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Abstract
The recently proposed L2-norm linear discriminant analysis criterion based on Bhattacharyya error bound estimation
(L2BLDA) was an effective improvement over linear discriminant analysis (LDA) and was used to handle vector input
samples. When faced with two-dimensional (2D) inputs, such as images, converting two-dimensional data to vectors,
regardless of the inherent structure of the image, may result in some loss of useful information. In this paper, we propose a
novel two-dimensional Bhattacharyya bound linear discriminant analysis (2DBLDA). 2DBLDAmaximizes the matrix-based
between-class distance, which is measured by the weighted pairwise distances of class means and minimizes the matrix-
based within-class distance. The criterion of 2DBLDA is equivalent to optimizing the upper bound of the Bhattacharyya
error. The weighting constant between the between-class and within-class terms is determined by the involved data that make
the proposed 2DBLDA adaptive. The construction of 2DBLDA avoids the small sample size (SSS) problem, is robust, and
can be solved through a simple standard eigenvalue decomposition problem. The experimental results on image recognition
and face image reconstruction demonstrate the effectiveness of 2DBLDA.

Keywords Feature extraction · Dimensionality reduction · Two-dimensional linear discriminant analysis · Robust linear
discriminant analysis · Bhattacharyya error bound

1 Introduction

Feature extraction plays an important role in pattern
recognition. As a powerful supervised feature extraction
method, linear discriminant analysis (LDA) [1] has been
successfully applied in many problems, such as face
recognition [2, 3], text mining [4, 5], image retrieval [6, 7],
gait recognition [8], and microarrays [9, 10].

However, classical LDA is a vector (or one-dimensional)
1D based method. When input data are naturally of matrix
(or two-dimensional) 2D form, such as images, two issues
may arise. First, converting 2D data to 1D data may
produce high-dimensional vectors and hence may lead to
the small sample size (SSS) problem [11]. For example,
a 32×32 face image corresponds to a 1024-dimensional
vector. Second, during the transformation from 2D data
to 1D data, the underlying spatial (structural) information
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is destroyed. Therefore, useful discriminant information
may be lost [12, 13]. To handle these problems, many
image-as-matrix methods have been developed [14, 15].
In contrast to the image-as-vector methods, the image-
as-matrix methods treat an image as a two-order tensor,
and their objective functions are expressed as functions of
the image matrix instead of the high-dimensional image
vector. The representative image-as-matrix method is two-
dimensional LDA (2DLDA) [16]. 2DLDA constructed the
within-class scatter matrix and between-class scatter matrix
by using the original image samples represented in matrix
form rather than converting matrices to vectors beforehand.
Compared to LDA, 2DLDA can alleviate the SSS problem
when a mild condition is satisfied [17] and can preserve the
original structure of the input matrix.

Thereafter, some modifications and improvements of
2DLDA were studied by many researchers. Due to the
squared L2-norm nature of 2DLDA, it was sensitive
to noise and outliers. To improve the robustness of
2DLDA, robust replacements of the L2-norm were studied,
including the L1-norm [18–21], nuclear norm [22, 23],
Lp-norm [24, 25], and Schatten Lp-norm, 0 < p <

1 [26]. Some of the studies focused on extracting the

/ Published online: 5 November 2021

Applied Intelligence (2022) 52:8793–8809

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02843-z&domain=pdf
http://orcid.org/0000-0001-7033-0089
mailto: na1013na@163.com


discriminative transformations on both sides of the matrix
samples. The authors in [27, 28] implemented 2DLDA
on matrices in sequence or independently and then
combined left-and right side transformations to achieve
bilateral dimensionality reduction. Li et al. [25] used
iterative schemes to extract transformations on both sides.
Extensions to other machine learning problems and real
applications were also investigated. For example, Wang
et al. [29] proposed a convolutional 2DLDA for nonlinear
dimensionality reduction, and Xiao et al. [30] studied a two-
dimensional quaternion sparse discriminant analysis that
met the requirements of representing RGB and RGB-D
images.

Although 2DLDA can ease the SSS problem, it may still
face the singularity issue theoretically as LDA since it needs
to solve a generalized eigenvalue problem. Recently, a novel
vector-based L2-norm linear discriminant analysis criterion
based on Bhattacharyya error bound estimation (L2BLDA)
[31] was proposed. Compared to LDA, L2BLDA solved a
simple standard eigenvalue decomposition problem rather
than a generalized eigenvalue decomposition problem,
which avoided the singularity issue and had robustness.
In fact, minimizing the Bhattacharyya error [32] bound
is a reasonable way to establish classification [33]. In
this paper, inspired by L2BLDA, to cope with the
SSS problem and improve the robustness of 2DLDA,
we first derive a Bhattacharyya error upper bound for
matrix input classification and then propose a novel two-
dimensional linear discriminant analysis by minimizing this
Bhattacharyya error upper bound, called 2DBLDA. The
proposed 2DBLDA has the following characteristics:

• 2DBLDA is proposed for the novel two-dimensional
matrix input problem. The 2DBLDA criterion is proven
to be an upper bound of the theoretical framework of the
Bhattacharyya error bound optimality. We have proved
that optimizing this upper bound of the Bhattacharyya
error can lead to an optimal discriminant direction.
Therefore, the rationality of the 2DBLDA optimization
problem is guaranteed theoretically.

• The weighting constant of the between-class distance
and the within-class distance of 2DBLDA is adaptive
to the involved data that is calculated according to
input data. This constant not only helps the objective
of 2DBLDA achieve the minimum error bound but also
makes the proposed 2DBLDA adaptive without tuning
any parameters. By considering the above weighted
between-class distance information, 2DBLDA could
achieve robustness.

• Unlike 2DLDA, 2DBLDA is solved effectively through
a standard eigenvalue decomposition problem, which
does not involve the inverse of a matrix and hence
avoids the SSS problem.

• To observe the discriminant ability of our method, we
consider the accuracy of different databases, plot the
variation of the accuracy with dimension reduction,
and measure the reconstruction performance of the face
image. The experimental results on image recognition
and face reconstruction demonstrate the effectiveness of
2DBLDA.

The paper is organized as follows. Section 2 briefly
introduces LDA, L2BLDA and 2DLDA. Section 3 proposes
our 2DBLDA and gives the corresponding theoretical
analysis. Section 4 compares 2DBLDA with its related
approaches. Section 5 discusses the relationship between
our 2DBLDA and related methods and analyses the
experimental results. Finally, the concluding remarks are
given in Section 6. The proof of the Bhattacharyya error
upper bound of 2DBLDA is given in the Appendix.

The notations of this paper are given as follows. We
consider a supervised learning problem in the d1 × d2-
dimensional matrix space R

d1×d2 . The training dataset is
given by T = {(X1, y1), ..., (XN, yN)}, where Xl ∈ R

d1×d2

is the l-th input matrix sample and yl ∈ {1, ..., c} is the
corresponding label, l = 1, ..., N . Assume that the i-th
class contains Ni samples, i = 1, . . . , c. Then, we have
c∑

i=1
Ni = N . We further write the samples in the i-th class

as {Xis}, where Xis is the s-th sample in the i-th class,

i = 1, . . . , c, s = 1, . . . , Ni . Let X = 1
N

N∑

l=1
Xl be the

mean of all matrix samples and Xi = 1
Ni

Ni∑

s=1
Xis be the

mean of matrix samples in the i-th class. For a matrix Q =
(q1, q2, . . . ,qn) ∈ R

m×n, its Frobenius norm (F-norm)

||Q||F is defined as ||Q||F =
√

n∑

i=1
||qi ||22. The F-norm is a

natural generalization of the vector L2-norm on matrices.

2 Related work

2.1 Linear discriminant analysis

Linear discriminant analysis (LDA) finds a projection
transformation matrix W such that the ratio of between-
class distance to within-class distance is maximized in the
projected space. For data in Rn, LDA finds an optimalW ∈
R

n×r , r ≤ n, such that the most discriminant information of
the data is retained in Rr by solving the following problem:

max
W

tr(WT SbW)

tr(WT SwW)
, (1)

where tr(·) is the trace operation of a matrix, and the
between-class scatter matrix Sb and the within-class scatter
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matrix Sw are defined by

Sb = 1

N

c∑

i=1

Ni(xi − x)(xi − x)T (2)

and

Sw = 1

N

c∑

i=1

Ni∑

s=1

(xis − xi )(xis − xi )
T , (3)

where xi ∈ R
n is the mean of the samples in the i-th class,

x ∈ R
n is the mean of the whole data, and xis ∈ R

n is
the s-th sample of the i-th class. The optimization problem
(1) is equivalent to the generalized problem Sbw = λSww,
where λ �= 0, with its solution W = (w1, . . . ,wr ) given by
the first r largest eigenvalues of (Sw)−1Sb in case Sw being
nonsingular.

2.2 L2-norm linear discriminant analysis criterion
via the Bhattacharyya error bound estimation

As an improvement over LDA, the L2-norm linear
discriminant analysis criterion based on Bhattacharyya error
bound estimation (L2BLDA) [31] is a recently proposed
vector-based weighted linear discriminant analysis. In the
vector space R

n, by minimizing an upper bound of the
Bhattacharyya error, the optimization problem of L2BLDA
is formulated as

min
W

− 1
N

∑
i<j

√
NiNj ||WT (xi − xj )||22 + Δ

c∑

i=1

Ni∑

s=1
||WT (xis − xi )||22

s.t. WT W = I,

(4)

whereW ∈ R
n×r , r ≤ n, Pi = Ni

N
, Pj = Nj

N
, xi ∈ R

n is the
mean of the samples in the i-th class, xis ∈ R

n is the s-th

sample of the i-th class, Δ = 1
4

c∑

i<j

√
PiPj ||xi − xj ||22, and

I ∈ R
r×r is the identity matrix.

L2BLDA is solved through the following standard
eigenvalue decomposition problem:

min
W

tr(WT SW)

s.t. WT W = I,
(5)

where

S = − 1

N

∑

i<j

√
NiNj (xi −xj )(xi −xj )

T +Δ

c∑

i=1

Ni∑

s=1

(xis −xi )(xis −xi )
T .

(6)

Then, W = (w1,w2, . . . ,wr ) is obtained by the r

orthogonormal eigenvectors that correspond to the first r

nonzero smallest eigenvectors of S. After obtaining the

optimal W, a new sample x ∈ R
n is projected into R

r by
WT x.

2.3 Two-dimensional linear discriminant analysis

Different from LDA or L2BLDA, which works on vector
samples, two-dimensional linear discriminant analysis
(2DLDA) [16, 17] operates on matrix samples. 2DLDA
defines the between-class scatter matrix and the within-class
scatter matrix directly on the 2D data set T as

Sb = 1

N

c∑

i=1

Ni(Xi − X)(Xi − X)T (7)

and

Sw = 1

N

c∑

i=1

Ni∑

s=1

(Xis − Xi )(Xis − Xi )
T . (8)

Then 2DLDA solves the following optimization problem:

max
W

tr(WT SbW)

tr(WT SwW)
=

c∑

i=1
Ni‖WT (Xi − X)‖2F

c∑

i=1

Ni∑

s=1
‖WT (Xis − Xi )‖2F

, (9)

where W = (w1, . . . ,wr ) ∈ R
d1×r , r ≤ d1. i = 1, . . . , c,

j = 1, . . . , Ni . (9) can be solved through the generalized
eigenvalue problem Sbw = λSww in case Sw is nonsingular,
and its solution is the r eigenvectors corresponding to the
first largest r nonzero eigenvalues. After obtaining optimal
W, a new sample X ∈ R

d1×d2 is projected into R
r×d2 by

WT X. Note that 2DLDA will still encounter the singularity
problem when Sw is not of full rank.

3 Two-dimensional Bhattacharyya bound
linear discriminant analysis

3.1 The derivation of a Bhattacharyya error bound
estimation

In this section, we derive a new two-dimensional linear dis-
criminant analysis criterion by minimizing a Bhattacharyya
error bound.

From the viewpoint of minimizing the probability of
classification error, the Bayes classifier is the best classifier
[1], and its error rate, known as the Bayes error, is defined as

ε = 1 −
∫

max
i∈{1,2,...,c}

{Pipi(X)}dX, (10)

where X is a sample, Pi is the prior probability, and pi(X)

is the probability density function of the i-th class of
the data. Computing the Bayes error is usually hard, and
therefore minimizing its upper bound is often considered
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an alternative effective method [35–37]. Among various
bounds, the Bhattacharyya error [32] is a close upper bound
to the Bayes error, which is given by

εB =
c∑

i<j

√
PiPj

∫
√

pi(X)pj (X)dX. (11)

Under the background of two-dimensional supervised
dimensionality reduction, if we can derive a relatively
close upper bound of εB , we may obtain a reasonable
dimensionality reduction model. In fact, under some basic
assumptions, we can obtain an upper bound of εB , as shown
in the following proposition.

Proposition 1 Assume Pi and pi(X) are the prior
probability and the probability density function of the i-
th class for the training data set T , respectively, and the
data samples in each class are independent and identically
normally distributed. Let p1(X), p2(X), . . . , pc(X) be the
Gaussian functions given by pi(X) = N (X|Xi , Σ i ), where
Xi and Σ i are the class mean and the class covariance
matrix, respectively. We further suppose Σ i = Σ , i =
1, 2, . . . , c, where Σ is the covariance matrix of the data
set T , and Xi and Σ can be estimated accurately from
T . Then for arbitrary projection vector w ∈ R

d1 , the
Bhattacharyya error bound εB defined by (11) on the data
set T̃ = {X̃i |X̃i = wT Xi ∈ R

1×d2} satisfies the following:

εB ≤ −a

8

c∑

i<j

√
PiPj ||wT (Xi − Xj )||22 + a

8
Δ

c∑

i=1

Ni∑

s=1

||wT (Xis − Xi )||22

+
c∑

i<j

√
PiPj , (12)

where Δ = 1
4

c∑

i<j

√
PiPj ||Xi − Xj ||2F , and a > 0 is some

constant.

Proof See the Appendix.

3.2 The proposed two-dimensional Bhattacharyya
bound linear discriminant analysis

Proposition 1 gives a reasonable upper bound of εB . After
obtaining an upper error bound, it is natural to minimize it.
Therefore, we minimize the upper bound of εB in (12), that
is, the right side of (12). In fact, by minimizing it, we can
easily obtain a novel two-dimensional Bhattacharyya bound
linear discriminant analysis (2DBLDA) as follows:

min
wT w=1

− 1

N

∑

i<j

√
NiNj ||wT (Xi −Xj )||22 + Δ

c∑

i=1

Ni∑

s=1

||wT (Xis −Xi )||22

(13)

where Δ = 1
4

c∑

i<j

√
PiPj ||Xi − Xj ||2F , w ∈ R

d1 , Pi = Ni

N
.

By applying (13), we can project a d1×d2 sampleX into a
1×d2 sample X̃ by X̃ = wT X. However, it does not usually
contain enough discriminant information in the 1×d2 space,
and we may need r ≥ 1 projection vectors w1,w2, . . . ,wr

that constitute a projection matrixW = (w1,w2, . . . ,wr ) ∈
R

d1×r and project X into a r × d2 space by X̃ = WT X.
In general, we consider the following 2DBLDA

min
W

− 1
N

∑

i<j

√
NiNj ||WT (Xi − Xj )||2F + Δ

c∑

i=1

Ni∑

s=1
||WT (Xis − Xi )||2F

s.t. WT W = I,

(14)

where W ∈ R
r×d1 , r ≤ d1. We now give the geometric

meaning of 2DBLDA. Minimizing the first term in (14) will
make the means of two different classes far from each other
in the projected space, which guarantees the between-class
separativeness. Here, the coefficients 1

N

√
NiNj in the first

term weight distance pairs between different class means.
Minimizing the second term in (14) forces each sample
around its own class mean in the projected space. The
weighting constant Δ in front of the second term balances
the between-class importance and within-class importance
while also ensuring a minimum error bound according to
the proof of Proposition 1. We can observe that 2DBLDA
is adaptive to different data since Δ is determined by
the given data set. To ensure minimum redundancy in
the projected space, we also consider an orthogonormal
constraintWT W = I on discriminant directions.

It is easily seen that we can solve 2DBLDA through the
following standard eigenvalue decomposition problem:

min
W

tr(WT SW)

s.t. WT W = I,
(15)

where

S = − 1

N

∑

i<j

√
NiNj (Xi −Xj )(Xi −Xj )

T +Δ

c∑

i=1

Ni∑

s=1

(Xis −Xi )(Xis −Xi )
T .

(16)

Then, we obtain the optimal solution asW = (w1,w2, . . . ,wr ),
wherew1,w2, . . . ,wr are the r orthogonormal eigenvectors
corresponding to the first r smallest nonzero eigenvectors of
S.

4 Experiments

In this section, we compare the proposed 2DBLDAwith 2DPCA
[34], 2DPCA-L1 [12], 2DLDA [16] and L1-2DLDA [18,
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19]. The learning parameter δ of L1-2DLDA is selected
optimally from the set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}
by grid search.

We experimented on three image databases for image
recognition and one face image database for face recon-
struction. In the experiments, after applying a dimensional-
ity reduction method on training data and then obtaining a
projection matrix, the test data are projected to lower dimen-
sional space using this projection matrix. For image recogni-
tion, the nearest neighbours classifier is employed to obtain
classification accuracy. In addition, when the data classes
are unbalanced, area under the ROC curve (AUC) and G-
mean are used as the performance measurement index. For
face reconstruction, the mean reconstruction error is used
for performance evaluation. All the methods will be carried
out on a PC with P4 2.3 GHz CPU by Matlab 2017b.

4.1 Image recognition

4.1.1 Performance on three image databases

The Yale database1 is a human face database that contains
165 images of 15 individuals, and each individual includes
11 images. The database is considered to evaluate the
performance of methods when facial expression and lighting
conditions are changed.

Columbia Object Image Library (Coil100)2 is a database
of colour images of 100 objects. The objects were placed
on a motorized turntable against a black background. The
turntable was rotated 360 degrees to vary object pose with
respect to a fixed colour camera. Images of the objects were
taken at pose intervals of 5 degrees. The database contains
900 images of 100 objects, with each object containing 9
images.

The COVID database3 has 349 CT images containing
clinical findings of COVID-19 from 216 patients and
397 non-COVID CT scans. The images are collected
from COVID-19 related papers from medRxiv4, bioRxiv5,
Lancet, etc. In our experiment, 195 COVID-19 images and
195 non-COVID-19 images were randomly extracted.

We resize each image to 32 × 32 for all the above three
databases. Since the number of samples in some classes of
the image data used in the experiment is relatively small,
to avoid the chance that images in these classes may not be
selected due to random cross-validation, for each class, we

1http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
2https://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
3https://github.com/UCSD-AI4H/COVID-CT
4https://www.medrxiv.org
5https://www.biorxiv.org

randomly select 60% of the data samples as the training set,
and deem the rest as the test set. Therefore, this strategy
makes sure both train and test data set contain samples from
every class. First, we obtain all projection matrices from
the training data and then compute the test classification
accuracy on the projected test data. Since 2DPCA, 2DLDA
and 2DBLDA have no parameters, the result of one run is
the final result. For L1-2DLDA, there is one parameter, and
we adopt ten-fold cross validation on the training set to find
its optimal parameter. Then, this optimal parameter is used
to run L1-2DLDA ten times on the test set to eliminate the
influence of random initialization, and the average accuracy
of these ten accuracies is adopted. Similarly, for 2DPCA-
L1, since its performance is affected by the initialization
projections, we repeat the method ten times and adopt mean
accuracy along with standard variance. The results on these
databases are listed in Table 1, and the best accuracies are
shown in bold figures. From the table, we see that our
2DBLDA has comparable performance compared to other
methods. The 2DPCA-L1 and L1-2DLDA obviously have
the highest computational burden. In contrast, 2DBLDA
costs the least CPU time than 2DPCA and 2DLDA.

To further see the superiority of our 2DBLDA, we artifi-
cially pollute the training data by adding each training sam-
ple with a rectangle block occlusion at a random location.
We set the occlusion area ratio to 10%, 20%, 30%, 40%.
For convenience, we denote these four data sets as Yaleb0.1,
Yaleb0.2, Yaleb0.3 and Yaleb0.4, where the subscript “b” rep-
resents block occlusion and the number next to it means
occlusion ratio. For the Coil100 data and COVID data, we
add random rectangular Gaussian noise of mean 0 and vari-
ance 0.2 that covers 10%, 20%, 30%, 40% areas of each
training image at a random position. Denote these eight
data sets as Coilg0.1, Coilg0.2, Coilg0.3, Coilg0.4, COVIDg0.1,
COVIDg0.2, COVIDg0.3 and COVIDg0.4, where the sub-
script “g” represents Gaussian noise, and the number next
to it means noise ratio. Some noise samples are shown in
Fig. 1.

The classification results on the noise datasets are
listed in Table 2. From the table, we have the following
observations : (i) All methods are affected by noise, and
their corresponding accuracies are lower than those of the
original data. In general, the larger the noise area is, the
lower the accuracy is. (ii) The proposed 2DBLDA has
the highest average accuracy on all noise data. (iii) L1-
2DLDA and 2DPCA perform better than 2DPCA-L1 and
2DLDA. (iv) L1-2DLDA can achieve the optimal accuracy
when δ is relatively small. (v) For CPU time, we see that
2DPCA-L1 and L1-2DLDA have the same computing time
level but are all slower than 2DPCA and 2DLDA, and that
2DLDA and 2DBLDA run the fastest since they obtain all
the discriminant vectors once for all.
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Table 1 Comparison of mean accuracy (%), CPU time (second) for different methods on the original three databases

Data set 2DPCA 2DPCA-L1 2DLDA L1-2DLDA 2DBLDA

AC/Time AC/Time AC/Time AC/Time(δ) AC/Time

Yale 85.00 82.67±0.86 83.33 85.00±0.00 85.00

1.6835 9.2095 1.4929 10.4038(0.001) 1.4174

Coil100 74.00 67.93±1.26 72.00 73.37±0.46 74.33

30.4082 67.3805 29.1930 71.5989(0.01) 28.7575

COVID 95.00 90.63±0.93 94.38 93.75±0.51 94.38

6.0727 21.2971 5.2936 20.6759(0.05) 5.9291

Average accuracy 84.67 80.41 83.24 84.04 84.57

The optimal parameter δ of L1-2DLDA is shown in bracket

Yale
b0.3

Yale
b0.2

Yale
b0.1

Yale
b0.4

(a) Yale

Coil
g0.1

Coil
g0.2

Coil
g0.3

Coil
g0.4

(b) Coil100

COVID
g0.2

COVID
g0.1

COVID
g0.4

COVID
g0.3

(c) COVID
Fig. 1 Noise samples from the three databases
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Table 2 Comparison of mean accuracy (%), CPU time (second) for different methods on noise databases

Data set 2DPCA 2DPCA-L1 2DLDA L1-2DLDA 2DBLDA

AC/Time AC/Time AC/Time AC/Time(δ) AC/Time

Yaleb0.1 76.67 59.33±2.63 76.66 77.33±1.17 78.33

2.0922 10.0383 1.8348 11.1539(0.1) 1.6212

Yaleb0.2 76.67 55.83±3.07 70.00 73.67±2.33 76.67

2.7252 11.0812 2.3906 12.1323(0.005) 2.0293

Yaleb0.3 63.33 50.67±7.58 63.33 64.67±2.33 65.00

3.4940 12.3434 3.1027 13.4336(0.05) 2.6751

Yaleb0.4 56.67 49.67±3.31 56.67 51.83±3.46 60.00

4.6380 13.9008 4.1114 14.9425(0.005) 3.6111

Coilg0.1 71.67 63.77±3.39 70.67 71.37±1.11 72.33

36.3437 84.5664 36.3030 87.0550(0.001) 35.3140

Coilg0.2 67.00 51.43±1.75 68.67 67.10±0.88 70.00

43.2088 86.9822 43.1494 91.3349(0.05) 41.0304

Coilg0.3 63.33 48.93±3.43 63.33 61.80±2.54 68.33

48.2347 90.4744 45.5738 94.9467(0.1) 43.4944

Coilg0.4 58.00 43.70±0.64 60.00 57.73±1.84 61.00

52.1063 93.9737 47.4356 98.0803(0.005) 45.9146

COVIDg0.1 94.38 91.44±0.42 93.75 94.11±0.03 94.38

6.7681 23.4892 6.8060 22.6747(0.1) 6.2296

COVIDg0.2 93.13 91.25±0.00 93.13 92.94±0.93 93.75

6.8413 23.5693 6.8593 23.9786(0.01) 6.3514

COVIDg0.3 91.25 90.88±0.67 90.00 90.88±0.72 91.25

7.0305 23.9982 7.0121 24.6301(0.005) 6.5660

COVIDg0.4 90.63 88.88±0.92 87.50 92.32±0.78 92.50

7.2641 24.5959 6.9099 25.4767(0.1) 6.6628

Average accuracy 75.23 65.48 74.48 74.65 76.96

The optimal parameter δ of L1-2DLDA is shown in bracket

4.1.2 The influence of the reduced dimension

To observe the discriminant ability of the dimensionality
method, we measure feature ranking by observing the effect
of sample classification in projection space and plot the
accuracy variation along with the reduced dimensions in
Figs. 2 and 3. Figure 2 depicts the variation of accuracies
along dimensions on the original three databases, and Fig. 3
depicts the corresponding results on noise databases.

The results show the following: (i) With the increase
of the number of reduced dimensions, the accuracies of
2DPCA and our 2DBLDA first achieve their highest and
then have a relatively steady trend, while other methods
vary greatly. (ii) Regardless of on the original data or the
noise data, the proposed 2DBLDA has the highest accuracy
under the optimal reduced dimension. (iii) All the methods
are greatly influenced by the reduced dimension, and it is
necessary to choose an optimal reduced dimension. (iv) In
addition, the optimal reduced dimension of 2DBLDA is not
too large compared to other methods in general.

4.1.3 The influence of the unbalanced classes

In this subsection, we verify the influence of our algorithm
on unbalanced classes. To construct unbalanced data,
different numbers of images are randomly selected from
each class to form the training set, and the remaining data
are deemed as the test set. In specific, for the COVID
database, we randomly select 60% of the sample number
for each class from COVID-19 images and non-COVID-
19 images in a ratio of 1:1.5 as the training set. Notably,
the training set and test set we construct are unbalanced.
To test the robustness, as before, we pollute the training
images with a black rectangular block, which covers 10%,
20%, 30% and 40% of each image at a random position.
In this situation, we use AUC and G-mean to measure
the performance of all methods, which are both designed
for unbalanced data. The results on original databases and
noise databases are demonstrated in Figs. 4 and 5. From
Figs. 4 and 5, we can see that the proposed 2DBLDA has
the highest AUC and G-mean of all databases. Though
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Fig. 2 Accuracies of all methods on the original three databases

the larger the noise area is the lower the performance is
for all algorithms, when the block percentage increases,
2DBLDA and L1-2DLDA are less affected by noise, while
the performance of other methods decreases dramatically
and the proposed 2DBLDA is the best. The result is in
fact consistent with the formulation of 2DBLDA, where its
weighted between-class distance information and weighting
constant of the between-class distance and the within-class
distance make contribution to its good performance on
unbalanced problems. The result also shows that compared
to other methods, our 2DBLDA is more adaptive and robust
to different data.

4.2 Face Reconstruction

In this part, the proposed 2DBLDA and other methods
are applied to face reconstruction on the Indian female
database. The Indian females database contains 242 human
face images of 22 female individuals, and each individual
has 11 different images. The original images are resized to
32×32 pixels.

We introduce face image reconstruction. For a given
image X ∈ R

d1×d2 , suppose we have obtained a projection
matrix W = (w1,w2, . . . ,wr ) ∈ R

d1×r , r ≤ d1.
Then X is projected into the r × d2-dimensional space by
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Fig. 3 Accuracies of all methods on three databases with different
levels of noise

X̃ = WT X. Since w1,w2, . . . ,wr are orthonormal, then the
reconstructed image of X can be obtained by X̂ = WX̃ =
WWT X. To measure the reconstruction performance, we
use the average reconstruction error (ARE) as a performance
indicator, which is defined as

ēr = 1

N

N∑

i=1

||Xi − WWT Xi ||F , (17)

where r = 1, 2, . . . , d1.
We first experiment on the original data and compute the

ARE for each method. The variation in ARE along different
dimensions is shown in Fig. 6 (a). From the figure, we
see that when the dimension is less than 15, our 2DBLDA
performs the best, especially when the dimension is greater
than 5. When the dimension is greater than 15, 2DPCA is
comparable or slightly better than our 2DBLDA, but both
of these methods almost achieve steady performance. The
result shows that 2DBLDA can achieve good performance
for low dimensions. The other three methods obviously
perform worse than our 2DBLDA and 2DPCA on all
the dimensions. When r = 15, we demonstrate the
reconstructed face images for 7 random individuals in
Fig. 6b. We can visually see that 2DBLDA and 2DPCA have
the best reconstruction performance.

To further evaluate the effectiveness of the proposed
2DBLDA, we add two different types of noise to the data.
The first type of noise is Gaussian noise with mean 0 and
variance 0.05 that covers 30% of the area of each image.
The ARE of each method under different dimensions is
plotted in Fig. 6c. On Gaussian noise data, we see that
our 2DBLDA outperforms other methods on almost all
the reduced dimensions, and 2DPCA is comparable to our
2DBLDA only when the dimension is greater than 27,
indicating that the proposed 2DBLDA can achieve fairly
good performance by employing only a small number
of reduced dimensions. We then add the second type of
noise, dummy noise, to the data. Here, the dummy noise
is the image that is generated from the discrete uniform
distribution on [0,1] and is of the same size as the original
image. An additional 100 dummy images are added to the
whole database. After the projection matrix is obtained
on these polluted data, it is used to reconstruct human
face images. The result in Fig. 6e demonstrates that our
2DBLDA has the lowest ARE on these databases for all the
dimensions, and when the dimension is greater than 20, it
has a rather low ARE. The reconstructed face images when
r = 15 shown in Fig. 6f also support the above argument.

5 Discussion

To further clarify the contribution of our method, we discuss
the differences between the proposed 2DBLDA and its two
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Fig. 4 AUC of all methods on different databases

closely related methods, RLp2DLDA and L2BLDA, and
give a detailed analysis of the experimental results.

5.1 Relationship between RLp2DLDA, L2BLDA and
2DBLDA

(i) Difference From RLp2DLDA: The formulation of
2DBLDA is different from any existing 2D linear
discriminant analysis method, and the 2DBLDA

criterion is derived by minimizing an upper bound
of the theoretical framework of the Bhattacharyya
error bound optimality. Although robust bilateral Lp-
norm two-dimensional linear discriminant analysis
(RLp2DLDA) is also derived from some upper bound
of the Bhattacharyya error, they have different formu-
lations since they have different error bounds. In fact,
the bound for 2DBLDA may be closer than the bound
of RLp2DLDA, which can be observed from two
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Fig. 5 G-mean of all methods on different databases

aspects. First, when deriving its bound, RLp2DLDA
ignores the term

√
PiPj and replaces it by 1, which

obviously magnifies the upper bound. In contrast,
our 2DBLDA keeps this term and fully explores this
weighting information, which leads to one of good
properties of 2DBLDA, that is, robustness. Second,
RLp2DLDA also magnifies its upper bound when
using the Lp-norm (0 < p < 1) rather than the
L2-norm. Therefore, this results in two advantages of
our 2DBLDA over RLp2DLDA: one is that 2DBLDA
obtains a meaningful weighting parameter that does

not need tuning, and the other is that 2DBLDA can
simply solve its optimization problem through a stan-
dard eigenvalue problem, while RLp2DLDA solves its
optimization problem through an iteration technique
without proving its convergence.

(ii) Difference From L2BLDA: Compared to the vector-
based robust Bhattacharyya bound linear discriminant
analysis through an adaptive algorithm (L2BLDA),
the proposed 2DBLDA is a matrix-based dimen-
sionality reduction method. Although 2DBLDA is a
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Fig. 6 Face reconstruction results on different databases

generalization of L2BLDA, it is not so direct from
view of the derivation of its upper bound. In fact,
the derivation procedure of the Bhattacharyya error
bound of 2DBLDA is not exactly the same as that of

L2BLDA. In addition, 2DBLDA can more effectively
deal with the matrix input without vectoring it first,
which improves the computing efficiency, especially
when computing the scatter matrices.
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5.2 Experimental results summary

(i) To study the performance of 2DBLDA, we give the
variation of accuracies under different databases and
different noise levels. The time of 2DBLDA is also
investigated in Tables 1-2. Experimental results show
that 2DBLDA runs fast and improves the robustness
of 2DLDA.

(ii) To compare the behavior of 2DBLDA and other
related methods under different reduced dimensions,
we plot the accuracy variation along with the reduced
dimensions in Figs. 2-3. The results demonstrate that
compared to other methods, the proposed 2DBLDA
obtains better classification results under its optimal
reduced dimension.

(iii) To see the application ability of 2DBLDA in
unbalanced classes, we experiment on three original
and different noise image databases. From the results
in Fig. 4 and Fig. 5, we see that the proposed
2DBLDA has the best performance compared to other
methods.

(iv) To observe the behavior of the proposed method
visually, we reconstruct face images by the obtained
projection matrix. Original and polluted Indian
female databases are used for face reconstruction.
By choosing an appropriate reduced dimension but
not necessarily too large, the proposed 2DBLDA can
obtain good face reconstruction performance.

6 Conclusion

This paper proposed a novel two-dimensional linear
discriminant analysis via Bhattacharyya upper bound
optimality (2DBLDA). Different from the existing 2DLDA,
optimizing the criterion of 2DBLDA was equivalent to
optimizing the upper bound of the Bhattacharyya error,
leading to maximizing a weighted between-class distance
and minimizing the within-class distance, where these
two distances were weighted by a meaningful adaptive
constant that can be computed directly from the involved
data. The 2DBLDA had no parameters to be tuned and
could be effectively solved by a standard eigenvalue
decomposition problem. Experimental results on image
recognition and face image reconstruction demonstrated
the superiority of the proposed method. Our MATLAB
code can be downloaded from http://www.optimal-group.
org/Resources/Code/2DBLDA.html.

However, a drawback of 2DBLDA is that its classifica-
tion performance degrades when the class distribution of the
samples is inconsistent. A TAISL technique could be used to
handle this issue [38]. Since sparse learning could make the
data have better interpretation after dimensionality reduc-

tion [20], one of the future studies also includes considering
a sparse model. In the end, applying our algorithm to track
fault detection is worth studying [39, 40].

Appendix

Proof of Proposition 1: We first note that pi(X̃) =
N (X̃|X̃i , Σ̃), where X̃i = wT Xi ∈ R

1×d2 is the i-class
mean, and Σ̃ is the covariance matrix in the 1×d2 projected
space. Denote

D=
⎛

⎜
⎝

wT X1
...

wT XN

⎞

⎟
⎠

T

∈R
d2×N and X̃I=

⎛

⎜
⎝

wT Xt1
...

wT XtN

⎞

⎟
⎠

T

∈R
d2×N . (18)

Then �̃ = (D − X̃I)(D − X̃I)
T .

According to [1], we have
∫ √

pi(X̃)pj (X̃) = e− 1
8 (X̃i−X̃j )Σ̃

−1
(X̃i−X̃j )T . (19)

The upper bound of the error εB can be estimated as

εB =
c∑

i<j

√
PiPj e

− 1
8 (X̃i−X̃j )Σ̃

−1
(X̃i−X̃j )T

=
c∑

i<j

√
PiPj e

− 1
8 ||(X̃i−X̃j )Σ̃

− 1
2 ||22

≤
c∑

i<j

√
PiPj

(

1 − a

8
||(X̃i − X̃j )Σ̃

− 1
2 ||22

)

=
c∑

i<j

√
PiPj − a

8

c∑

i<j

√
PiPj · ||(wT Xi − wT Xj )Σ̃

− 1
2 ||22 (20)

≤
c∑

i<j

√
PiPj − a

8

c∑

i<j

√
PiPj · ||(wT Xi − wT Xj )||22

||Σ̃ 1
2 ||2F

≤
c∑

i<j

√
PiPj − a

8

c∑

i<j

√
PiPj · ||wT (Xi − Xj )||22

+ a

8

c∑

i<j

√
PiPj · Δ′

ij ||Σ̃
1
2 ||2F ,

where Δ′
ij = 1

4 ||Xi − Xj ||2F , a > 0 is some constant.
For the first inequality of (20), note that the real value
function f (z) = e−z is concave when z ∈ [0, b], b > 0;
therefore, e−z ≤ 1 − 1−e−b

b
z. By taking a = 1−e−b

b
and

noting X̃i = wT Xi , the first inequality is obtained. For
the second inequality, we first note that for any z ∈ R

1×d2

and an invertible A ∈ R
d2×d2 , ||z||2 = ||(zA)A−1||2 ≤

||zA||2 · ||A−1||F , which implies ||zA||2 ≥ ||z||2
||A−1||F . By

taking z = wT Xi − wT Xj and A = Σ̃
− 1

2 , we get the
second inequality. For the last inequality, since ||w||2 = 1,
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||wT (Xi − Xj )||22 ≤ ||w||22 · ||Xi − Xj ||2F = ||Xi − Xj ||2F
and 1

||Σ̃ 1
2 ||2F

(

1 − 1

||Σ̃ 1
2 ||2F

)

≤ 1
4 , we have

⎛

⎝||wT (Xi − Xj )||22 − ||wT (Xi − Xj )||22
||Σ̃ 1

2 ||2F

⎞

⎠ · 1

||Σ̃ 1
2 ||2F

= ||wT (Xi − Xj )||22 · 1

||Σ̃ 1
2 ||2F

⎛

⎝1 − 1

||Σ̃ 1
2 ||2F

⎞

⎠ (21)

≤ 1

4
||wT (Xi − Xj )||22

≤ 1

4
||Xi − Xj ||2F

= Δ′
ij .

which implies

−||wT (Xi − Xj )||22
||Σ̃ 1

2 ||2F
≤ −||wT (Xi − Xj )||22+Δ′

ij · ||Σ̃ 1
2 ||2F .

(22)

By multiplying a
8

√
PiPj to both sides of (22) and summing

it over all 1 ≤ i < j ≤ c, we obtain the last inequality of
(20).

Take Δ =
c∑

i<j

√
PiPjΔ

′
ij = 1

4

c∑

i<j

√
PiPj ||Xi − Xj ||2F ,

and note that ||Σ̃ 1
2 ||2F = ∑c

i=1
∑Ni

s=1 ||wT (Xis −Xi )||22, we
then obtain (12).
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