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Abstract

The task of reconstructing detailed 3D human body models from images is interesting but challenging in computer vision due
to the high freedom of human bodies. This work proposes a coarse-to-fine method to reconstruct detailed 3D human body
from multi-view images combining Voxel Super-Resolution (VSR) based on learning the implicit representation. Firstly, the
coarse 3D models are estimated by learning an Pixel-aligned Implicit Function based on Multi-scale Features (MF-PIFu)
which are extracted by multi-stage hourglass networks from the multi-view images. Then, taking the low resolution voxel
grids which are generated by the coarse 3D models as input, the VSR is implemented by learning an implicit function through
a multi-stage 3D convolutional neural network. Finally, the refined detailed 3D human body models can be produced by
VSR which can preserve the details and reduce the false reconstruction of the coarse 3D models. Benefiting from the implicit
representation, the training process in our method is memory efficient and the detailed 3D human body produced by our
method from multi-view images is the continuous decision boundary with high-resolution geometry. In addition, the coarse-
to-fine method based on MF-PIFu and VSR can remove false reconstructions and preserve the appearance details in the final
reconstruction, simultaneously. In the experiments, our method quantitatively and qualitatively achieves the competitive 3D

human body models from images with various poses and shapes on both the real and synthetic datasets.

Keywords Detailed 3D human body - Implicit representation - Multi-scale features - Multi-view images -

Voxel super-resolution

1 Introduction

Recovering detailed 3D human body models from images
attracts much attention because of its wide applications in
movie industry, animations, and Virtual/Augmented Reality.
Although professional capture systems [25, 59] are now
able to reconstruct accurate 3D human bodies, these systems
remain inconvenient for common users because they are
often expensive and difficult to deploy. With the developing
of deep learning in 3D vsion, estimating 3D human bodies
from common 2D images attracts much attention and has
achieved some progress because it is much easier to obtain
2D images for the community. However, current approaches
cannot get the 3D models from 2D images with sufficient
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accuracy and the task is still far from being finished. The
goal of the work is to achieve better 3D human body models
from multi-view 2D images.

Traditionally, reconstructing 3D human body from RGB
images mainly depends on the pre-defined parametric human
body models. From simple geometric primitives [51] to data-
driven models [5, 36], parametric human body models play
important roles in human related research. The main idea
of the route is to fit the parametric human body model to
some prior information including the body skeleton, 2D
joint points and the silhouettes [2, 6, 8]. The route has
been used for human motion tracking and 3D pose esti-
mation successfully. However, the 3D human body models
estimated by these methods cannot satisfy the requirements
of the realism in many applications because the parametric
models often do not encode the detailed appearance.

Benefiting from the great success of deep learning in 3D
vision, it has achieved some progress to learn to reconstruct
3D human body from images recently. During the past
several years, convolutional neural networks (CNN) have
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shown impressive performance on 2D/3D human pose
estimation [4, 41, 46] and human body segmentation [20,
58]. Therefore, some methods automatically estimated 3D
human body model from images by fitting the parametric
human body to prior cues like the 2D/3D poses and
silhouettes which can be estimated by the CNN [2, 8,
21, 60]. Since the poses and silhouettes comprise sparse
information, directly inferring the pose and shape of a
parametric human body model from the full image through
the CNN becomes another useful route and has achieved
impressive performance [26, 30, 31, 44, 45]. However, the
3D human body models obtained by these methods have
poor appearance. Recently, many approaches came up with
a refining process on the parametric human body to add
clothes on the naked 3D human body model [3, 49, 61].
Through refining the parametric human body model, these
methods can obtain some details including the clothes and
hair on the final 3D model. However, these methods require
the parametric human body model has high accuracy on the
pose estimation.

Recently, learning to reconstruct 3D models has gained
popularity. Explicit volumetric representations are straight-
forward for learning to infer 3D objects from RGB
images [12, 15, 28, 55]. Due to the limitation of memory,
these methods can only produce low-resolution 3D objects
(e.g. 323 or 64% number of voxels). Even though some meth-
ods reduce the memory footprint through octrees, the final
resolutions are sill relatively small (e.g. 2563) [47]. In addi-
tion, these results are always discrete, which results in the
missing of many details on the surface. In contrast to explicit
representations, implicit function for 3D model representa-
tion in deep learning shows impressive performance [10, 11,
39, 43]. Compared to learning the explicit volumetric rep-
resentation, learning an implicit function to represent 3D
shape can be implemented in a memory efficient way, espe-
cially for the training process. Another advantage of implicit
representation is that the 3D model can be decided by the
continuous decision boundary, which is able to produce
a high-resolution 3D model. Considering the advantages,
there are some methods based on learning implicit function
to reconstruct detailed 3D human body from images [22, 48,
49]. However, these methods may still produce some false
reconstruction on the final 3D model.

In this paper we propose a novel method to estimate a
detailed 3D human body model from multi-view images,
through learning an implicit representation. Our method
works in a coarse-to-fine manner, and thus, consists of
two parts: (1) 3D human body reconstruction from multi-
view images through learning pixel-aligned implicit func-
tion based on multi-scale features (MF-PIFu), and (2) voxel
super-resolution (VSR) from low-resolution voxel grids
obtained by MF-PIFu. In both of the two parts, we attempt
to learn an implicit function to represent the 3D models.
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For the MF-PIFu, the structure of multi-stage hourglass
networks is designed to produce the multi-scale features
and a fully connected neural network predicts the occu-
pancy values of the features to implicitly represent 3D
models. Through training the above model, the coarse 3D
models can be estimated from multi-view images. Then,
low-resolution grids can be generated by voxelizing the
coarse models. Taking the low-resolution grids as input, a
multi-stage 3D CNN is built to produce multi-scale fea-
tures and a fully connected neural network is also utilized to
predict the occupancy values of the features. The final 3D
model is generated by the implicit representation through
refining the coarse model by VSR. Our method is summa-
rized in Fig. 1.

Our method differs from previous work in three aspects.
Firstly, it is a coarse-to-fine method combining 3D recon-
struction from multi-view images by MF-PIFu and VSR
into one route to infer 3D human body models. MF-PIFu
produces a coarse 3D human body from multi-view images
and VSR refines the coarse result to generate a final detailed
3D model. Secondly, the implicit representation for the 3D
model is used both in MF-PIFu and VSR, which is memory
efficient for training and can produce high resolution geom-
etry through extracting a continuous decision boundary.
Finally, the multi-scale features are extracted from multi-
view images and low-resolution voxel-grids for coarse
reconstruction and refining the models, respectively. The
multi-scale features are able to fully encode the local and
global spatial information of the pixels in the images and the
voxels in the low resolution voxel grids. In order to better
represent the method, a list of acronyms and corresponding
denotations used in the paper is shown in Table 1.

The paper is organized as follows. The introduction and
related work of our method are presented in Sections 1
and 2, respectively. The following Section 3 describes the
detailed coarse-to-fine structure of our method and the
implementation details including the MF-PIFu and VSR.
In Section 4, some quantitative and qualitative experiments
are illustrated to evaluate the performance of our method.
Finally, the conclusion and future work are stated in
Section 5.

2 Related work

The related work on 3D human body reconstruction from
images is summarized in this section. There are three
parts in the section: (1) Optimization based methods; (2)
Parametric human body model based regression, and (3)
Non-parametric human body model based regression.

Optimization based methods The classic route to recover
3D human body models from an image is to fit a template
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3D reconstruction from images

Fig. 1 The pipeline of our method. It consists of 3D reconstruction
from images and voxel super-resolution from low-resolution grids.
The 3D reconstruction from multi-view images is implemented by

such as SCAPE [5] or SMPL [36] to prior cues. SCAPE,
which was a data-driven parametric human body model
to represent human pose and shape, was learned from 3D
human body scans [5]. Some methods fitted SCAPE to
the silhouettes and joint points from the images to recover
human pose and shape [6, 18, 50]. With the emergence
of Kinect, the depth images were also used for fitting the
SCAPE [7, 35, 56]. With the success of deep learning
on human pose estimation [4, 9, 38, 41], the joint points
can be obtained automatically with high accuracy. In [8],
an automatic method for 3D human body estimation was
proposed through fitting a novel parametric human body
model called SMPL [36] to the 2D joint points predicted
by DeepCut [46]. Then, more methods used SMPL or pre-
scanning models for human body reconstruction based on
3D joint points, multi-view images, video and silhouettes [2,
19, 21, 33, 60]. These methods tried to build better energy
function based on various prior cues and the 3D human body
was estimated by optimizing the energy function. Although
the optimization based methods were classic, the estimated
3D human body had poor realism.

Parametric human body model based regression Since
deep learning has achieved impressive performance on 3D
vision tasks [57, 63], it also attracts much attention on 3D
human body estimation through regressing the parametric
human body model. In the beginning, the shape parameters

Voxel super-resolution from low-resolution grids

MEF-PIFu and estimates a coarse 3D human body model. After voxeliz-
ing coarse model to a low-resolution grid, the voxel super-resolution
refines the low-resolution grid to obtain detailed model

of SCAPE were regressed from silhouettes to estimate 3D
human body model in [13, 14]. In [52], the shape and pose
of the SMPL model were regressed through the images
and the corresponding SMPL silhouettes. Instead of using
silhouettes, the authors proposed to take the whole image
as the input of the CNN to regress the pose and shape param-
eters of the SMPL model through building the loss function
about the joint points [26]. Since then, many improved
methods were proposed through designing novel network
structure or using more constraints on the loss function [27,
29-31, 34, 44, 45]. Pavlakos et al. [45] combined joint
points and silhouettes in the loss function to better esti-
mate the shape. There were some other approaches in which
various cues were used for building sufficient loss func-
tion to train the network including the mesh [31], the
texture [44], the multi-view images [34], the optimized
SMPL model [30] and the video [27, 29]. In order to
model the detailed appearance, some method attempt to
refine the regressed SMPL model to obtain the detailed 3D
model [1, 3, 23, 32, 42, 53, 61, 62]. In [1, 3, 32], after
estimating the pose and shape of SMPL model, the authors
used shape from shading and texture translation to add the
details to SMPL like face, hairstyle, and clothes with gar-
ment wrinkles. In addition, the explicit representation of 3D
human body model were also used in detailed reconstruc-
tion. BodyNet [53] added the volume loss function to better
estimate the pose and shape of SMPL. DeepHuman [61]

Table 1 A list of acronyms and

corresponding denotations used Acronyms

Denotation

in the paper
MF-PIFu

VSR
SPIN
SMPL
P2S
IoU

Pixel-aligned Implicit Function based on Multi-scale Features
Voxel Super Resolution

SMPL optimization in the loop

Skinned Multi-person linear model

Point-to-surface error

Intersection over Union
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refined the appearance of volumetric SMPL model through
transferring the image normal to the volumetric SMPL.
In [42], a novel tetrahedral representation for SMPL model
was used and the detailed model was obtained by learn-
ing the sign distance function of tetrahedral representa-
tion. Another recent work also refined the normal and
color of image to the estimated SMPL model [23] from
single image.

Non-parametric human body model based regression
Recently, deep learning also achieved some success on
reconstruction of 3D objects from images without relying
on any parametric models. Some methods tried to extract
coarse 3D information from 2D images and attempted to
refine the 3D information through deep neural network such
as volume, visual hull and depth images [16, 17, 22, 24, 40].
Jackson et al. [24] reconstructed 3D geometry of humans
through training an end-to-end CNN to regress the vol-
umes which were provided in the training dataset. In [17], a
coarse model was obtained though Visual Hull from sparse
view images and the coarse model was refined by a deep
neural network. Natsume et al. [40] generated multi-view
silhouettes through deep learning from single image and
proposed a deep visual hull to infer the detailed 3D mod-
els based on the estimated silhouettes. Huang et al. [22]
estimated detailed models by deciding if a spatial point
inside or outside of 3D mesh through classifying the fea-
tures extracted by the CNN. Gabeur et al. [16] estimated the
visible and invisible point clouds of the human body from
image through deep learning and the full detailed body can
be formed by the point clouds. Instead of inferring 3D infor-
mation from images, some other methods gained popularity
to reconstruct general 3D models directly from images with
explicit representation such as voxels and point cloud [12,
15, 28, 55]. Due to the limitation of resolution of an explicit
representation, implicit representation of 3D models based
on deep learning have been used for reconstruction of gen-
eral objects [10, 11, 28, 39]. Inspired by the idea, some
methods only for detailed 3D human body reconstruction
also proposed based on learning implicit representation.
Saito et al. [48] extracted the pixel-aligned features from
images through end-to-end networks. Associating the depth
of pixel, the implicit representation can be learned from
the features. The method can produce the high-resolution
detailed 3D human body including the facial expression,
clothes and hair can be estimated from by the above meth-
ods. However, there existed many errors on the estimation
because only 2D images were used. An improved method
called PIFuHD [49] was proposed to reconstruct high-
resolution detailed 3D human body from images through
introducing image normal to PIFu. The coarse-to-fine meth-
ods could obtain more accurate 3D model because more
cues were used for the reconstruction.
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3 Method

In this section the details of our method are described. The
background of implicit function to represent the 3D shape
is firstly introduced. Then, we present the 3D human body
reconstruction from multi-view images through learning
the MF-PIFu. Afterwards, an implicit representation based
network for VSR is presented to refine the 3D human body
model obtained from the multi-view images. Finally, the
implementation details of our method are introduced.

3.1 Learning an implicit function for 3D models

For 3D reconstruction based on deep learning, implicit
functions to represent 3D shape is memory efficient for
training. Instead of storing all voxels of the volume in an
explicit volumetric representation, an implicit function for
3D representation assigns the signed distance or occupancy
probability to a spatial point to decide if the point lies inside
or outside of the 3D mesh. The estimated 3D mesh can
be extracted by a level set surface. In our method, we use
occupancy probability as the output of the implicit function.
Given a spatial point and a water-tight mesh, the occupancy
function is defined as:

f(X):=x,XeR3 x €01}, (1)

where X is the 3D point and x is the value of occupancy
function for X. The value of x indicates if X lies inside (0)
or outside (1) of the mesh. The 3D mesh can be implicitly
represented and extracted by the level set of f(X) = 0.5.

For 3D reconstruction based on learning implicit
representation, the key problem is to learn the occupancy
function f(-). More specifically, a deep neural network
encodes 3D shape as a vector v € V C R™, and then, the
occupancy function takes the vector as input to decide the
value of the 3D point, i.e.,

fv,X): VxR — [0,1]. )

As long as f(-) can be learned, the continuous occupancy
probability field of a 3D model can be predicted and the
3D model can be extracted by the iso-surface of the field
through the classic Marching Cubes algorithm.

In PIFu [48], the authors presented a pixel-aligned
implicit function for high-resolution 3D human body
reconstruction. It is defined as:

fF@ (X)), z2(X)) : V xR~ [0, 1], 3

where F(-) is the feature grids of CNN, m(X) is the
projection of X on the image plane by m and z(X) is
the depth of X. PIFu showed impressive performance on
detailed reconstruction of human bodies for fashion poses,
for instance, walking and standing. However, the features
extracted by multi-stage networks from input images have
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the same scale, which may result in the missing of some
details. In addition, for some complicated poses, only using
2D images may result in false reconstructions. Aiming at the
above two drawbacks, we propose two improvements. On
one hand, the multi-scale features are extracted in both 3D
reconstruction from images and voxel super-resolution. On
the other hand, the voxel super-resolution refines the coarse
3D models to reduce false reconstructions.

The outline of our method is shown as Fig. 1. It has two
parts: (1) 3D reconstruction from images by MF-PIFu; and
(2) refining 3D models by VSR. The details of the two parts
are presented in the following sections.

3.2 MF-PIFu

The method for 3D reconstruction from multi-view images
is inspired by PIFu [48]. The difference is that multi-
scale features are extracted from multi-view images through
multi-stage hourglass networks. Therefore, we call our
method as MF-PIFu and the architecture of MF-PIFu is
shown in Fig. 2.

Given images with N views [;,i = 1, ..., N, multi-stage
hourglass networks which are denoted as gg(-) encode the
images as feature grids Fg{), j =1,.., M where M is the
number of hourglass networks. Then, for the i-th image 7,
its multi-scale feature grids are defined as:

gr(l) :=F@Y L FGM 4)

Fig.2 The structure of
MF-PIFu to learn the implicit
representation of 3D human
body model. Multi-stage
hourglass networks are used for
multi-scale feature extraction
and a fully connected neural
network predicts the occupancy
value of the feature

where the feature grids F%’ 1), - F%’M) have different scales

and the j-th grid F%’] ’ belongs to feature space ]-'jCXK K,
C 1is the depth of feature grid and K is the width and
height of the feature grid. In our method, C is kept constant
(e.g. 256) and K deceases as 2/=1 for the j-th hourglass
network. Before the F%’j 1 is fed into the Jj-th hourglass
network, we use a max-pooling layer to downsample
Fg’j -b, Through this max-pooling layer, the multi-scale
feature grids can be generated by the multi-stage hourglass
networks. For the pixel x in the image /;, the feature vector
in F%’j ) can be obtained at the corresponding location
through interpolation, which is denoted as F%’j ) (x) € ]_-jC_

After getting the multi-scale features, the multi-scale
features need to be queried to predict the occupancy value.
The prediction is implemented by a fully connected neural
network which is defined as fg(-). Similar to PIFu, not only
the features are used for prediction, but also the depth of the
corresponding pixel is also used. The multi-scale features
and the depth form new feature vector for prediction. For
the pixel x in the image /;, we define the new feature vector
as FP' () = (FYV (), o, F9™ (), 200} € FC x ... x
}'AC,, x R. The fully connected neural network takes into the
feature vector to predict the occupancy value of x:

FfRED @) 1 FEx o x FG xR [0, 1]. (5)

In contrast to PIFu, we form the features of each stage
and the depth as a new feature vector. This new feature

Pooling

[
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encodes both the local and global information of the
pixels. The feature grids at the early stage encode more
local information, while the feature grids at the last stage
represent the global information. Associating the depth
information, the new features encode more information than
the features used in PIFu, and thus, it is more reliable to
predict the occupancy value.

To train gg(-) and fr(-) from multi-view images [;,i =
1,..., N, the pairs {;, S} are required in which S is the
corresponding ground truth of 3D model for the multi-
view images /;. As shown in Fig. 3, 3D spatial points
Xi,i = 1,.., K are sampled from the 3D model S and
random displacements with normal distribution N (0, o)
on the points are added. This means that the points to be
queried are X; = X; + n; where n; ~ N(0,0). The
binary occupancy values of the points o(X;) can be obtained
according to the location of )A(,-. If )A(l- lies in S, o()A(,-) =0
(the red points in Fig. 3). Otherwise, O(f(i) is 1 (the green
points in Fig. 3). The points X; are projected onto the
multi-view images through the given camera parameters.
The corresponding pixel of point X j on the i-th image is
Xjj = m; ()A(j). Then, the loss function for the pair {I;, S}
can be defined as:

N K

Lr=Y_Y Ifr®Fg xij) —o(X . (©6)

i=1 j=1

In the above loss function, F%)(x,-j) is the multi-scale
features of pixel x;; which is the projection of 3D point
X j on the i-th view image. This loss function is defined
based on the multi-view images jointly, which can predict
the occupancy values more accurately. Through minimizing
the loss function, gz (-) and fg(-) can be trained end-to-end.

3.3 Voxel super-resolution
The 3D models recovered by MF-PIFu are still coarse

because MF-PIFu only relies on 2D images. We observe
two problems in the estimated 3D models by MF-PIFu. The

Fig.3 Sampling 3D points from
3D model and projecting the
points to multi-view images
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first one is that the surface of the 3D model is not smooth
and the second one is that some extra unnecessary parts are
reconstructed on the models due to the false classification
of some voxels. In order to overcome the problems, voxel
super-resolution (VSR) is learned to refine the coarse 3D
models of MF-PIFu. As shown in Fig. 4, our VSR method
also uses a multi-scale structure for feature extraction and
implicit representation for the 3D model. In contrast to MF-
PIFu which uses images as input, the input of VSR is a low
resolution voxel grid which is produced by the voxelization
of the 3D model of MF-PIFu.

Suppose the 3D model estimated by MF-PIFu is S which
is stored as the voxel positions. The voxelization of S
can produce a low resolution grid as V € RV*NXN (e g,
N=128). Then, as shown in Fig. 4, 3D convolution kernels
are utilized to extract 3D feature grids from V. 3D CNN
with n convolutional layers is used to generate the multi-
scale feature grids F(V]), - Fg’). The resolution of the k-th
feature grid is N/(2¥71), i.e., Fif) € ]-"kKXKXK where K =
N/(2%=1). The resolution of the feature grids decreases with
the depth of the network. We denote the 3D CNN for VSR
as gy () and the multi-scale features can be generated as:

gv(V) =FP FP. )

The feature grid at the early stage encodes more local
information such as the shape details, while the feature grid
at the late stage captures the global information of the voxel
grid because of the large receptive fields at the late stage.
For a voxel v € V), its corresponding multi-scale feature
is formed by the features from Fg,l), s Fif). Since the

feature grid is discrete, the feature of voxel v in Fg‘) is

extracted by trilinear interpolation and is denoted as Fg‘) v).
The multi-scale feature for the voxel v is

Fy(v) = (F(v), .. FP ), (8)

where Fy (v) € F x...x F,. After obtaining the multi-scale
feature for a voxel v, we also use a fully connected network
to classify the multi-scale feature and and we denote it

Projection
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ooling
Covn3D

[0,1]

Pooling
Covn3D

Fig.4 The structure of VSR based on learning implicit representation.
3D CNN is used for extracting the multi-scale features from low-
resolution grid. A fully connected neural network is used for predicting
occupancy value of features

fv (-). The fully connected network predicts the occupancy
value of the multi-scale feature of Fy (v):,

fv(Fy(v) : Fr... x F, =€ [0, 1] ©)]

This fully connected neural network classifies the voxel
based on the multi-scale feature if the corresponding
point lies inside or outside of 3D mesh. The implicit
representation enables to produce a continuous surface.
Besides, since multi-scale feature encodes both the local and
global information, the 3D model after super-resolution can
keep the global shape and preserve details of the shape.

In order to train the gy (-) and fy (-) from low-resolution
voxel grids V, the 3D model S estimated by MF-PIFu
and its ground truth S are given as a pair {8, S}. The
input low-resolution voxel grids are generated by voxelizing
S. Instead of sampling points from S, we sample N
points v;,i,..., N on the surface of S and add random
displacements with normal distribution n; ~ N(0,0) to
these points, i.e., V; = Vv; + n;. Here the same strategy
for generating the 3D points and labels are used as [11],
i.e., 50% points v; are added random displacements with
small o, and the other 50% points v; are added random
displacements with large opmax. During the voxelization,
the grid coordinates of the points ¥; in the low-resolution
voxel grids V can be indexed and it is denoted as p(V;).
One example of sampling points and voxelization to a 1283
grid is shown in Fig. 5. According to whether the point
lies inside or outside of the ground truth 3D model S,
the binary occupancy value of the points Vv; can also be
obtained as o(V;). This is possible because the estimated
3D model by MF-PIFu has been close to the ground truth.
Through sampling the points on the estimated 3D model, the
occupancy values of the points are reliable to do the VSR.

After getting the occupancy value of the points, the loss
function for training the model of VSR can be defined as:

N
Lvsg =Y L(fr(gv(p(3)), 0(¥))
(10)

i=1
N

= ZE(fv(Fv(,O(‘A’i))), o(Vj)).
i=1

In the loss function, multi-scale features are used, and
thus, the local and global information of the low-resolution
voxel gird are encoded, which can preserve the details and
the global shape simultaneously. We use standard cross-
entropy loss function L(-, -) to measure the loss between
the prediction and ground truth. Through minimizing the
loss function Ly gg, the multi-stage 3D convolutional neural
networks and the fully connected network are trained.

3.4 Implementation details

As shown in Fig. 1, our model is a coarse-to-fine archi-
tecture in which MF-PIFu reconstructs coarse 3D models
from multi-view image and VSR refines the coarse models
to produce models with high accuracy. In this section the
implementation details about the network structure, training
and testing of our method are presented.

Network structure of MF-PIFu We use four stages of hour-
glass networks to generate multi-scale features and four
layers in the fully connected neural network for prediction
of occupancy value. For the extraction of multi-scale fea-
tures, the input of the networks is the multi-view images
(e.g. four views in the most of our experiments) which have
removed backgrounds and are cropped to 256 x 256. The
hourglass network consists of two convolutional layers and
two deconvolutional layers to generate pixel-aligned feature
maps. Max pooling is used for downsampling the feature
maps. The output feature grids of each hourglass network
has the size of 256 x 128 x 128, 256 x 64 x 64, 256 x
32 x 32, and 256 x 16 x 16. The fully connected network
has four convolutional layers and the number of neurons in
each layer is (1024, 512, 128, 1). The input feature of the
fully connected layer has size 1025 because the multi-scale
features also consider the depth of queried pixel.

Training for MF-PIFu During the training, the batch size of
input images is 4 and the model is trained for 12 epochs. In
addition, 10,000 points are sampled from the ground truth
of 3D mesh and they are added normally random noise
with o = 5 cm. These points are used for prediction of
the occupancy value to build the loss function. The Mean
Square Error (MSE) is used for building the loss function.
The RMSProp algorithm with initial learning rate 0.001
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Fig.5 Sampling 3D points from
3D model estimated by
MF-PIFu and the voxelization of
the 3D model estimated by
MF-PIFu (The resolution is
1283). The 3D points can be
indexed by the grid coordinates
in the low-resolution grids

is used for updating the weights of the networks and the
learning rate decreases by a factor of 0.1 after 10 epochs. It
takes about 7 hours for training on our dataset.

Network structure of VSR The architecture for VSR has the
multi-stage 3D convolutional layers for generating multi-
scale features from low resolution voxel grids and the fully
connected neural network to predict the occupancy value of
the multi-scale features. The input of the 3D CNN is the
low resolution voxel grids which have the size 1283. The 3D
CNN has 5 convolutional layers and the max pooling is used
for downsampling the feature maps. The output feature grid
of each convolution block has size of 16 x (128 x 128 x 128),
32x (64 x64x64),64x (32x32x32), 128 x (16 x 16x 16),
128 x (8 x 8 x 8). Therefore, the input feature vector of
the fully connected nerual network has 368 elements. The
fully connected neural network for predicting the occupancy
value consists of four convolutional layers and the number
of neurons in each layer is (256,256,256,1).

Training for VSR The low-resolution voxel grids for training
the VSR is generated by the coarse 3D models estimated
by MF-PIFu through voxelization. The input low-resolution
voxel grids have resolution 1283. We sample 10,000 points
from the coarse 3D models, in which 50% of the points
are added normal distribution displacements with opmax =
15 ¢m and the other 50% of the points are added normal
distribution displacements with opyj, = 5 cm. The standard
cross-entropy loss is used as the loss function. The batch
size of input voxel grids is 4 and the network is trained for
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30 epochs. The Adam optimizer with learning rate 0.0001
is used for updating the weights of the networ