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Abstract
Traumatic Brain Injury (TBI) could lead to intracranial hemorrhage (ICH), which has now been identified as a major cause
of death after trauma if it is not adequately diagnosed and properly treated within the first 24 hours. CT examination is
widely preferred for urgent ICH diagnosis, which enables the fast identification and detection of ICH regions. However, the
use of it requires the clinical interpretation by experts to identify the subtypes of ICH. Besides, it is unable to provide the
details needed to conduct quantitative assessment, such as the volume and thickness of hemorrhagic lesions, which may have
prognostic importance to the decision-making on emergency treatment. In this paper, an optimal deep learning framework
is proposed to assist the quantitative assessment for ICH diagnosis and the accurate detection of different subtypes of ICH
through head CT scan. Firstly, the format of raw input data is converted from 3D DICOM to NIfTI. Secondly, a pre-trained
multi-class semantic segmentation model is applied to each slice of CT images, so as to obtain a precise 3Dmask of the whole
ICH region. Thirdly, a fine-tuned classification neural network is employed to extract the key features from the raw input
data and identify the subtypes of ICH. Finally, a quantitative assessment algorithm is adopted to automatically measure both
thickness and volume via the 3D shape mask combined with the output probabilities of the classification network. The results
of our extensive experiments demonstrate the effectiveness of the proposed framework where the average accuracy of 96.21
percent is achieved for three types of hemorrhage. The capability of our optimal classification model to distinguish between
different types of lesion plays a significant role in reducing the false-positive rate in the existing work. Furthermore, the
results suggest that our automatic quantitative assessment algorithm is effective in providing clinically relevant quantification
in terms of volume and thickness. It is more important than the qualitative assessment conducted through visual inspection
to the decision-making on emergency surgical treatment.

Keywords Traumatic brain injury · Medical imaging · Computed tomography · Deep learning · Brain lesion
segmentation · Quantitative assessment algorithm

1 Introduction

Traumatic Brain Injury (TBI) is a sort of head injury that
causes high mortality and physical disability worldwide [1].
The extreme cases meeting the recommended criteria for
surgery require urgent medical and surgical management.
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For this reason, an accurate and prompt diagnosis is essen-
tial for the effective treatment carried out by a medical
professional.

Currently, computed Tomography (CT) is accepted as
one of the most common techniques applied for preliminary
examination before the start of any operative procedures.
It provides a low-cost solution for doctors to diagnose
TBI [2]. The doctor can receive more information about
patients from CT during diagnosis, follow-up, and decision-
making on surgery [3]. CT is relied on to identify different
diseases such as bony defects [4, 5], lung cancer [6, 7],
sports-induced injuries [8], and COVID-19 [9–11]. CT
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provides a means of rapid examination for analyzing the
TBI in patients [12, 13]. It also allows doctors to detect
hemorrhagic lesions and determine whether immediate
surgery is required for the patients [14].

The recommended criteria for surgical consideration are
detailed in [15, 16]. The patients will be considered to
need surgery, for example, when the thickness of epidural
hematoma (EDH) exceeds 15 mm, the thickness of subdural
hematoma (SDH) reaches above 10 mm, or the lesion
volume of intraparenchymal hematoma (IPH) exceeds 50
mL. It is worth noting that three out of five subtypes of
intracranial hemorrhage (ICH), including EDH, SDH, and
IPH, are related under the surgical consideration criteria.
Additionally, the thickness of extra-axial hemorrhage (EDH
and SDH) and the volume of IPH are significant to surgical
consideration. These three subtypes can be distinguished
by their shape and position. Figure 1 shows the images
of healthy brain and those indicating these three subtypes
of hemorrhage. As shown in Fig. 1b, EDH represents a
biconvex shape of bleeding which occurs between the dura
and skull. Distinct from EDH, SDH is a collection of blood
that shows a concave shape. It exists between the dura and
arachnoid mater as shown in Fig. 1c. Even though both EDH
and SDH can be observed in different layers of potential
space outside the brain, their position is often adjacent to
the skull area on CT scan. Figure 1d demonstrates the
hemorrhagic regions of IPH which is observable in the area
of brain parenchyma on CT scan. However, the shape of
IPH is irregular. In order to estimate the volume of IPH, it is
assumed in this paper that IPH has a spherical shape.

The measurement of hemorrhagic lesions for their
volume and thickness is often challenging due to the
possibility that different types of hemorrhage can appear
on the same CT scan. In order to estimate the thickness
and volume of hemorrhagic lesions, it is necessary for the
radiologists to know the subtype of each hemorrhage lesion.
On this basis, the thickness and volume of each hemorrhage
lesion are measured separately according to the exact
subtype. In this study, the thickness of EDH and SDH is
measured while the volume of IPH is calculated. However, it
takes plenty of time to perform the manual measurement of
thickness and volume as well as the segmentation of lesions.

Furthermore, due to the shortage of radiologists and
other medical practitioners in some places such as those
small hospitals in rural areas, additional techniques or tools
are required to solve these problems. Rapid ICH diagnosis
can help significantly reduce the death rate and boost
the chances of survival for patients. This is essential for
improving clinical outcome for patients. In this sense, it is
practically significant to develop an intelligent algorithm
that can be applied to detect different lesion types accurately
and efficiently and to quantify the size of lesion for the early
diagnosis of ICH.

According to literature review, there has been little
attention paid to exploring the method used to estimate
both thickness and volume for various subtypes of brain
hemorrhage. Computer lacks the ability to follow the
same diagnostic process as humans. A possible technique
that can help the computer measure the thickness and
volume of different hemorrhage subtypes is to evaluate

Fig. 1 The sampled CT scan images show the hemorrhagic lesions in different subtypes of hemorrhage. (a) a normal brain without hemorrhagic
lesions. (b) a biconvex shape in between dura and skull. (c) a concave shape in between dura and arachnoid. (d) an irregular shape in the area of
brain parenchyma
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their contour sizes separately. Nonetheless, there are quite
few approaches to brain hemorrhage segmentation that are
appropriate for different subtypes of hemorrhagic region.
In this study, a framework is proposed to measure both
thickness and volume of each subtype of hemorrhagic
lesion (EDH, SDH, and IPH) automatically. The main
contributions of this paper are summarized as follows.
On the one hand: a novel method is proposed to classify
and segment different types of traumatic brain injury by
integrating the features extracted from a double-branch
deep neural network. This network consists of a modified
transfer-learning enhanced-based multi-label classifier and
an optimal multi-class segmentation algorithm. On the other
hand, a new algorithm of quantitative assessment is put
forward to measure the thickness and volume of three-
dimensional (3D) head CT scans, while each 3D scan is
a stack of many 2D images called slices. The proposed
algorithm can help radiologists with diagnosis and decision-
marking on emergency surgery.

2 Related works

This section presents a review of the relevant literature.
Then, a summary is made of all the previous studies on the
methods of classification and segmentation for traumatic
brain injury.

2.1 Classificationmodel for traumatic brain injury

Over the past few years, such prominent machine learn-
ing methods as decision tree [17] and support vector
machine [18, 19] have been proposed to detect hemor-
rhages. Despite the high accuracy achieved by most of
these methods, they are still limited to detecting intracere-
bral hemorrhage which is also known as intraparenchymal
hemorrhage (IPH). In some recent studies, deep learning
methods have been mentioned for the automatic detection
of multiple types of hemorrhages [20]. Jnawali et al. [21]
constructed the ensemble networks with three 3D con-
volutional neural networks (CNNs) for the detection of
intracranial hemorrhage. Lee et al. [22] trained an ensem-
ble model consisting of four deep convolutional neural
networks (DCNNs) for small datasets. Burduja et al. [23]
put forward a hemorrhage detection system through the
design of a lightweight CNN with long short-term mem-
ory (LSTM). Additionally, there were other CNN-LSTM
models [24, 25] proposed. He [26] combined the results of
SE-ResNetXt50 and EfficientNet-B3 deep neural network
architecture to detect the intracranial hemorrhage and its
subtypes on head CT scans. Though these models can help
detect hemorrhage accurately, this model is incapable to
determine the location and size of ICH.

2.2 Segmentationmethod for traumatic brain injury

Convolutional Neural Networks (CNNs) can produce out-
standing performance in performing various tasks related
to computer vision such as vehicle recognition [27, 28],
image generation [29, 30], and the segmentation of auto-
matic hemorrhagic lesion on CT scans. Farzaneh et al. [31]
proposed an approach to SDH segmentation for TBI using a
conventional feature extraction algorithm and a TreeBagger
classifier. Remedios et al. [32] created the U-Net with trans-
ferred weight as multisite learning models (MSL). Hssayeni
et al. [33] constructed a deep fully convolutional network
(FCN) to segment the ICH regions on CT scans. Although
the prior studies have produced impressive results in seg-
menting the hemorrhagic lesions of different types, there
remains a problem that arises from segmenting different
types of hemorrhage on the same CT slice. To solve the
problem of multi-class segmentation, Kuo et al. [34] pro-
posed the application of patch-based fully convolutional
neural network (PatchFCN) for acute intracranial hemor-
rhage on head CT. Though the PatchFCN provided the eval-
uation metrics of classification with pixel-level supervision,
the quantitative evaluation of various lesions was ignored.
Monteiro et al. [35] worked out the design of automatic seg-
mentation for head CT lesions system with DeepMedic [36]
backbone and data augmentation. DeepMedic is a widely-
known dual pathway 3D CNN architecture intended for the
task of medical image segmentation. Although PatchFCN
and DeepMedic can make distinction between different
types of hemorrhagic lesion, it remains necessary for experts
to estimate the size of lesions. Monteiro et al. [37] demon-
strated the capability of a CNN through the multi-class
lesion quantification and detection. This study contributed
to the multi-class lesion segmentation and volume evalua-
tion of each hemorrhagic subtype. Nonetheless, the method
provided the contour of EDH and SDH in the same group
as extra-axial hemorrhage (EAH) and required the involve-
ment of experts in assessing the quantitative information of
hemorrhage.

2.3 Automatic quantitative information calculation
for multiple subtypes of ICH

The factors that can influence medical diagnosis and sur-
gical consideration include hemorrhage position, hemor-
rhage volume, surgical timing, and curative effect [38]. In
order to determine the volume of acute ICH lesions auto-
matically, Jain et al. [39] proposed an automated image
analysis based on an extension to U-Net model called ico-
brain which can compute the volume and midline shift of
acute intracranial lesions. However, it can identify only one
category of hemorrhage per slice. Patel et al. [40] modi-
fied 3D-CNN architecture for the automatic segmentation
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of ICH in non-contrast CT exams. This modified 3D CNN
model was applied on a single subtype of hemorrhage for
estimating the volume. Chang et al. [41] adopted the cus-
tom faster mask R-CNN algorithm to detect and segment
hemorrhage. Although mask R-CNN produced excellent
performance in segmentation with a high correlation score,
the model estimated only the volume of IPH. Sharrock et al.
[42] proposed the public source code for ICH segmentation,
which is known as DeepBleed. It was trained for detecting
the lesions of ICH and the occurrence of intraventricular
hemorrhage (IVH) and SDH. In addition to the volume of
lesion, its thickness is another key indicator used for surgi-
cal consideration. To the best of our knowledge, however,
there is still no existing method mentioning both thickness
and volume of various hemorrhage subtypes.

The method proposed in this paper differs from the afore-
mentioned approaches. Herein, a framework is put forward
to estimate both thickness and volume of hemorrhage sub-
types through a quantitative assessment algorithm, with the
output from two different deep neural networks used. The
implementation of the method will be detailed in the next
section.

3 Datasets and proposedmethod

3.1 Datasets

In this study, there are three datasets of brain hemorrhage
used to train and evaluate the proposed method. Both public
and private datasets are included, among which two datasets
(RSNA 2019 Brain Hemorrhage Challenge and PhysioNet)
are public datasets. The CMU-TBI is a private dataset. Each
dataset is detailed as follows.

3.1.1 RSNA 2019 brain hemorrhage challenge dataset

The Radiological Society of North America (RSNA) [43]
dataset can be found on Kaggle challenges. The objec-
tive of this competition is to identify the subtypes of
ICH from brain CT scans. The dataset with annotations
was collected and compiled by three research institutions
located in the north and south of America. Due to the
large amount of dataset comprised of over 25000 CT scans
with five different subtypes of ICH labels, the competition
attracted many developers and researchers from around the
world to participate. The dataset involves six categories of
brain hemorrhage including epidural hemorrhage (EDH),
intraparenchymal hemorrhage (IPH), intraventricular hem-
orrhage (IVH), subarachnoid hemorrhage (SAH), subdural
hemorrhage (SDH), and any existed hemorrhage. The raw
data was stored in DICOM files. The DICOM format pro-
vides not only the pixel array of 512×512 but also header

metadata. The total 755948 slices was divided into 740829
slices for the training set and 15119 slices for the test set,
respectively.

3.1.2 PhysioNet

The PhysioNet [33] repository was collected from an Iraqi
hospital during February and August 2018. There were two
radiologists annotating the diagnosis of existing hemorrhage
and ICH subtypes. The dataset is comprised of 82 CT scans
including 46 male and 36 female scans with an average age
of 27.8. There are approximate 34 slices included in each
CT scan. A total of 2814 slices were extracted from these
CT scans. The slices were split into 2233 slices for the
training set and 581 slices for the test set.

3.1.3 CMU-TBI

This research has been granted ethical approval from the
Ethics Committee of Faculty of Medicine, Chiang Mai
University (CMU) and institutional review protocol. The
head CT dataset includes the clinical data of 321 cases.
There were about 30000 slices of a 1.5 mm thickness
extracted from the Digital Imaging and Communications
in Medicine (DICOM) series of CT Scans including 143
normal brains and 178 TBIs. The gender and age of patients
are detailed in Table 1. The data of patients was collected
from Maharaj Nakorn Chiang Mai Hospital. The slice
numbers of detected EDH, SDH, IPH, SAH, and IVH were
determined. The thickness of EDH and SDH, as well as
the volume of IPH, were included as part of this dataset.
Additionally, the data of those patients requiring surgical
intervention was provided by the neuro-radiologists.

The 3D scan of a 1.5 mm slice thickness contains a set of
2D images ranging between 90 to 105 slices. Through our
investigation, it was found out that hemorrhage appeared
most commonly in the slices starting from slice number 20 to
number 90. Therefore, the total number of slices was reduced
to 19946 slices. Then, the dataset was split into 15956 for
the training set and 3990 for the test set in this study.

The samples of each hemorrhage subtype in different
three datasets used for training and testing the model are
detailed as Table 2.

Table 1 Sex and Age Details for the CMU-TBI Dataset

Clinical characteristics Values

Sex

Female 86 (27%)

Male 235 (73%)

Age (years) 35 (24-53)
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Table 2 The training and test samples of ICH subtypes in RSNA,
PhysioNet, and CMU-TBI datasets

ICH subtype RSNA PhysioNet CMU-TBI

Train Test Train Test Train Test

EDH 6164 126 130 43 1174 294

SDH 46932 958 49 7 3231 808

IPH 36025 735 55 18 1053 263

IVH 25903 529 21 3 267 67

SVH 35519 725 13 5 2413 603

Healthy
brain

632010 12860 1986 510 9986 2497

3.2 Proposedmethod

The objective of this study is to estimate the thickness
and volume of hemorrhage. The thickness and volume of
hemorrhage depend on the subtypes of hemorrhage, for
example, the radiologists measure the thickness of EDH
and SDH but the volume is determined through calcula-
tion for for the IPH type of hemorrhage. Herein, an optimal
framework is proposed on the basis of a double-branch
deep neural network and a quantitative assessment algo-
rithm. With the fine-tuned multi-label classification per-
formed and pre-trained multi-class segmentation algorithm
adopted, the output features of both networks are treated
as the input of the quantitative assessment algorithm to
calculate the thickness and volume of different types of
brain hemorrhage. The flowchart of our method is presented
in Fig. 2. The raw CT Scans of the CMU-TBI database
are in DICOM format including metadata and pixel data.
The first branch refers to the process of training a multi-
label classifier, while the second branch represents the task
of multi-class segmentation. In order to achieve the final
output of predicted thickness and volume, there are five
major steps to go through, including data pre-processing and
augmentation, multi-label classification, DICOM to NIfTI
conversion, multi-class segmentation, and quantitative assess-
ment. The details of each step will be presented in the fol-
lowing section.

3.2.1 Data pre-processing and augmentation

The multi-label classifier model was trained on the RSNA
2019 Brain CT Hemorrhage Challenge dataset before its
integration into our method. The original pixel value of the
images from the RSNA dataset is in the form of Hounsfield
units (HU) representing the physical density of the tissue.
HU allows radiologists to change the intensity windows
during diagnosis. It consists of two separate windows:
window center (WC) and window width (WW). According

to the method suggested in [23], three HU windows are
discussed depending on the exact type of issues. The
window center (WC) and window width (WW) values of the
three HU windows are expressed as:

– Brain window (WC = 40, WW = 80)
– Subdural window (WC = 80, WW = 200)
– Soft tissue window (WC = 40, WW = 380)

The image of a HU window is grayscale. The results
obtained from different HU windows were integrated into
a single three-channel image as shown in Fig. 3. The
original size of CT slices is 512× 512 pixels. The size of
CT slices was changed into 256×256 pixels before data
augmentation. As a result, the shape of the three-channel
input for the classifier is 256×256×3.

With 25 percent of all images flipped horizontally
and 10 percent of all images flipped vertically for data
augmentation, the images captured from each side were
cropped randomly between 0 to 25 pixels. Finally, the pixel
values of all images were normalized into the range of [0,1].

3.2.2 Multi-label classifier

The up-to-date CNN architectures were refined for recogni-
tion, which were called EfficientNet [44] and EfficientNet
with noisy student training [45]. The refined model was
trained on the RSNA data and then taken as a pre-trained
model. The original model architecture was modified by
removing the last network layer and connecting it with the
dropout layer (with dropout rate of 0.15). This is followed
by a fully-connected layer with six output features that equal
the number of categories in the RSNA dataset. The sigmoid
activation function was applied after the fully connected lay-
ers. In this way, the final output provided the probability of
ICH subtypes appearing in each image.

The EfficientNet models from B0 to B4 and EfficientNet
with noisy student training models from B0 to B4 on the
RSNA dataset with ten epochs were trained for comparison.
The transfer learning mechanism was applied for this
study through the following process. Firstly, EfficientNet-
B2 was taken as a pre-trained network due to the highest
accuracy (97%) and a reasonable number of parameters
(7.77M). Secondly, the weight of the pre-trained model was
transferred by fine-tuning the model with our CMU-TBI
dataset. Finally, the multi-label classifier model provides
the probability of each hemorrhage subtype that appears
on each CT slice. The six output features represent the
categories of hemorrhages including EDH, IPH, IVH,
SAH, SDH, and an “exist or not” features. These features
comprise one input for a quantitative assessment algorithm
used to identify the types of hemorrhage. Multi-label log
loss was taken as binary cross-entropy (BCE) loss for six
output probabilities (the probabilities of five hemorrhagic
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Fig. 2 Overview of the workflow of our proposed method. The input is the 3D DICOM folder. The outputs include the predicted thickness of
EDH or SDH, and the predicted volume of IPH

subtypes and one probability of existed hemorrhage). The
equation of BCE is expressed as:

Lmulti-BCE(y, ŷ)=−
6∑

t=1

yt ·log(ŷt )+(1−yt )·log(1−ŷt ) (1)

where yt ∈ {0, 1} represents the ground truth label for
class t , and ŷt ∈ {0, 1} indicates the predicted class
probability for a class t with the range of zero to one. By
optimizing the BCE loss, the stochastic gradient descent
technique with Adam [46] optimizer was applied at a
0.000125 learning rate. The batch sizes of 32 and 16 were
adopted for the training set and test set, respectively. Each
training session was processed for approximately two days
on NVIDIA Tesla M10 GPU using Keras deep learning

API. In this study, consideration was given only to the three
subtypes (EDH, SDH, IPH) significant to decision-making
on emergency surgery.

3.2.3 DICOM to NIfTI conversion

A multi-class segmentation method is required to assess the
quantitative information of the hemorrhagic lesion. As one
of the multi-class segmentation methods, DeepMedic [47]
is based on a three-dimensional CNN architecture designed
for the purpose of 3D segmentation. In the existing model,
the format of NIfTI file is taken as the input data. Since
NIfTI as a format of image is simpler than the DICOM
format, it has been widely adopted for image processing
and analysis [48]. Therefore, the conversion from DICOM

Fig. 3 Data pre-processing and
Augmentation flow. Each
DICOM file is pre-processed by
extracting three different
intensity windows (brain
window, subdural window, soft
tissue window) taken as three
channels for RGB image
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to NIfTI is performed to prepare the data required for
segmentation.

3.2.4 Multi-class segmentation

As a three-dimensional CNN for the accurate segmentation
of brain lesion, DeepMedic [36] is comprised of eleven neu-
ral network layers. For the multi-class segmentation task on
CT scans, an optimal DeepMedic model [37] was adopted.
The model was modified to maintain the network archi-
tecture through residual blocks, batch normalization, and
pre-activation blocks. Not only does the optimal DeepMedic
outperform the existing medical image segmentation mod-
els such as U-Net [49] and UNet++ [50], it is also suit-
able for the tasks of multi-class segmentation. The optimal
DeepMedic model was applied to obtain the multi-class
segmentation mask for each slice of brain CT. Then, these
output masks were used to classify the types and estimate
the sizes of hemorrhage through the quantitative assessment
algorithm. The samples of the predicted mask are shown in
Fig. 4. The contours were separately colored according to
each subtype of hemorrhage.

3.2.5 Quantitative assessment

Herein, a quantitative assessment algorithm is proposed.
In the function, the output probabilities of fine-tuned
EfficientNet-B2 are taken from branch #1 and the output
mask of optimal DeepMedic is taken from branch #2 of a
double-branch deep neural network, with every point on the
output mask treated as the input. The network architectures
of a double-branch deep neural network are shown in Fig. 5.

For each slice on a CT scan, the estimator is used to
calculate the thickness and volume size of each contour
separately. The contours are divided mainly into two groups.
One is the contour that overlaps with the brain skull area
including EDH and SDH types. The thickness estimator
is applied to this group using Euclidean distance and
the distance transform methods. The Euclidean distance
provides the maximum and minimum lengths between a
center point and other points. Based on these two lengths,
the thickness ratio can be determined through calculation.
The thickness ratio is a key factor to consider for
distinguishing between EDH and SDH shapes. The distance
transform is then applied to measure the thickness of a
particular contour. The other is the contour of IPH inside the
brain tissue area. The volume estimator function is applied
to this group for the purpose of volume estimation.

The output of the quantitative assessment algorithm
includes the thickness (in millimeter) and volume (in
milliliter) estimated for of each subtype of hemorrhage.
The pseudocode of the quantitative assessment algorithm
applied for each CT scan is referred to Algorithm 1.
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Fig. 4 The upper row represents the original images of different CT scans in gray. The bottom row shows the outputted images of the optimal
DeepMedic segmentation method

The probability threshold (PTEDH , PTSDH , PTIPH ),
thickness ratio (T R), and volume ratio (V R) are chosen
based on accuracy and error calculation, respectively. The
selection of probability threshold and thickness ratio is
detailed in Section 5. The description of each function is
explained as follows:

findSkullMask(s) - a function used to find the mask of
the brain skull. With the input of each slice s, the function
is expressed as Algorithm 2.

euclideanDistance(pz, pc) - a function that generates
the Euclidean distance-vector D containing the distances
between the center point pc and all of the other points in the
contour c. The function is calculated by means of

D =
√

(xz − xc)2 + (yz − yc)2 where pc = (xc, yc),

pz = (xz, yz), pc �= pz (2)

distanceTransform(c) - a method used to replace each pixel
p of the image with a distance to the nearest background

pixel q. This method can be used to build the distance
map DM . The output value of distance transformation is
approximately half the actual lesion width. The distance
map DM is expressed as

DM(p) = min{d(p, q)|I (q) = 0} (3)

where I (q) represents the pixel value of q.
findVolume(w,h,ps) - a function intended to estimate the

volume of hemorrhagic lesions. This function is derived
from the ABC/2 method [51]. The ABC/2 is a technique
proposed by Kothari et al. to calculate the volume of
hemorrhage, where A represents the value of maximum
length (in cm), B indicates the width perpendicular to A
on the same head CT slice, and C denotes the number
of slices multiplied by the thickness of slice. Thus, the
findVolume(w,h,ps) function is expressed as (4).

V = (w × ps) × (h × ps) × slice thickness

2 × 1000
(4)

In this study, slice thickness is set to 1.5 mm.

4 Evaluation

The performance of the proposed method and that of the
baseline methods are compared. Then, comparison results
are categorized mainly into three sets of evaluations. In the
first one, the classification results are compared between
our fine-tuned EfficientNet-B2 and baseline methods. In the
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Fig. 5 Network structure of a double-branch deep neural network
based on fine-tuned EfficientNet-B2 and optimal DeepMedic. (a)
Given the pre-processed 2D images and original 3D images, the

feature extraction deep neural networks are covered by the gray area.
(b-e) the details of each block in the main network

second one, the performance of the optimal DeepMedic is
discussed using segmentation metrics. The last one demon-
strates the results of classification and estimation for the
size of hemorrhagic lesions based on a double-branch deep
neural network built on a private CMU-TBI dataset.

4.1 The performance evaluations between
fine-tuned EfficientNet-B2 and baselinemethods

There are five metrics used to evaluate the classification
performance including precision, sensitivity, specificity,
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f1-score and accuracy. Each of them can be calculated using
the following equations:

Precision

Precision = T P

T P + FP
× 100% (5)

Sensitivity or recall

Sensitivity = T P

T P + FN
× 100% (6)

Specificity

Specificity = T N

T N + FP
× 100% (7)

F1-score

F1-Score = 2 × T P

2 × T P + FP + FN
× 100% (8)

Accuracy

Accuracy = T P + T N

T P + FP + T N + FN
× 100% (9)

where T P represents a true positive value, T N refers to
a true negative value, FP denotes a false positive value,
and FN indicates a false negative value. All metrics are
converted into the percentage unit.

There are various baseline methods, for example, deci-
sion tree-based Projection Profile [17], ICH UNet [33],
and UNet++ [50]. According to Table 3, the fine-tuned
EfficientNet-B2 outperforms the baseline methods on the
CMU-TBI dataset in terms of classification. The models
were trained for 100 epochs to obtain the results. The scores
of the fine-tuned EfficientNet-B2 are mostly higher com-
pared to ICH U-Net and UNet++ methods. The specificity
rate of UNet++ is the lowest due to large proportion of
false-positive diagnosis. In other words, the model predicts
normal brain wrongly as hemorrhagic lesion.

Figure 6 shows the accuracy and loss charts of fine-tuned
EfficientNet-B2 on the CMU-TBI dataset. During the training
process, the model achieves higher accuracy and lower loss

than in the testing process. Through comparison with the
performance during the training process, it can be discov-
ered that the accuracy and loss during the testing process
converge and maintain consistency after 40 epochs. The out-
put suggests that the performance of the model during the
testing process did not improve with the increase in epoch.

PhysioNet is the public dataset that used in this study
to evaluate the performance of our model. Even though the
sensitivity score of our model is lower relative to U-Net
and UNet++, the other metrics surpass baseline methods as
shown in Table 4.

4.2 The performance evaluation between optimal
DeepMedic algorithm and baselinemethods

In order to quantify the performance of models in segmen-
tation, there are two methods are adopted, including Jaccard
Index which is also known as Intersection over Union (IoU)
and Dice score (Dice similarity coefficient). Jaccard Index
is an effective metric intended to measure the accuracy
between the predicted output mask and ground truth mask
by computing the overlapping area of those masks under
the union area of both masks. With Y representing ground
truth segmentation and Ŷ referring to the predicted output
of methods, the Jaccard Index and Dice score are written as
(10) and (11), respectively.

J (Y, Ŷ ) = Y ∩ Ŷ

Y ∪ Ŷ
(10)

D(Y, Ŷ ) = 2
Y ∩ Ŷ

|Y | + |Ŷ | (11)

Where ∩ denotes intersection and ∪ represents the union
of two segmentations Y and Ŷ , while | · | indicates the
summation result of the argument. The values of Y and Ŷ

range from 0 to 1.
The ICH UNet [33], DeepBleed [42], and UNet++ [50]

were treated as the baseline methods. The Jaccard Index
and Dice Score of baseline methods and our method on
the publicly accessible PhysioNet dataset were calculated,

Table 3 The comparison in
classification performance (%)
between fine-tuned
EfficientNet-B2 and the
baseline methods on CMU-TBI
dataset

Method Precision Sensitivity Specificity F1-Score Accuracy

Projection

Profile 65.35 69.44 91.85 67.30 87.77

ICH U-Net 78.76 87.32 82.82 45.59 74.71

UNet++

(Nested U-Net) 84.88 96.44 7.14 90.29 82.50

EfficientNet-B2 94.90 95.76 99.11 95.33 98.62

Data in bold emphasizing the highest accuracy achieved
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Fig. 6 The accuracy and loss of
fine-tuned EfficientNet-B2 on
our CMU-TBI dataset

while the metrics were calculated on the test set including
581 slices. Consistent with the experimental evaluation
shown in Table 5, the optimal DeepMedic outperforms most
of the baseline methods in both Jaccard Index and Dice
Score except UNet++. However, the UNet++ is incapable
of multi-class segmentation, with low sensitivity score
achieved.

Figure 7 shows the segmentation regions and evaluation
metrics of the baseline model (UNet++) and our method
on the PhysioNet dataset. In the first row of region output,
the red line represents the supervised mask as provided with
the dataset and the green line refers to the predicted mask
from the UNet++ model. The regions of the supervised
mask and predicted mask are largely overlapped. However,
there are some false-positive regions detected. The results
in the second row are from ground truth and our method.
The predicted regions of our approach exclude many false-
positive regions, which however differ from the baseline
model. Moreover, the optimal DeepMedic model and base-
line model were tested on the CMU-TBI dataset as shown in
Fig. 8. According to the output of segmentation, our method

Table 4 The comparison in classification performance between fine-
tuned EfficientNet-B2 and the baseline methods on PhysioNet dataset

Method Precision Sensitivity Specificity F1-Score Accuracy

Projection

Profile 82.90 77.43 79.60 80.05 78.53

ICH U-Net 23.10 97.10 50.33 37.32 56.56

UNet++

(Nested U-Net) 57.64 98.43 32.35 72.71 64.28

EfficientNet-B2 92.54 72.09 99.71 81.05 98.41

Data in bold emphasizing the highest accuracy achieved

covers more types of hemorrhagic lesion including the small
region (last image) than the UNet++ model.

4.3 The performance evaluation
of our double-branch deep learning network
with quantitative assessment algorithm on each
subtype of hemorrhage in CMU-TBI dataset

In this part, a comparison was performed between the results
obtained from the classification of types of hemorrhagic
lesion. Additionally, the error metrics of thickness and vol-
ume calculation were discussed. The experimental analysis
was conducted through the classification task by observing
the classification metrics of our method on the CMU-TBI
dataset. The 56 CT scans with obviously differentiated
lesion types from a total of 178 scans were treated as a val-
idation set. The validation set is comprised of 3130 slices.
Each slice shows only one type of hemorrhage, that is, either
EDH, SDH, or IPH. Table 6 shows the comparison of our
method on each type of hemorrhage in different measure-
ments. The hybrid method based on quantitative assessment
algorithm achieves the highest accuracy of 96.54 percent
when SDH is classified. The average accuracy is 96.21
percent for the three types of hemorrhage.

Table 5 The comparison in the metrics of segmentation evaluation
between optimal DeepMedic and the baseline methods on the Phys-
ioNet dataset

Method Jaccard Index (IoU) Dice Score

ICH U-Net 0.218±0.163 0.315±0.211

DeepBleed 0.734±0.436 0.738±0.434

UNet++ 0.882±0.299 0.892±0.289

Optimal DeepMedic 0.777±0.403 0.784±0.399

Data in bold emphasizing the best segmentation results achieved
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Fig. 7 Samples obtained from a
validation set of PhysioNet
dataset along with ground truth
mask (green lines). The
segmentation areas from
baseline (UNet++) are indicated
by in red lines. The outputs of
our method are highlighted by
blue lines

4.4 The thickness and volume difference of EDH,
SDH, and IPH between true and predicted values
from ourmethod

A total of 56 CT scans in the validation set obtained
from the CMU-TBI dataset were included to calculate the
difference in thickness and volume between the true values
provided by the doctor and the values estimated by using
our method. Figure 9 shows the Bland-Altman plots of
agreement between ground truth and predicted values. The
mean difference of thickness is 2.99 mm (-0.42 to 6.42)

for EDH and 0.97 mm (-2.41 to 4.35) for SDH. The mean
different volume of IPH is 0.43 mL (-4.74 to 5.61).

5 Ablation study

5.1 Probability threshold selection

The probability threshold is a parameter required to select
the model that achieves the highest accuracy. The probabil-
ities ranging between 0.1 to 0.9 for each subtype of hemor-

Fig. 8 Samples obtained from a
validation set of CMU-TBI
dataset along with ground truth
mask (green lines). The
segmentation areas from
baseline (UNet++) are indicated
by red lines. The output of our
method are highlighted by blue
lines
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Table 6 The evaluation metrics
of our method on CMU-TBI
validation set for different
subtypes of hemorrhage

Type Precision Sensitivity Specificity F1-Score Accuracy

EDH 97.54 95.48 96.02 96.50 95.68

SDH 98.69 96.01 97.55 97.33 96.54

IPH 97.64 95.83 97.13 96.73 96.41

Average 97.96 95.77 96.90 96.85 96.21

Data in bold emphasizing the highest accuracy achieved

rhage are evaluated, as shown in Fig. 10. The best probability
threshold for the subtypes of EDH (PTEDH ), SDH (PTSDH ),
and IPH (PTIPH ) is 0.5, 0.2, and 0.1, respectively.

5.2 Thickness and volume ratio selection

The optimal thickness ratio (T R) for EDH and SDH
subtypes and volume ratio (V R) for IPH subtype can be
identified by the minimum Mean Absolute Error (MAE)
while the model is tested using different ratios. The ratios
selected for testing the model range from 1 to 25. The MAE
is expressed as (12).

MAE = 1

n

n∑

i=1

|qi − q̂i | (12)

q represents the ground truth quantitative information (thick-
ness or volume) provided by experts, q̂i indicates predicted
quantitative information, and n denotes the number of
lesions in each subtype.

In order to find the optimal T R and V R, the true-positive
MAE (MAET P ) and false-positive MAE (MAEFP ) of
each subtype are obtained. The MAET P evaluates the error
between ground truth and predicted quantitative information
within the same category, while the MAEFP is used to
calculate the error between ground truth and the predicted
quantitative information of different types. The optimal T R

is defined as the ratio that provides a minimum average
MAE of thickness values in EDH and SDH subtypes as
calculated using the following equation.

T R = argmin(MAEAVG(EDH,SDH)) (13)

Fig. 9 The bland-Altman plots for lesion progression of the validation set as derived from CMU-TBI dataset
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Fig. 10 The chart of accuracy in varying probabilities of predicted
output from the fine-tuned EfficientNet-B2

MAEAVG(EDH, SDH) represents the average MAE of
thickness values in EDH and SDH subtypes defined as

MAEAVG(EDH,SDH) (14)

= MAETP(EDH)+MAEFP(EDH)+MAETP(SDH)+MAEFP(SDH)

4

MAET P (EDH) is true-positive MAE for EDH, MAEFP

(EDH) is false-positive MAE for EDH, MAET P (SDH)

is true-positive MAE for SDH, and MAEFP (SDH) is

false-positive MAE for SDH. Figure 11 shows MAET P

and MAEFP for different thickness ratios of our method
and the original DeepMedic.

As shown in Fig. 11a, the true-positive MAE of our
method is clearly comparable to the traditional DeepMedic
method. In spite of this, our method can also achieve less
false-positive and overall MAE than the baseline approach
as shown in Fig. 11b and c, respectively. The T R was set to
20 as the lowest point in average MAE.

The optimal V R is referred to as the ratio that provides a
minimum average MAE of volume values in the subtype of
IPH. It can be expressed as the following equation.

V R = argmin(MAEAVG(IPH)) (15)

MAEAVG(IPH) refers to the average MAE of volume
values in IPH subtype which is defined as

MAEAVG(IPH) = MAET P (IPH) + MAEFP (IPH)

2
(16)

MAET P (IPH) is true-positive MAE for IPH, and
MAEFP (IPH) is false-positive MAE for IPH. Figure 12
shows theMAET P andMAEFP for different volume ratios
of our method and the original DeepMedic.

Fig. 11 The true-positive MAE, false-positive MAE and average MAE of thickness in the EDH and SDH subtypes compared to DeepMedic
network in a range of ratio between 1 and 25
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Fig. 12 The true-positive MAE, false-positive MAE and average MAE of volume values in IPH subtype compared to DeepMedic network in a
range of ratio between 1 and 25

The method proposed in this study improved the true-
positive MAE when the ratio value increased, as shown
in Fig. 12a. The MAE of volume measurement can als be
reduced significantly, as shown in Fig. 12b. The V R was set
to 24 as the lowest point in average MAE.

6 Conclusion

The prior studies on automated assessment of head CT
images after TBI are limited to the undifferentiated detec-
tion of hemorrhage different lesions, with no quantitative
assessment conducted for the volumetric analysis. For this
reason, the accurate detection and quantification of lesion
volumes are essential for improving the understanding of
those influencing factors in lesion progression and targeted
medical treatment. In this study, an optimal deep learning
framework is proposed, which can not only identify the sub-
types of hemorrhages but also assist the clinically relevant
quantitative assessment of thickness and volume. The pro-
posed method is integrated with a fine-tuned multi-label
classifier (EfficientNet-B2), an optimal multi-class segmen-
tation model (DeepMedic), and our quantitative assess-
ment algorithm. The fine-tuned EfficientNet-B2 model can
achieve the highest accuracy with 98.62 percent on the
CMU-TBI dataset in comparison with two baseline models,
namely, ICH U-Net and UNet++.

In addition, the Jaccard Index and Dice score of our method
are calculated using the output from the optimal DeepMedic.
The model shows a comparable Jaccard Index and Dice
score to the baseline methods on a PhysioNet dataset.

The quantitative assessment algorithm takes the probabil-
ities of each hemorrhage subtype from a fine-tuned multi-
label classifier and hemorrhage contours from the optimal
multi-class segmentation model as inputs. In order to differ-
entiate hemorrhagic lesions, our method is also assessed for

each subtype of hemorrhage. The model is tested to classify
EDH, SDH, and IPH separately on a validation set of the
CMU-TBI dataset. According to the test results, our method
performs best in classification for SDH type with a 96.54
percent accuracy. The average accuracy is 96.21 percent for
the three subtypes of hemorrhage.

The thickness and volume of hemorrhagic lesions are
computed by means of distance transform and the com-
monly applied volume evaluation ABC/2 functions. The
differences between ground truth and predicted lesions (of
thickness and volume) are indicated by Bland-Altman plots.
The predicted EDH, SDH thickness and IPH volume over-
estimated the true values by 2.99 mm, 0.97 mm, and 0.43
mL, sequentially. Moreover, our method can reduce the
false-positive mean absolute error of both thickness and
volume assessments more significantly than the traditional
DeepMedic multi-class segmentation approach.

With this fully automated method applied, the process
of decision-making on surgery can be accelerated and the
shortage of radiologists can be addressed for rural medical
institutions. In the future, it is necessary to improve the tech-
nique based on the aforementioned surgical consideration.
Integrating the research into clinical practice requires vari-
ous additional functions such as skull fracture detection and
midline shift measurement. For the better understanding and
prognostication of lesions, it is essential to conduct adequate
validation on other subtypes of hemorrhage.
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RH et al (2018) Serum gfap and uch-l1 for prediction of
absence of intracranial injuries on head ct (alert-tbi): a multicentre
observational study. Lancet Neurol 17(9):782–789

13. Rosen CB, Luy DD, Deane MR, Scalea TM, Stein DM (2018)
Routine repeat head ct may not be necessary for patients with mild
tbi. Trauma Surg Acute Care Open 3(1):e000129

14. Honda M, Ichibayashi R, Yokomuro H, Yoshihara K, Masuda
H, Haga D, Seiki Y, Kudoh C, Kishi T (2016) Early cerebral
circulation disturbance in patients suffering from severe traumatic
brain injury (tbi): a xenon ct and perfusion ct study. Neurol Med
Chir 56(8):501–509

15. Fong R, Konakondla S, Schirmer C, Lacroix M (2017) Surgical
interventions for severe traumatic brain injury. J Emerg Crit Care
Med 1(10):28–28

16. Bullock MR, Chesnut R, Ghajar J, Gordon D, Hartl R, Newell
DW, Servadei F, Walters BC, Wilberger JE (2006) Introduction.
Neurosurgery 58

17. Thay S, Aimmanee P, Uyyanavara B, Rukskul P (2018) Fast
hemorrhage detection in brain ct scan slices using projection
profile based decision tree. In: Proceedings of the 2018
international conference on intelligent information technology,
pp 18–21

18. Srivastava DK, Sharma B, Singh A (2018) Classification of
hematomas in brain ct images using support vector machine.
In: Information and communication technology for sustainable
development. Springer, pp 375–385

19. Liu J, Xu H, Chen Q, Zhang T, Sheng W, Huang Q, Song J,
Huang D, Lan L, Li Y et al (2019) Prediction of hematoma
expansion in spontaneous intracerebral hemorrhage using support
vector machine. EBioMedicine 43:454–459

20. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG,
Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning
algorithms for detection of critical findings in head ct scans: a
retrospective study. Lancet 392(10162):2388–2396

21. Jnawali K, Arbabshirani MR, Rao N, Patel AA (2018) Deep 3d
convolution neural network for ct brain hemorrhage classification.
In: Medical imaging 2018: Computer-aided diagnosis, interna-
tional society for optics and photonics, vol 10575, p 105751C

22. Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE,
Ebert SA, Pomerantz SR, Romero JM, Kamalian S et al (2019)
An explainable deep-learning algorithm for the detection of acute
intracranial haemorrhage from small datasets. Nat Biomed Eng
3(3):173–182

23. Burduja M, Ionescu RT, Verga N (2020) Accurate and efficient
intracranial hemorrhage detection and subtype classification in 3d
ct scans with convolutional and long short-term memory neural
networks. Sensors 20(19):5611

24. Ko H, Chung H, Lee H, Lee J (2020) Feasible study on
intracranial hemorrhage detection and classification using a cnn-
lstm network. In: 2020 42nd annual international conference of the
IEEE engineering in medicine & biology society (EMBC). IEEE,
pp 1290–1293

25. Nguyen NT, Tran DQ, Nguyen NT, Nguyen HQ (2020) A CNN-
LSTM architecture for detection of intracranial hemorrhage on CT
scans. arXiv:2005.10992

26. He J (2020) Automated detection of intracranial hemorrhage on
head computed tomography with deep learning. In: Proceedings of
the 2020 10th international conference on biomedical engineering
and technology, pp 117–121

27. Wang H, Peng J, Zhao Y, Fu X (2020a) Multi-path deep
cnns for fine-grained car recognition. IEEE Trans Veh Technol
69(10):10484–10493

28. Wang H, Peng J, Chen D, Jiang G, Zhao T, Fu X (2020b)
Attribute-guided feature learning network for vehicle reidentifica-
tion. IEEE Multimed 27(4):112–121

29. Zhang T, Sun X, Li X, Yi Z (2021) Image generation and
constrained two-stage feature fusion for person re-identification.
Appl Intell. https://doi.org/10.1007/s10489-021-02271-z

30. Phaphuangwittayakul A, Guo Y, Ying F (2021) Fast adaptive
meta-learning for few-shot image generation. IEEE Trans
Multimed. https://doi.org/10.1109/TMM.2021.3077729

31. Farzaneh N, Soroushmehr SR, Williamson CA, Jiang C,
Srinivasan A, Bapuraj JR, Ward KR, Korley FK, Najarian K
(2017) Automated subdural hematoma segmentation for traumatic
brain injured (tbi) patients. In: 2017 39th annual international
conference of the IEEE engineering in medicine and biology
society (EMBC). IEEE, pp 3069–3072

32. Remedios SW, Roy S, Bermudez C, Patel MB, Butman JA,
Landman BA, Pham DL (2020) Distributed deep learning across
multisite datasets for generalized ct hemorrhage segmentation.
Med Phys 47(1):89–98

An optimal deep learning framework for multi-type hemorrhagic... 7335

http://arxiv.org/abs/2005.10992
https://doi.org/10.1007/s10489-021-02271-z
https://doi.org/10.1109/TMM.2021.3077729


33. Hssayeni MD, Croock MS, Salman AD, Al-khafaji HF, Yahya
ZA, Ghoraani B (2020) Intracranial hemorrhage segmentation
using a deep convolutional model. Data 5(1):14

34. Kuo W, Hane C, Mukherjee P, Malik J, Yuh EL (2019)
Expert-level detection of acute intracranial hemorrhage on head
computed tomography using deep learning. Proc Natl Acad Sci
116(45):22737–22745

35. Monteiro M, Kamnitsas K, Ferrante E, Mathieu F, McDonagh S,
Cook S, Stevenson S, Das T, Khetani A, Newman T, et al. (2019)
Tbi lesion segmentation in head ct: Impact of preprocessing
and data augmentation. In: International MICCAI brainlesion
workshop. Springer, pp 13–22

36. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD,
Menon DK, Rueckert D, Glocker B (2017) Efficient multi-
scale 3d cnn with fully connected crf for accurate brain lesion
segmentation. Med Image Anal 36:61–78

37. Monteiro M, Newcombe VF, Mathieu F, Adatia K, Kamnitsas
K, Ferrante E, Das T, Whitehouse D, Rueckert D, Menon DK et
al (2020) Multiclass semantic segmentation and quantification of
traumatic brain injury lesions on head ct using deep learning: an
algorithm development and multicentre validation study. Lancet
Digit Health 2(6):e314–e322

38. Chi Fl, Lang Tc, Sun Sj, Tang Xj, Xu SY, Zheng Hb, Zhao
HS (2014) Relationship between different surgical methods,
hemorrhage position, hemorrhage volume, surgical timing, and
treatment outcome of hypertensive intracerebral hemorrhage.
World J Emerg Med 5(3):203

39. Jain S, Vyvere TV, Terzopoulos V, Sima DM, Roura E, Maas
A, Wilms G, Verheyden J (2019) Automatic quantification of
computed tomography features in acute traumatic brain injury. J
Neurotrauma 36(11):1794–1803

40. Patel A, Schreuder FH, Klijn CJ, Prokop M, van Ginneken B,
Marquering HA, Roos YB, Baharoglu MI, Meijer FJ, Manniesing
R (2019) Intracerebral haemorrhage segmentation in non-contrast
ct. Sci Rep 9(1):1–11

41. Chang PD, Kuoy E, Grinband J, Weinberg BD, Thompson
M, Homo R, Chen J, Abcede H, Shafie M, Sugrue L et al
(2018) Hybrid 3d/2d convolutional neural network for hemorrhage
evaluation on head ct. Am J Neuroradiol 39(9):1609–1616

42. Sharrock MF, Mould WA, Ali H, Hildreth M, Awad IA, Hanley
DF, Muschelli J (2020) 3d deep neural network segmentation of
intracerebral hemorrhage: Development and validation for clinical
trials. Neuroinformatics :1–13

43. Flanders AE, Prevedello LM, Shih G, Halabi SS, Kalpathy-
Cramer J, Ball R, Mongan JT, Stein A, Kitamura FC, Lungren MP
et al (2020) Construction of a machine learning dataset through
collaboration: the rsna 2019 brain ct hemorrhage challenge. Radiol
Artif Intell 2(3):e190211

44. Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for
convolutional neural networks. In: International conference on
machine learning, PMLR, pp 6105–6114

45. Xie Q, Luong MT, Hovy E, Le QV (2020) Self-training with
noisy student improves imagenet classification. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pp 10687–10698

46. Kingma DP, Ba J (2015) Adam: A method for stochastic
optimization. In: 3rd International conference on learning
representations, ICLR

47. Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori AV, Criminisi
A, Rueckert D, Glocker B (2016) Deepmedic for brain tumor
segmentation. In: International workshop on brainlesion: Glioma,
multiple sclerosis, stroke and traumatic brain injuries. Springer,
pp 138–149

48. Li X, Morgan PS, Ashburner J, Smith J, Rorden C (2016) The first
step for neuroimaging data analysis: Dicom to nifti conversion. J
Neurosci Methods 264:47–56

49. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional
networks for biomedical image segmentation. In: International
conference on medical image computing and computer-assisted
intervention. Springer, pp 234–241

50. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) Unet++:
A nested u-net architecture for medical image segmentation. In:
Deep learning in medical image analysis and multimodal learning
for clinical decision support. Springer, pp 3–11

51. Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck
LR, Zuccarello M, Khoury J (1996) The abcs of measuring
intracerebral hemorrhage volumes. Stroke 27(8):1304–1305

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Aniwat Phaphuangwit-
tayakul received B.Eng. from
the Faculty of Computer
Engineering, Chiang Mai
University, Thailand, in 2012,
and Master of Science from
Beijing Institute of Technol-
ogy, Beijing, China, in 2017.
He is currently a Lecturer in
the International College of
Digital Innovation, Chiang
Mai University as well as
a Ph.D. candidate in East
China University of Science
and Technology, China. His
current research interests

are Meta-Learning, Deep Generative Model, Computer Vision and
Artificial Intelligence.

Yi Guo received his M.Sc.
degree in Computer Sci-
ence from Xidian University,
Xi’an, China and Ph.D.
degree in Computer Science
from Heriot-Watt University,
Edinburgh, Scotland in 2005.
He is currently a Professor
at East China University of
Science and Technology. His
research concentrates on text
mining, information extrac-
tion, knowledge discovery
and business intelligence
analysis. He is the member of
Committee Board of National

Engineering Laboratory for Big Data Distribution and Exchange
Technologies and acts as senior members of IEEE, CMI, IET, BCS
and an APMG-MSP/PRINCE2-Practitioner.

A. Phaphuangwittayakul et al.7336



Fangli Ying received the B.S.
degree from the Department
of Software Engineering, Zhe-
jiang University, Hangzhou,
China, in 2009, and the Ph.D.
degree from the Depart-
ment of Computer Science,
National University of Ire-
land, Maynooth, in 2014. He
is currently a Lecturer in the
Department of Computer Sci-
ence at East China University
of Science and Technology
and he is also a visiting pro-
fessor in the International
College of Digital Innovation

at Chiang Mai University, Chiang Mai, Thailand. His current research
interests include computer vision, GIS and IoT for bioprocessing.

Ahmad Yahya Dawod is cur-
rently a lecturer at Chiang Mai
University, Thailand’s Inter-
national College for Digi-
tal Innovation. In 2006 he
was awarded his B.Sc. from
Al-Mustansiriya University in
Iraq. He finished his Mas-
ter’s Degree from the Univer-
sity of Multimedia - MMU
Cyberjaya, Malaysia in 2012.
In 2018 he completed his
PhD from the University of
Malaysia’s Faculty of Infor-
mation Science and Technol-
ogy. His research interests

include Artificial Intelligent, Learning Machine, Pattern Recognition,
Computer Vision.

Salita Angkurawaranon
received her medical degree
from Chiang Mai University
in 2005 and finished her
specialization in Radiology
in 2009. She finished her
fellowship in neuroradiology
from Ramathibodi Hospital,
Mahidol University in 2014.
She is current an Assistant
Professor in neuroimaging at
the Department of Radiology,
Faculty of Medicine, Chiang
Mai University.

Chaisiri Angkurawaranon
received is medial degree
and Family Medicine training
from Chiang Mai University.
He received his MSc in Med-
ical Statistics and PhD from
the London School of Hygiene
and Tropical Medicine.

An optimal deep learning framework for multi-type hemorrhagic... 7337



Affiliations

Aniwat Phaphuangwittayakul1 · Yi Guo1,2,3 · Fangli Ying4 · Ahmad Yahya Dawod5 · Salita Angkurawaranon6 ·
Chaisiri Angkurawaranon7

Aniwat Phaphuangwittayakul
aniwat.pha@gmail.com

Yi Guo
guoyi@ecust.edu.cn

Ahmad Yahya Dawod
ahmadyahyadawod.a@cmu.ac.th

Salita Angkurawaranon
salita.ang@cmu.ac.th

Chaisiri Angkurawaranon
chaisiri.a@cmu.ac.th

1 Department of Computer Science and Engineering, East China
University of Science and Technology, Shanghai, China

2 National Engineering Laboratory for Big Data Distribution and
Exchange Technologies, Shanghai, China

3 Shanghai Engineering Research Center of Big Data and Internet
Audience, Shanghai, China

4 Department of Computer Science and Engineering, State Key
Laboratory of Bioreactor Engineering, East China University of
Science and Technology, Shanghai, China

5 International College of Digital Innovation (ICDI), Chiang Mai
University, Chiang Mai, Thailand

6 Department of Radiology, Faculty of Medicine, Chiang Mai
University, Chiang Mai, Thailand

7 Department of Family Medicine, Faculty of Medicine, ChiangMai
University, Chiang Mai, Thailand

A. Phaphuangwittayakul et al.7338

http://orcid.org/0000-0001-8390-3229
mailto: aniwat.pha@gmail.com
mailto: guoyi@ecust.edu.cn
mailto: ahmadyahyadawod.a@cmu.ac.th
mailto: salita.ang@cmu.ac.th
mailto: chaisiri.a@cmu.ac.th

	An optimal deep learning framework for multi-type hemorrhagic...
	Abstract
	Introduction
	Related works
	Classification model for traumatic brain injury
	Segmentation method for traumatic brain injury
	Automatic quantitative information calculation for multiple subtypes of ICH

	Datasets and proposed method
	Datasets
	RSNA 2019 brain hemorrhage challenge dataset
	PhysioNet
	CMU-TBI

	Proposed method
	Data pre-processing and augmentation
	Multi-label classifier
	DICOM to NIfTI conversion
	Multi-class segmentation
	Quantitative assessment


	Evaluation
	The performance evaluations between fine-tuned EfficientNet-B2 and baseline methods
	Precision
	Sensitivity or recall
	Specificity
	F1-score
	Accuracy


	The performance evaluation between optimal DeepMedic algorithm and baseline methods
	The performance evaluation of our double-branch deep learning network with quantitative assessment algorithm on each subtype of hemorrhage in CMU-TBI dataset
	The thickness and volume difference of EDH, SDH, and IPH between true and predicted values from our method

	Ablation study*.2pt
	Probability threshold selection*.3pt
	Thickness and volume ratio selection

	Conclusion
	Declarations
	References
	Affiliations


