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Abstract
The task of reconstructing detailed 3D human body models from images is interesting but challenging in computer vision due
to the high freedom of human bodies. This work proposes a coarse-to-fine method to reconstruct detailed 3D human body
from multi-view images combining Voxel Super-Resolution (VSR) based on learning the implicit representation. Firstly, the
coarse 3D models are estimated by learning an Pixel-aligned Implicit Function based on Multi-scale Features (MF-PIFu)
which are extracted by multi-stage hourglass networks from the multi-view images. Then, taking the low resolution voxel
grids which are generated by the coarse 3Dmodels as input, the VSR is implemented by learning an implicit function through
a multi-stage 3D convolutional neural network. Finally, the refined detailed 3D human body models can be produced by
VSR which can preserve the details and reduce the false reconstruction of the coarse 3D models. Benefiting from the implicit
representation, the training process in our method is memory efficient and the detailed 3D human body produced by our
method from multi-view images is the continuous decision boundary with high-resolution geometry. In addition, the coarse-
to-fine method based on MF-PIFu and VSR can remove false reconstructions and preserve the appearance details in the final
reconstruction, simultaneously. In the experiments, our method quantitatively and qualitatively achieves the competitive 3D
human body models from images with various poses and shapes on both the real and synthetic datasets.

Keywords Detailed 3D human body · Implicit representation · Multi-scale features · Multi-view images ·
Voxel super-resolution

1 Introduction

Recovering detailed 3D human body models from images
attracts much attention because of its wide applications in
movie industry, animations, and Virtual/Augmented Reality.
Although professional capture systems [25, 59] are now
able to reconstruct accurate 3D human bodies, these systems
remain inconvenient for common users because they are
often expensive and difficult to deploy. With the developing
of deep learning in 3D vsion, estimating 3D human bodies
from common 2D images attracts much attention and has
achieved some progress because it is much easier to obtain
2D images for the community. However, current approaches
cannot get the 3D models from 2D images with sufficient
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accuracy and the task is still far from being finished. The
goal of the work is to achieve better 3D human body models
from multi-view 2D images.

Traditionally, reconstructing 3D human body from RGB
images mainly depends on the pre-defined parametric human
body models. From simple geometric primitives [51] to data-
driven models [5, 36], parametric human body models play
important roles in human related research. The main idea
of the route is to fit the parametric human body model to
some prior information including the body skeleton, 2D
joint points and the silhouettes [2, 6, 8]. The route has
been used for human motion tracking and 3D pose esti-
mation successfully. However, the 3D human body models
estimated by these methods cannot satisfy the requirements
of the realism in many applications because the parametric
models often do not encode the detailed appearance.

Benefiting from the great success of deep learning in 3D
vision, it has achieved some progress to learn to reconstruct
3D human body from images recently. During the past
several years, convolutional neural networks (CNN) have
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shown impressive performance on 2D/3D human pose
estimation [4, 41, 46] and human body segmentation [20,
58]. Therefore, some methods automatically estimated 3D
human body model from images by fitting the parametric
human body to prior cues like the 2D/3D poses and
silhouettes which can be estimated by the CNN [2, 8,
21, 60]. Since the poses and silhouettes comprise sparse
information, directly inferring the pose and shape of a
parametric human body model from the full image through
the CNN becomes another useful route and has achieved
impressive performance [26, 30, 31, 44, 45]. However, the
3D human body models obtained by these methods have
poor appearance. Recently, many approaches came up with
a refining process on the parametric human body to add
clothes on the naked 3D human body model [3, 49, 61].
Through refining the parametric human body model, these
methods can obtain some details including the clothes and
hair on the final 3D model. However, these methods require
the parametric human body model has high accuracy on the
pose estimation.

Recently, learning to reconstruct 3D models has gained
popularity. Explicit volumetric representations are straight-
forward for learning to infer 3D objects from RGB
images [12, 15, 28, 55]. Due to the limitation of memory,
these methods can only produce low-resolution 3D objects
(e.g. 323 or 643 number of voxels). Even though some meth-
ods reduce the memory footprint through octrees, the final
resolutions are sill relatively small (e.g. 2563) [47]. In addi-
tion, these results are always discrete, which results in the
missing of many details on the surface. In contrast to explicit
representations, implicit function for 3D model representa-
tion in deep learning shows impressive performance [10, 11,
39, 43]. Compared to learning the explicit volumetric rep-
resentation, learning an implicit function to represent 3D
shape can be implemented in a memory efficient way, espe-
cially for the training process. Another advantage of implicit
representation is that the 3D model can be decided by the
continuous decision boundary, which is able to produce
a high-resolution 3D model. Considering the advantages,
there are some methods based on learning implicit function
to reconstruct detailed 3D human body from images [22, 48,
49]. However, these methods may still produce some false
reconstruction on the final 3D model.

In this paper we propose a novel method to estimate a
detailed 3D human body model from multi-view images,
through learning an implicit representation. Our method
works in a coarse-to-fine manner, and thus, consists of
two parts: (1) 3D human body reconstruction from multi-
view images through learning pixel-aligned implicit func-
tion based on multi-scale features (MF-PIFu), and (2) voxel
super-resolution (VSR) from low-resolution voxel grids
obtained by MF-PIFu. In both of the two parts, we attempt
to learn an implicit function to represent the 3D models.

For the MF-PIFu, the structure of multi-stage hourglass
networks is designed to produce the multi-scale features
and a fully connected neural network predicts the occu-
pancy values of the features to implicitly represent 3D
models. Through training the above model, the coarse 3D
models can be estimated from multi-view images. Then,
low-resolution grids can be generated by voxelizing the
coarse models. Taking the low-resolution grids as input, a
multi-stage 3D CNN is built to produce multi-scale fea-
tures and a fully connected neural network is also utilized to
predict the occupancy values of the features. The final 3D
model is generated by the implicit representation through
refining the coarse model by VSR. Our method is summa-
rized in Fig. 1.

Our method differs from previous work in three aspects.
Firstly, it is a coarse-to-fine method combining 3D recon-
struction from multi-view images by MF-PIFu and VSR
into one route to infer 3D human body models. MF-PIFu
produces a coarse 3D human body from multi-view images
and VSR refines the coarse result to generate a final detailed
3D model. Secondly, the implicit representation for the 3D
model is used both in MF-PIFu and VSR, which is memory
efficient for training and can produce high resolution geom-
etry through extracting a continuous decision boundary.
Finally, the multi-scale features are extracted from multi-
view images and low-resolution voxel-grids for coarse
reconstruction and refining the models, respectively. The
multi-scale features are able to fully encode the local and
global spatial information of the pixels in the images and the
voxels in the low resolution voxel grids. In order to better
represent the method, a list of acronyms and corresponding
denotations used in the paper is shown in Table 1.

The paper is organized as follows. The introduction and
related work of our method are presented in Sections 1
and 2, respectively. The following Section 3 describes the
detailed coarse-to-fine structure of our method and the
implementation details including the MF-PIFu and VSR.
In Section 4, some quantitative and qualitative experiments
are illustrated to evaluate the performance of our method.
Finally, the conclusion and future work are stated in
Section 5.

2 Related work

The related work on 3D human body reconstruction from
images is summarized in this section. There are three
parts in the section: (1) Optimization based methods; (2)
Parametric human body model based regression, and (3)
Non-parametric human body model based regression.

Optimization based methods The classic route to recover
3D human body models from an image is to fit a template
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Fig. 1 The pipeline of our method. It consists of 3D reconstruction
from images and voxel super-resolution from low-resolution grids.
The 3D reconstruction from multi-view images is implemented by

MF-PIFu and estimates a coarse 3D human body model. After voxeliz-
ing coarse model to a low-resolution grid, the voxel super-resolution
refines the low-resolution grid to obtain detailed model

such as SCAPE [5] or SMPL [36] to prior cues. SCAPE,
which was a data-driven parametric human body model
to represent human pose and shape, was learned from 3D
human body scans [5]. Some methods fitted SCAPE to
the silhouettes and joint points from the images to recover
human pose and shape [6, 18, 50]. With the emergence
of Kinect, the depth images were also used for fitting the
SCAPE [7, 35, 56]. With the success of deep learning
on human pose estimation [4, 9, 38, 41], the joint points
can be obtained automatically with high accuracy. In [8],
an automatic method for 3D human body estimation was
proposed through fitting a novel parametric human body
model called SMPL [36] to the 2D joint points predicted
by DeepCut [46]. Then, more methods used SMPL or pre-
scanning models for human body reconstruction based on
3D joint points, multi-view images, video and silhouettes [2,
19, 21, 33, 60]. These methods tried to build better energy
function based on various prior cues and the 3D human body
was estimated by optimizing the energy function. Although
the optimization based methods were classic, the estimated
3D human body had poor realism.

Parametric human body model based regression Since
deep learning has achieved impressive performance on 3D
vision tasks [57, 63], it also attracts much attention on 3D
human body estimation through regressing the parametric
human body model. In the beginning, the shape parameters

of SCAPE were regressed from silhouettes to estimate 3D
human body model in [13, 14]. In [52], the shape and pose
of the SMPL model were regressed through the images
and the corresponding SMPL silhouettes. Instead of using
silhouettes, the authors proposed to take the whole image
as the input of the CNN to regress the pose and shape param-
eters of the SMPL model through building the loss function
about the joint points [26]. Since then, many improved
methods were proposed through designing novel network
structure or using more constraints on the loss function [27,
29–31, 34, 44, 45]. Pavlakos et al. [45] combined joint
points and silhouettes in the loss function to better esti-
mate the shape. There were some other approaches in which
various cues were used for building sufficient loss func-
tion to train the network including the mesh [31], the
texture [44], the multi-view images [34], the optimized
SMPL model [30] and the video [27, 29]. In order to
model the detailed appearance, some method attempt to
refine the regressed SMPL model to obtain the detailed 3D
model [1, 3, 23, 32, 42, 53, 61, 62]. In [1, 3, 32], after
estimating the pose and shape of SMPL model, the authors
used shape from shading and texture translation to add the
details to SMPL like face, hairstyle, and clothes with gar-
ment wrinkles. In addition, the explicit representation of 3D
human body model were also used in detailed reconstruc-
tion. BodyNet [53] added the volume loss function to better
estimate the pose and shape of SMPL. DeepHuman [61]

Table 1 A list of acronyms and
corresponding denotations used
in the paper

Acronyms Denotation

MF-PIFu Pixel-aligned Implicit Function based on Multi-scale Features

VSR Voxel Super Resolution

SPIN SMPL optimization in the loop

SMPL Skinned Multi-person linear model

P2S Point-to-surface error

IoU Intersection over Union
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refined the appearance of volumetric SMPL model through
transferring the image normal to the volumetric SMPL.
In [42], a novel tetrahedral representation for SMPL model
was used and the detailed model was obtained by learn-
ing the sign distance function of tetrahedral representa-
tion. Another recent work also refined the normal and
color of image to the estimated SMPL model [23] from
single image.

Non-parametric human body model based regression
Recently, deep learning also achieved some success on
reconstruction of 3D objects from images without relying
on any parametric models. Some methods tried to extract
coarse 3D information from 2D images and attempted to
refine the 3D information through deep neural network such
as volume, visual hull and depth images [16, 17, 22, 24, 40].
Jackson et al. [24] reconstructed 3D geometry of humans
through training an end-to-end CNN to regress the vol-
umes which were provided in the training dataset. In [17], a
coarse model was obtained though Visual Hull from sparse
view images and the coarse model was refined by a deep
neural network. Natsume et al. [40] generated multi-view
silhouettes through deep learning from single image and
proposed a deep visual hull to infer the detailed 3D mod-
els based on the estimated silhouettes. Huang et al. [22]
estimated detailed models by deciding if a spatial point
inside or outside of 3D mesh through classifying the fea-
tures extracted by the CNN. Gabeur et al. [16] estimated the
visible and invisible point clouds of the human body from
image through deep learning and the full detailed body can
be formed by the point clouds. Instead of inferring 3D infor-
mation from images, some other methods gained popularity
to reconstruct general 3D models directly from images with
explicit representation such as voxels and point cloud [12,
15, 28, 55]. Due to the limitation of resolution of an explicit
representation, implicit representation of 3D models based
on deep learning have been used for reconstruction of gen-
eral objects [10, 11, 28, 39]. Inspired by the idea, some
methods only for detailed 3D human body reconstruction
also proposed based on learning implicit representation.
Saito et al. [48] extracted the pixel-aligned features from
images through end-to-end networks. Associating the depth
of pixel, the implicit representation can be learned from
the features. The method can produce the high-resolution
detailed 3D human body including the facial expression,
clothes and hair can be estimated from by the above meth-
ods. However, there existed many errors on the estimation
because only 2D images were used. An improved method
called PIFuHD [49] was proposed to reconstruct high-
resolution detailed 3D human body from images through
introducing image normal to PIFu. The coarse-to-fine meth-
ods could obtain more accurate 3D model because more
cues were used for the reconstruction.

3Method

In this section the details of our method are described. The
background of implicit function to represent the 3D shape
is firstly introduced. Then, we present the 3D human body
reconstruction from multi-view images through learning
the MF-PIFu. Afterwards, an implicit representation based
network for VSR is presented to refine the 3D human body
model obtained from the multi-view images. Finally, the
implementation details of our method are introduced.

3.1 Learning an implicit function for 3Dmodels

For 3D reconstruction based on deep learning, implicit
functions to represent 3D shape is memory efficient for
training. Instead of storing all voxels of the volume in an
explicit volumetric representation, an implicit function for
3D representation assigns the signed distance or occupancy
probability to a spatial point to decide if the point lies inside
or outside of the 3D mesh. The estimated 3D mesh can
be extracted by a level set surface. In our method, we use
occupancy probability as the output of the implicit function.
Given a spatial point and a water-tight mesh, the occupancy
function is defined as:

f (X) := x, X ∈ R
3, x ∈ {0, 1}, (1)

where X is the 3D point and x is the value of occupancy
function for X. The value of x indicates if X lies inside (0)
or outside (1) of the mesh. The 3D mesh can be implicitly
represented and extracted by the level set of f (X) = 0.5.

For 3D reconstruction based on learning implicit
representation, the key problem is to learn the occupancy
function f (·). More specifically, a deep neural network
encodes 3D shape as a vector v ∈ V ⊂ R

m, and then, the
occupancy function takes the vector as input to decide the
value of the 3D point, i.e.,

f (v, X) : V × R
3 �→ [0, 1]. (2)

As long as f (·) can be learned, the continuous occupancy
probability field of a 3D model can be predicted and the
3D model can be extracted by the iso-surface of the field
through the classic Marching Cubes algorithm.

In PIFu [48], the authors presented a pixel-aligned
implicit function for high-resolution 3D human body
reconstruction. It is defined as:

f (F (π(X)), z(X)) : V × R �→ [0, 1], (3)

where F(·) is the feature grids of CNN, π(X) is the
projection of X on the image plane by π and z(X) is
the depth of X. PIFu showed impressive performance on
detailed reconstruction of human bodies for fashion poses,
for instance, walking and standing. However, the features
extracted by multi-stage networks from input images have
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the same scale, which may result in the missing of some
details. In addition, for some complicated poses, only using
2D images may result in false reconstructions. Aiming at the
above two drawbacks, we propose two improvements. On
one hand, the multi-scale features are extracted in both 3D
reconstruction from images and voxel super-resolution. On
the other hand, the voxel super-resolution refines the coarse
3D models to reduce false reconstructions.

The outline of our method is shown as Fig. 1. It has two
parts: (1) 3D reconstruction from images by MF-PIFu; and
(2) refining 3D models by VSR. The details of the two parts
are presented in the following sections.

3.2 MF-PIFu

The method for 3D reconstruction from multi-view images
is inspired by PIFu [48]. The difference is that multi-
scale features are extracted from multi-view images through
multi-stage hourglass networks. Therefore, we call our
method as MF-PIFu and the architecture of MF-PIFu is
shown in Fig. 2.

Given images with N views Ii, i = 1, ..., N , multi-stage
hourglass networks which are denoted as gR(·) encode the
images as feature grids F(j)

R , j = 1, ..., M where M is the
number of hourglass networks. Then, for the i-th image Ii ,
its multi-scale feature grids are defined as:

gR(Ii) := F(i,1)
R , ...,F(i,M)

R , (4)

where the feature grids F(i,1)
R , ...,F(i,M)

R have different scales

and the j -th grid F(i,j)
R belongs to feature space FC×K×K

j .
C is the depth of feature grid and K is the width and
height of the feature grid. In our method, C is kept constant
(e.g. 256) and K deceases as 2j−1 for the j -th hourglass
network. Before the F(i,j−1)

R is fed into the j -th hourglass
network, we use a max-pooling layer to downsample
F(i,j−1)

R . Through this max-pooling layer, the multi-scale
feature grids can be generated by the multi-stage hourglass
networks. For the pixel x in the image Ii , the feature vector
in F(i,j)

R can be obtained at the corresponding location

through interpolation, which is denoted as F(i,j)
R (x) ∈ FC

j .
After getting the multi-scale features, the multi-scale

features need to be queried to predict the occupancy value.
The prediction is implemented by a fully connected neural
network which is defined as fR(·). Similar to PIFu, not only
the features are used for prediction, but also the depth of the
corresponding pixel is also used. The multi-scale features
and the depth form new feature vector for prediction. For
the pixel x in the image Ii , we define the new feature vector
as F(i)

R (x) = {F(i,1)
R (x), ...,F(i,M)

R (x), z(x)} ∈ FC
1 × ... ×

FC
M × R. The fully connected neural network takes into the

feature vector to predict the occupancy value of x:

fR(F(i)
R (x)) : FC

1 × ... × FC
M × R �→ [0, 1]. (5)

In contrast to PIFu, we form the features of each stage
and the depth as a new feature vector. This new feature

Fig. 2 The structure of
MF-PIFu to learn the implicit
representation of 3D human
body model. Multi-stage
hourglass networks are used for
multi-scale feature extraction
and a fully connected neural
network predicts the occupancy
value of the feature

6743Detailed 3D human body reconstruction from multi-view images...



encodes both the local and global information of the
pixels. The feature grids at the early stage encode more
local information, while the feature grids at the last stage
represent the global information. Associating the depth
information, the new features encode more information than
the features used in PIFu, and thus, it is more reliable to
predict the occupancy value.

To train gR(·) and fR(·) from multi-view images Ii, i =
1, ..., N , the pairs {Ii,S} are required in which S is the
corresponding ground truth of 3D model for the multi-
view images Ii . As shown in Fig. 3, 3D spatial points
Xi, i = 1, ..., K are sampled from the 3D model S and
random displacements with normal distribution N (0, σ )

on the points are added. This means that the points to be
queried are X̂i = Xi + ni where ni ∼ N (0, σ ). The
binary occupancy values of the points o(X̂i) can be obtained
according to the location of X̂i . If X̂i lies in S, o(X̂i) = 0
(the red points in Fig. 3). Otherwise, o(X̂i) is 1 (the green
points in Fig. 3). The points X̂i are projected onto the
multi-view images through the given camera parameters.
The corresponding pixel of point X̂j on the i-th image is
xij = πi(X̂j ). Then, the loss function for the pair {Ii,S}
can be defined as:

LR =
N∑

i=1

K∑

j=1

‖fR(F(i)
R (xij )) − o(Xj )‖. (6)

In the above loss function, F(i)
R (xij ) is the multi-scale

features of pixel xij which is the projection of 3D point
X̂j on the i-th view image. This loss function is defined
based on the multi-view images jointly, which can predict
the occupancy values more accurately. Through minimizing
the loss function, gR(·) and fR(·) can be trained end-to-end.

3.3 Voxel super-resolution

The 3D models recovered by MF-PIFu are still coarse
because MF-PIFu only relies on 2D images. We observe
two problems in the estimated 3D models by MF-PIFu. The

first one is that the surface of the 3D model is not smooth
and the second one is that some extra unnecessary parts are
reconstructed on the models due to the false classification
of some voxels. In order to overcome the problems, voxel
super-resolution (VSR) is learned to refine the coarse 3D
models of MF-PIFu. As shown in Fig. 4, our VSR method
also uses a multi-scale structure for feature extraction and
implicit representation for the 3D model. In contrast to MF-
PIFu which uses images as input, the input of VSR is a low
resolution voxel grid which is produced by the voxelization
of the 3D model of MF-PIFu.

Suppose the 3D model estimated by MF-PIFu is Ŝ which
is stored as the voxel positions. The voxelization of Ŝ
can produce a low resolution grid as V ∈ R

N×N×N (e.g.
N=128). Then, as shown in Fig. 4, 3D convolution kernels
are utilized to extract 3D feature grids from V . 3D CNN
with n convolutional layers is used to generate the multi-
scale feature grids F(1)

V , ...,F(n)
V . The resolution of the k-th

feature grid is N/(2k−1), i.e., F(k)
V ∈ FK×K×K

k where K =
N/(2k−1). The resolution of the feature grids decreases with
the depth of the network. We denote the 3D CNN for VSR
as gV (·) and the multi-scale features can be generated as:

gV (V) := F(1)
V , ...,F(n)

V . (7)

The feature grid at the early stage encodes more local
information such as the shape details, while the feature grid
at the late stage captures the global information of the voxel
grid because of the large receptive fields at the late stage.

For a voxel v ∈ V , its corresponding multi-scale feature
is formed by the features from F(1)

V , ...,F(n)
V . Since the

feature grid is discrete, the feature of voxel v in F(k)
V is

extracted by trilinear interpolation and is denoted as F(k)
V (v).

The multi-scale feature for the voxel v is

FV (v) = {F(1)
V (v), ...,F(n)

V (v)}, (8)

where FV (v) ∈ F1×...×Fn. After obtaining the multi-scale
feature for a voxel v, we also use a fully connected network
to classify the multi-scale feature and and we denote it

Fig. 3 Sampling 3D points from
3D model and projecting the
points to multi-view images
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Fig. 4 The structure of VSR based on learning implicit representation.
3D CNN is used for extracting the multi-scale features from low-
resolution grid. A fully connected neural network is used for predicting
occupancy value of features

fV (·). The fully connected network predicts the occupancy
value of the multi-scale feature of FV (v):,

fV (Fv(v)) : F1... × Fn �→∈ [0, 1] (9)

This fully connected neural network classifies the voxel
based on the multi-scale feature if the corresponding
point lies inside or outside of 3D mesh. The implicit
representation enables to produce a continuous surface.
Besides, since multi-scale feature encodes both the local and
global information, the 3D model after super-resolution can
keep the global shape and preserve details of the shape.

In order to train the gV (·) and fV (·) from low-resolution
voxel grids V , the 3D model Ŝ estimated by MF-PIFu
and its ground truth S are given as a pair {Ŝ,S}. The
input low-resolution voxel grids are generated by voxelizing
Ŝ . Instead of sampling points from S, we sample N
points vi , i, ..., N on the surface of Ŝ and add random
displacements with normal distribution ni ∼ N(0, σ ) to
these points, i.e., v̂i = vi + ni . Here the same strategy
for generating the 3D points and labels are used as [11],
i.e., 50% points vi are added random displacements with
small σmin and the other 50% points vi are added random
displacements with large σmax. During the voxelization,
the grid coordinates of the points v̂i in the low-resolution
voxel grids V can be indexed and it is denoted as ρ(v̂i ).
One example of sampling points and voxelization to a 1283

grid is shown in Fig. 5. According to whether the point
lies inside or outside of the ground truth 3D model S,
the binary occupancy value of the points v̂i can also be
obtained as o(v̂i ). This is possible because the estimated
3D model by MF-PIFu has been close to the ground truth.
Through sampling the points on the estimated 3Dmodel, the
occupancy values of the points are reliable to do the VSR.

After getting the occupancy value of the points, the loss
function for training the model of VSR can be defined as:

LV SR =
N∑

i=1

L
(
fV (gV (ρ(v̂i ))), o(v̂i )

)

=
N∑

i=1

L(fV (FV (ρ(v̂i ))), o(v̂i )).

(10)

In the loss function, multi-scale features are used, and
thus, the local and global information of the low-resolution
voxel gird are encoded, which can preserve the details and
the global shape simultaneously. We use standard cross-
entropy loss function L(·, ·) to measure the loss between
the prediction and ground truth. Through minimizing the
loss functionLV SR , the multi-stage 3D convolutional neural
networks and the fully connected network are trained.

3.4 Implementation details

As shown in Fig. 1, our model is a coarse-to-fine archi-
tecture in which MF-PIFu reconstructs coarse 3D models
from multi-view image and VSR refines the coarse models
to produce models with high accuracy. In this section the
implementation details about the network structure, training
and testing of our method are presented.

Network structure of MF-PIFu We use four stages of hour-
glass networks to generate multi-scale features and four
layers in the fully connected neural network for prediction
of occupancy value. For the extraction of multi-scale fea-
tures, the input of the networks is the multi-view images
(e.g. four views in the most of our experiments) which have
removed backgrounds and are cropped to 256 × 256. The
hourglass network consists of two convolutional layers and
two deconvolutional layers to generate pixel-aligned feature
maps. Max pooling is used for downsampling the feature
maps. The output feature grids of each hourglass network
has the size of 256 × 128 × 128, 256 × 64 × 64, 256 ×
32 × 32, and 256 × 16 × 16. The fully connected network
has four convolutional layers and the number of neurons in
each layer is (1024, 512, 128, 1). The input feature of the
fully connected layer has size 1025 because the multi-scale
features also consider the depth of queried pixel.

Training for MF-PIFu During the training, the batch size of
input images is 4 and the model is trained for 12 epochs. In
addition, 10,000 points are sampled from the ground truth
of 3D mesh and they are added normally random noise
with σ = 5 cm. These points are used for prediction of
the occupancy value to build the loss function. The Mean
Square Error (MSE) is used for building the loss function.
The RMSProp algorithm with initial learning rate 0.001
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Fig. 5 Sampling 3D points from
3D model estimated by
MF-PIFu and the voxelization of
the 3D model estimated by
MF-PIFu (The resolution is
1283). The 3D points can be
indexed by the grid coordinates
in the low-resolution grids

is used for updating the weights of the networks and the
learning rate decreases by a factor of 0.1 after 10 epochs. It
takes about 7 hours for training on our dataset.

Network structure of VSR The architecture for VSR has the
multi-stage 3D convolutional layers for generating multi-
scale features from low resolution voxel grids and the fully
connected neural network to predict the occupancy value of
the multi-scale features. The input of the 3D CNN is the
low resolution voxel grids which have the size 1283. The 3D
CNN has 5 convolutional layers and the max pooling is used
for downsampling the feature maps. The output feature grid
of each convolution block has size of 16×(128×128×128),
32×(64×64×64), 64×(32×32×32), 128×(16×16×16),
128 × (8 × 8 × 8). Therefore, the input feature vector of
the fully connected nerual network has 368 elements. The
fully connected neural network for predicting the occupancy
value consists of four convolutional layers and the number
of neurons in each layer is (256,256,256,1).

Training for VSR The low-resolution voxel grids for training
the VSR is generated by the coarse 3D models estimated
by MF-PIFu through voxelization. The input low-resolution
voxel grids have resolution 1283. We sample 10,000 points
from the coarse 3D models, in which 50% of the points
are added normal distribution displacements with σmax =
15 cm and the other 50% of the points are added normal
distribution displacements with σmin = 5 cm. The standard
cross-entropy loss is used as the loss function. The batch
size of input voxel grids is 4 and the network is trained for

30 epochs. The Adam optimizer with learning rate 0.0001
is used for updating the weights of the networks. This will
take about 12 hours for training on our dataset.

Testing During the testing process, multi-view images are
fed into the trained model of MF-PIFu to generate occu-
pancy predictions for a volume. Then, the predicted 3D
human bodies are extracted by an iso-surface through march-
ing cubes from the volume. After voxelizing the predicted
3D model to low-resolution with 1283, the low-resolution
voxel grid is fed into the trained model of VSR to refine
the occupancy predictions of the volume. Through use of
the march cubes again, the final 3D human body model
is extracted from the iso-surface of the volume. Therefore,
this process is an image-based coarse-to-fine 3D human
body reconstruction method. The MF-PIFu produces the
coarse 3D models and the VSR can refine the coarse results
through learning another implicit function. After the VSR,
the false reconstructed parts can be removed and the details
of the appearance can be preserved.

4 Experimental results

In this section some experiments are presented to evaluate
our method. We firstly introduce the datasets and metrics
for training and testing. Then, several previous methods
are used for comparison on the quantitative and qualitative
results. Finally, we discuss several factors which may affect
the performance of our methods.
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4.1 Datasets andmetrics

Datasets To train and test our method, two datasets are
used in the experiments: Articulated dataset [54] and CAPE
dataset [37]. Articulated dataset is captured by 8 cameras
and it contains 10 indoor scenarios. Two male subjects
have four scenarios, respectively, and one female subject
performs two scenarios. For each scenario, RGB images,
silhouettes, camera parameters as well as 3D meshes are
given. Totally, there are 2000 frames with eight-view images
and 3D meshes. We split the dataset as 80% frames
(1600) for training and 20% frames (400) for testing. The
CAPE dataset is a 3D dynamic dataset of clothed humans
generated by learning the clothing deformation from the
SMPL body model. There are 15 generative clothed SMPL
models with various poses. Since it has a large number of
frames, we extract a small dataset from the original CAPE
dataset. For each action of each subject, we take the 80-
th, 85-th, 90-th, 95-th, and 100-th frames if the action
has more than 100 frames. Totally, the small CAPE dataset
has 2910 frames with 3D meshes. Since the dataset only
provides 3D meshes, we render each mesh to four-view
images from front, left, back and right side. The small CPAE
dataset is split as 80% for training and 20% for testing in our
experiments. Figure 6 gives an example of four-view images
and 3D mesh from the small CAPE dataset.

Metrics In order to quantitatively evaluate our method,
three metrices are used to measure the estimated 3Dmodels:
Euclidean distance from points on the estimated 3D models
to surface of ground truth 3D mesh (P2S), Chamfer-L2 and
intersection over union between estimated 3D model and
ground truth 3D model (IoU). For P2S and Chamfer-L2,
the lower value means the estimated 3D model is more
accurate and complete. For IoU, the higher value means
the estimated 3D model better match the ground truth. The
detailed definition can be referred to [11].

4.2 The results of the two steps

In order to demonstrate the performance of MF-PIFu and
VSR, the results of the two steps are evaluated on the two
datasets. Figure 6 gives the examples of the CAPE and
Articulated dataset in the first and second rows, respectively.
From left to right columns, the figure shows (a) original
multi-view images, (b) the ground truth of 3D mesh from
two views, (c) the corresponding estimated 3D meshes by
the MF-PIFu and (d) the final results of VSR. We can see
that the estimated 3D models by MF-PIFu are almost the
same as the ground truth. However, there are still some false
reconstruction and the details of appearance are not fully
recovered, which can be seen from the two examples in
Fig. 6c. For instance, the arms of the 3D model from the

CAPE dataset are not fully reconstructed by MF-PIFu and
there are some extra reconstructed parts around the legs of
the 3D models for the Articulated dataset. Figure 6d shows
the refined results by VSR, which illustrates that those extra
reconstruction in the estimated 3D models of MF-PIFu are
removed and the details of the appearance are preserved,
especially for arms of the 3D model for the CAPE example
and the neck of the 3D model for the Articulated. This
figure demonstrates that MF-PIFu can produce the coarse
3D models from multi-view images and VSR can generate
better results through refining the coarse 3D models.

The quantitative results of the two steps on the two
datasets are also shown in Table 2. The results of P2S,
Chamfer-L2 and IoU of the coarse 3D models by MF-
PIFu and the refined 3D models by VSR are given in this
table. The bold numbers in the table show that the P2S and
Chamfer-L2 of the VSR are smaller and the corresponding
IoU is higher on both the two datasets. For the CAPE
dataset, the P2S and Chamfer-L2 after VSR decrease from
0.9428 cm to 0.4954 cm and from 0.0196 cm to 0.0062 cm,
respectively. The IoU after VSR increases from 78.29% to
84.40%. For the Articulated dataset, the P2S and Chamfer-
L2 after VSR reduce from 0.7332 cm to 0.3754 cm and from
0.0194 cm to 0.0032 cm, respectively. The IoU after VSR
increases from 84.29% to 90.51%. Therefore, the refined 3D
models on the two datasets are more accurate and complete
than the coarse 3D models. The VSR is useful to refine the
models and obtains better 3Dmodels. The conclusion of this
table is consistent with Fig. 6.

4.3 Qualitative results

Our method is qualitatively compared with several previous
approaches for 3D human body reconstruction from images
including PIFuHD [49], SPIN [30], DeepHuman [61] and
PIFu [48]. For the PIFuHD, SPIN and DeepHuman, the
trained models provided by the authors are used to estimate
3D models for our test datasets. For PIFu, we trained
and tested it on the same training dataset as our method
from four-view images. SPIN estimated the pose and
shape parameters of SMPL model through collaborating
regression and optimization to get the naked 3D models.
DeepHuman used encoder-decoder on the volume of
deformed SMPL model and used normal image to refine
the SMPL model to get detailed appearance. For PIFuHD,
the estimated normal images of the front and back side
were used in the training to learn pixel-aligned implicit
function, which is able to produce 3D models with high
resolution. Due to lacking the training code of PIFuHD, the
testing code were used to produce the 3D models based
single image from our datasets. In Fig. 7, the original
images and the ground truth of 3D models are given in
the first and second row. The results of PIFuHD [49],
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Fig. 6 The 3D models estimated by MF-PIFu and VSR. From the left to right column: The original images (a), the ground truth of 3D model
from two views (b), the estimated 3D models of MF-PIFu (c), and the final 3D models after VSR (d)

SPIN [30], DeepHuman [61], PIFu [48] and our method
are demonstrated from the third row to the last row. It
shows the 3D models estimated by our method have better
shape details and less false reconstruction. Since SPIN and
DeepHuman rely on the SMPL model, they cannot handle
the detailed appearance like clothes and wrinkles on the
3D models. Although DeepHuman attempts to recover the
clothes on the 3D model, the results are not satisfying
because the trained model of DeepHuman is based on a
different dataset. Note that the results of PIFuHD are not
so good as the original paper because the normal images
of these images are not well estimated and training code
is not given. The results of PIFu are better than SPIN and
DeepHuman because of learning an implicit representation,
while PIFu is better than PIFuHD because we use our
dataset to train it. Overall, our method can recover the 3D
human body models from multi-view images with plausible
pose and surface quality.

In Fig. 8, the P2S between the estimated 3D models
by different methods and the ground truth in Fig. 7 are
visualized by Meshlab. In Meshlab, the P2S is computed

Table 2 The quantitative results of the CAPE and Articulated datasets
by the two steps of our method

P2S ↓ Chamfer-L2 ↓ IoU ↑

CAPE MF-PIFu 0.9482 0.0196 0.7829

VSR 0.4954 0.0062 0.8440

Articulated MF-PIFu 0.7332 0.0194 0.8484

VSR 0.3754 0.0032 0.9051

through the Hausdorff Distance and the distances are shown
by the heatmaps. The range is from 0 to 10 cm to map
the color from blue to red for all of the models. The red
parts stand for high errors and the blue parts mean small
distance. The figure clearly shows that the estimated 3D
human bodies of our method have higher accuracy than the
other four previous methods.

4.4 Quantitative results

In addition to the qualitative comparison, quantitative
results are compared through computing the P2S, Chamfer-
L2 and IoU of different methods on the testing datasets
of CAPE and Articulated in Table 3 and Table 4. Note
that these metrics are computed after normalizing the 3D
models estimated by different methods. It shows that the
results of PIFuHD are the worst and our method has the best
performance. Although PIFuHD, SPIN and DeepHuman
use the trained model, PIFuHD does not estimate camera
parameters, which leads to the estimated 3D models have
different coordinates with the ground truth and the results
of the metrics are bad. SPIN [30] and DeepHuman [61]
have similar performance, but the results are still not
good. Comparing to PIFuHD, SPIN and DeepHuman, the
results of PIFu are better because PIFu are retrained and
represents the 3D model through learning implicit function.
Our method achieves the best performance among these
methods as shown by the bold numbers in the tables because
VSR can refine the coarse results of MF-PIFu. The P2S and
Chamfer-L2 are the smallest in our method, which means
that the results of our method are more accurate. The IoU of
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Fig. 7 The comparison between our method and several previous methods on the two datasets. From top to down rows: the original images, the
ground truth of 3D models from two views, the estimated 3D models of PIFuHD [49], SPIN [30], DeepHuman [61], PIFu [48] and our method

our method is the highest, which means that the estimated
3D models are more complete. The two tables demonstrate
that our method had good performance on both synthetic
and real datasets.

In order to clearly show the metric on the testing
datasets, the P2S of each sample in the two testing data
of the CAPE and Articulated dataset is shown in Fig. 9.
There are 582 samples in the testing dataset of CAPE
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Fig. 8 Visualization of the P2S between the estimated 3D models and the ground truth for different methods in Fig. 7. The distance are represented
by the heatmaps in Meshlab and mapped to the estimated 3D models

and 400 samples in the testing dataset of Articulated,
respectively. Our method (the red line) has the lowest
errors on the two datasets comparing to the other methods.
Besides, for the testing samples, our method is more stable
and robust because the red lines do not have serious
fluctuation.

4.5 Discussion on the PIFu

As shown above, PIFu [48] is a similar approach which
also learns an implicit representation for 3D model from
images. Therefore, we discuss more about the performance
of PIFu in this section. The results of PIFu, MF-PIFu,
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Table 3 The quantitative
results of PIFuHD [49],
SPIN [30], DeepHuman [61],
PIFu [48] and our method on
the testing dataset of the CAPE

Method P2S ↓ Chamfer-L2 ↓ IoU ↑

PIFuHD [49] 5.7136 0.5650 0.2469

SPIN [30] 2.2134 0.1271 0.4044

DeepHuman [61] 3.4028 0.1850 0.3861

PIFu [48] 1.0330 0.0212 0.7571

Ours 0.4954 0.0062 0.8440

Our method achieves better performance

Table 4 The quantitative
results of PIFuHD [49],
SPIN [30], DeepHuman [61],
PIFu [48] and our method on
the testing dataset of the
Articulated

Method P2S ↓ Chamfer-L2 ↓ IoU ↑

PIFuHD [49] 6.5592 0.6497 0.2056

SPIN [30] 3.5206 0.2679 0.3506

DeepHuman [61] 3.9448 0.2675 0.3742

PIFu [48] 0.8194 0.0210 0.8255

Ours 0.3754 0.0032 0.9051

Our method achieves better performance

Fig. 9 The P2S of each sample
in the testing data of the two
datasets for different methods.
The y axis stands for the
accuracy of P2S. The x axis is
the number of samples in the
testing data
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Table 5 The qualitative results of PIFu, MF-PIFu, PIFu+VSR and our
method

View P2S ↓ Chamfer-L2 ↓ IoU ↑

PIFu 0.8194 0.0210 0.8255

MF-PIFu 0.7332 0.0194 0.8484

PIFu+VSR 0.4322 0.0041 0.8865

Our 0.3754 0.0032 0.9051

PIFu+VSR and our method are evaluated to demonstrate the
advantage of MF-PIFu and our method on the Articulated
dataset. Table 5 gives the quantitative results of PIFu, MF-
PIFu, PIFu+VSR and our method on the testing dataset of
the Articulated. PIFu+VSR means that PIFu is trained by
the same Articulated dataset as MF-PIFu, and the testing
results of PIFu is refined by the VSR which is trained by the
low-resolution voxel grids obtained by MF-PIFu. This table
shows that MF-PIFu achieves better results than PIFu and
the VSR can refine the coarse models obtained by PIFu and
MF-PIFu. Our method combines the MF-PIFu and VSR,
and thus, our method achieves the best performance on the
dataset as shown by the bold numberd in the table. Figure 10
gives the the P2S of the four cases on the testing dataset of
the Articulated. It shows that the accuracy of our method
on most samples is the highest. For the MF-PIFu, it has
smaller P2S on the most samples than the original PIFu,
which provides more reliable inputs for the voxel super-
resolution. Therefore, our method combining MF-PIFu and
VSR achieves the smallest P2S on most samples. This is
consistent with Table 5.

The qualitative examples from the Articulated dataset are
shown in Fig. 11. From the figure, it is clearly shown that
the results of PIFu, MF-PIFu and PIFu+VSR have some
false reconstruction, especially for the first example. The
3D models estimated by our method are the best because

the false reconstruction is removed and the surface quality is
improved by VSR, which can be demonstrated by the areas
indicated by the red circles. The visualization of the errors
on the 3D models is also given in the figure, which clearly
shows that the 3D models of our method have the smallest
distance to the ground truth among the four cases.

4.6 Spatial sampling

Spatial sampling is used in both MF-PIFu and VSR to
generate the ground truth of the occupancy value of spatial
3D points. It is an important factor in the sharpness of the
final 3D model. In the two parts of our method, we use
the same sampling strategy. Firstly, the points are uniformly
sampled from the surface of the 3D model. Then, the
random displacements with normal distribution N (0, σ )

are added to the points. The σ defines the distance of
the points to the surface. The larger σ makes the points
further from the 3D mesh. For the MF-PIFu, we choose
σ = 5 cm for the random displacements because the
paper of PIFu [48] has demonstrated that σ = 5 cm can
achieve the best performance for the 3D reconstruction from
images. Here we evaluate the effects of σ on the VSR on
the Articulated dataset. As shown in the implementation
details, the 3D points are added random displacements
with large σmax and small σmin during training the VSR.
In order to discuss the effect of σmax and σmin, five
pairs of (σmax, σmin) are chosen and the corresponding
performance under the five cases is compared. Table 6
shows the quantitative values of the P2S, Chamfer-L2 and
IoU for different (σmax, σmin) on the testing dataset of the
Articulated and the best results are shown as bold numbers.
Figure 12 shows the mean P2S of different σmax for the
testing dataset of the Articulated. The table and the figure
demonstrate that the performance is almost the same for

Fig. 10 The P2S of each sample
in the testing data of the
Articulated for PIFu, MF-PIFu,
PIFu+VSR, and our method. The
y axis stands for the accuracy of
P2S. The x axis is the number of
samples in the testing data
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Fig. 11 The qualitative results
of PIFu, MF-PIFu, PIFu+VSR,
and our method on the
Articulated dataset

(σmax, σmin) = (15, 1.5), (25, 2.5), (35, 3.5). The P2S and
IoU of the results for (σmax, σmin) = (15, 1.5) are the best,
but it does not have too much difference with (25, 2.5) and
(35, 3.5). This is the reason that (σmax, σmin) = (15, 1.5) is
used in our method.

Figure 13 shows two examples for different σ from the
Articulated dataset. We also give the visualization of the
errors for the 3D models. From the figure, it can be seen that
the estimated models of σmax = 5 have extra unnecessary
parts. The errors of σmax = 10 are also relatively high
from the visualization map, while the results of σmax =
15, 25, 35 are almost the same level. However, as shown in

Table 6 Quantitative results of different (σmax, σmin) on the Articulate
dataset

(σmax, σmin) (cm) P2S ↓ Chamfer-L2 ↓ IoU ↑

(5,0.5) 1.0874 0.1151 0.9006

(10,1.0) 0.5953 0.0110 0.8466

(15,1.5) 0.3754 0.0032 0.9051

(25,2.5) 0.3856 0.0030 0.8986

(35,3.5) 0.3848 0.0029 0.8984

the areas indicated by the red circles, the surface details of
the estimated 3D models of σmax = 15 are better preserved,
especially for the neck part of the first example. Therefore,
according to the above observation, the best choice for
(σmax, σmin) is (15, 1.5) for the Articulated dataset. It is also
acceptable to use larger (σmax, σmin), for instance, (25, 2.5)
and (35, 3.5). However, this does not mean that σmax can
be too large because the results may not be good if σmin is
larger than 5 cm. The reasonable range for (σmax, σmin) is
(15, 1.5) ∼ (35, 3.5) according to the experiments.

4.7 Voxel grid resolution

The resolution of input voxel grids for VSR will also affects
the performance of VSR to refine 3D models. In order to
demonstrate the effects, the results of VSR with the input
resolution of 323 and 1283 for the Articulated dataset are
compared. The voxel grids with different resolutions are
generated from the estimated 3Dmodels of MF-PIFu. Using
the VSR which is trained by voxel grids with 1283, the
final results are generated from voxel grids with 323 and
1283, respectively. Table 7 shows the P2S, Chamfer-L2
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Fig. 12 The mean P2S on the
testing dataset of the Articulated
for different σmax. The y axis
stands for the mean P2S. The x

axis is the σmax

and IoU of the results on the testing dataset of the Articu-
lated for the input low-resolution voxel grids with 323 and
1283 resolution which are the bold numbers in the table. We
can see that the quantitative values of results for 1283 res-
olution are better than 323. It is reasonable because higher
resolution can provide more details for the voxel super-
resolution. Figure 14 shows some examples of the 323 and
1283 resolution. The 3D models after voxel super-resolution
and the corresponding visualization of errors are shown
in the figure. It also demonstrates that the results of VSR
with 1283 resolution voxel grids has better details on the
shape, especially for those areas indicated by the red cir-
cles. Therefore, the resolution of input voxel grid for voxel
super-resolution should be as high as possible. In our obser-
vation, the resolution 1283 is reasonable to obtain good
3D model estimation considering the limitation of memory
footprint.

4.8 The number of images

Since we estimate 3D human body from multi-view images,
the effect of the number of views on the final estimation also

needs to be discussed. The performance of our method for
four images and eight images on the Articulated dataset is
evaluated. Note that the MF-PIFu is trained by the four-view
images and eight-view images, respectively. For the VSR,
it is only trained by the voxel grids with 1283 resolution gener-
ated by the four-view images. Table 8 shows the quantitative
results on the Articulated dataset when the four-view and
eight-view images are used. Figure 15 is the P2S of each
sample in the testing dataset of Articulated for the four-
view and eight-view cases. We can see that the results of
eight-view case are a little better than the four-view case as
shown by the bold numbers in the table. Since eight-view
images could provide more information for the MF-PIFu
than the four-view images, the coarse 3D models obtained
by MF-PIFu are more accurate, which ensures the coarse
3D models can provide more information for VSR to obtain
better refined 3D models. During the VSR, the training on
the 3D space can help to reduce the ambiguity of four-view
and eight-view cases. The final estimation does not have too
much difference in the two cases.

Two examples from the Articulated dataset are shown in
Fig. 16 for the four-view and eight-view images. The figure

Fig. 13 The comparison for different σmax on the Articulated dataset. From (a) to (f), two examples from the testing dataset are shown for
σmax = 5, 10, 15, 25, 35. For each σmax, the visualization of the error between the estimated result and the ground truth is given
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Table 7 Quantitative results of
323 and 1283 resolutions on the
Articulate dataset

voxel res. P2S ↓ Chamfer-L2 ↓ IoU ↑

Ours(323) 1.9322 0.1626 0.6902

Ours(1283) 0.3754 0.0032 0.9051

Fig. 14 The comparison
between 323 and 1283 resolution
on the Articulated dataset. a is
the ground truth of 3D models;
(b) is the voxel grids with 323; c
is the results of super resolution
trained by 323 voxel grids; d is
the voxel grids with 1283; e is
the results of super resolution
trained by 1283 voxel grids

Table 8 Quantitative results for
the four-view and eight-view
images on the Articulated
dataset

View P2S ↓ Chamfer-L2 ↓ IoU ↑

Ours(four views) 0.3754 0.0032 0.9051

Ours(Eight views) 0.3606 0.0021 0.9042
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Fig. 15 The P2S of each sample
in the testing data of the
Articulated for four-view and
eight-view images. The y axis
stands for the accuracy of P2S.
The x axis is the number of
samples in the testing data

gives the results of MF-PIFu (b), the results of VSR (c)
for the four-view images and the results of MF-PIFu (d),
the results of VSR (e) for the eight-view images. We can
see that there exists some error reconstruction on the 3D
models of MF-PIFu for the four views, especially for the
areas indicated by the red circles. The results of MF-PIFu of
eight-view images looks better than four-view images. After
the VSR, the coarse 3D models are refined to more accurate
models, but the errors are not removed completely for the
four-images. By contrast, the results of eight-view images
look more smooth and accurate. Therefore, it is useful to
obtain better estimation if there are more views. In this
paper, it has been enough to obtain satisfying 3D models by
four-view images.

5 Conclusion

Detailed 3D human body reconstruction from 2D images is
a challenging task because of the high freedom of human
body and the ambiguity of inferring 3D objects from 2D
images. In this paper we propose a coarse-to-fine method
for detailed 3D human body reconstruction from multi-
view images through learning an implicit representation.
The coarse 3D models are estimated from multi-view
images through learning pixel-aligned implicit function
based on multi-scale features which encode both local and
global information. Then, generating the low-resolution
voxel grids through voxelizing the coarse 3D models, VSR
is learned to refine the coarse 3D models. For learning

Fig. 16 The results of four-view and eight-view images on the Articulated dataset. From left to right columns: ground truth, the results of MF-PIFu
of four-view images, the final results of four-view images, the results of MF-PIFu of eight-view images, and the final results of eight-view images
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VSR, multi-stage 3D convolutional layers are used to
extract multi-scale features from low-resolution voxel grids.
The implicit representation is also learned based on the
multi-scale features for VSR. Benefiting from the voxel
super-resolution, the coarse 3D models can be refined to
have higher accuracy and better surface quality because
the false reconstruction on the coarse 3D models can be
removed and the details on the shape can be preserved.
The experiments on the public datasets demonstrate that our
method can recover detailed 3D human body models from
multi-view images with higher accuracy and completeness
than previous approaches.

Some work needs to be done in the future. Firstly, the
variety of the training dataset need to be added. The models
in the two datasets of our paper mostly have the same color
clothes. If there is a new model with colourful clothes,
our method will fail to obtain good results. However, the
high-quality 3D human body models are not easy to be
acquired and many datasets are not free, which increases
the difficulty for the research. Besides, the texture of the
detailed model is not considered in our method which
should be done in the future. Finally, single-view image
based reconstruction is needed in the future to increase the
convenience of our method.
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