the
classification performance of the four-class problem in
dataset IIa of competition IV because the kappa value
considers the misclassification of multi-class problems. As
shown in Table 1, MRGF-SVM achieved a mean kappa
value of 0.616, which is the highest result in Table 1.
More specifically, the MRGF-SVMwas significantly higher
than 2nd (p=0.0012) and 3rd (p=0.00041). There was
no significant difference between the performance of the
MRGF-SVMmethod and FBCSP (p = 0.072). However, the
value of p is close to 0.05.

Furthermore, we compared the classification perfor-
mance of the MRGF-SVM with the three competing meth-
ods on an in-house dataset. Because the in-house motor
imagery BCI classifies right and left imagined movements
(two-class problem), for simplicity, we used classification
accuracy as a performance measure for the in-house dataset.
As shown in Table 2, the accuracy of the MRGF-SVM
method is higher than that of FBCSP, CSP+LDA+Bayes,
and CSP+SVM by 8.4 %, 9.49 % and 10.9 %, respectively.
Upon examination, all p<0.05, and the results in Table 2
were statistically significant.

From the comparison of methods in Tables 1 and 2,
the high performance of the proposed method might be
attributable, in part, to the highly discriminative features
learned by MRGF as the SVM classifier is also commonly
used in other competing methods.

3.2.2 Discussion of graph structure

The proposed MRGF method constructs three graphs
corresponding to three frequency sub-bands from a single
dataset and fuses them into one unified graph. To reveal the
principle of multiple graph fusion, we analyzed the changes
in graph structures during the execution of the MRGF
method. The structures of the graph can be expressed using
the weight matrix of the graph U. The weight between the
ith point and the ith point is calculated by

Uij = e

−d2
ij

2σ2 (9)

where dij is the distance of two points.
In Fig. 3, the trials of the left/right-hand imagined

movements from the competition BCI dataset were selected
to calculate the weight matrix. The abscissa of 1-72
represents the left-hand trials, and the abscissa of 73-144
represents the right-hand imagery trials. The ordinate is the
same as the abscissa. Therefore, the high values in the top
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Table 1 Dataset IIa on BCI competition: Comparison of the Kappa values of different methods on dataset IIa of BCI competition IV for prediction
of test data

Method Mean subject

Kappa S01 S02 S03 S04 S05 S06 S07 S08 S09

MRGF-SVM 0.616 0.83 0.46 0.78 0.53 0.32 0.39 0.79 0.76 0.68
Sharbaf et al. [28] 0.61 0.75 0.31 0.82 0.56 0.47 0.38 0.75 0.74 0.67
Davoudi et al. [29] 0.60 0.75 0.49 0.76 0.49 0.34 0.36 0.68 0.76 0.76
Gaur et al. [30] 0.60 0.86 0.24 0.70 0.68 0.36 0.34 0.66 0.75 0.82
Luo et al. [31] 0.60 0.63 0.17 0.88 0.38 0.69 0.41 0.76 0.76 0.69
Xie et al. [19] 0.59 0.77 0.33 0.77 0.51 0.35 0.36 0.71 0.72 0.83
Raza et al. [32] 0.58 0.88 0.22 0.88 0.39 0.53 0.33 0.38 0.85 0.81
1st (FBCSP) 0.570 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61
2nd (CSP+LDA+Bayes) 0.520 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69
3rd (CSP+SVM) 0.310 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44

Bold entries are our experimental result and they are the best performance of all the methods compared

Table 2 In-HOUSE DATASET: Comparison of the Accuracy of different methods on our In-HOUSE DATASET for prediction of test data

Method Mean subject

Accuracy (%) A01 A02 A03 A04 A05 A06 A07

MRGF-SVM 90.60 79.58 76.25 85.00 98.33 97.22 98.33 99.44

FBCSP 82.20 67.92 61.25 71.25 95.00 88.89 92.22 98.89
CSP+LDA+Bayes 81.11 70.00 65.42 57.08 92.50 92.78 92.22 97.78
CSP+SVM 79.70 73.33 60.00 52.08 95.83 85.56 93.33 97.78

Bold entries are our experimental result and they are the best performance of all the methods compared
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Fig. 3 The weight matrix of graphs on subject 3 of the BCI competition dataset. a) weight matrix of the high-dimensional Riemannian graph, b)
weight matrix of the low-dimensional embedding graph, c) weight matrix of the graph of tangent space, d) weight matrix of the fusion graph
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left and bottom right of the weight matrix indicate that the
points of the graph have low within-class distances. The
low values in the top right and bottom left lead to a high
between-class distance. Figure 3 shows the weight matrix of
the high-dimensional Riemannian graph, low-dimensional
embedding graph, tangent space graph and fusion graph
on the BCI competition datasets. The weight matrices of
embedding (Fig. 3 (b)) and tangent space (Fig. 3 (c)) have
higher values at the top left and bottom right than the weight
matrix of the Riemannian graph (Fig. 3 (a)). Furthermore,
the weight matrix of the fusion graph (Fig. 3 (d)) has the
highest value at the top left and bottom right and the lowest
value at the top right and bottom left. Figure 4 shows the
weight matrix of the high-dimensional Riemannian graph,
low-dimensional embedding graph, tangent space graph and
fusion graph corresponding to the in-house datasets. The
weight matrices in Fig. 4 are similar to those shown in
Fig. 3. Based on the results of Figs. 3 and 4, we can
infer that the graph embedding and graph fusion of MRGF
can help obtain more discriminative features from EEG
signals.

In addition, to provide more intuitive results (discrimina-
tive features), we calculate the distance of each point from
two class-related means on a high-dimensional Riemannian
graph, a low-dimensional embedding graph, a graph of tan-
gent space, and a fusion graph. In Figs. 5 and 6, the distance

from the right-hand mean is regarded as the abscissa, and the
distance from the right and mean is regarded as the ordinate.
Figures 5 (d) and 6 (d) have the most separability. Figures 5
(b,c) and 6 (b,c) are more separable than those in Figs. 5
(a) and 6(a). These results provide evidence for the higher
discriminative graph structure observed in Figs. 3 and 4.

3.2.3 Discussion of parameter influence

Finally, we analyze the influence of the parameters adopted
within the MRGF method, such as the frequency of sub-
bands, the number of selected features and the dimension of
embedding.

(I) Analysis of the frequency of sub-bands

To find the optimal frequency of sub-bands, Figs. 7
and 8 show the short-term Fourier transform of the EEG
signal from both the BCI competition and the in-house
datasets. The time-frequency diagram of the short-time
Fourier transform can be used to analyze the changes in the
power spectrum during motor imagery, especially for event
synchronization and desynchronization. After observing
the time-frequency spectrum of the left/right-hand motor
imagery modes in Figs. 7 and 8, we can clearly observe
the phenomenon of synchronization and desynchronization,
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Fig. 4 The weight matrix of graphs on subject 3 of the in-house dataset. a) weight matrix of the high-dimensional Riemannian graph, b) weight
matrix of the low-dimensional embedding graph, c) weight matrix of the graph of tangent space, d) weight matrix of the fusion graph
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on fusion graph

which appear in frequency bands of 7.5 Hz±2.5 Hz∼13.5
Hz±2.5 Hz and 15.5 Hz±2.5 Hz∼25 Hz±2.0 Hz In fact,
these frequency bands are close to the μ and β rhythms.

Therefore, the optimal frequency of the sub-band in the
MRGF method depends on the frequency band, which can
cause synchronization and desynchronization. In addition,
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Fig. 6 Separability of right/left hand trials on subject 3 on in-house dataset. a) separability of points on high-dimensional Riemannian graph, b)
separability of points on low-dimensional embedding graph, c) separability of points on graph of tangent space, d) separability of points on fusion
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9075Multiple graph fusion based on Riemannian geometry for motor imagery classification



Fig. 7 Time-frequency analysis
for subject 3 on BCI competition
dataset. a) Time-frequency
spectrum of electrode C3 in the
left hand motor imagery; b)
Time-frequency spectrum of
electrode C4 in the left hand
motor imagery; c)Time-
frequency spectrum of electrode
C3 in the right hand motor
imagery; (d)Time-frequency
spectrum of electrode C4 in the
right hand motor imagery
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to capture more information, we used a total band of 7-35
Hz as the sub-band frequency. Thus, three sub-bands of μ

and β rhythms and the total band are used in the proposed
method.

(II) Analysis of selected features

In graph fusion processing, we retain features with
high mutual information values and remove the low-value

Fig. 8 Time-frequency analysis
for subject 2 on in-house
dataset. a) Time-frequency
spectrum of electrode C3 in the
left hand motor imagery; b)
Time-frequency spectrum of
electrode C4in the left hand
motor imagery; c)Time-
frequency spectrum of electrode
C3in the right hand motor
imagery; (d)Time-frequency
spectrum of electrode C4in the
right hand motor imagery (a)                                                                         (b)

(c)                                                                          (d)
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Fig. 9 The entropy value and
percentage of feature. a) subject
1 of BCI competition dataset; b)
subject 1 of in-house dataset
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features. The key problem that remains is how to determine
the number of selected features. Figure 9 shows the mutual
information entropy of the features and the ratio of the
selected features to the total features. We rank the entropy
value of the features from high to low. As shown in Fig. 9,
a larger entropy ratio can be obtained when more features
are selected. A large entropy ratio indicates that the selected
features accurately represents the total features. However,
if the number of selected features is too large, it will lead
to high computational cost. Consequently, the number of
selected features must be determined by achieving a trade-
off between the degree of representation and computational

costs. As shown in Fig. 9, we can obtain 25 for the BCI
competition dataset and 12 for the in-house dataset.

(III) Selection of dimension of embedding

After setting the frequency of the sub-band and
the number of selected features, we could determine
the dimensions of embedding using a cross-validation
procedure. Tables 3 and 4 show the cross-validation results
of the BCI competition dataset and in-house dataset, while
the dimension of the embedding changes. In Table 3, the
highest mean accuracy of 70.11 % is obtained when the
embedding dimension is 10. In Table 4, the highest mean

Table 3 2008 BCI dataset IIa: CLASSIFICATION ACCURACY IN 10-FOLD CROSS-VALIDATION

Dimension of embedding Mean subject

accuracy(%) S01 S02 S03 S04 S05 S06 S07 S08 S09

6 69.53 78.82 62.59 86.28 58.07 43.58 49.22 86.20 87.93 73.09
8 69.30 76.90 61.02 86.81 57.64 43.75 50.52 86.46 86.63 73.96
10 70.11 78.73 62.07 86.81 56.16 45.31 50 88.11 87.33 76.48

12 69.01 79.08 60.68 87.85 56.94 40.54 48.78 84.90 87.76 74.57
14 69.64 78.91 61.46 87.07 58.85 45.92 48.35 84.72 87.33 74.13

Bold entries are our experimental result and they are the best performance of all the methods compared
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Table 4 In-house dataset: CLASSIFICATION ACCURACY IN 10-FOLD CROSS-VALIDATION

Dimension of embedding Mean subject

accuracy(%) S01 S02 S03 S04 S05 S06 S07

4 85.67 62.63 62.31 94.15 93.85 92.97 96.85 98.32
6 86.34 64.49 63.54 94.01 92.97 92.88 98.17 98.30

8 85.88 64.67 60.97 93.19 93.21 92.82 97.65 98.67
10 86.27 64.72 63.76 92.62 93.88 93.09 97.51 98.28
12 85.62 64.47 60.35 93.24 93.06 91.53 98.37 98.31

Bold entries are our experimental result and they are the best performance of all the methods compared

accuracy of 86.34 % is obtained when the embedding
dimension is 6.

4 Conclusions

To extract the spatial and spectral features from EEG sig-
nals, we construct multiple Riemannian graphs correspond-
ing to multiple sub-frequency bands and fuse them into a
unified graph. Experimental results on the BCI competi-
tion and an in-house dataset show that the proposed MRGF
can capture discriminative features and lead to high clas-
sification performance. The proposed methods can also be
applied to many other pattern-recognition problems with
input data in the form of SPD matrices.
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