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Abstract
A binary classification problem is common in medical field, and we often use sensitivity, specificity, accuracy, negative
and positive predictive values as measures of performance of a binary predictor. In computer science, a classifier is usually
evaluated with precision (positive predictive value) and recall (sensitivity). As a single summary measure of a classifier’s
performance, 1 score, defined as the harmonic mean of precision and recall, is widely used in the context of information
retrieval and information extraction evaluation since it possesses favorable characteristics, especially when the prevalence is
low. Some statistical methods for inference have been developed for the 1 score in binary classification problems; however,
they have not been extended to the problem of multi-class classification. There are three types of 1 scores, and statistical
properties of these 1 scores have hardly ever been discussed. We propose methods based on the large sample multivariate
central limit theorem for estimating 1 scores with confidence intervals.

Keywords Precision Recall Machine learning 1 measures Multi-class classification Delta-method

1 Introduction

In medical field, a binary classification problem is common,
and we often use sensitivity, specificity, accuracy, negative
and positive predictive values as measures of performance
of a binary predictor. In computer science, a classifier is
usually evaluated with precision and recall, which are equal
to positive predictive value and sensitivity, respectively.
For measuring the performance of text classification in the
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field of information retrieval and of a classifier in machine
learning, the score ( measure) has been widely used.
In particular, the 1 score has been popular, which is
defined as the harmonic mean of precision and recall [1,
2]. The 1 score is rarely used in diagnostic studies in
medicine despite its favorable characteristics. As a single
performance measure, the 1 score may be preferred to
specificity and accuracy, which may be artificially high even
for a poor classifier with a high false negative probability
when disease prevalence is low. The 1 score is especially
useful when identification of true negatives is relatively
unimportant because the true negative rate is not included in
the computation of either precision or recall.

To evaluate a multi-class classification, a single summary
measure is often sought. And as extensions of the 1 score
for the binary classification, there exist two types of such
measures: a micro-averaged 1 score and a macro-averaged

1 score [2]. The micro-averaged 1 score pools per-
sample classifications across classes, and then calculates the
overall 1 score. Contrarily, the macro-averaged 1 score
computes a simple average of the 1 scores over classes.
Sokolova and Lapalme [3] gave an alternative definition of
the macro-averaged 1 score as the harmonic mean of the
simple averages of the precision and recall over classes.
Both micro-averaged and macro-averaged 1 scores have a
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simple interpretation as an average of precision and recall,
with different ways of computing averages. Moreover, as
will be shown in Section 2, the micro-averaged 1 score has
an additional interpretation as the total probability of true
positive classifications.

For binary classification, some statistical methods for
inference have been proposed for the 1 scores (e.g., [4]);
however, the methodology has not been extended to the
multi-class 1 scores. To our knowledge, methods for
computing variance estimates of the micro-averaged 1

score and macro-averaged 1 score have not been reported.
Thus, computing confidence intervals for the multi-class

1 scores is not possible, and the inference about them is
usually solely based on point estimates, and thus highly
limited in practical utility. For example, consider the results
of an analysis reported by Dong et al. [5]. In this analysis,
the authors calculated the point estimates of macro-averaged

1 scores for four classifiers, and they concluded a classifier
outperformed the others by comparing the point estimates
without taking into account their uncertainty. Others have
also used multi-class 1 scores but only reported point
estimates without confidence intervals [6–16].

To address this knowledge gap, we provide herein the
methods for computing variances of these multi-class 1

scores so that estimating the micro-averaged 1 score and
macro-averaged 1 score with confidence intervals becomes
possible in multi-class classification.

The rest of the manuscript is organized as follows: The
definitions of the micro-averaged 1 score and macro-
averaged 1 score are reviewed in Section 2. In Section 3,
variance estimates and confidence intervals for the multi-
class 1 scores are derived. A simulation study to investigate
the coverage probabilities of the proposed confidence
intervals is presented in Section 4. Then, our method is
applied to a real study as an example in Section 5 followed
by a brief discussion in Section 6.

2 Averaged F1 scores

This section introduces notations and definitions of multi-
class 1 scores, namely, macro-averaged and micro-
averaged 1 scores. Consider an contingency table
for a nominal categorical variable with classes ( 2).
The columns indicate the true conditions, and rows indicate
the predicted conditions. It is called the binary classification
when 2, and the multi-class classification when 2.
Such a table is also called a confusion matrix. We consider
multi-class classification, i.e., 2, and denote cell
probabilities and marginal probabilities by , , and

, respectively ( 1 ). For each class
1 , the true positive rate ( ), the false positive
rate ( ), and the false negative rate ( ) are defined as

follows:

1

1

.

is the -th diagonal element, is the sum of off-
diagonal elements of the -th row, and is the sum of
off-diagonal elements of the -th column. Note that

, and .
In the current and following sections, we will use the

simple 3-by-3 confusion matrix in Table 1 as an example to
demonstrate various computations. Columns represent the
true state, and rows represent the predicted classification.
The total sample size is 100.

The within-class probabilities are:

1 0.02 2 0.70 3 0.15.

1 0.04 2 0.07 3 0.02.
1 0.05 2 0.04 3 0.04.

Micro-averaged F1 score The micro-averaged precision
( ) and micro-averaged recall ( ) are defined as

1

1 1

1

1 1

.

Note that for both and , the denominator is the
sum of all the elements (diagonal and off-diagonal) of the
confusion matrix, and it is 1. Finally, the micro-averaged 1

Table 1 Numeric example

True Classification

Class 1 Class 2 Class 3

a: Frequencies

Class 1 2 2 2

Prediction Class 2 5 70 2

Class 3 0 2 15

b: Proportions

Class 1 0.02 0.02 0.02 0.06

Prediction Class 2 0.05 0.70 0.02 0.77

Class 3 0.00 0.02 0.15 0.17

0.07 0.74 0.19
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score is defined as the harmonic mean of these quantities:

1 2
1

. (1)

This definition is commonly used (e.g., [6, 8–12, 14, 15]).
By definition, we have , , and 1 all equal to

the sum of the diagonal elements, which, in our example, is
0.87.

Macro-averaged F1 score To define the macro-averaged 1

score ( 1), first consider the following precision ( ) and
recall ( ) within each class, 1 :

.

For our example, simple calculation shows:

1 0.33 2 0.91 3 0.88

1 0.29 2 0.95 3 0.79.

And 1 score within each class ( 1 ) is defined as the
harmonic mean of and , that is,

1 2 2 .

The macro-averaged 1 score is defined as the simple
arithmetic mean of 1 :

1
1

1

1
2

1

. (2)

This score, like 1, is frequently reported (e.g., [5–10,
13]).

1 and 1 in our example are:

11 0.308 12 0.927 13 0.833.

1 0.308 0.927 0.833 3 0.689.

Alternative definition ofMacro-averaged F1 score Sokolova
and Lapalme [3] gave an alternative definition of the macro-
averaged 1 score ( 1 ). First, macro-averaged precision
( ) and macro-averaged recall ( ) are defined as
simple arithmetic means of the within-class precision and
within-class recall, respectively.

1

1

1

1

1

1

1

1

.

And 1 is defined as the harmonic mean of these
quantities.

1 2 . (3)

This version of macro-averaged 1 score is less
frequently used (e.g., [11, 12, 16]). For our example,

0.02 0.06 0.70 0.77 0.15 0.17 3 0.708.

0.02 0.07 0.70 0.74 0.15 0.19 3 0.674.

1 0.691.

In this example, the micro-averaged 1 score is higher
than the macro-averaged 1 scores because both within-
class precision and recall are much lower for the first class
compared to the other two. Micro-averaging puts only a
small weight on the first column because the sample size
there is relatively small. This numeric example shows a
shortcoming of summarizing a performance of a multi-
class classification with a single number when within-class
precision and recall vary substantially. However, aggregate
measures such as the micro-averaged and macro-averaged

1 scores are useful in quantifying the performance of a
classifier as a whole.

3 Variance estimate and confidence interval

In this section, we derive the confidence interval for

1, 1, and 1 . We assume that the observed
frequencies, , for 1 , 1 ,
have a multinomial distribution with sample size and
probabilities

11 1 21 2 1 ,
where “ ” represents the transpose, that is

11 12 .

The expectation, variance, and covariance for
1 , are:

1

for or

respectively, where is the overall sample
size. The maximum likelihood estimate (MLE) of is

. Using the multivariate central limit theorem,
we have

0 2

where 0 2 is 2 1 vector whose elements are all 0,
is an 2 2 diagonal matrix whose diagonal elements are

, and “ ” represents “approximately distributed as.”
By invariance property of MLE’s, the maximum likeli-

hood estimates of 1, 1, 1 , and other quantities
in the previous section can be obtained by substituting
by . In the following subsections, we use the multivariate

delta-method to derive large-sample distributions of 1,

1, and 1 .
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3.1 Confidence interval for miF1

As shown in (1), 1 , and the maximum
likelihood estimate (MLE) of 1 is

1

1

.

Using the multivariate delta-method (Appendix A), we have

1 1 1

where variance of 1 is

1

1

1
1

. (4)

And a 1 100% confidence interval of 1 is

1 1 2 1

where 1 is 1 with replaced by

, and denote the 100 -th percentile of the standard

normal distribution. Computation of 1 for our

numeric example is straightforward using (4):

1 0.02 0.70 0.15

1 0.02 0.70 0.15 100

0.03362.

And a 95% confidence interval for 1 is

0.87 1.960 0.0336 0.804 0.936 .

3.2 Confidence interval for maF1

The MLE of 1 can be obtained by substituting ,
and by their MLE’s in (2).

1
2

1

.

Again by the multivariate delta-method (Appendix B), we
have the variance of 1 as

1
2
2

1

1 2
2

2 1

2

1

1 1
.

A 1 100% confidence interval of 1 is

1 1 2 1

where 1 is 1 with replaced by

. This computation is complex even for a small 3 by
3 table; an R code (Appendix D) was used to compute the
variance estimate and a 95% confidence interval of 1.

1 0.06502

0.69 1.960 0.0650 0.562 0.817 .

3.3 Confidence interval for maF1

To obtain the MLE’s of 1 , we first substitute ,
and by their MLE’s to get MLE’s of and and
use these in (3):

1 2 .

As shown in Appendix C,

1 4

4 2 2 2 4

4

where

1
2

1
3

1
2

1
3

1
2

1
2 2

1
2 2

.

A 1 100% confidence interval of 1 is

1 1 2 1 .

Again to get 1 , all components of

1 are replaced by their respective MLE’s.

Using the accompanying R code (Appendix D), we com-
puted the variance estimate and a 95% confidence interval
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of 1 :

1 0.06492

0.69 1.960 0.0649 0.563 0.818 .

4 Simulation

We performed a simulation study to assess the cover-
age probability of the confidence intervals proposed in
Section 3. We set 3 (class 1, 2, 3), and generated data
according to the multinomial distributions with summa-
rized in Table 2. The total sample size, , was set to 25, 50,
100, 500, 1,000, and 5,000. For each combination of the true
distribution and sample size, we generated 1,000,000 data,
each time computing 95% confidence intervals for 1,

1, and 1 .
In scenario 1, the true conditions of class 1, 2, and 3 have

the same probability (1 3), and the recall and precision are
equal (80%). Thus 0.80,
0.80, and 1 1 1 0.80.

In scenario 2, the true condition of class 1 has higher
probability than the others (80% vs 10%), and the recall and
precision of class 1 are also higher than the others (80%
vs 40%, and 91% vs 27%, respectively). 1 gives equal
weight to each per-sample classification decision, whereas

1 gives equal weight to each class. Thus, large classes
dominate small classes in computing 1 [2], and 1 is
larger than 1 ( 1 0.72, 1 0.50, 1
0.51) in scenario 2 because class 1 has higher probability
and has higher precision and recall.

Table 2 Simulation study: True cell probabilities

True condition

1 2 3

Scenario 1

1 8/30 1/30 1/30

Predicted condition 2 1/30 8/30 1/30

3 1/30 1/30 8/30

Scenario 2

1 64/100 3/100 3/100

Predicted condition 2 8/100 4/100 3/100

3 8/100 3/100 4/100

Scenario 3

1 32/100 1/100 1/100

Predicted condition 2 24/100 8/100 1/100

3 24/100 1/100 8/100

In scenario 3, the true condition of class 1 has higher
probability than the others (80% vs 10%). The precision of
class 1 is higher than the others (94% vs 24%), and the recall
of class 1 is lower than the others, (40% vs 80%). Compared
to the other two scenarios, the diagonal entries are relatively
small, which makes 1 small ( 1 0.48, 1

0.44, and 1 0.55).
Table 3 shows the coverage probability of the proposed

95% confidence intervals for each scenario. The coverage
probabilities for both 1 and 1 are close to the
nominal 95% when the sample size is large. When is
small (25, 50), the coverage probability tends to be smaller
than 95%, especially for 1 and 1 . Moreover,
computing a confidence interval for 1 for small is

often impossible because 1 is undefined when either
0 or 0 for any or . In typical applications

where these scores are computed, is large, and the small
problem is unlikely to occur.

5 Example

As an example, we applied our method to the temporal
sleep stage classification data provided by Dong et al. [5].
They proposed a new approach based on a Mixed Neural
Network (MNN) to classify sleep into five stages with
one awake stage (W), three sleep stages (N1, N2, N3),
and one rapid eye movement stage (REM). In addition to
the MNN, they evaluated the following three classifiers:
Support Vector Machine (SVM), Random Forest (RF), and
Multilayer Perceptron (MLP). The data came from 62
healthy subjects, and classification by a single sleep expert
was used as the gold standard. The staging is based on a
30-second window of the physiological signals called an
EEG (electroencephalography) epoch. Thus, each subject
contributes a large number of data to be classified. The
total number of epochs depends on the classifiers, and it is
about 59,000. Performance of each classifier was evaluated
using 1 along with precision, recall, and overall
accuracy. They concluded that the MNN outperformed the
competitors by comparing the point estimates of 1 and
overall accuracy. We provide here 95% confidence intervals
for 1, 1, and 1 for each of the four methods, as
summarized in Table 4. The confidence intervals of 1,

1, and 1 for the MNN do not overlap with the
point estimates of other methods, providing further evidence
that MNN is superior to the other method. For completeness
we present 95% confidence intervals for other methods
in Table 4 as well. As is large for this example, the
confidence intervals are narrow, and the ones for MNN
do not overlap with confidence intervals for other three
methods.
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Table 3 Simulation study: Coverage probability

Scenario 1 Scenario 2 Scenario 3

1 1 1 1 1 1 1 1 1

25 0.885 0.901 0.890 0.921 0.790 0.774 0.930 0.870 0.821

50 0.937 0.935 0.923 0.941 0.864 0.853 0.935 0.918 0.905

100 0.933 0.938 0.936 0.937 0.914 0.914 0.943 0.936 0.933

500 0.949 0.949 0.948 0.947 0.944 0.945 0.946 0.947 0.947

1000 0.946 0.948 0.948 0.947 0.947 0.947 0.947 0.949 0.947

5000 0.950 0.950 0.950 0.951 0.949 0.949 0.951 0.950 0.950

6 Discussion

We derived large sample variance estimates of 1, 1,
and 1 in terms of the observed cell probabilities
and sample size. This enabled us to derive large sample
confidence intervals.

Coverage probabilities of the proposed confidence
intervals were assessed through the simulation study.
According to the result of the simulation, when is larger
than 100, the coverage probability was close to the nominal
level; however, for 100, the coverage probabilities
tended to be smaller than the target. Moreover, with an
extremely small sample size, 1 could not be estimated
as computation of 1 requires all margins to be non-
zero. Zhang et al. [17] have considered interval estimation
of 1 and 1 and proposed the highest density
interval through Bayesian framework. On the other hand,
we have proposed confidence interval for 1, 1, and

1 through frequentist framework using a large-sample
approximation.

There is an inherit drawback of multi-class 1 scores
that these scores do not summarize the data appropriately
when a large variability exists between classes. This was
demonstrated in the numeric example in Section 2 for which
the within-class 1 values are 0.308, 0.927, and 0.833,
and 1, 1, and 1 are 0.870, 0.689, and 0.691,
respectively. Reporting multiple within-class 1 scores may
be an option as done in [18] and [19]; however, an aggregate
measure is useful in evaluating an overall performance of a
classifier across classes. Another limitation with 1 scores
is that they do not take into consideration the true negative

rate, and they may not be an appropriate measure when true
negatives are important.

For future works, we are working on developing
hypothesis testing procedure for 1, 1 and, 1
based on the variance estimates proposed in this article.

An R code for computing confidence intervals for 1,

1, and 1 , is available and presented in Appendix
D.

Appendix A: Derivation of the distribution
and variance ofmiF1

Let be the ordered elements of a confusion matrix.

11 1 21 2 1 .
Using the multivariate delta-method for , we get

1 1 0 1

1 . (5)

Because 1 1 we have

1 1 1 and

1 0 if .

And

1 1 0 0 0 1 0 0 0 0 1 .

Table 4 Point estimates and confidence intervals for 1, 1, and 1

Method 1 95% CI 1 95% CI 1 95% CI

MNN 59,066 0.859 (0.856, 0.862) 0.805 (0.801, 0.809) 0.807 (0.803, 0.811)

SVM 59,255 0.797 (0.794, 0.800) 0.750 (0.746, 0.754) 0.756 (0.752, 0.760)

RF 59,193 0.817 (0.814, 0.820) 0.724 (0.720, 0.729) 0.746 (0.741, 0.750)

MLP 59,130 0.814 (0.811, 0.817) 0.772 (0.768, 0.776) 0.778 (0.774, 0.782)
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Note that all the elements corresponding to the diagonal
entries ( ) of the confusion matrix is 1. To evaluate the
variance in (5), further note that

11 0 0 0
0 12 0 0
0 0 13 0
...

. . .
0 0 0

2
11 11 12 11 13 11

12 11
2
12 12 13 12

13 11 13 12
2
13 13

...
. . .

11 12 13
2

.

Then we have

1 1

11 0 22 0 33
1

1

1 1

1

11

1

12

1

1

1

11

1

22

1

1

2

.

Thus,

1 1

1

1
1

.

Finally,

1

1

1
1

.

And

1 1

1

1
1

.

Appendix B: Derivation of the distribution
and variance ofmaF1

In a similar manner to Appendix A, using the multivariate
delta-method, we get

1 1 0 1

1 .

Now we take the partial derivatives of (2) to get

1 2 . . 2

. .
2

1

1 2

. .
2

. .
2

1 .

Arranging these terms according to the order of the elements
in , we have

1 2 1. .1 2 11

1. .1
2

11

1. .1
2

22

2. .2
2

. . 2

. .
2

.

Next, we note

1 1 0

because

1 2

1

2
2

1
2

1
2

2

1

2
2

1
2

0.
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Therefore,

1 1

1 1

which can be shown to equal

2
2

1

1 . . 2

. .
2

. . 2

. .

1

2
1

1 1

. . . .
.

Putting all together, we have

1 1 1

where

1
2
2

1

1 . . 2

. .
2

. . 2

. .

1

2
1

1 1

. . . .
.

Appendix C: Derivation of the distribution
and variance ofmaF1

For marcro-averaged precision ( ) and macro-averaged
recall ( ), let the vector and its MLE be

respectively. Using the multivariate delta-method, we have

02

where

.

This is a 2 2 matrix with

1
2

1
3

1
2

1
3

1
2

1
2 2

1
2 2

.

Using the multivariate delta-method again, we get

1 1 0 1 1

where

1
2 2

2

2 2

2

.
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Using this and above, we obtain

1 1 4

4 2 2 2 4

4
.

Finally, we have

1 1 1

where

1 4

4 2 2 2 4

4
.

Appendix D: R code

The following R code computes point estimates and
confidence intervals for 1, 1, and 1 .

## Takahashi et al. ##

## Computation of F1 score and its confidence interval ##

f1scores <- function(mat, conf.level=0.95){

## This function computes point estimates and (conf.level*100%) confidence intervals

## for microF1, macroF1, and macroF1* scores.

## mat is an r by r matrix (confusion matrix).

## Rows indicate the predicted (fitted) conditions,

## and columns indicate the truth.

## miF1 is micro F1

## maF1 is macro F1

## maF2 is macro F1* (Sokolova and Lapalme)

## ###### ##

## Set up ##

## ###### ##

r <- ncol(mat)

n <- sum(mat) ## Total sample size

p <- mat/n ## probabilities

pii <- diag(p)

pi. <- rowSums(p)

p.i <- colSums(p)

## ############### ##

## Point estimates ##

## ############### ##

miP <- miR <- sum(pii) ## MICRO precision, recall

miF1 <- miP ## MICRO F1
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F1i <- 2*pii/(pi.+p.i)

maF1 <- sum(F1i)/r ## MACRO F1

maP <- sum(pii/rowSums(p))/r ## MACRO precision

maR <- sum(pii/colSums(p))/r ## MACRO recall

maF2 <- 2*(maP*maR)/(maP+maR) ## MACRO F1*

## ################## ##

## Variance estimates ##

## ################## ##

## ----------------- ##

## MICRO F1 Variance ##

## ----------------- ##

miF1.v <- sum(pii)*(1-sum(pii))/n

miF1.s <- sqrt(miF1.v)

## ----------------- ##

## MACRO F1 Variance ##

## ----------------- ##

for(i in 1:r){

jj <- (1:r)[-i]

for(j in jj){

b <- b+ p[i,j]*F1i[i]*F1i[j]/((pi.[i]+p.i[i])*(pi.[j]+p.i[j]))

}}

maF1.v <- 2*(a+b)/(n*rˆ2)

maF1.s <- sqrt(maF1.v)

## ------------------ ##

## MACRO F1* Variance ##

## ------------------ ##

varmap <- sum(pii*(pi.-pii)/pi.ˆ3) / rˆ2 / n

varmar <- sum(pii*(p.i-pii)/p.iˆ3) / rˆ2 / n

covmpr1 <- sum( ((pi.-pii) * pii * (p.i-pii)) / (pi.ˆ2 * p.iˆ2) )

covmpr2 <- 0

for(i in 1:r){

covmpr2 <- covmpr2 + sum(pii[i] * p[i,-i] * pii[-i] / pi.[i]ˆ2 / p.i[-i]ˆ2)

}

covmpr <- (covmpr1+covmpr2) / rˆ2 / n

maF2.v <- 4 * (maRˆ4*varmap + 2*maPˆ2*maRˆ2*covmpr + maPˆ4*varmar) / (maP+maR)ˆ4

maF2.s <- sqrt(maF2.v)

## #################### ##

## Confidence intervals ##

## #################### ##

z <- qnorm(1-(1-conf.level)/2)

miF1.ci <- miF1 + c(-1,1)*z*miF1.s

maF1.ci <- maF1 + c(-1,1)*z*maF1.s

maF2.ci <- maF2 + c(-1,1)*z*maF2.s
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## ################# ##

##Formattnig output ##

## ################# ##

pr <- data.frame(microPrecision=miP, microRecall=miR, macroPrecision=maP, macroRecall=maR)

fss <- data.frame(

rbind(miF1=c(miF1, miF1.s, miF1.ci),

maF1=c(maF1, maF1.s, maF1.ci),

maF1.star=c(maF2, maF2.s, maF2.ci)))

names(fss) <- c(’PointEst’,’Sd’, ’Lower’,’Upper’)

out <- list(pr, fss)

names(out) <- c(’Precision.and.Recall’, ’Confidence.Interval’)

out

}

## Example ##

## Table V from Dong et al. (2017) PMID: 28767373

mnn <- cbind(c(5022,577,188,19,395),

c(407,2468,989,4,965),

c(130,630,27254,1021,763),

c(13,0,1236,6399,5),

c(103,258,609,0,9611)

)

f1scores(mnn)

## End ##
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