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Abstract
The Coronavirus disease (COVID-19), which is an infectious pulmonary disorder, has affected millions of people and has
been declared as a global pandemic by the WHO. Due to highly contagious nature of COVID-19 and its high possibility of
causing severe conditions in the patients, the development of rapid and accurate diagnostic tools have gained importance.
The real-time reverse transcription-polymerize chain reaction (RT-PCR) is used to detect the presence of Coronavirus RNA
by using the mucus and saliva mixture samples taken by the nasopharyngeal swab technique. But, RT-PCR suffers from
having low-sensitivity especially in the early stage. Therefore, the usage of chest radiography has been increasing in the
early diagnosis of COVID-19 due to its fast imaging speed, significantly low cost and low dosage exposure of radiation.
In our study, a computer-aided diagnosis system for X-ray images based on convolutional neural networks (CNNs) and
ensemble learning idea, which can be used by radiologists as a supporting tool in COVID-19 detection, has been proposed.
Deep feature sets extracted by using seven CNN architectures were concatenated for feature level fusion and fed to multiple
classifiers in terms of decision level fusion idea with the aim of discriminating COVID-19, pneumonia and no-finding
classes. In the decision level fusion idea, a majority voting scheme was applied to the resultant decisions of classifiers. The
obtained accuracy values and confusion matrix based evaluation criteria were presented for three progressively created data-
sets. The aspects of the proposed method that are superior to existing COVID-19 detection studies have been discussed and
the fusion performance of proposed approach was validated visually by using Class Activation Mapping technique. The
experimental results show that the proposed approach has attained high COVID-19 detection performance that was proven
by its comparable accuracy and superior precision/recall values with the existing studies.

Keywords COVID-19 · Convolutional neural networks · Support vector machines · Feature level fusion ·
Decision level fusion · Ensemble learning · Class activation mapping · Transfer learning · Multistage learning

1 Introduction

The coronavirus disease 2019 (COVID-19) is a respiratory
disorder, which may have varying severity respiratory symp-
toms from the common cold to fatal pneumonia. COVID-
19 is caused by a novel coronavirus known as the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV2).
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SARS-CoV2 has very high contagious nature with a 1-14 days
long incubation period. Some of the carriers may not show
any symptoms while a significant amount of the patients may
have minor symptoms such as dry-cough, sore throat, head-
ache, fatigue, and sputum production. However, the virus can
be fatal if the immune system of the patient is weak [72]. The
conditions seen in the severe and critical patients may be the
pneumonia, acute respiratory distress syndrome, pulmonary
edema or multiple organ failure [15, 17]. In [19], it was stated
that approximately 14% of the COVID-19 patients have
experienced severe conditions such as the dyspnea, while
5% of the patients were in critical condition including respi-
ratory failure, septic shock, or multiple organ dysfunction.
Early diagnosis of the COVID-19 and the application of suc-
cessful treatment is the key factor to reduce the complication
and mortality in patients having underlying medical condi-
tions such as hypertension, diabetes, cardiovascular disease
and asthma [19, 26, 32, 53]. Another important factor
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related with the COVID-19 is the transmission mechanism
of the SARS-CoV2. The primary propagation mechanism of
the SARS-CoV2 has been identified as the spread of respi-
ratory droplets through sneezing and coughing, which have
the potential to cover a distance up to 1.8 meters [13]. This
highly contagious nature of the SARS-CoV2 puts any per-
son, who has a close contact history with the patient, in a
very high risk. Although, the primary source of the SARS-
CoV2 transmission has been identified as the symptomatic
people, asymptomatic people can also have a possibility
to be a risk factor [13]. The higher risk of getting severe
COVID-19 disease for the patients having existing medi-
cal conditions and being over age 60 years, and the high
potential of fast propagation risk of COVID-19 results in a
significant need for the fast and accurate diagnosis tools.

As the most common test technique to diagnose COVID-
19, the real-time reverse transcription-polymerase chain
reaction (RT-PCR) is used to detect the presence of viral
RNA. In this method, a sample including a mixture of
mucus and saliva is taken by using the nasopharyngeal swab
technique for being assessed for virus existence. However,
the RT-PCR suffers from having low-sensitivity especially
in the early stage [27, 56] and it was mentioned in [93]
that the chest radiography has performed very well in the
early diagnosis of COVID-19. Therefore, it is believed
that complementing the nucleic acid testing with chest
radiography based diagnosis has promising potential in the
early detection of COVID-19 [41]. Regarding the chest
radiography techniques, X-rays and Computer tomography
(CT) scans are the most commonly used imaging methods
to diagnose the thoracic abnormalities. Although the CT
scan can provide finer details of the 3D anatomy of human
body, X-rays are more convenient to differentiate between
viral and non-viral pneumonia due to its fast imaging
speed, significantly low cost and low dosage exposing of
radiation [77]. Furthermore, in [39], the most common
manifestations and patterns of lung abnormality on portable
chest radiography (CXR) in COVID-19 were described and
it was mentioned that the CXR will likely be the most
commonly utilized method for diagnosis and follow up of
COVID-19 because of the infection control issues related
to patient transport to CT suites, the problems experienced
in CT room decontamination, and lack of CT availability
in parts of the world. In [8], an experimental CXR scoring
system, which was tested on hospitalized patients with
COVID-19 pneumonia, was presented to quantify and
monitor the severity and progression of disease. The authors
found that the inter-observer agreement of the developed
system was very good and the CXR based scoring is
a promising tool for predicting mortality in hospitalized
patients with SARS-CoV2 infection. In the light of the
advantages of X-ray imaging over CT scan in the diagnosis
and monitoring of COVID-19, we focus on developing

a X-ray imaging based automated system which has the
ability of differentiating viral pneumonia (COVID-19) from
non-viral pneumonia and normal controls (No findings).

Computer-aided diagnosis (CAD) has been successfully
used as a supporting tool for the diagnosis process of radi-
ologists since 1980s [22]. The CAD systems are mostly
developed as a complementary decision making approach
to the diagnosis of physicians due to their advantages such
as being reproducible and having the ability of detecting
subtle changes that cannot be observed by the visual inspec-
tion. With respect to the usage of X-ray imaging based
CAD systems in the diagnosis of thoracic diseases, the
recent advances in deep learning have led to breakthrough
improvements in the discrimination of viral and non-viral
pneumonia. In [43], a diagnostic tool, which is based on
a deep-learning framework for diagnosis of pediatric pneu-
monia using chest X-ray images, was proposed. In [71],
the performance of customized convolutional neural net-
works (CNNs) to differentiate between bacterial and viral
pneumonia types in pediatric CXRs was presented. Addi-
tionally, various deep learning approaches were successfully
employed to diagnose pneumonia and other pathologies in
[5, 40, 95]. In order to detect COVID-19 samples by using
X-rays, a deep learning architecture, which employs depth-
wise convolutions with varying dilation rates to incorporate
local and global features extracted from diversified recep-
tive fields, was presented in [60]. In [87], various deep
learning models were utilized for feature extraction and the
obtained feature sets were processed using the Social Mimic
optimization method. Later, the modified deep features
were given to support vector machines (SVMs) with the
aim of COVID-19 detection. In [69], a concatenated neu-
ral network, which is based on Xception and ResNet50V2
networks for classifying the chest X-ray images into three
categories of normal, pneumonia, and COVID-19, was pre-
sented in an unbalanced data-set configuration. In [65], a
patch-based CNN approach with a relatively small number
of trainable parameters were given for COVID-19 diagno-
sis. In this method, random patches were cropped from the
X-ray images and the final classification result was obtained
by majority voting from inference results at multiple patch
locations. In [25], a comparative individual analysis of the
recent deep learning models including VGG16, VGG19,
DenseNet201, InceptionResNetV2, InceptionV3, Resnet50,
and MobileNetV2 was presented in the detection and clas-
sification of COVID-19. An Auxiliary Classifier Genera-
tive Adversarial Network based model was employed in
[90] for generating synthetic chest X-ray CXR images to
avoid overfitting and increase the generalization capability
of employed CNNs. In [66], an end-to-end deep learning
architecture, which was an enhanced version of the Darknet-
19 model, was employed for the multi-class classification
(COVID vs. No-Findings vs. Pneumonia).
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Although previous studies have shed some lights on
the deep learning-based diagnosis by using X-ray images
and significant improvement has been obtained, none of
the previous works have been able to propose a complete
solution to the COVID-19 detection problem. Additionally,
the COVID-19 outbreak is recent and the content of the
public X-ray imaging databases is still progressing. Due to
this gradual increase in the number of COVID-19 images in
the public databases, a need of developing new algorithms,
which have generalization capability for new COVID-19
samples, has been raised. In this study, we propose a
deep features based ensemble learning model, which uses
feature and decision level fusion, in order to satisfy the
aforementioned needs in COVID-19 diagnosis.

The main contributions of this study are summarized as
follows:

• The proposed learning model was applied to progres-
sively created three public COVID-19 databases in order
to measure its generalization capability and reduce the
biasing effect that can occur in unbalanced databases.

• The individual performance of seven powerful deep
learning architectures including the Mobilenet, VGG16,
ResNet50, ResNet101, NasNet, InceptionV3 and Xcep-
tion were presented.

• The same seven deep learning models were employed
as feature extractors and the obtained individual deep
features were fed to non-linear kernel SVMs with the
aim of COVID-19 detection.

• The extracted deep features by using individual CNNs
were concatenated to form a single feature vector (feature
level fusion) which was subsequently given to classifiers.

• The decisions of the individual classifiers were
combined by employing the majority voting schema
(decision level fusion).

• The experimental results have demonstrated the effec-
tiveness and robustness of the proposed ensemble
approach in epidemic screening by reaching high gen-
eral accuracy values accompanied with high COVID-19
F1-scores, precision and recall values.

The rest of the study is organized as follows; Section 2
introduces materials and methods. Section 3 presents the
experimental results and finally, Section 4 presents the
discussion and conclusion.

2Materials andmethods

In this study, an ensemble of CNNs with the aid of decision
and feature level fusion idea was proposed to solve the
classification problem in X-ray images for COVID-19, No-
Findings and Pneumonia classes. For doing that three public
X-ray datasets were employed in the experiments and the

generalization capability of the proposed approach has been
proven. In the ensemble of CNNs, transfer learning layout
of seven deep convolutional neural network (CNN) models,
which were initially pre-trained by a huge image collection
repository, the ImageNet, were utilized. The employed deep
networks, whose individual classification performance were
also given, were the MobilenetV2, VGG16, ResNet50,
ResNet101, NasNet, InceptionV3 and Xception. In addition,
the same seven deep networks were also employed as deep
feature extractors and the obtained deep features were fused
and the resultant concatenated feature vector was fed to non-
linear kernel based SVMs to increase the discrimination
performance.

2.1 Dataset information

In our study, three databases were constructed in a
progressive way to measure the classification performance
and generalization ability of the proposed approach by
using the combinations of three publicly available data-
sets. Firstly, the data-set that has been already used in [66]
was employed as the baseline reference database and it is
named as DB1. DB1 consists of 125 COVID-19 images, 500
pneumonia images and 500 normal (no-finding) images.
The COVID-19 images of DB1 were taken from a public
data-set, which is constantly updated by researchers [21].
The remaining 1000 non-COVID X-ray images were taken
from the public ChestX-ray8 dataset [92] and the DB1 was
finalized with 1125 X-ray images. Secondly, at the date
of this study, 353 new COVID-19 samples, which have
been appended to DB1 by researchers after the publication
of [66], were added to DB1 to be able to compare our
study with other state-of-art findings. This new database,
which contains 1478 X-ray images in total, is named as
DB2. Lastly, 113 new COVID-19 samples obtained from a
different domain were added to DB2 to be able to create
a more balanced data-set that would be more convenient
to measure performance of the proposed method. The new
113 COVID-19 samples were taken from [1] resulting
in the DB3, which contains 1591 X-ray images in total.
In the experiments, 5-fold cross-validation technique was
applied in order to validate the results over each created
dataset as in [66], [60], [91]. For each fold, the whole
image set was divided into training and testing sets with
the ratio of 80% and 20%, respectively. In each repetition,
a new model was trained by using randomly arranged
80% of data-set, while testing was evaluated with the
remaining 20% of dataset. This cross-validation approach
is then repeated 5 times and, as a result, each observation
(sample image) is used for testing exactly once. A short
summary of the constructed data-sets with the information
of training and testing sizes for each fold is given in
Table 1.
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Table 1 The Image Distributions over Classes in Tested Datasets

Labels DB1 [66] DB2 [21] DB3 [21]+[1]

Train Set Test Set Total Train Set Test Set Total Train Set Test Set Total

COVID-19 100 25 125 383 95 478 473 118 591

No Findings 400 100 500 400 100 500 400 100 500

Pneumonia 400 100 500 400 100 500 400 100 500

Total 1125 1478 1591

2.2 Employed deep learning architectures

The traditional machine learning approaches, which consist
of sequential sub-steps such as pre-processing, feature
extraction, feature reduction/selection and classification,
require domain specific expertise in order to obtain
satisfactory performance in medical image analysis. The
spatial and frequency domain features are the most popular
approaches to obtain discriminating information from the
raw images. For example, the Scale-Invariant Feature
Transform (SIFT) and Maximally Stable Extreme Regions
(MSER) methods are used in literature [37, 38] as the spatial
domain interest point extraction techniques and the interest
points based features are employed in traditional learning
models subsequently. Regarding the frequency domain
feature extractors like short time Fourier Transform (STFT)
and wavelet transform (WT), the parameter selection
procedure makes them hard to implement and dependent
to user experience. On the other hand, even if the training
processing times of deep learners are relatively long, they
are implemented in end-to-end architectures which have
no need or having minimum need for extra pre-processing
steps and optimum tuning of feature extractor parameters.
In contrast, traditional machine learning methods are still
highly error prone and inaccurate to be used in a sensitive
decision making process. Therefore, in order to benefit
from the aforementioned superiorities of deep learners,
seven CNN models including the MobileNetV2, VGG16,
ResNet50, ResNet101, NasNet, InceptionV3 and Xception,
have been applied to three public databases with the
aim of three-class (COVID, No-Findings, Pneumonia)
discrimination of X-ray images in the proposed study.

2.2.1 MobileNetV2

Although higher accuracy values can be achieved by
using deeper and larger networks, these networks do not
ensure efficiency in terms of size and speed, making them
inconvenient for mobile applications. However, the fast and
accurate diagnosis of COVID-19 is critical in the current
pandemic condition causing the small mobile deep learning

solutions more preferable. The MobileNetV2 [76], as an
improvement of MobileNetV1, can be a powerful and
versatile solution for mobile diagnosis of COVID-19 due
to its high performance proven in various application areas
including medieval writer identification [18], detecting
underwater live crabs [12], real-time crowd counting [29]
and remote wave gauging [11]. The main characteristic of
MobileNetV2 relies on the usage of depthwise separable
convolutions in which two 1D convolutions with two
kernels are used instead of employing 2D convolution with
a single kernel. As a result, the training phase can be carried
out by using fewer parameters and less memory that results
in a small and efficient model.

2.2.2 VGG16

The VGG16 [82] is a pre-trained very large CNN that was
invented by VGG (Visual Geometry Group) from University
of Oxford. The VGG16 was the 1st runner-up of the ILSVR
(ImageNet Large Scale Visual Recognition Competition)
2014 in the classification task. The VGG16 architecture
uses simple 3×3 size kernels in convolutional layers and
combine them in a sequence to emulate the effect of larger
receptive fields. The implemented VGG16 architecture is
composed of 13 convolutional layers followed by 3 fully
connected layers. Despite the simplicity of the VGG16
architecture, its memory usage and computational cost
is dramatically high due to the exponentially increasing
kernels.

2.2.3 ResNet50 and ResNet101

The ResNet deep learning models [31], which have
introduced the “skip connections” concept, are the sub-
classes of CNNs. In ResNets, some of the convolutional
layers are bypassed (the concept of “skip connections”) at
a time and the batch normalization is applied along with
non-linearities (ReLU) [67]. In ResNet architectures, the
“skip connections” enables to train much deeper networks
and they give the network the option to simply copy the
activations from ResNet block to ResNet block, preserving
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information as data goes through the layers [59]. The two
versions of ResNet family, the ResNet50 and ResNet101
having 49 and 100 convolutional layers respectively, were
employed in the current proposed COVID-19 diagnosis
approach as a classifier and deep feature extractor.

2.2.4 NasNet

As a relatively recent network, the NASNet [100], whose
CNN architecture was designed by another neural network,
outperformed the previous state-of-the-art on the ILSVRC
2012 dataset. The NASNet architecture was created by
use of the Neural Architecture Search (NAS) framework
providing an algorithm for finding optimal neural network
architectures [20]. In this algorithm, a controller recurrent
neural network creates architectures aimed to perform at a
specific level for a particular task, and by trial and error
learns to propose better and better models [59].

2.2.5 InceptionV3

In the InceptionV3 [84], the inception modules, which
are repeatedly stacked together to form a large network,
are employed as an alternative to sequentially ordered
convolution layers. In the inception modules, an asymmetric
convolution structure is obtained by using multiple filters of
various sizes resulting in more and more abundant spatial
features with increased diversity. The usage of inception
modules not only causes significant decrements in the
number of parameters, it also increases the recognition
ability of the network by using multiple scale features [99].

2.2.6 Xception

As an improved version of inception architecture, the Xcep-
tion [16] algorithm uses depthwise separable convolutions
which enables more efficient use of model parameters. In
the Xception, the standard inception modules are replaced
with the depthwise separable convolutions (enhanced incep-
tion modules) that use the depth dimension (the number of
channels) as well as the spatial information. The enhanced
inception modules result in stronger features including the
depth information.

2.3 Transfer learning

During the analysis of medical images by using Transfer
Learning, the weights of a deep-net that have been learned
in the training of a CNN on a main dataset (for example
ImageNet [74]) are transferred to a second CNN, which is
then re-trained on labelled samples of desired medical data

set using pre-learned weights. The final training phase is
named as “fine tuning”; in which the certain layers of pre-
trained net can be frozen (the weights of these layers stay
fixed) while the remaining layers can be fine-tuned to suit
the classification problem, except the last fully connected
layer.

In our study, the employed CNNs were applied to
COVID-19 data-sets by using the Transfer Learning strategy
in the light of literature findings. In [4], it was men-
tioned that the performance of knowledge transfer depends
on the dissimilarity between the database on which a
CNN is trained and the database to which the knowl-
edge is to be transferred. The distance between the natural
image databases, that are employed for knowledge trans-
fer, and COVID-19 data-sets is considerable. However,
recent studies show that there is a potential for having
benefit from knowledge transfer in medical data sets. For
instance, in [6], a pre-trained CNN was employed as a
feature extractor with the aim of chest pathology iden-
tification. In [89], pre-trained CNN based features have
shown improved performance as they were fused with tra-
ditional handcrafted features in a nodule detection system.
In addition to their feature extractor usage, the knowledge
transferred CNNs can also be employed as the main classi-
fication framework with fine-tuning. For example, in [85],
it was shown that the fine-tuned CNNs have performed
similarly or better than the CNNs trained from scratch.
In this study, pre-trained weights from [51] were trans-
ferred in either a shallow tuning or deep tuning strategy
in which the weights of few layers for the former and
many layers for the latter were trained. The results high-
lighted that medical image analysis requires deep tuning
of more layers in contrast to many other computer vision
tasks. In another study, it was demonstrated that fine-tuning
of pre-trained networks worked better compared to nets
trained from scratch in the analysis of skin lesions [62].
Additionally, in [81] knowledge transfer from natural images
was applied in thoraco-abdominal lymph node detection and
interstitial lung disease classification resulting in higher per-
formance than training the CNNs from scratch. Similarly, in
[14], transfer learning strategy was employed to identify
the fetal abdominal standard plane and the approach revealed
improved capability of the algorithm to encode the com-
plicated appearance of the abdominal plane. In our study,
due to the aforementioned superiorities of fine-tuning strat-
egy, seven CNNs, which have already been trained by
natural image database (ImageNet), were fine-tuned to
extract deep features by using the X-ray samples. Later,
these deep features were employed in the classification of
chest X-ray images with individual and ensemble learning
models.
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2.4 Decision and feature level fusion

In a pattern recognition system, the ultimate goal is the
design of best possible classification model for a specific
problem such as the COVID-19 detection by using X-
ray images. Traditionally, various classification models that
have different theories and methodologies are applied to a
specific pattern recognition problem, and the best model
in terms of performance metrics is chosen. However, it
was observed that the sets of patterns misclassified by the
various classifiers would not necessarily overlap, even if
one of the models has yielded the best accuracy. Hence,
different classifiers may be harnessed to improve the
overall performance by using their possible complementary
information about the patterns to be classified, when they
are used in an ensemble scheme [49]. This type of ensemble
learning scheme is called decision level fusion based
learning, in which the individual decisions of different
models are combined to derive a consensus decision instead
of relying on a single decision-making model. The hard-
level combination uses the individual outputs of each
classifier after they are binarized by applying a threshold to
the classifier output probabilities (estimates of a posteriori
probability of the class) to map them into class labels
[63]. As a member of hard-level combination, the majority
voting strategy simply counts the votes received from each
classifier and the class that has the largest number of votes
is selected as the consensus decision.

As an additional fusion strategy, the feature level fusion,
in which various sets of features obtained by different
feature extractors are combined, has high potential to
achieve better classification performance [30, 55, 75, 88].
Feature level fusion generally consists of the concatenation
of various normalized feature subsets resulting in a
single feature vector forming a complete representation of
different views (deep features obtained by using various
CNNs). Regarding the CNNs based feature level fusion
studies, even if the various CNN models are based

on different configurations (or architectures), the fine-
tuning of these CNN models by using the same target
database (COVID-19 database in our study) consisting of
concatenated feature vectors, can provide complementary
information [23, 70].

2.5 Proposed deep features based ensemblemodel

In this study, seven CNN models (the MobilenetV2,
VGG16, ResNet50, ResNet101, NasNet, InceptionV3, and
Xception) have been used as the main structure of proposed
framework. During the development of proposed method,
firstly, these seven CNN models have been employed as
deep feature extractors as depicted in Fig. 1. As seen
in Fig. 1, the three databases were fed to the individual
CNNs, which have already been pre-trained by using
ImageNet [74], with the aim of network specific deep
feature extraction by using a 5-fold cross-validation scheme.
The optimum hyperparameters were chosen by employing
a batch-size, epoch, and learning rate analysis that was
based on trial and error strategy. Accordingly, the number
of training epochs was chosen as 50, while a batch-size of
16 was employed. The learning rate that controls the speed
of convergence was set to 0.0001, when Stochastic Gradient
Descent with momentum was used as the optimization
technique.

2.5.1 Learning scheme without feature level fusion

Subsequent to the deep feature extraction phase, the
obtained deep features were fed to a softmax classifier
satisfying the end-to-end learning scheme of classical deep
learning. The classical softmax layer of CNNs, which is
the generalization of logistic sigmoid function with the
ability of mapping deep-features onto probability values
used as outputs in discrimination problems having three
or more classes, is named as “softmax classifier” in our
study. The softmax classifier [45, 58, 80] is employed to

Fig. 1 The deep feature extraction module
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measure the discriminating power of deep features obtained
from the individual CNNs (equivalent to classical end-to-
end learning with CNNs). The architecture that is followed
to obtain individual CNN predictions is shown in Fig. 2
and the output of softmax classifier is named as ”Individual
Predictions” at the top-middle section.

In [36] and [86], it was mentioned that the CNNs, which
are very good at learning invariant features, may show lower
performance than the SVMs in classification. On the other
hand, the SVMs are very successful at producing optimal
decision surfaces from well behaved feature vectors, while
having difficulties to represent the variances occurred in
image features. Regarding the chest X-ray images used in
our study, the areas that characterize the lung consolidation
pattern may be located in various parts of the lung with
changing size resulting in significant variances. Therefore,
in addition to individual CNN based learning, a multistage
model, in which the CNNs are employed to extract deep
features that have potential to detect and recognize lung
consolidation patterns, and non-linear SVMs that are trained
by feeding the deep features learned by the CNNs, was
presented and its performance was validated by using
three databases. This multistage learning approach that
uses CNNs and SVMs in a cascade connection has been
successfully employed in various areas with the aim of
classification performance improvement [28, 57, 83]. In
this configuration, fully-connected activations of each CNN
have been employed as feature extractors (given in Fig. 1)
and the obtained deep feature vectors were fed to classifiers
(softmax-classifier representing classical end-to-end CNN
learning, SVM with RBF and Polynomial kernels) in

a 5-fold validation scheme. Additionally, with the aim
of performance improvement, the individual predictions
obtained from classical end-to-end CNN learning (deep
features that are fed to softmax classifier) and kernel
based SVMs (deep features that are fed to SVMs) were
fused by using the voting approach in accordance with the
combinations given in Table 2. The SVM based learning
configuration that uses the deep features, and the applied
voting strategy was presented in Fig. 2.

2.5.2 Learning scheme with feature level fusion

Regarding the feature level fusion phase; the deep
features extracted by individually employed CNNs were
concatenated into a single fused feature vector directly
without using any weight value. Subsequently, the fused
feature vector was fed to the softmax classifier and
also to the non-linear SVMs separately. After this, the
individual predictions of the softmax classifier and SVMs
were obtained as depicted in Fig. 3 when a concatenated
feature vector was fed into. Furthermore, to benefit from
the possible complementary behaviour of the learning
models (softmax classifier, RBF and Polynomial SVMs),
the obtained individual decisions were fused by using the
majority voting. Thanks to the power of using feature
and decision level fusion together, this final approach
has given the best performance and was chosen as our
proposed method. The detailed flowchart of proposed
method including the deep feature extraction module,
feature level fusion, multistage learning and decision level
fusion can be seen in Fig. 3.

Fig. 2 The multistage learning approach and decision level fusion of
individual classifiers. “Fusion 1” refers to the hard-level combination
of the individual predictions obtained from RBF and Polynomial ker-
nel based SVMs. “Fusion 2” refers to the hard-level combination of
the individual predictions obtained from Softmax function and RBF

kernel based SVM. “Fusion 3” refers to the hard-level combina-
tion of the individual predictions obtained from Softmax function
and Polynomial kernel based SVM. “Fusion 4” refers to the hard-
level combination of the individual predictions obtained from Softmax
function, RBF and Polynomial kernel based SVMs
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Table 2 The detailed presentation of accuracy values obtained from applied individual and ensemble learning scenarios for three data-sets (average
accuracy values of 5-folds are given)

Accuracy (Standard Deviation) Individual Classifiers Decision Level Fusion over Predictions

Softmax SVM SVM Fusion #1 Fusion #2 Fusion #3 Fusion #4

Classifier (RBF) (Poly) RBF + Poly Softmax + RBF Softmax + Poly All

Individual Performances of Inception V3 DB1 87.6 (2.2) 87.6 (2.3) 87.3 (2.2) 87.5 (2) 87.3 (3.5) 87.4 (2.3) 87.7 (2.3)

Deep Neural Networks DB2 88.1 (0.9) 88.2 (0.6) 87.3 (0.8) 88 (0.6) 88.2 (0.8) 88 (0.8) 88.2 (0.6)

DB3 87.2 (0.2) 87.8 (0.7) 87.9 (0.3) 87.8 (0.4) 87.6 (0.7) 87.6 (0.3) 87.8 (0.2)

Xception DB1 86.7 (3.8) 85.7 (4.2) 85.6 (3.4) 85.3 (3.8) 85.7 (3.8) 86.4 (3.5) 86.8 (3.4)

DB2 86.9 (1.5) 85.3 (1.5) 86.6 (1.2) 85.2 (0.8) 85 (1.3) 86.5 (0.8) 86.4 (1.4)

DB3 87.4 (0.7) 87.1 (0.2) 87.1 (0.8) 86.5 (0.4) 87.1 (0.9) 86.7 (0.4) 87.3 (0.2)

MobileNet V2 DB1 84.2 (2.8) 86.8 (2.7) 86.0 (1.2) 86.1 (2.1) 84.7 (1.3) 84.7 (1.6) 86.1 (1.1)

DB2 85.3 (2) 86.4 (1.6) 85.9 (1.3) 86.2 (1.3) 86 (1.6) 85.9 (1.4) 86.1 (1.5)

DB3 86.9 (1.7) 87 (1.5) 87.1 (1.1) 86.9 (1.2) 86.8 (1.5) 86.8 (1.3) 87.1 (0.9)

ResNet50 DB1 86.3 (2.3) 87.4 (2.5) 87.0 (2.7) 87.3 (2.5) 86.2 (2.6) 86.4 (2.5) 87.5 (2.3)

DB2 87.5 (1.4) 87.2 (1.1) 86.7 (1.3) 87.2 (1.2) 87.1 (0.9) 87.3 (1.2) 87.5 (1.3)

DB3 87.2 (1.8) 88.1 (1.5) 87.2 (1.4) 87.6 (1.8) 87.8 (2.1) 87.6 (1.8) 87.5 (0.9)

ResNet101 DB1 85.5 (1.5) 85.7 (2.1) 85.5 (1.6) 85.7 (1.5) 85.4 (1.8) 85.4 (2.3) 85.8 (1.9)

DB2 86.6 (1) 87 (0.8) 86.1 (1.3) 86.6 (1.2) 86.6 (0.5) 86.5 (1.1) 86.5 (1)

DB3 87.3 (1.1) 87.2 (1.3) 86.9 (1.2) 86.9 (1) 87 (1.3) 87 (1.2) 87.1 (0.8)

NasNet DB1 85.2 (2.5) 84.8 (2.3) 84.3 (2.6) 84.4 (2.3) 84.8 (2.2) 84.4 (2.2) 84.6 (2.1)

DB2 84.9 (1.1) 84 (1.5) 84.1 (1.7) 84.3 (1.9) 84.2 (1.5) 84.6 (1.3) 84.3 (1)

DB3 85.8 (2.1) 85.5 (2.3) 84.1 (1.8) 84.9 (1.9) 85.9 (1.7) 85.2 (2) 85.5 (1.3)

VGG16 DB1 85.8 (3.1) 86.3 (2.9) 85.9 (3.1) 86.3 (2.3) 86.0 (3) 85.9 (2.9) 86.1 (3.4)

DB2 85.8 (1.9) 85.9 (0.9) 85.3 (1.1) 85.9 (1.4) 85.8 (1.6) 85.6 (1.5) 85.7 (1.3)

DB3 86.7 (2.2) 86.7 (2.6) 86.4 (2.1) 86.7 (1.9) 86.9 (2.2) 87 (2.9) 86.5 (3.1)

Feature Level Concatenated DB1 90.2 (2.3) 90.7 (1.7) 90.3 (2.2) 90.8 (1.6) 90.4 (2.1) 90.4 (2) 90.8 (1.7)

Fusion Vector DB2 90 (1.1) 89.6 (1.4) 89.8 (0.9) 89.5 (1.1) 90.1 (0.7) 90.1 (0.9) 90.5 (1)

DB3 90.4 (1.2) 90.4 (1.6) 89.7 (1.4) 90 (1.7) 90.3 (1.4) 90.5 (1.1) 90.7 (1.8)

The standard deviations of accuracy values obtained from 5-folds are also presented in parentheses to show the robustness of applied approaches

Fig. 3 The Flowchart of the proposed method employing feature and decision level fusion
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3 Experimental results

3.1 Performance of individual classifiers

The individual performance of the employed seven CNN
models plus the results of concatenated feature vector can be
seen in the first column of Table 2 in terms of the accuracy
metric (each presented accuracy value was calculated as
the mean of 5-folds and the standard deviation of these 5-
folds were also represented for clarification). The highest
accuracy values were obtained as 87.6% and 88.1% for the
DB1 and DB2 respectively by using InceptionV3, while
the best classification performance was achieved as 87.4%
for DB3 by employing the Xception net. In contrast, when
the poorest individual performances are investigated, it is
seen that the MobileNetV2 had the worst accuracy value
as 84.2% for DB1, while the NasNet has ended up with
the accuracy values as 84.9% and 85.8% for DB2 and DB3
respectively. The second and third columns of Table 2 show
the accuracy values obtained by multistage learning scheme,
which uses non-linear SVM kernels, for the individual deep
feature sets and also for the concatenated feature vector as
given in bottom row group. As seen in column 2, the highest
accuracy value was obtained by using the RBF kernel as
87.6% for the DB1 with no increment compared to softmax
classifier. On the other hand, the RBF kernel based SVM
learning, which were fed by InceptionV3 deep features, has
slightly increased best accuracy value to 88.2% for DB2,
while the ResNet50 has reached to 88.1% for DB3 by using
RBF kernel based multistage approach. In addition, the
columns 4, 5, 6 and 7 indicate the accuracy values obtained
by using the decision level fusion strategy composed of
the combinations of softmax classifier, radial basis function
(RBF) and polynomial kernel based SVMs as highlighted in
the Table 2.

3.2 Performance obtained by feature and decision
level fusion

Regarding the effect of feature level fusion, the bottom
row group (named as “Feature Level Fusion”) of Table 2
and the Fig. 4, in which the error values obtained from
the three COVID-19 databases for the individual softmax
classifier based learning models plus concatenated feature
vector can be investigated. As seen in Fig. 4, the error
values, which were obtained from the deep feature vector
formed by using feature level fusion, are significantly lower
than individual softmax classifier performance by reaching
9.8%, 10% and 9.6% errors for the DB1, DB2 and DB3
respectively. As understood from Table 2 and the Fig. 4,
not a specific individual deep feature set (extracted by
using a specific CNN) has outperformed the others for
all three databases. This situation indicates that there is
a significant need for ensemble learning which may pave
the way for the complementary information achievement. It
should also be noted that the error value for DB1 was even
further reduced by 0.5% when RBF kernel based multistage
learning algorithm was applied.

The contribution of decision level fusion can be
investigated by using the right-side of Table 2 and the Fig. 5.
In Fig. 5, the conventional classification performance of the
softmax classifier (as it is used in traditional CNN based
learning) was chosen as the reference baseline performance
for seven CNN based deep feature extraction schemes.
For comparison, the increments or decrements seen in the
accuracy values obtained by the multistage SVM based
learning and the decision level fusion were represented for
each deep feature set plus the concatenated feature vector
(obtained by the feature level fusion). When the Table 2
is investigated, it is seen that the highest accuracy values
within the entire test set combinations were obtained as

Fig. 4 Classification errors of
the individual learning and the
feature level fusion schemes
when the softmax classifier is
employed

8559Decision and Feature Level Fusion of Deep Features Extracted from Public COVID-19 Data-sets



Fig. 5 The accuracy variations compared to CNNs when multistage learning and/or majority voting is applied are presented

90.8%, 90.5% and 90.7% for the DB1, DB2 and DB3
respectively, when the fourth decision level fusion approach,
including the majority voting of hard labels obtained
by softmax classifier, RBF and polynomial SVMs, was
employed. As illustrated in Fig. 5, almost for all multistage
SVM based learning and decision level fusion cases applied
to MobileNetV2 based deep features, up to 2.5% increase in
accuracy rate was achieved. On the contrary, approximately
all the accuracy values obtained by decision level fusion,
when they were applied to Xception and NasNet based deep
features, were lower than the baseline softmax classifier
performance. In accordance with the remaining VGG16,
ResNet50, ResNet101 and InceptionV3 based deep features,
neither the positive nor the negative effect of multistage
learning and decision level fusion was clearly seen. For
instance, up to 1% increase in the accuracy values was seen
for the InceptionV3 and ResNet50 based scenarios in DB3,

while slight improvements have been achieved by using
VGG16 based scenarios for DB1. However, it should be
noted that the proposed Fusion 4 approach has provided
accuracy increments up to 0.6% in all data-sets for the
feature-level fusion case as shown in the bottom-right side
of Fig. 5.

3.3 Performance comparison by using confusion
matrix basedmetrics

As alternative objective evaluation criteria, the confusion
matrix based metrics were calculated to be able to show the
performance of proposed approach. For doing this, the true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) values were obtained for each database.
The confusion matrices obtained by the Fusion #4 strategy
applied to 3 databases were given as Fig. 6 for further
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Fig. 6 Confusion Matrices obtained from Fusion #4 strategy (Left DB1, Middle DB2, Right DB3)

understanding. After the confusion matrices were obtained,
5 objective evaluation metrics were calculated as follows:

Accuracy = T P + T N

T P + T N + FP + FN
(1)

Precision = T P

T P + FP
(2)

Recall = T P

T P + FN
(3)

Specif icity = T N

T N + FP
(4)

F1 score = 2
Precision × Recall

P recision + Recall
(5)

Among these, the accuracy indicates the ratio of the
correctly classified samples over entire datasets. The
precision emphasizes how precise the learning model is
out of those predicted positive samples, how much of the
predicted positives are actual positive. The precision is an
important parameter to determine when the costs of FP
predictions is high. Moreover, the recall measures how
much of the actual positive samples are captured by the
model by labeling it as positive (TP). The recall is an
essential parameter when there is a high cost associated
with FN samples. The behaviour of precision vs recall of
the COVID-19, pneumonia and no-finding classes obtained
by using majority voted decisions, described as Fusion
#4, of individual deep feature sets (obtained by a specific
CNN) plus the concatenated feature vector (obtained by the
feature level fusion) is given in Fig. 7. It is seen that the
precision and recall values obtained by the concatenated
feature vector were higher than the individual deep feature
sets in almost all cases. As presented in Table 2, the highest
accuracy values were obtained when the Fusion #4 strategy
was applied for all three databases. The obtained precision
and recall values for Fusion #4 strategy is also depicted in
Table 3 to go in deeper investigation. Addition to precision

and recall, the specificity metric is given in the Table 3
to signify the proportion of negatives that are correctly
identified by the proposed approach. As seen in this table,
in almost all classes and databases, the highest precision,
recall and F1-scores were obtained for the COVID-19 class
which has the highest priority in our classification problem.
In addition, an important evaluation metric named as Kappa,
which is a statistical measure of inter-annotator agreement
for categorical items by comparing an observed accuracy
with an expected accuracy [61], was given for all databases
in Table 3. As mentioned in [52], the Kappa values greater
than 0.80 are called almost perfect classification. Hence,
the obtained Kappa values (0.845, 0.857 and 0.86 for
DB1, DB2 and DB3 respectively) shows the success of
proposed approach following Fusion #4 strategy in COVID-
19 diagnosis problem. As a final point to remark, all the
F1-measure values indicating how precise the classifier is
(what percentage of the samples assigned to a certain class
is classified correctly), as well as how robust it is (what
percentage of the samples belonging to a certain class is
classified correctly), were quite high for the COVID-19
class, showing the success of proposed Fusion #4 strategy.

4 Discussion and conclusion

Although the RT-PCR is the most common technique to
diagnose COVID-19, chest radiography based approaches
have been extensively used as complementary diagnosis
tools due to the low-sensitivity drawback of RT-PCR
especially seen in the early stage of COVID-19. The X-
ray scanning has been preferred as the primary radiography
based imaging approach in COVID-19 detection due
to its fast imaging speed, low cost and low dosage
exposing of radiation compared to CT. However, the
interpretation success of X-ray images strongly depends on
the radiologist’s experience and visual inspection of the X-
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Fig. 7 Obtained precision and
recall values of Fusion #4
strategy for each individual CNN
and concatenated feature vector

Table 3 The detailed presentation of evaluation metrics for the Fusion #4 strategy

DB1 ([66]) DB2 ([21]) DB3 ([21] + [1])

COVID-19 No Findings Pneumonia COVID-19 No Findings Pneumonia COVID-19 No Findings Pneumonia

Precision 100 87.26 92.53 98.29 84.71 89.24 97.13 84.58 89.65
Recall 97.6 93.2 86.8 96.65 92 83 97.29 92.2 81.4
Specificity 100 89.1 94.4 99.1 91.4 94.86 98.1 92.1 95.7
F-Score 0.98 0.9 0.9 0.97 0.88 0.86 0.97 0.88 0.85

Accuracy 90.8 90.5 90.7
Kappa 0.845 0.857 0.86

8562 H. O. Ilhan et al.



ray images belonging to several patients takes significant
time and effort. In order to increase the objectivity of the
X-ray imaging interpretation and decrease the required time
and effort, CAD systems have been used as supporting
decision mechanisms in the detection of COVID-19 cases.
In this respect, several studies employing deep networks
as the decision tool were published lately as depicted in
Table 4. Some of the previous studies have treated the
COVID-19 diagnosis as a binary classification problem.
For instance, five pre-trained CNN based models, which
were using binary classification in their last layer, were
employed in [64] for the COVID-19 X-ray image detection.
In [33], deep learning models were introduced to confirm
only positive or negative COVID-19 cases as an another
binary classification approach. Additionally, an approach
based on building two models, the first one aimed to detect
whether a chest X-ray is related to a healthy subject or to a
generic pulmonary disease patient, was studied in [10]. In
the second phase of this study, the X-ray image was given to
an another model that aims to detect whether the pulmonary
disease is COVID-19. However, we have aimed to design a
COVID-19 detection framework that is built on a three class
learning model in the proposed study. Therefore, the studies
which were using binary classification were not added to
our comparison table. Regarding the number of employed
COVID-19 X-ray samples, although sufficient number of
X-ray samples to train a learning model exist in [60], [65],
[91], [2], [68] and [96], the ratio of COVID-19 samples
is very low compared to the distribution of the remaining
classes. However, most of the learning models tend to work
on balanced class distributions or equal misclassification
costs, and the performance of these learning methods can be
significantly compromised when imbalanced data sets, like
the employed COVID-19 vs non COVID-19 distributions
seen in [2, 60, 65, 68, 91, 96], are used. Therefore, in
our study, the employed data bases were progressively
created, starting from the usage of samples given in
[66] as DB1, till minimum imbalance between employed
classes was achieved in DB3. As an addition to the scores
obtained in [66], the CNN model studied in [48] was also
tested on the same DB1 data-set, and the results obtained
from that study were also compared with our proposed
approach’s performance. As seen in Table 4, our method has
outperformed [66], [60], [48] and [96] in terms of accuracy,
precision and recall metrics, while our algorithm provides
competitive performance compared to [65], [91] and [2]
in terms of accuracy. It should be noted that our approach
applied to DB1 is having the same number of image samples
and same cross-validation strategy compared to [66], while
a similar 5-fold cross-validation with different number of X-
ray samples was carried out in [60] and [96]. Furthermore,
the precision values obtained by using our method were
significantly higher than [66], [60], [65], [68] and [96],

while higher performance was achieved in terms of recall
compared to [91] and [2].

A similar approach to our study, which uses deep
features obtained from various CNNs and a SVM based
classification strategy, was given in [79]. However, in [79]
the deep features are fed to SVMS in an individual manner,
while the fused deep features have been fed to non-linear
SVMs in our proposed study. Additionally, a voting based
decision level fusion strategy is also tested on the X-ray
data-sets in our proposed approach. As a contribution of
these feature+decision level fusion, it is seen that higher
precision and recall values compared to [79] have been
obtained when the proposed approach was applied to DB1,
which has similar number of COVID-19 image samples as
in [79].

As seen in Table 2 and the Fig. 4, none of the individual
learning models has been significantly outperformed the
others. However, accuracy improvements up to 2.5% were
achieved when feature level fusion has been applied to
obtained deep features. When the multistage learning and
decision level fusion approaches are investigated, it is
seen that the accuracy rises up to 2% and 0.5% have
been obtained for the deep features extracted by using
MobileNetV2 and VGG16 respectively. The supportive
effect of SVM usage and majority voting for these two
CNNs can be related to their sizes, which are the cause of
possible underfitting and overfitting. As mentioned in [97],
small networks such as the MobileNetV2 usually suffer
from underfitting, while very large models such as the
VGG16 may have trouble with overfitting [35]. However, a
learner such as SVM, which is good at producing optimal
decision surfaces even there is noise on the data, can
have positive effect on the classification accuracy similar
to our case. On the contrary, same multistage learning
and majority voting strategy did not work well, resulting
accuracy reductions for the deep features obtained by
Xception and NasNet. When the architecture of NasNet is
investigated, it is seen that the NasNet was constructed by a
neural architecture search based optimization carried out by
using reinforcement learning. As a result of this process, the
well-designed scalable and convolutional cells are defined
in the optimum way, resulting in an architecture that is prone
to produce robust features as in our case. In a similar way, in
the Xception, the usage of depthwise separable convolutions
paves the way of efficiently usage of model parameters
producing stronger features. Hereby, the cascade connection
of the SVMs to the last FC layer of Xception and NasNet
plus the usage of majority voting has no supportive effect in
classification. So, the network based discrimination is more
than enough for these two CNNs.

Another important fact that needs to be discussed about
our proposed system, in which the Fusion #4 strategy was
applied, is the obtained high precision and recall values.
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The precision value is directly related with the number
of FP samples and low precision in COVID-19 means
high number of healthy subjects that are misdiagnosed
as COVID-19. An early quarantine measure applied
to COVID-19 patients is employed as the fundamental
disease control strategy across the countries [73]. Apart
from the physical damages, the quarantine may cause
dramatic psychological effects on the mental health. In
previous studies, it was reported that the psychological
impact of quarantine can vary from immediate effects
such as irritability, fear of spreading infection to family
members, confusion, anger, loneliness, anxiety, frustration,
denial, insomnia, despair, depression, to extremes of
consequences including suicide [7, 9, 24]. Therefore, the
FP samples frequently seen in a COVID-19 detection
system may cause significant undesired psychological and
social consequences. However, as seen in Table 3, the
proposed system has precision values, belonging to COVID-
19 class, as 100%, 98.29% and 97.13% for the DB1,
DB2 and DB3 respectively showing its almost perfect FP
sample reduction performance. The recall metric, which
is directly connected to FN samples, is also essential in
COVID-19 detection because of the high cost associated
with FN samples. Misdiagnosing a COVID-19 patient may
cause dramatic consequences due to the very easy and
fast transmission mechanism of the SARS-CoV2. The
subject misdiagnosed as normal can spread the disease to
his/her close environment in a very short time resulting in
new patients who are ready to spread the disease further.
However, thanks to our proposed approach, high recall
values, reaching up to 97.6%, 96.65% and 97.29% in DB1,
DB2 and DB3 respectively, were obtained by using the
Fusion #4 strategy.

Although the deep learning approaches have enabled
unprecedented breakthroughs in medical image analysis, the
interpretable modules are sacrificed for uninterpretable ones
that achieve higher performance through greater abstraction
(more layers) and tighter integration (end-to-end training) in
CNNs [78]. However, in [98], the Class Activation Mapping
(CAM) technique, which is a way of producing visual
explanations of the predictions of deep learning models
[3], was proposed to make the CNNs more transparent
and explainable. By using the CAM technique, useful
knowledge about the employed prediction regions in the
COVID-19 detection problem can be investigated. For
example, the failure regions can be visually identified for
the wrongly classified samples and necessary modifications
in the learning models can be applied towards the most
fruitful research directions. Besides, for a deep model,
which is very strong in diagnosis, the CAM technique
can visually identify the lung consolidation patterns as a
supportive diagnostic tool for doctors. In Figure 8, two
CAMs obtained from COVID-19 samples are given with
the aim of visual validation of employed CNNs. In the
CAMs, the red color highlights the lung regions where
the employed CNN model focuses on (activating around
those patterns) most during the discrimination. In Figure 8,
upper row, the CAMs obtained with six CNNs, excluding
VGG16 due to inability of representing its CAM by using
employed approach, for an 83 year old male having mitral
insufficiency, pulmonary hypertension and atrial fibrillation
with COVID-19 infection, can be seen. In this patient,
Ground-glass opacification (GGO) and consolidation in
the right upper lobe and left lower lobe is seen as the
indicators of COVID-19. The InceptionV3 and ResNet50
have correctly localized the right upper lobe pattern, while

Fig. 8 CAM visualizations of two patients obtained by six CNNs (top and bottom rows) and the flow-chart of employed feature level fusion
(middle row)
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missing the left lower lobe. However, the Xception has
successfully detected both two pathological regions with
high spatial resolution. In the bottom row, the CAMs of
a 53-year-old female, whose X-ray contains multifocal
patchy opacities in both lungs, was depicted. This case is
a good example to see the effect of feature level fusion
of different CNNs because of the existing three separate
opacity patterns. While the MobileNet has strong focus on
right side single pattern, the InceptionV3, ResNet50 and
Xception has low activation on right side. However, the
ResNet101 and InceptionV3 have highly focused on left
side upper pattern, while the Xception and MobileNet has
significant activity near the left side lower pattern. When
the complementary effect of these CAMs is considered, it is
obvious that the fusion of features obtained by these CNNs
would have higher discriminating power. In the middle
part of Fig. 8, a flowchart explaining how the features
obtained from various CNNs are concatenated is given for
further understanding. Additionally, in Fig. 9, X-ray images
belonging to the same patient with bilateral GGO are shown.
The image in upper row is taken on the second day of
diagnosis while the bottom row X-ray image is taken on the
fourth day. As it can be seen, the active regions belonging to
a specific CNN are consistent and not dramatically changing
towards second and fourth day images.

In future research, we aim to focus on following research
paths related with COVID-19 for further improvement; i)
a different version of the feature level fusion, in which the
features obtained from the various layers of the same CNN
are concatenated, can be employed instead of the fusion of
features obtained from the last FC layer of different type
CNNs. By doing that diverse features, which contain more
semantic information in the top layers and more low-level
information in bottom layers, can be combined to provide
more discriminative information. ii) the concatenation of
feature sub-sets obtained from various deep-nets may cause

two possible drawbacks for the subsequent learning models.
First drawback would be the complexity increase [46],
while the second can show itself as the difficulty in
pattern identification due to curse of dimensionality, which
is referred as having more features than the number of
observations. A feature selection approach, such as the
ReliefF [50], can applied to the concatenated feature set
to reduce the learning algorithm complexity and prevent
a possible overfitting scenario [47]. iii) since the outbreak
is recent, the number of COVID-19 X-ray images, which
can be used in CAD system design studies, is very limited.
Even though there exists studies that uses Generative
Adversarial Networks (GANs) [90] and attention guided
augmentations [54] for increasing the number of training
samples, the performance can be improved by using
Progressive Growing GAN [42] for augmentation. Besides,
the quality of artificial COVID-19 samples can be improved
by integrating more labeled data into the learning process by
using GANs. iv) the Canonical Correlation Analysis (CCA)
[34, 44], which aims at measuring linear relationships
between two sets of variables by using the within-set and
between-set sample covariance matrices, can be employed
as a feature fusion approach instead of simple concatenation
of deep features. By utilizing the multi-view features (the
deep features extracted from different CNNs and/or from
the different layers of the same CNN), more discriminating
features having maximized correlation between various sets
can be attained with the hope of performance increase
in COVID-19 detection. v) the hyperparameters, which
are adjusted prior to the learning process and affect how
the learning algorithm fits the model to data, can be
tuned by using automatic tuning algorithms such as the
Bayesian optimization [94]. In this way, the optimum
hyperparameters for the COVID-19 detection problem can
be tuned for both CNNs and SVMs to obtain higher
performance.

Fig. 9 CAM visualizations of the same patient on the second and fourth day of diagnosis
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