
https://doi.org/10.1007/s10489-021-02973-4

Graph convolutional networks: analysis, improvements and results

Ihsan Ullah1 ·Mario Manzo2 ·Mitul Shah3 ·Michael G. Madden3

Accepted: 29 October 2021
© The Author(s) 2021

Abstract
A graph can represent a complex organization of data in which dependencies exist between multiple entities or activities.
Such complex structures create challenges for machine learning algorithms, particularly when combined with the high
dimensionality of data in current applications. Graph convolutional networks were introduced to adopt concepts from
deep convolutional networks (i.e. the convolutional operations/layers) that have shown good results. In this context,
we propose two major enhancements to two of the existing graph convolutional network frameworks: (1) topological
information enrichment through clustering coefficients; and (2) structural redesign of the network through the addition of
dense layers. Furthermore, we propose minor enhancements using convex combinations of activation functions and hyper-
parameter optimization. We present extensive results on four state-of-art benchmark datasets. We show that our approach
achieves competitive results for three of the datasets and state-of-the-art results for the fourth dataset while having lower
computational costs compared to competing methods.

Keywords Graph convolutional networks · Clustering coefficients · Dimensionality reduction

1 Introduction

Traditionally in Machine Learning, data are represented
as points in a vector space. In reality, however, structured
data is omnipresent, and the ability to include structural
information between points allows the model hypothesis
language to be expanded relative to table-structured data,
so that more expressive and accurate models can be

� Mario Manzo
mmanzo@unior.it

Ihsan Ullah
ihsan.ullah@ucd.ie

Mitul Shah
m.shah4@nuigalway.ie

Michael G. Madden
michael.madden@nuigalway.ie

1 CeADAR Ireland’s Center for Applied AI, University College
Dublin (UCD), Dublin, Ireland

2 Information Technology Services, University of Naples
“L’Orientale”, 80121, Naples, Italy

3 Machine Learning and Data Mining Group, School
of Computer Science, National University of Ireland,
Galway, Galway, Ireland

learned from the data. Graphs are widely used to represent
structured information using vertices/nodes and edges,
including local and spatial information derived from the
data, but most Machine Learning methods cannot handle
graph-structured data.

Very often, learning objectives concern predictions about
the properties of nodes in such graphs. For example, given
a network that represents a human phenomenon, such as
a mutual exchange of messages in a social network, the
goal may be to predict which users belong to a community
of common interests. Performing forecasting, especially in
semi-supervised environments, has been a central focus
of graph-based semi-supervised learning (SSL) [19]. The
Graph-based SSL approach is similar to traditional SSL,
where the training data consists of a small set of labelled
data that is used as a reference in training for classifying the
majority of the data, which is unlabelled. In mathematical
notation, the structure described bthe graph is normally
incorporated as an explicit regularizer which applies a
sliding constraint on the node labels to be estimated.

Recently, Graph Convolutional Networks (GCNs) [6, 9]
have been proposed; these are designed to work on graph-
structured data with the deep neural network paradigm.
In this paper, we consider the task of graph-based semi-
supervised learning using GCNs. A GCN progressively
estimates a transformation (also called an embedding)
from graph space to vector space, and an aggregation

/ Published online: 16 November 2021

Applied Intelligence (2022) 52:9033–9044

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02973-4&domain=pdf
http://orcid.org/0000-0001-8727-9865
mailto: mmanzo@unior.it
mailto: ihsan.ullah@ucd.ie
mailto: m.shah4@nuigalway.ie
mailto: michael.madden@nuigalway.ie

of neighborhood nodes, in which a target loss function
for backpropagation errors is adopted. The resulting node
embedding represents an estimation for label scores on the
nodes. Confidence based Graph Convolutional Networks
(ConfGCN) were proposed [24] to obtain confidence
estimates for label scores. These confidence scores can be
used to understand the reliability of the estimated labels on
a generic node.

In this context of enhancing GCN and ConfGCN, the
aims of our paper are threefold:

1. Standard GCN and ConfGCN algorithms only make use
of information relating to the degree of individual nodes
(matrix D̃ in (1); see below in Section 3) to process the
graphs. We introduce a measure that provides additional
topological information called clustering coefficients.

2. In deep learning, common approaches to improving per-
formance include adding additional layers or changing
the regularization methods. In addition, the structure
and layers of a network can be redesigned to obtain bet-
ter results compared to existing models. To this end, we
have combined GCN and Dense layers, and show that
this provides better results compared to GCN alone and
avoids the oversmoothing issue which can arise in the
GCN when the depth is increased.

3. In the past few years, many researchers have worked on
designing novel activation functions to help deep neural
networks in converging and obtaining better performance.

GCN and its variations employ a single logistic
sigmoid or ReLU activation function. Sigmoid is
affected by the saturation problem, whereas ReLU is
affected by the dying ReLU problem [13] that results
in reducing the ability to learn. In this paper, we used
an efficient approach to learn during training from
a combination of newer activation functions (such as
ReLU6); our goal is to search through a space of
activation functions defined by a convex combination
of base functions.

To achieve the above objectives, we analyze GCN and
ConfCGN to show the impact of proposed changes
during training and testing. The paper is organized as
follows: Section 2 gives an overview of related work.
Section 3 provides an overview of GCN and ConfCGN.
Section 4 explains the proposed enhancements. Then,
Section 5 discusses the results achieved with proposed
networks. Finally, Section 6 gives some future directions
and concludes our paper.

2 Related work

Recent literature provides some interesting insights about
the application of neural networks and data organized

as graphs. In [9], a variant of convolutional neural
networks, called Graph Convolutional Networks (GCNs),
which operate directly on graphs, is presented. The main
motivation for using a convolutional architecture is related
to the localized first-order approximation of spectral
graph convolutions. GCN works by linearly scaling node
connections and adopting hidden layer representations that
encode both the structure and features of graphs.

In [6], the authors generalize convolutional neural
networks (CNNs) from low-dimensional regular grids to
high-dimensional irregular domains represented in the form
of graphs. The authors presents a CNN formulation in the
spectral graph theory domain, which is useful to work as
fast localized convolutional filters on graphs. The proposed
formulation does not alter the computational complexity
of standard CNNs, despite being able to process graph
structures.

In [15], an enhanced version of work presented in [9] is
introduced. It can work with syntactic dependency graphs in
the form of sentence encoders that can extract latent feature
representations of words arranged in a sentence. Moreover,
the authors showed that the layers are complementary to
LSTM layers.

In [25], a neural network architecture for inductive and
transductive problems on graph-structured data is proposed.
It is based on masked self-attentional layers, called graph
attention networks (GATs). In a GAT, nodes can contribute
to neighboring nodes’ feature extraction and different
weights are assigned to different nodes in a neighborhood,
eliminating expensive matrix operations. In this way, several
key challenges of spectral-based graph neural networks are
addressed at the same time.

In [24], a modified version of [9] called the Confidence-
based Graph Convolutional Network (ConfGCN) is intro-
duced. It provides a confidence estimation about label
scores, not available in GCN. ConfGCN adopts label score
estimation to identify the influence of a node on its neigh-
borhood during aggregation, thus acquiring anisotropic abil-
ities. In [28], another modified version of [9] named Lovász
Convolutional Networks (LCNs) is introduced. The network

can capture global graph properties through Lovász
orthonormal embedding of the nodes.

In [1], a Diffusion-Convolutional Neural Network
(DCNN) is described. Diffusion-convolution operation is
useful to learn representations as an effective basis for node
classification. The network includes different qualities such
as latent representation for graphical data, invariance under
isomorphism, polynomial-time prediction and learning.

In [4], possible generalizations of Convolutional Neural
Networks (CNNs) to signals are defined for more general
domains. In particular, two networks are described, one
based upon a hierarchical clustering of the domain and
another based on the spectrum of the graph Laplacian.

9034 I. Ullah et al.

The networks can utilize convolutional operations with
some parameters independent of the input size, resulting in
efficient deep architectures. In addition, a deep architecture
with low learning complexity on general non-Euclidean
domains is introduced in [8] as an extension of Spectral
Networks, by including a graph estimation procedure.

In [12], a graph partition neural network (GPNN) is
described, which is an extension of graph neural networks
(GNNs) that is applicable to large graphs. GPNNs combine
local information between nodes in small subgraphs and
global information between the subgraphs. Graphs are
partitioned efficiently through several algorithms and,
additionally, a novel variant for fast processing of large scale
graphs is introduced. Similarly, in [10] the Gated Graph
Sequence Neural Network (GGNN) is proposed, which is
an extended version of the Graph Neural Network (GNN)
[20]. It uses modified gated recurrent units and modern
optimization techniques, and extends output sequences.

In the following section, we explain baseline GCN and
ConfGCN networks.

3 Baseline networks

In this section, we first set out the basic notation and defini-
tion of graph structures, which are useful for understanding
the node classification problem. Subsequently, we briefly
introduce the Graph Convolutional Network (GCN) [9], and
its enhancement the Confidence-based Graph Convolutional
Network (ConfGCN) [24]. These two frameworks are com-
pared and analysed in terms of limitations and differences.
Finally, we propose a set of improvements and evaluate
them experimentally.

3.1 Notation and problem statement

Graphs are data structures that can be useful for repre-
senting dynamic and interactive phenomena such as social
networks, citation networks, chemical molecules, and rec-
ommendation systems. A graph is composed of two basic
elements: nodes and edges. An edge represents the rela-
tionship between nodes. For example, considering a social
network, nodes represent entities such as members, while
edges describe relationships between those entities, such
as friendships between members. Optionally, there may be
multiple different types of nodes and edges, depending
on the domain. A graph with only one type of node and
one type of edge is termed homogeneous. A social net-
work could be an example of a homogeneous graph, with
nodes representing members and edges representing friend-
ships, as there is just one type of node and one type of
edge. Conversely, when two or more types of nodes and/or
edges are present, the graph is termed heterogeneous. In a

heterogeneous social network graph, edges could represent
multiple types of connection (friendship, co-worker, collab-
oration, or degree of kinship). The nodes and edges could
also include properties, attributes or features. In addition,
graphs can be either directed (representing a specific rela-
tionship in one direction) or undirected (where relationship
are in both directions). In this paper, the datasets we utilize
contain data about citation networks where nodes are scien-
tific publications and citation links are the edges between
nodes.

In the following subsection, we will define the key terms
and notations adopted for graphs and other variables used in
this paper.

3.2 Graph convolutional networks

Graph Convolutional Networks (GCNs) [9] work on
undirected graphs. Given a graph G = (V , E, X),

V = Vl ∪ Vu is the set containing labeled (Vl) and
unlabeled (Vu) nodes in the graph of dimension nl and nu, E
is the set of edges, and X ∈ R

(nl+nu)×d represents the input
node features, the label of a node v is represented by a vector
Yv ∈ R

m, belonging to m classes. In this context, the goal is
to predict the labels, Y ∈ R

nl×m, of the unlabeled nodes of
G. To denote confidence, a label distribution μv ∈ R

m and
a diagonal covariance matrix �v ∈ Rm×m of estimations are
added. ∀v ∈ V , μv,i represents the score of label i on node
v, while (�v)ii represents the variance in the estimation of
μv,i . In other words, (�−1

v)ii is the confidence in μv,i .
The node representation after a single layer of GCN can

be defined as:

H = f ((D̃− 1
2 (A + I)D̃− 1

2)XW) (1)

Here, W ∈ R
d×d includes the network parameters, A

represents nodes adjacency, D̃ii = ∑
j (A + I)ij , and f is

any activation function such as ReLU , f (x) = max(0, x).
(1) can be reformulated as:

hv = f

⎛

⎝
∑

u∈N(v)

Whu + b

⎞

⎠ , ∀v ∈ V (2)

where b ∈ R
d represents bias, N(v) includes nodes

neighborhood of v in graph G including v and hv is
representation of node v.

The goal is to acquire multi-hop dependencies between
nodes, different GCN layers can be superimposed over one
another. The representation of the node v after k layers can
be written as

hv = f

⎛

⎝
∑

u∈N(v)

(Wkhk
u + bk)

⎞

⎠ , ∀v ∈ V (3)

where Wk and bk represent the weight and bias parameters
of GCN layer, respectively. However, increasing the depth

9035Graph convolutional networks: analysis, improvements and results

of GCN can give rise to an oversmoothing issue [5, 30], see
Section 5.4.

3.3 Confidence basedGraph Convolutional Networks

In [24], the Confidence-based Graph Convolutional Net-
work (ConfGCN) framework is described. The authors
define the influence score of node u relative to its near node
v during the GCN process as follows:

ruv = 1

dM(u, v)
(4)

where dM(u, v) represents the Mahalanobis distance
between two nodes [17]:

dM(u, v) = (μu − μv)
T (�−1

u + �−1
v)(μu − μv) (5)

Specifically, considering nodes u and v with label
distributions μu and μv and covariance matrices �u and �v ,
ruv gives greater importance to spatially close nodes that
belong to same class, and reduces the importance of nodes
with low confidence scores. This leads to inclusion of the
anisotropic capability during neighborhood exploration. For
a node v, (3) can be rewritten as:

hv = f

⎛

⎝
∑

u∈N(v)

ruv × (Wkhk
u + bk)

⎞

⎠ , ∀v ∈ V . (6)

The final label prediction is obtained by (7) with K number
of layers.

Ỹv = sof tmax(WKhK
v + bK),∀v ∈ V (7)

3.4 GCN versus ConfGCN

We analysed [9] and [24] and found the following
differences between the two network types:

1. The major difference between both is that GCN imple-
ments a node-embedding projection from graph space
to vector space to describe the neighborhood, while
ConfGCN implements a confidence-based prediction
scheme where the higher the confidence of neighbor-
ing nodes, the more influence those neighbouring nodes
have on the label of the unknown nodes.

2. GCN implements the Chebychev polynomial method
for computational cost reduction while ConfGCN uses
loss smoothening, regularization and optimization for
better efficiency. Compared to GCN, ConfGCN has
better accuracy on the same datasets but has higher
execution time.

3. GCN does not have constraints on the number of nodes
that influence the representation of a given target node
and each node is influenced by all the nodes in its k-

hop neighborhood. On the other hand, in ConfGCN,
the label confidences are used to ignore less confident
nodes and nodes having higher confidence would be
considered important.

4. ConfGCN adopts neighborhood label entropy to quan-
tify label mismatch while GCN does not do this anal-
ysis. This helps ConfGCN in achieving better perfor-
mance.

5. ConfGCN has higher computational cost than GCN.
While calculating confidence value (4), the cost
increases because it includes an additional exploration
of the neighborhood equal to its width (number of nodes
to consider).

Some of the limitations of GCN and ConfGCN include:

1. GCN [9] and ConfGCN [24] are not applicable to
directed graphs. Neither of them support edge features
and they are limited to undirected graphs (weighted or
unweighted).

2. In GCN, locality is assumed for the nodes. As the size of
the neighborhood grows, the algorithmic time and space
complexity grow. For that reason, GCN cannot handle
very dense graphs, compared to ConfGCN.

3. In ConfGCN, increasing the number of layers beyond
a certain level reduces accuracy. This behavior is con-
nected to the increase of influencing nodes with increas-
ing layers beyond a certain number, which results in
average/ambiguous information during aggregation. In
addition, it results in creation of embeddings with
almost similar values. This is also known as over-
smoothing. This will be explained in detail in Section
5.4.

In the following section, we will explain our proposed
enhancements and resulting network structures.

4 Proposed enhancements

Figure 1 shows an overview of our proposed framework.
We propose four enhancements for both types of networks.
The first enhancement is to change the hyper-parameters
and training algorithm. The second and third are major
enhancements: adding more structural information to
adjacency matrix by utilizing clustering coefficients (CC)
and introducing a canonical optimization technique (also
referred to as convex optimization). The fourth concerns
a combination of two base networks with the introduction
of additional dense layers. All of these enhancements
are applied to both the baseline networks. Below we
will explain the design and implementation of our
enhancements.

9036 I. Ullah et al.

Fig. 1 Proposed approach for enhancing GCN/ConfGCN. Here, CC
represents the clustering coefficient added after GCN/ConfGCN, F
is the activation function in Layer 1, F1 and F2 represent the acti-
vation functions in Layers 2 and 3 respectively, and c1 and c2 are
the two parameters for canonical convex optimization. In Layer 1,

the black coloured edges indicate the three nodes (assuming kernel
size=3) that are considered for a graph-convolution operation at a
specific time. Finally, the optimization of the training algorithm and
hyper-parameters are shown symbolically in the bottom-left

4.1 Optimizing hyper-parameters

First, we optimize the baseline networks by fine-tuning the
hyper-parameters, including the activation function (AF),
loss function (LF), and the number of nodes in each
hidden layer. For possible AFs, we have explored the
set {ReLU , ReLU6, ELU , and SELU}. For loss func-
tions, we evaluated both simple cross entropy and cross
entropy softmax V2. To optimise the number of nodes,
we considered the following possible numbers: {16, 32,
48, 64, 80, 96, 100, 112 and 200}. The objective is to
optimize the parameters globally for an optimal combina-
tion that will lead us to the best performance in fewer time.
In the remainder of this paper, the best network that results
from exploring these combinations of hyper-parameters
will be called the Optimized Graph Convolutional Net-
work (OpGCN) and Optimized Confidence based Graph
Convolutional Network (OpConfGCN), respectively.

4.2 Convex combination of activation functions

A standard neural network Nd is composed of a set of
hidden layers d and a set functions Li that lead to a final
mapping L related to a problem to address: Nd = L ◦ Ld ◦
· · · ◦ L1, where ◦ indicates the composition of functions.
Specifically, each hidden layer function Li is composed of

two functions, gi and σi , which include parameters within
the spaces Hgi and Hσi . A remapping of the layer input
neurons in form of activation function can be seen as: Li =
σi ◦ gi .

The learning process of Li consists of an optimization
procedure in the space Hi = Hσi × Hgi . In general, σi

does not perform any role in the learning phase and Hσi is a
singleton, therefore, Hi = {σi}×Hgi . If we consider a fully-
connected layer from R

ni to R
mi which adopts a ReLU AF,

Hgi represents the set of all affine transformations from R
ni

to R
mi , then Hi = ReLu×Lin(Rni ,Rmi)×K(Rmi), where

Lin(A, B) and K(B) are the sets of linear maps between A

and B respectively, and the set of translations of B.
In this paper, we adopt a technique to define learnable

activation functions [14] that can be used in all hidden layers
of a GCN architecture.

The approach consists of a hypothesis space Hσi and is
based on the following idea:

– Select a set of activation functions F = {f1, . . . , fN },
in which elements can be adopted as base elements;

– Fix the activation function σi to combine in linear way
the elements belonging to F set;

– Search for an optimal hypothesis space;
– Perform GCN optimization, where the hypothesis space

of each hidden layer is Hi = Hσi × Hgi .

9037Graph convolutional networks: analysis, improvements and results

Table 1 Baseline network
structure for enhancing with
convex approach

Input Size L1-Nodes L1-ActivationFun OutputNodes loss function

1433 16 ReLU 3 Cross Entropy

Given a vector space V and a finite subset A ⊆ V we can
define the following subset of V , termed the convex hull as:

conv(A) := {�iciai |�ici = 1, ci ≥ 0, ai ∈ A}; (8)

conv(A) is not a vector subspace of V and is a
generic convex subset in V reducing to a simplex of
dimension (|A| − 1) when the elements of A are linearly
independent. If we consider F := {f0, f1, . . . , fN } the set
of activation functions fi , the vector space F is defined
from F considering all linear combinations

∑
i cifi with

ci ≥ 0, �ici = 1. Note that, even though F is a spanning set
of F, it is not generally a basis; indeed |F | ≥ dim F. Based
on previous definitions, we can now define the technique to
build learnable activation functions as follows:

– Fix a finite set F = {f1, . . . , fN }, where each fi is a
learnable activation function;

– Create an additional activation function f as a linear
combination of all the fi ∈ F ;

– Select as the hypothesis space Hf the conv(F) set;

From this approach, several combinations of activation
functions in tuples were used e.g. as shown in F :

F := {ReLU, ReLU6} (9)

where

ReLU6 = min(max(0, x), 6) (10)

To summarise this subsection, for convex combination we
have implemented two methods:

1. Taking two input layers of a network, use a different
activation function for each of them and then apply any
mathematical operation on the inputs, i.e. summation,
subtraction, maximum, minimum and average values of
output from the two input layers.

2. Examining those results, we observed that summation
provides better results compared to other operations.
Therefore, we applied the canonical form on the
outputs, due to which the convex combination became:
conv(A) := c1ReLU6 + c2ReLU6. The structure of
the baseline network with optimized results is shown in
Table 1, and its enhanced network structure is given in
Table 2.

From here on, we will call the two enhanced versions,
Convex Graph Convolutional Networks (ConvGCN) and
Convex Confidence based Graph Convolutional Networks
(ConvConfGCN).

4.3 Clustering coefficients

In (1), the adjacency matrix A that describes the topology of
the network is a very significant part of both networks. The
identity matrix I is added to A to remove zero values on the
main diagonal. Our idea is to further add more information
about nodes by introducing a particular property called
Clustering Coefficients. In graph theory, the clustering
coefficient describes the degree of aggregation of nodes in
a graph. The measure is based on triplets of nodes. A triplet
is defined as three connected nodes. A triangle can include
three closed triplets, each one centered on one of the nodes.
The two possible versions can be defined as the Global
Clustering Coefficients (GCCs) and the local Clustering
Coefficients (CCs) [16]. We adopted the second one which
is defined as:

CCi = δi

ki(ki − 1)
(11)

where ki is the degree of node i and δi is the number of
edges between the ki neighbors of node i. The measure
is in the range [0, 1], 0 if none of the neighbors of a
node are connected and 1 if all of the neighbors are
connected. Topological information is provided through
CCs, which is connected to other structural properties [22],
such as transitivity, density, characteristic path length, and
efficiency, useful for representation in the vector space. In
this work, we propose to replace the main diagonal of the
matrix I with CC values. This new matrix is represented by
′C′

n.
For a graph of n × n nodes the ′C′

n becomes:

Cn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CC1 0 0 · · · 0
0 CC2 0 · · · 0
0 0 CC3 · · · 0
...

...
...

. . .
...

0 0 0 · · · CCn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(12)

Table 2 Enhanced network
structure for convex approach In-Size L1-Nodes L1a-AF L1b-AF Out-Nodes LossFun c1 c2

1433 16 ReLU6 ReLU6 3 CrossEntropy 0.8 0.2

9038 I. Ullah et al.

From now we will call the two enhanced versions with
CCs as Clustering Coefficients Graph Convolutional Net-
works (CCGCN) and Clustering Coefficients Confidence
based Graph Convolutional Networks (CCConfGCN).

The structure of the baseline network achieved high
accuracy as presented in Table 1. The CC matrix was added
to the Adjacency matrix while pre-processing of the input
and the combined matrix was considered as input to the
neural network. The new resulting matrix ′C′

n replaces the
Identity matrix with the same size.

It is worth highlighting that the information relating to
the CC is added to give more weight to the structural
features of the graph. This will not result in low efficiency
during the iterative update of the nodes. However, it can fail
when the graph is sparse or poorly connected in some of its
parts.

4.4 GCN and dense layer combination

Some deep learning research has shown that, rather than
adding a new layer, if one can properly redesign existing
layers, activation functions, regularization methods, etc., it
can result in improved performance relative to the initial
models [23]. To this end, We have added dense layers to
GCN and created a network that gave us better results.
A dense layer, also known as a fully-connected layer, is
represented as:

yln
u = fln

(
I∑

i=1

((
w

ln
(i,v) . y

ln−1
(i)

)
+ b

ln
(1,v)

)
)

(13)

Here, yln
u represents the neuron at layer n, wln

i,v represents the
weight (i, v) for that neuron multiplied with input neuron
y

ln−1
i , and b

ln
v represents that bias that is added to the

weighted sum. The resultant weighted sum value is passed
through an activation function fln .

Table 3 shows the architecture of this network. We used
this network on all four datasets. It shows the baseline
models where the ‘In-Nodes’ represents the input nodes to
a layer, ‘Out-Nodes’ represents the output nodes of a layer,
‘AF’ represents the activation function, whereas drop out
rate is represented by ‘DO’.

The baseline models in Table 3 are then enhanced using
various combinations of changing the parameters and using
proposed enhancements. After extensive experiments, their
best results are shown in Table 5.

This combination provides a mixture of both GCN and
Dense layers and results in better performance compared to
individual GCN or Dense model.

In training, we used the Adam optimizer, as was
used for all other networks. In each layer, we used the
ReLU6 AF. Therefore, from now on, we will call these

Table 3 Networks having both GCN and dense layer

Layer In-Nodes Out-Nodes AF DO

Input 1433 - - -

GCN 1433 32 Relu6 0.5

Dense-1 32 16 Relu6 0.5

Dense-2 16 32 Relu6 0.5

GCN 32 48 Relu6 0.5

GCN 48 7 - 0.5

Output 7 7 Softmax -

two enhanced versions the Dense Graph Convolutional
Networks (DGCN) and Dense Confidence based Graph
Convolutional Networks (DConfGCN), respectively.

5 Results

This section describes the results of applying the proposed
enhancements to public datasets. We compare our results
with the state-of-the-art competitors in the literature. The
most common evaluation metrics such as accuracy and
execution time are widely used in the literature, hence, we
use these metrics evaluate our proposed network. In all the
experiments for a convex combination of activation over all
datasets, the optimal results that we achieved are with the
following combination of F :

F := {ReLU6, ReLU6}. (14)

5.1 Datasets

The concept of similarity between data can be expressed
through the creation of graphs. Specifically, the edges
describe a certain degree of similarity through associated
edge weights. In the cases handled, the datasets adopted are
stored in the form of a graph and, therefore, the processing
phase was not carried out by us. Therefore, as required by
GCN models, graphs were adopted directly as input for
processing.

For performance evaluation, we make use of several
state-of-art semi-supervised classification datasets. The
datasets are Cora, Citeseer, Pubmed [21], and Cora-ML
[3]. The setup is the same that was followed in [24].
We aim to classify documents into one of the predefined
classes. Datasets represent citation networks in which each
document is encoded using bag-of-words features with
undirected edges between nodes. As an example, Fig. 2 left
visualizes a Citeseer dataset, whereas right side shows its
zoomed-in version to show few nodes and how they are
connected with others. The dataset statistics are summarized
in Table 4. Here, Label Mismatch is the fraction of edges

9039Graph convolutional networks: analysis, improvements and results

Fig. 2 Left side illustrates a structural graph of Citeseer dataset, whereas right side is the zoomed-in version of specific nodes and edges. As can
be seen, the graph is very sparse and includes more density in specific areas as shown in the right side

between nodes with different labels in the training data.
Except for Cora-ML, the datasets have quite low label
mismatch rates.

5.2 Competing approaches

We compare our method with competitor approaches that
can be divided into four groups. The first group includes
networks based on extensions of the GCN. G-GCN [15]
adopts edge-wise gating to remove noisy edges during
aggregation. GAT [25] provides a method based on attention
that gives different weights to different nodes by allowing
nodes to attend their respective neighborhood. GAT net-
work [25] learns both vertex and edge features to generalize.
LGCN [7] works based on a learnable graph convolu-
tional layer (LGCL), using 1D-CNN. Therefore, to make
the data readable for the network, its LGCL converts the
graph data into a fixed 1D structure by selecting a fixed
number of neighbouring nodes from each feature based on
their ranking. Fast-GCN [11] is an accelerated and opti-
mized tool for constructing gene co-expression networks

that can fully harness the parallel nature of GPU (Graphics
Processing Unit) architectures. SGC [27] reduces com-
plexity through the subsequent removal of non-linearities
and collapsing the weight matrices between consecutive
layers.

The second group includes networks based on extensions
of the GNN [20]. GGNN [10] generalizes the RNN
framework for graph-structured data applications. GPNN
[12] adopts a partition approach to spread the information
after the subdivision of large graphs into subgraphs.

The third group includes algorithms based on embed-
dings. SemiEmb [26] is a framework that provides semi-
supervised regularization to improve training. DeepWalk
[18] adopts random walks to learns node features. Planetoid
[29] adopts a transductive and inductive approach for class
label prediction using neighborhood information.

The fourth group includes other approaches. LP [31] is a
label propagation algorithm that spreads labels information
to the neighborhood following the proximity. ManiReg [2]
provides geometric regularization on data. Feat [29] works
based on node features ignoring the structure information.

Table 4 Dataset statistics
Dataset Nodes Edges Classes Features Label Mismatch Vl

V

Cora 2708 5429 7 1433 0.002 0.052

Cora-ML 2995 8416 7 2879 0.018 0.166

Citeseer 3327 4372 6 3703 0.003 0.036

Pubmed 19717 44338 3 500 0.0 0.003

9040 I. Ullah et al.

5.3 Comparison

We have analyzed and explored the following activation
functions: ReLU, ReLU6, ELU, and SELU. Of these, only
ReLU6 was found to be the most suitable for the proposed
model structure. Therefore, all the optimal results reported
in this and following section uses ReLU6. Compared to
GCN, ConfGCN has better accuracy on the same datasets
but has higher execution time.

We have summarized experiments by showing the best
results of all our enhancements for all the datasets in
Table 5. We have been successful in getting the state-of-the-
art result on one dataset as well as very close to the other
three, as presented in Table 5. On the Cora ML dataset, we
achieved the current best accuracy of 86.9% ± 0.4 using
the DConfGCN. This is the current state-of-the-art based
on our knowledge as the relevant recent papers (LGCN,
and Fast-GCN) did not report their results on the Cora ML
dataset. In case of the Citeseer dataset, we achieved our
best result of 73.26%. This makes our accuracy with Con-
vConfGCN the second-best to date by only 0.3% less than
LGCN.

We have achieved the 3rd best accuracy for the Pubmed
dataset i.e. 79.8% ± 0.4. Finally, on the Cora dataset, we

achieved 82.1%±0.6 accuracy with ConvConfGCN, which
is better than baseline GCN and ConfGCN by a slight
margin, but at 4th position overall in the list.

One of the reasons for not having the best result for the
Citeseer, Cora, and Pubmed could be that the best reported
results in LGCN [7] cannot be directly compared with
ours as LGCN uses regular convolutional kernels in their
network. Rather than designing new kernels to work on
graph data, in LGCN the authors organized the graph data in
a way that normal convolutional kernels can operate over it
and learn features from them. Our enhancements and results
are reported to provide a baseline for future works to be
done in the field of SSL for graphs.

In Table 6, the execution time for the PubMed dataset
is shown, where all runs were performed on the same
computer.

The time (in seconds) per epoch varies for each
dataset because the size of the features in each dataset
varies. Overall, GCN and its enhancements are faster than
confGCN and its enhancements. While optimizing based
on hyper-parameters, we found that the main reduction in
computational cost was due to usage of the cross-entropy
softmax V2 function rather than simple cross-entropy.
Therefore, in all our subsequent experiments, we used this

Table 5 Performance
comparisons of different
methods on described datasets.
The accuracy in brackets shows
the single best result in the 100
runs

Method Citeseer Cora Pubmed Cora ML

LP [31] 45.3 68.0 63.0 -

ManiReg [2] 60.1 59.5 70.7 -

SemiEmb [26] 59.6 59.0 71.1 -

Feat [29] 57.2 57.4 69.8 -

DeepWalk [18] 43.2 67.2 65.3 -

GGNN [10] 68.1 77.9 77.2 -

Planetoid [29] 64.9 75.7 75.7 -

G-GCN [15] 69.6 ± 0.5 81.2 ± 0.4 77.0 ± 0.3 86.0 ± 0.2

GPNN [12] 68.1 ± 1.8 79.0 ± 1.7 73.6 ± 0.5 69.4 ± 2.3

GAT [25] 72.5 ± 0.7 83.0 ± 0.7 79.0 ± 0.3 83.0 ± 0.8

GCN [9] 69.4 ± 0.4 80.9 ± 0.4 76.8 ± 0.2 85.7 ± 0.3

OpGCN 70.1± 0.7 80.3± 0.4 79.1± 0.3 85.3± 0.4

ConvGCN 70.1 ± 0.3 80.1± 0.2 79.0± 0.2 84.3± 0.3

CCGCN 53.1 ± 0.6 55.3 ± 2.4 71.1 ± 0.7 63.3 ± 0.4

DGCN 70.9 ± 0.7 82.1 ± 1.2 (83.1) 79.10 ± 0.4 86.3 ± 0.3

ConfGCN [24] 72.7 ± 0.8 82.0 ± 0.3 79.5 ± 0.5 86.5 ± 0.3

OpConfGCN 70.1 ± 1.4 80.9 ± 0.8 79.8 ± 0.4 (80.1) 84.6 ± 0.5

ConvConfGCN 73.1± 0.2 (73.26) 82.1± 0.6 79.8± 0.4 (80.1) 86.4± 0.3

CCConfGCN 70.8 ± 0.3 82.1 ± 0.6 78.2 ± 0.4 83.4 ± 0.5

DConfGCN 58.03 ± 0.9 81.0 ± 1.4 78.8 ± 0.6 86.9 ± 0.4 (87.01)

SGC [27] 71.9 ± 0.1 81.0 ± 0.0 78.9 ± 0.0 -

LGCN [7] 73.4 83.3 79.7 -

Fast-GCN [11] - 86 88 -

9041Graph convolutional networks: analysis, improvements and results

Table 6 Execution time on pubmed dataset

Method Time (sec)

GCN 0.8

OpGCN 0.415

ConvGCN 0.585

CCGCN 0.417

DGCN 0.662

ConfGCN 1.344

OpConfGCN 1.93

ConvConfGCN 1.96

CCConfGCN 1.93

DConfGCN 1.99

loss function. The best found network in terms of execution
time is OpGCN.

The PubMed dataset is a denser and more complex
graph to classify. OpConfGCN and ConvConfGCN provide
better results because they are two versions oriented to the
optimization of performances compared to CCConfGCN
and DConfGCN that are oriented to the identification of the
structural information within the graph. The Cora and Cora-
ML datasets have fewer nodes and more edges and classes,
which makes the classification phase more complex.
Nonetheless, due to the dense layers in DConfGCN and
DGCN, good results are achieved.

The Citeseer dataset is the simplest of the datasets with
the fewest edges. It can be seen that the trend of the
results is much lower than the others. Out of the four
proposed approaches, only ConvConfGCN shows good
accuracy on Citeseer. We conclude that ConvConfGCN is
the best proposed model among all we evaluated, based on
its optimal performance on three out of the four datasets as
shown in bold in Table 5.

5.4 Over-smoothing in GCN

GCN includes the message-passing mechanism to exploit
the information encapsulated in the graph structure.
However, this can lead to limitations when combined with
the depth of the neural network. The message-passing
mechanism provides two main functions: (1) aggregation,
which collects spatial neighborhood information in the
graph structure and node features; (2) updating, to combine
them to update the representation of the node. This
mechanism works to represent interacting nodes in a similar
way. The search for an expressive and representative model
for the structure of the graph, through the addition of more
deep graph convolutional layers, could produce repetitive
nodes in the new embedding for the new deep layer. This
behavior is called over-smoothing. An important aspect
concerns the quantification of over-smoothing, adopted

for tracking during the training of the model. This is an
approach adopted as a form of numerical penalty by adding
it as a regularization term in the objective function.

In [5] Mean Average Distance (MAD) and Mean Average
Distance Gap (MAD-Gap) are introduced, to measure
the smoothness and over-smoothness of the graph nodes
representations. MAD and MADGap calculate the Mean
Average Distance among node representations, also known
as embeddings, in the graph with a purpose to show the
smoothing as a natural effect of adding more layers to the
neural model.

In [30] Group Distance Ratio, which computes the
ratio of two average distances, is introduced. First, nodes
are associated with their specific group label. Then, to
construct the nominator of the ratio, the pairwise distance
between every two groups of nodes is calculated, averaged
over the resulting distances. For the denominator, the
average distance for each group is calculated. Although the
quantification phase can be performed, it is not enough to
add the metrics described as a regularization term.

The remaining problem is that calculating the metrics
at each iteration of training may be computationally
expensive, since it is necessary to access all the training
nodes of the graph. For this reason, the problem of
over-smoothing is addressed with different solutions that
affect training. In [30] the neural model assigns nodes to
groups and normalizes them independently to generate a
new embedding matrix for the next layer. This additional
layer is built to optimize the Group Distance Ratio.
In fact, normalizing embedded nodes within a group
makes their representation similar, and this scaling, using
trainable parameters, provides varied embedding belonging
to different groups labels. In our case, rather than increasing
the depth of graph convolution layers, we added dense
layers after the first graph convolution layer which avoids
the creation of almost similar embedding between nodes.
Hence, we avoid the over smoothing issue that arises from
the depth of graph convolution layer networks.

6 Conclusions

We have presented enhancements of GCN and ConfGCN
for the task of semi-supervised learning with graph con-
volutions. In particular, we have focused on four main
changes: parameter configuration; adding more structural
information to adjacency matrices for graph representa-
tion; convex optimization of activation functions; and com-
bination of base networks with dense layers. Through
these enhanced graph networks, we have been able to show
that the addition of the layers can help to increase accu-
racy, unlike in the baseline networks where addition of
new layers reduces accuracy. Currently, all of the Graph

9042 I. Ullah et al.

Convolutional Layers use 1D convolutions to operate the
network, but there can be 2D or 3D weighting schemes that
can be implemented on the concurrent networks. GCN was
initially proposed as a novel approach for SSL, and imple-
mented the layer-wise propagation rule, while ConfGCN
was subsequently proposed as a network that estimates label
scores with labels’ confidences. We have proposed six dif-
ferent network configurations and validated them on four
benchmark datasets. The selection of optimal parameters
is done through a grid search for exploring their complete
space. This helps in successfully achieving high accuracy
and low execution times for all networks in all four datasets.

Acknowledgements The first two authors acknowledge the guidance
and supervision of their late Prof. Alfredo Petrosino. May he rest in
peace. This research is supported by the European Union’s Horizon
2020 Research and Innovation Programme, under Grant Agreement
No. 700264, ROCSAFE.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Atwood J, Towsley D (2016) Diffusion-convolutional neural
networks. In: Advances in neural information processing systems,
pp 1993–2001

2. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization:
a geometric framework for learning from labeled and unlabeled
examples. J Mach Learn Res 7:2399–2434

3. Bojchevski A, Günnemann S (2018) Deep gaussian embedding
of graphs: Unsupervised inductive learning via ranking. In:
International conference on learning representations, pp 1–13

4. Bruna J, Zaremba W, Szlam A, Lecun Y (2014) Spectral networks
and locally connected networks on graphs. In: International
conference on learning representations (ICLR 2014), CBLS, 2014

5. Chen D, Lin Y, Li W, Li P, Zhou J, Sun X (2020) Measuring
and relieving the over-smoothing problem for graph neural
networks from the topological view. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol 34, pp 3438–3445

6. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional
neural networks on graphs with fast localized spectral filtering.
In: Advances in neural information processing systems, pp 3844–
3852

7. Gao H, Wang Z, Ji S (2018) Large-scale learnable graph
convolutional networks. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, pp 1416–1424

8. Henaff M, Bruna J, LeCun Y (2015) Deep convolutional networks
on graph-structured data. CoRR arXiv:1506.05163

9. Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: 5Th international conference
on learning representations, ICLR 2017. Conference Track
Proceedings, Toulon

10. Li Y, Tarlow D, Brockschmidt M, Zemel RS (2016) Gated
graph sequence neural networks. In: 4Th international conference
on learning representations, ICLR 2016. Conference Track
Proceedings, San Juan

11. Liang M, Zhang F, Jin G, Zhu J (2015) Fastgcn: a gpu
accelerated tool for fast gene co-expression networks. PloS one
10(1):e0116,776

12. Liao R, Brockschmidt M, Tarlow D, Gaunt AL, Urtasun R, Zemel
RS (2018) Graph partition neural networks for semi-supervised
classification. In: 6Th international conference on learning
representations, ICLR 2018. Workshop Track Proceedings,
Vancouver

13. Lu L, Shin Y, Su Y, Karniadakis GE (2020) Dying relu and initial-
ization: Theory and numerical examples. Commun Comput Phys
28(5):1671–1706. https://doi.org/10.4208/cicp.OA-2020-0165.
http://global-sci.org/intro/article detail/cicp/18393.html

14. Manessi F, Rozza A (2018) Learning combinations of activation
functions. In: 2018 24Th international conference on pattern
recognition (ICPR). IEEE, pp 61–66

15. Marcheggiani D, Titov I (2017) Encoding sentences with graph
convolutional networks for semantic role labeling. In: Proceedings
of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp 1506–1515

16. Opsahl T (2013) Triadic closure in two-mode networks: Redefin-
ing the global and local clustering coefficients. Soc Netw
35(2):159–167

17. Orbach M, Crammer K (2012) Graph-based transduction with
confidence. In: Joint european conference on machine learning
and knowledge discovery in databases. Springer, pp 323–
338

18. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning
of social representations. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining. ACM, pp 701–710

19. Rozza A, Manzo M, Petrosino A (2014) A novel graph-based
fisher kernel method for semi-supervised learning. In: 2014 22Nd
international conference on pattern recognition. IEEE, pp 3786–
3791

20. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G
(2008) The graph neural network model. IEEE Trans Neural Netw
20(1):61–80

21. Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-
Rad T (2008) Collective classification in network data. AI Mag
29(3):93–93

22. Strang A, Haynes O, Cahill ND, Narayan DA (2018) Generalized
relationships between characteristic path length, efficiency,
clustering coefficients, and density. Soc Netw Anal Min 8:14

23. Ullah I, Petrosino A (2016) About pyramid structure in
convolutional neural networks. In: 2016 International joint
conference on neural networks (IJCNN), pp 1318–1324.
https://doi.org/10.1109/IJCNN.2016.7727350

24. Vashishth S, Yadav P, Bhandari M, Talukdar P (2019) Confidence-
based graph convolutional networks for semi-supervised learning.
In: The 22nd international conference on artificial intelligence and
statistics, AISTATS 2019, Naha, pp 1792–1801

25. Veličković P, Cucurull G, Casanova A, Romero A, Liȯ P,
Bengio Y (2018) Graph attention networks. In: 6Th international
conference on learning representations, ICLR 2018. Conference
Track Proceedings, Vancouver

26. Weston J, Ratle F, Mobahi H, Collobert R (2012) Deep learning
via semi-supervised embedding. In: Neural networks: Tricks of
the trade. Springer, pp 639–655

9043Graph convolutional networks: analysis, improvements and results

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1506.05163
https://doi.org/10.4208/cicp.OA-2020-0165
http://global-sci.org/intro/article_detail/cicp/18393.html
https://doi.org/10.1109/IJCNN.2016.7727350

27. Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019)
Simplifying graph convolutional networks. In: International
conference on machine learning, pp 6861–6871

28. Yadav P, Nimishakavi M, Yadati N, Vashishth S, Rajkumar A,
Talukdar P (2019) Lovász convolutional networks. In: The 22nd
international conference on artificial intelligence and statistics, pp
1978–1987

29. Yang Z, Cohen WW, Salakhutdinov R (2016) Revisiting semi-
supervised learning with graph embeddings. In: Proceedings of
the 33rd International Conference on International Conference on
Machine Learning-Volume 48. JMLR.org, pp 40–48

30. Zhou K, Huang X, Li Y, Zha D, Chen R, Hu X (2020)
Towards deeper graph neural networks with differentiable group
normalization. Adv Neural Inf Process Syst:33

31. Zhu X, Ghahramani Z, Lafferty JD (2003) Semi-supervised
learning using gaussian fields and harmonic functions. In:
Proceedings of the 20th International conference on Machine
learning (ICML-03), pp 912–919

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

9044 I. Ullah et al.

	Graph convolutional networks: analysis, improvements and results
	Abstract
	Introduction
	Related work
	Baseline networks
	Notation and problem statement
	Graph convolutional networks
	Confidence based Graph Convolutional Networks
	GCN versus ConfGCN

	Proposed enhancements
	Optimizing hyper-parameters
	Convex combination of activation functions
	Clustering coefficients
	GCN and dense layer combination

	Results
	Datasets
	Competing approaches
	Comparison
	Over-smoothing in GCN

	Conclusions
	References

