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Abstract
The coronavirus disease 2019 (COVID-19) is rapidly becoming one of the leading causes for mortality worldwide. Various
models have been built in previous works to study the spread characteristics and trends of the COVID-19 pandemic.
Nevertheless, due to the limited information and data source, the understanding of the spread and impact of the COVID-19
pandemic is still restricted. Therefore, within this paper not only daily historical time-series data of COVID-19 have been taken
into account during the modeling, but also regional attributes, e.g., geographic and local factors, which may have played an
important role on the confirmed COVID-19 cases in certain regions. In this regard, this study then conducts a comprehensive
cross-sectional analysis and data-driven forecasting on this pandemic. The critical features, which has the significant influence on
the infection rate of COVID-19, is determined by employing XGB (eXtreme Gradient Boosting) algorithm and SHAP (SHapley
Additive exPlanation) and the comparison is carried out by utilizing the RF (Random Forest) and LGB (Light Gradient Boosting)
models. To forecast the number of confirmed COVID-19 cases more accurately, a Dual-Stage Attention-Based Recurrent Neural
Network (DA-RNN) is applied in this paper. This model has better performance than SVR (Support Vector Regression) and the
encoder-decoder network on the experimental dataset. And the model performance is evaluated in the light of three statistic
metrics, i.e. MAE, RMSE and R2. Furthermore, this study is expected to serve as meaningful references for the control and
prevention of the COVID-19 pandemic.
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1 Introduction

In December 2019, the coronavirus disease 2019 (COVID-19)
was identified in Wuhan, the capital of the Hubei province of
China. Since then, the increasing number of COVID-19 in-
fected cases has been reported in many countries. As of
September 30, 2020, the COVID-19 pandemic has resulted
in more than 34 million confirmed cases worldwide. Since
the COVID-19 pandemic has intensively threated public se-
curity and peoples’ health, it was immediately attracted the
attention of scholars from many different research fields.

They attempted to model and analyze the spreading path of
this pandemic, so as to find the appropriate strategies or sug-
gestions to reduce the spreading risk of COVID-19. The
COVID-19 virus is mainly transmitted through polluted air
or water originated from respiratory droplets [1–5], fecal con-
tamination [6], etc. of infected persons. Known the fact that
COVID-19 virus can survive in the air for several hours,
resulting in potential aerosolized transmission for the certain
polluted region [7]. Hence, due to a period of close contact
among peoples, cluster infections, e.g. family cluster, commu-
nity transmission, etc., played important roles in the rapid
evolution of COVID-19 transmission [8].

Additionally, understanding the relationship between the
confirmed COVID-19 cases and their influential factors is
vital for the pandemic risk management and containment.
Current studies have shown that multiple critical factors (e.g.
environmental conditions, air pollution, population density,
etc.) may contribute to the severity and prevalence of the
COVID-19 [9–11]. For instance, through data analysis, Wu
et al. [12] revealed that temperature and relative humidity are
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both negatively correlated with the daily new cases and deaths
of this pandemic. Besides, it is found that air pollution was
associated with COVID-19 infection [13, 14], which could
partially explain the impact of the international lockdown.
Notice that, population mobility also had a great impact on
the COVID-19 pandemic [15].

Taken the aforementioned propagate characteristics (i.e.
spreading path and influential factors) of the COVID-19 into
account, some researchers are committed in analyzing and
forecasting the confirmed cases of this pandemic [16–18].
For instance, Hernandez-Matamoros et al. [19] forecasted
the COVID-19 cases in six geographical regions by means
of ARIMA (Auto-Regressive Integrated Moving Average)
model and polynomial functions. Their findings show that
there was a strong relation between COVID-19 behavior and
population in the same region. Based on the population flow
data, Jia et al. [20] not only proposed a spatio-temporal model
to forecast the distribution of confirmed COVID-19 cases in
China, but also identified regions that had a high risk of trans-
mission. Besides, Ghosh et al. [21] analyzed the inter-state
variations in the potential for transmission of COVID-19,
and assessed the exposure, preparedness and resilience capac-
ity in different states of India. Moreover, Ndairou et al. [22]
proposed a compartmental mathematical model to analyze the
spreading process, particularly focused on the transmissibility
of super-spreaders individuals.

Previous studies often applied the SIR (Susceptible
Infected Recovered) model for analyzing the potential impact
of the pandemic [23–25]. These SIR-type models are helpful
for policy-decision makers to carry out rapid actions to mini-
mize the risks and losses caused by the pandemic. In a recent
study, confirmed COVID-19 cases of a few European coun-
tries, e.g., Denmark, Belgium, Germany, etc., were modeled
and es t imated by ARIMA, NARNN (Nonl inear
Autoregression Neural Network) and LSTM (Long-Short
Term Memory) approaches, respectively [26]. Besides, artifi-
cial intelligence techniques are used to learn interesting infor-
mation and patterns from COVID-19 genome sequences [27].
As the COVID-19 disease spreads worldwide and the regional
resilience requirement rises, daily-level regional data are need-
ed for a detailed analysis and forecasting, e.g., population
mobility, smoking rate, and the number of hospitals. By
collecting daily state-level data from each state of US, this
study can produce targeted forecasts of the confirmed
COVID-19 cases and further provide valuable insights for
policymakers to take proper measures correspondingly.

In the United State, the first case of the COVID-19 pan-
demic was confirmed inWashington state. Shortly afterwards,
multiple states have also experienced a significant increase in
the number of infection cases and deaths. On March 17, 2020,
all states across the United States had confirmed cases of
COVID-19 [28], and as of September 30, 2020, more than
200,108 deaths and over 7,183,104 cases have been

confirmed [29]. As known that most states in the US are dif-
fered in natural environment, geography and economy, hence
it requires a novel perspective to capture the spread of
COVID-19. Due to the rapid spreading and high mortality
properties of the coronavirus disease, a series of social distanc-
ing interventions have been implemented around the country,
including closures of cinemas, restaurants, and schools [30],
and a great number of corporations and businesses have en-
couraged their staff to work remotely. Notice that, these inter-
ventions have significantly reduced the infection rate of the
COVID-19 pandemic and reflected on the daily confirmed
cases. To better forecast the confirmed cases of COVID-19
in the United States, this study performs a cross-sectional
analysis and one-step-forward forecasting on the pandemic.
The entire research process can be divided into three stages.
In the first stage, the daily time-series data and the regional
attributes of COVID-19 in all states across the US are collect-
ed. The regional attributes offer the static information within
the certain region. In the second stage, a cross-sectional anal-
ysis is conducted based on the static attributes from different
states. This study applies XGB (eXtreme Gradient Boosting)
algorithm [31] and SHAP (SHapley Additive exPlanation)
[32] for determining the top important features that signifi-
cantly influence the infection rate of COVID-19 (the total
number of the confirmed cases per 1000 people). In addition,
a comparative study is carried out by using RF (Random
Forest) and LGB (Light Gradient Boosting) models. In the
third stage, both temporal and static features obtained from
the second stage are considered. This study uses them as in-
puts of the Dual-stage Attention-based Recurrent Neural
Network (DA-RNN) [33], which is one of the state-of-the-
art algorithms in time series forecasting that considers both
varying influences and long-short termmemory from different
features. Experiment results demonstrate that utilizing detailed
static attributes and daily time-series data from each state of
the US can greatly improve the forecasting accuracy of the
pandemic models. Furthermore, the forecasting performance
of the DA-RNN is superior to the Support Vector Regression
(SVR) and the encoder-decoder network using three represen-
tative states, i.e. Washington, Ohio, and Los Angeles.

The contribution and innovation of this study can be expli-
cated as follows. Firstly, XGB algorithm, which is based on
the gradient boosting decision tree, is adopted and can process
static attributes and determine the important features that in-
fluence the infection rate of COVID-19 in each state of the
US. Meanwhile, SHAP is applied to increase the interpretabil-
ity of XGB. Second, the DA-RNNmodel is applied to forecast
the confirmed cases of COVID-19 in the US. Given that pan-
demic forecasting is strongly related to the surrounding envi-
ronment and historical confirmed case data, DA-RNN is suit-
able for pandemic forecasting problems. Through the compar-
ative data experiment within Washington, Ohio, and Los
Angeles, DA-RNN proves its superiority in improving
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forecasting accuracy over the SVR and the encoder-decoder
network. In these cases, the model performance is evaluated
by MAE, RMSE and R2.

The rest of this paper is organized as follows. Section 2
demonstrates the proposed framework. In Section 3, a cross-
sectional analysis is conducted based on the spatial data of
each state in the United States. Section 4 proposes a DA-
RNN model to forecast the confirmed cases of COVID-19.
Subsequently, the comparative experimental results are pre-
sented with a detailed analysis. At last, Section 5 summarizes
the entire work of this paper and outlines the directions of the
future work.

2 Proposed framework

Historical time series of infected cases and static attributes
within a particular region, e.g. population index, economic
indicators, etc. [34–37], is crucial for regionally forecasting
the number of COVID-19 confirmed cases. In this regard,
following proposed framework is constructed for combining
temporal and static variables and it can be divided into three
stages, as shown in Fig. 1.

In the first stage, both the daily time-series data of
infected cases and regional attributes of each state are
collected. In the second stage, cross-sectional analysis is
conducted based on the aforementioned static attributes. In
general, XGB is relatively robust if there are uninforma-
tive and redundant features, and it can be applied to eval-
uate features importance since it consists of tree-based
structure. For the aim of comparison, we also presented
RF (Random Forest) and LGB (Light Gradient Boosting)
as the important feature selectors. Nevertheless, the fact is
that interpretability and high accuracy of a specific model
are often incompatible, especially for ensemble algorithms,
e.g. RF, XGB, LGB. To overcome this drawback, SHAP
is applied to exhibit the results of feature importance. For
this study, SHAP cannot only obtain the feature impor-
tance through the marginal contribution of each feature,
but further analyze the individualized explanation for each
state, thereby helping to select the dominant features for
the subsequent prediction. In the third stage, a DA-RNN
is proposed for pandemic forecasting based on the tempo-
ral and static variables. DA-RNN considers both spatial
and temporal effect to forecast the number of COVID-19
confirmed cases. Specifically, the input attention layer of
DA-RNN can adaptively extract relevant input features

Fig. 1 The proposed framework
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from merged data at each step by referring to the previous
encoder hidden state. The temporal attention layer is then
utilized to select relevant encoder hidden states across all
the steps. Applying this two-stage attention scheme, the
proposed model can make more accurate forecasting.

3 Cross-sectional analysis

3.1 Dataset

Data on this research is collected from publicly accessible
secondary sources. The overall dataset can be generally sepa-
rated into two parts, i.e. spatial data and time-series data.
Spatial data contains demographic, public health, and other
relevant COVID-19 predictors for 50 states and District of
Columbia in the United States. A variety of 17 socioeconom-
ic, behavioral, environmental, and demographic factors were
compiled and considered as static features, with the infection
rate as the target variable. Table 1 provides the names and
definitions of these variables, where the infected rate is given
as :

Infectedrate

¼ Totalnumberof theconf irmedcasesinthestate

Totalpopulationof thestate

� 1000 ð1Þ

Based on the features within Table 1, we calculated the
covariance matrix, which is shown as a heatmap (see Fig. 2).
In this heatmap, the low linear correlation between the features
and the target variable, i.e. infection rate, can be found.
Besides, some features have high linear correlation with
others. For instance, “Smoking Rate” is highly correlated with
“Respiratory Deaths”, while “Population Density” is highly
correlated with “GDP”. Therefore, this study adopted XGB
and other tree-based integration algorithms, which can auto-
matically handle the collinearity characteristics. SHAP is ap-
plied to further analyze these features and find their effect on
the infection rate of COVID-19. Thereafter, we choose the
main factors for being substituted into the prediction models.

3.2 XGB and SHAP

XGB (eXtreme Gradient Boosting) is an optimized ensemble
algorithm based on the gradient boosting decision tree, which
can build CARTs (Classification and Regression Trees) effi-
ciently and operate in parallel. Assume that a dataset with n
states’ data in the US is Dn × m = {(xi, yi), xi ∈ Rm, yi ∈ R,
i = 1, 2, …, n} in which xi is i-th state ofm dimension vector,
in which m represents the number of static attributes. In this
study, yi is the true value of the infection rate, i.e. the total
number of the confirmed cases per 1000 people, of i-th state.
The estimation of infection rate in the light of XGB was ob-
tained by summarizing K additive CARTs as Eq. (2).

Table 1 Static features used in
this study with their definitions Theme Feature Name Description

Socioeconomic Income Income per capita ($)

GDP GDP per capita

Unemployment Unemployment as a percentage of the state labor force

Health spending Spending for all health services ($)

Behavioral Smoking rate Percentage of smokers

Environmental Temperature Average temperature in 2019

Pollution Measurement of the public’s exposure to particulate matter

Demographic Urban Percentage of the population living in an urban environment

Pop density Density of people per meter squared

Sex ratio Males / Females

Flu deaths Influenza and Pneumonia death rate per 100,000 people

Respiratory deaths Chronic lower respiratory disease rate per 100,000 people

Physicians Number of physicians and surgeons per 1000 people

Hospital beds Number of hospital beds per 1000 people

Age 65+ Percent of 65 years and over

Major airports Number of medium and large airports

Public Transportation The proportion of people who use public transportation when they
go to work

Target variable Infected rate Total number of confirmed COVID-19 cases per 1000 people as of
September 30, 2020
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Fig. 2 The heatmap of covariance matrix of static features

Fig. 3 A summary plot of the impact of each static feature on the model output
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ŷi ¼ ∑K
k¼1 f k xið Þ; f k∈F ð2Þ

where K is the number of trees; F denotes the set of all
possible CARTs.

Rather than using first-order information by means of gra-
dient boosting decision tree (GBDT) when calculating nega-
tive gradients, XGB applies the second order Taylor’s series
expansion to obtain the first- and the second-order informa-
tion, and utilizes the complexity of the model as a regulariza-
tion term in the objective function to avoid overfitting [38].
The specific objective function for XGB to be optimized at
each iteration can be expressed as follows:

obj tð Þ ¼ ∑n
i¼1 l yi; ŷ

t−1ð Þ
i

� �
þ gi f t xið Þ þ 1

2
hi f 2t xið Þ

� �
þ Ω f tð Þ ð3Þ

where obj(t)is the objective function at round t, by t−1ð Þ
i is the

infection rate prediction of the i-th instance at (t − 1)-th itera-
tion, Ω(ft) represents the regular term, which considers the
complexity of this model, ft(xi) is the t-th iteration tree output,
gi and hi are the first and the second order gradient, calculated
as follows.

gi ¼ ∂ŷ t−1ð Þ
i

l yi; ŷ
t−1ð Þ
i

� �
ð4Þ

hi ¼ ∂2
ŷ t−1ð Þ
i

l yi; ŷ
t−1ð Þ
i

� �
ð5Þ

where l is a differentiable convex loss function that measures
the difference between yi and by t−1ð Þ

i .
After a series of derivation, the objective function can be

expressed by Eq. (6):

obj tð Þ ¼ −
1

2
∑T

j¼1

∑i∈I j gi
� �2

∑i∈I jhi þ λ
þ γT ð6Þ

where T represents the number of leaf nodes; λ and γ are the
penalty coefficients. Eq. (6) is also called the scoring function
and can be applied to select the best segmentation point while
constructing CARTs. XGB can evaluate the feature impor-
tance according to scoring function. For a single tree, the
feature importance is determined by comparing the perfor-
mance measure before and after each feature segmentation.
Performance measures of the feature importance consist of
“gain”, “frequency” and “coverage”, where the first term is
the main reference factor, the middle term counts the times of
appearance of a feature in all constructed trees, and the last
term is the relative number of observations related to this
feature, respectively. Subsequently, the results of a feature in
all trees are averaged to obtain the importance value.

While feature importance can be incidentally obtained
through the XGB model, the gain, frequency, and coverage

methods above are all heuristic and global feature attribution
methods. This means that the individualized explanation for
each prediction is not available. In addition, the feature impor-
tance calculated from these methods is inconsistent, which
prevents meaningful comparison of attribution values among
features. To overcome this circumstance, SHAP (SHapley
Additive exPlanation) is applied to make prediction models
explainable and analyze individual prediction samples. SHAP
is an additive interpretation model based on an explanation
model g, defined as a linear function of binary variables:

g z′
� � ¼ ϕ0 þ ∑m

p¼1ϕpz
′
p ð7Þ

where g is an explanation model; z′p∈1; 0 reveals feature xp
exists or not, respectively; ϕp is the Shapley value of feature
xp; ϕ0 is a constant.

In the tree model, to calculate the SHAP value for feature
xp, we need to calculate the Shapley values of all possible
feature permutations (different sequences are included) and
do the weighted addition while feature xp is fixed. The
Shapley value is calculated as:

ϕp valð Þ ¼ ∑
S⊆x1;…xm∖xp

jSj! m−jSj−1ð Þ!
m!

val S∪xp
�
−val Sð Þ� �� ð8Þ

where S is the subset of entire features, val(S) is the output
value when input is the specific permutation S. For the weight,
there are m! permutations for m features, and when feature xp
is fixed, there are (m−| S | −1) ! ∣ S ∣ ! permutations.

As an additive feature attribution method, three character-
istics of SHAP are defined as “local accuracy”, “missingness”
and “consistency”, where the first term means that the sum of
the feature attributions is equal to the output of the function in
question, the middle term means that missing features are
attributed no importance, and the last term states that changing
a model, such that observing a feature has a larger impact on
the model, will never decrease the attribution assigned to that
feature [39].

3.3 Hyperparameter setting and evaluation metrics

In this section, XGB based on the regression tree is applied to
fit the relationship between the target variable (i.e. infection
rate) and the independent features, e.g. population index, eco-
nomic indicators, etc. Since infection rate, defined as con-
firmed cases of COVID-19 per 1000 people, belongs to nu-
meric values, feature evaluation is essentially a sensitivity
analysis on a regression solution. Given that the target vari-
ables are normalized by population, some other features in the
independent variables, e.g. the number of registered physi-
cians and hospital beds, are also measured by the population
of the region. We applied the XGB algorithm on state-by-state
dataset and compared its performance with RF and LGB.
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Since these models are all tree-based models, it is not neces-
sary to normalize samples, and features from different dimen-
sions will not significantly affect the results. To ensure the
validity of these models, dataset is divided into the train set
and test set with the ratio of 7:3. To prevent overfitting prob-
lems and control the model complexity, a proper six-fold cross
validation method is chosen to train multiple sets of different
hyperparameters. Since overfitting often occurs when a model
starts to learn noises and random fluctuations, and eventually
treats them as the meaningful facts [40].

Table 2 presents the hyperparameter values of XGB, RF,
and LGB utilized in this study. For XGB, the number of iter-
ations equals the number of trees for the approach. The sub-
sample is the percentage of samples used per tree. The maxi-
mum depth of the tree represents the maximum number of
nodes that are traversed. The learning rate, also known as
the concept of shrinkage, is applied to control the weighting
of new trees added to the model leading to a more robust
model. The parameter “colsample bytree” prevents overfitting
by subsampling the features. “Lambda” and “alpha” are L2

and L1 regularization terms of weights, and their increments
make the model more conservative.

Due to the difficulty in evaluating the model performance
by means of a solo metric, MSE (Mean Square Error), RMSE
(Root Mean Square Error), and MAE (Mean Absolute Error)
are selected as evaluation indexes. The calculation formulas of
these statistic metrics are listed as follows:

MSE ¼
∑N

i¼1 yi−byi
� �2

N
ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 yi−byi
� �2

N

vuut
ð10Þ

MAE ¼
∑
N

i¼1
jyi−ŷij
N

ð11Þ

where N is the number of samples, yi is the i-th actual value
of infection rate;byi is the i-th predicted value of infection rate.

3.4 Results and discussion

Table 3 shows the performance results of XGB, RF, and LGB.
According to the data experimental results of evaluation in-
dexes, i.e. MSE, RMSE, MAE, the XGB model has better
performance than other models.

We analyze and compare the data experimental results ob-
tained by XGB, LGB and RF models using the SHAP tool.
For the sake of brevity, this section merely focuses on
interpreting the output of the best model, i.e. XGB. To explore
the influence factors at different stages of the pandemic, this
section employs two sets of data to calculate the feature im-
portance using XGBmodel, namely information gain of XGB
and mean magnitude of SHAP values. Tables 4 and 5 shows
the feature importance calculated based on the two datasets
during different time period: the first dataset is from March 1
to June 30, and the second is from March 1 to September 30,
respectively.

As shown in Tables 4 and 5, the ranking of feature impor-
tance calculated in XGB by gain is slightly different from the
average absolute value of SHAP. The motivation of gain is
mostly heuristic, indicating that gain is not a reliable measure
of global feature importance. In contrast, a more robust esti-
mation of the feature importance based on the mean magni-
tude of SHAP values is performed. At the early stage of the
pandemic, the proportion of people taking public transporta-
tion to work place as well as the population density were the
most important factors affecting the infection rate in a certain
region. With the spread of the pandemic, the intervention of
certain social distance policies could be a major reason for
causing changes in influence factors. As a result, temperature
and the percentage of people over 65 become the most impor-
tant factors that affect the infection rate.

More practically, the following presentation is based on the
recent dataset, i.e., from March 1 to September 30. Except
from global feature importance, we also analyze the Shapley
value for each of aforementioned static feature. In Fig. 3, the
horizontal axis represents the Shapley value, where a positive
and negative value stand for a higher and lower default prob-
ability, respectively. The vertical axis represents features

Table 2 The hyperparameter values of XGB, RF, and LGB utilized in this study

Parameters of XGB Values Parameters of RF Values Parameters of LGB Values

number of iterations 150 number of iterations 150 number of iterations 150

max depth 3 max features default max depth 3

subsample 0.7 max depth 3 subsample 0.7

colsample bytree 0.7 min_samples_split 2 colsample bytree 0.7

lambda 2 min_samples_leaf 1 min_child_weight 1

alpha 1 min_weight_fraction_
leaf

0 num_leaves 40

learning rate 0.05 max_leaf_nodes None learning_rate 0.05
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sorted by global importance. The color of these dots indicates
the magnitude of important values, notice that from red to
blue, the color reveals from higher to lower important values,
respectively. If one feature changes from blue to red on the
horizontal axis, the Shapley value increases, thereby this fea-
ture has a monotonically increasing relationship with the tar-
get variable, i.e. infection rate. In this case, it can be found that
“Temperature”, “Pollution”, “Hospital Beds”, “Flu Deaths”
and “Urban” are positively related to the targeted variable.

Using SHAP, the feature contributions to each state can be
evaluated and visualized. In this part, we display the three
states for analysis: New Jersey, New York and District of
Columbia, as shown in Fig. 4. The feature magnitudes are
shown below the horizontal axis, sorted by absolute value.
The width of the arrow represents the SHAP value of each
feature. The arrow in pink indicates that the SHAP value of
this feature is positive while the blue is negative. For New
Jersey, the prediction of XGB is 19.24 [see Fig. 4], which is
different from the base value (the average output over the
training dataset). “Age 65+” and “Pollution” are powerful

forces to drive the prediction accuracy up. For New York,
main reasons behind the increase in the prediction up are
“Sex Ratio” and “Age 65+”. For District of Columbia, the
SHAP value of “Health Spending” is negative, which slowed
down the prediction up to a certain extent.

Rotate all state explanations of feature importance by 90 de-
grees anticlockwise, and stacked horizontally, the explanations
for the entire dataset can be seen, as shown in Fig. 5. Each vector
is sorted by similarity. There may be similar reasons for the
predicted results in different states. With high temperature and
pollution, XGB model tends to predict a high infection rate. In
contrast, low population density and small amount of people over
the age of 65 lead to low infection rates.

4 Forecasting

4.1 Dataset

To forecast the confirmed cases of COVID-19, this study has
collected daily time-series data of COVID-19 in each state of
the United States fromMarch 1, 2020, to September 30, 2020.
This dataset consists of 10 types of time-series data related to
COVID-19 for each region in the United States. Since several
temporal variables (e.g. mobility_retail_and_recreation,
mobili ty_grocery_and_pharmacy, mobility_parks,
mobility_transit_stations, mobility_workplaces, and
mobility_residential) are multicollinearity, the average

Table 4 The feature importance calculated by using data fromMarch 1
to June 30

No. Features Gain of XGB Mean magnitude of
SHAP values

1 Pop Density 110.4355 1.4059

2 Public Transportation 39.9490 0.9363

3 Pollution 20.2100 0.6166

4 Sex Ratio 3.8168 0.5133

5 Urban 4.4805 0.4145

6 Income 26.9567 0.3677

7 Hospital Beds 2.4753 0.3319

8 Respiratory Deaths 2.3760 0.3230

9 Physicians 3.1678 0.3216

10 Flu Deaths 1.8414 0.2705

11 Age 65+ 13.0877 0.2506

12 Major Airports 11.6312 0.1672

13 Unemployment 5.6695 0.1666

14 GDP 6.8395 0.1338

15 Health Spending 2.6873 0.1099

16 Temperature 0.6306 0.0667

17 Smoking Rate 0.4426 0.0527

Table 3 The
performance results of
XGB, RF and LGB

RMSE MAE MSE

XGB 5.0172 6.3516 25.1722

RF 6.3216 7.5264 39.9626

LGB 6.8234 6.6538 77.8523

Table 5 The feature importance calculated by using data fromMarch 1
to September 30

No. Features Gain of XGB Mean magnitude of
SHAP values

1 Temperature 146.9716 1.3928

2 Age 65+ 82.3948 1.0826

3 Pollution 117.6348 0.7934

4 Sex Ratio 71.3326 0.7878

5 Hospital Beds 86.3513 0.5321

6 Physicians 59.3828 0.3353

7 Flu Deaths 70.7815 0.3350

8 Pop Density 24.6166 0.3278

9 Smoking Rate 38.8826 0.2811

10 Income 54.6326 0.2498

11 Urban 57.2029 0.1965

12 Health Spending 30.7574 0.1560

13 Major Airports 21.3473 0.1254

14 Unemployment 34.6735 0.1231

15 GDP 42.9217 0.0892

16 Respiratory Deaths 51.7551 0.0883

17 Public Transportation 76.4803 0.0460
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mobility is used instead. Table 6 illustrates the necessary in-
formation of these temporal data, including variable names,
variable types, and their descriptions.

4.2 DA-RNN

Although various pandemic prediction models have been de-
veloped, few of them can properly capture the long-term tem-
poral dependencies and select the relevant time series for pre-
diction. This study proposes a Dual-stage Attention-based
Recurrent Neural Network (DA-RNN) to solve these two
problems. Within DA-RNN model, it involves two attention
layers: the first is an input attention layer that determines

which feature should be given more attention than the others;
the second is a temporal attention layer that determines the
weight of importance for each historical temporal step [41,
42]. Subsequently, we concatenated the output from the sec-
ond attention layer to the historical information, so as to fore-
cast the confirmed cases of COVID-19 in the next time step,
as shown in Fig. 6.

Given the previous values of the target series is yt = {y1,…
yT − 1}, and the sequence of the exogenous time series is xt =
{x1,…xT}. The input attention layer calculates the attention
weights αt for multiple exogenous time series xt conditioned
on the previous hidden state ht − 1 in the encoder, and then
feeds the computed x∼t into the encoder RNN layer. The

a

b

c

Fig. 4 Three examples illustrating the relative contributions of static features to the predicted confirmed cases of COVID-19 per 1000 people. (a) New
Jersey (b) New York (c) District of Columbia

Fig. 5 State samples sorted by the explanation similarity
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calculation formula of x∼t is as follows.

ext ¼ αT
t xt ð12Þ

The temporal attention system then calculates the attention
weights based on the previous decoder hidden state dt − 1 and
represents the input information as a weighted sum of the
encoder hidden states across all the time steps. The generated
context vector ct is then used as an input to the decoder RNN
layer. The output byT of the last decoder recurrent cell is the
predicted result.

Both the encoder and the decoder layer are composed
of recurrent cells. These cells maintain and update their
hidden state to store previous information. This study

uses Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) as recurrent cell respectively,
and compares the performance of these two models.

In LSTM-based model, each LSTM cell consists of an
input gate, an output gate and a forget gate. For instance,
the encoder LSTM cell receives the calculated x∼t at time
t, the hidden state ht − 1 and the cell state st − 1 at time
t − 1. The calculation formulas of input gate, forgotten
gate and output gate are as follows:

it ¼ σ wi* x
∼
t; ht−1

h i
þ bi

� �
ð13Þ

f t ¼ σ wf * x
∼
t; ht−1

h i
þ bf

� �
ð14Þ

Table 6 Temporal variables utilized in this study with their definitions

Variable Name Type Description

Total confirmed cases Integer Cumulative sum of cases confirmed after positive test to date

New confirmed cases Integer Daily cases confirmed after positive test

mobility_retail_and_recreation Double Percentage change in visits to retail and recreation locations compared to baseline

mobility_grocery_and_
pharmacy

Double Percentage change in visits to grocery and pharmacy locations compared to baseline

mobility_parks Double Percentage change in visits to park locations compared to baseline

mobility_transit_stations Double Percentage change in visits to transit station locations compared to baseline

mobility_workplaces Double Percentage change in visits to workplace locations compared to baseline

mobility_residential Double Percentage change in visits to residential locations compared to baseline

Average mobility Double The average value of mobility_retail_and_recreation, mobility_grocery_and_pharmacy,
mobility_parks, mobility_transit_stations, mobility_workplaces and mobility_residential

Average temperature Double Recorded hourly average temperature

Fig. 6 Graphical illustration of the dual-stage attention-based recurrent neural network
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ot ¼ σ wo* x
∼
t; ht−1

h i
þ bo

� �
ð15Þ

Where it represents the input gate, which is used to add
information to the cell state. ft represents the forget gate, which
is responsible for discarding cell state information. ot repre-
sents the output gate that controls how much ct outputs to the
next hidden state ht. wi wf, wo, wc are the weight matrices. bf,
bo, bc are the bias vector and σ is the activation function.

The cell state st is updated through input and historical
information. The calculation formula is as follows:

fs∼t ¼ tanh wc* ext; ht−1
h i

þ bc
� �

ð16Þ
st ¼ st−1*f t þ fs∼t*it ð17Þ

The hidden state after the update is calculated as follows:

ht ¼ ot*tanh stð Þ ð18Þ

In GRU-based model, each GRU cell consists of an update
gate and a reset gate, similar to the forget gate and input gate
within the LSTM cell. The update gate defines how much
previous memory to keep around and the reset gate defines
how to combine the new input with the previous memory.
Unlike LSTM, GRU completely exposes its memory content
and does not have separate memory cells. Therefore, GRU is
much simpler to compute and implement.

The DA-RNN constructed in this study combined two types
of inputs, i.e. static features and temporal features. For a given
dataset with nd temporal features of length ld, we produce ns
additional time series of length ld using static feature. The tem-
poral features consist of new confirmed cases, total confirmed
cases, average temperature and average mobility. By rolling time
series of the previous period forward, we can forecast the total
confirmed cases on the next day in a step-wise manner.

4.3 Hyperparameter setting and evaluation metrics

The overall dataset is divided into the train set and test set with
the ratio of 7:3. To improve the convergence speed and perfor-
mance effectively, a max-min normalization process before feed-
ing to the network is needed, and it is expressed as follows:

xnorm ¼ x−xmin
xmax−xmin

ð19Þ

in which x is a specific feature; xmax, xmin are the maximum and
minimum value of this feature, respectively.

In this study, both DA-RNN and the encoder-decoder net-
work employ Adam as an optimizer. Mean squared error is uti-
lized as a loss function. During the training process, we set the

learning rate as 0.001 reduced by 0.1 after each 10,000 iterations,
the size of hidden states for both encoder and decoder as 128,
epochs as 300, batch size as 256 and window size as 10.

Three evaluationmetrics are used to evaluate the performance
of the proposed model, i.e., RMSE, MAE and Correlation coef-
ficient (R2). The calculation formula of R2 is shown below.

R2 ¼
∑N

i¼1 byi−y
� �2

∑N
i¼1 yi−y

� �2 ð20Þ

Where N is the number of samples, yi is the i-th actual
value, byi is the i-th predicted value, y is the average value.

4.4 Results and discussion

In this section, we select several states that are most represen-
tative of the overall situation of the pandemic in the United
States, and then make targeted predictions in these states. To
determine the representative states, we use the Pearson corre-
lation coefficient to examine the relationship between the con-
firmed cases in the United States and that in each state. The
top three states with the highest correlation coefficients are
Washington, Ohio, and Los Angeles, i.e. 0.9993, 0.9989 and
0.9969, correspondingly.

Subsequently, we carry out a series of experiments by
means of GRU-based and LSTM-based DA-RNNs. RMSE,
MAE and R2 are applied to measure and evaluate the perfor-
mance of twomodels. Meanwhile, Support Vector Regression
(SVR) and the encoder-decoder network are selected as com-
parison models. Different from DA-RNN, the encoder-
decoder network based on LSTM does not utilize the attention
mechanism. Tables 7, 8, and 9 respectively show the predic-
tion results on three different states (i.e.Washington, Ohio and
Los Angeles). It is worth noting that MAE and RMSE are not
comparable due to different data ranges from state to state.

As shown in Tables 7, 8 and 9, the results of DA-RNNwith
different recurrent cells both outperform those of the encoder-
decoder network and SVR, which proves that the attention
mechanism of DA-RNN is effective in this case. Further, the
result of GRU-based DA-RNN performs slightly better than
that of the LSTM-based DA-RNN. Figure 7 shows the itera-
tive process of the loss function during the raining process of
GRU-based DA-RNN. Figure 8 shows the comparison of the
predicted value and the true value.

As shown in Figs. 7 and 8, the prediction results of the
GRU-based DA-RNN are very close to the true values of
confirmed cases, and the loss function can converge with the
normalized error less than 1 × 10−4. While more detailed data
is needed to make more accurate predictions, the proposed
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model of this study could help to forecast future confirmed
cases, as long as the spread of the COVID-19 virus does not
change vastly against expectation based on historical data.
Otherwise, variation characteristic may affect the spread rate
and seriousness of COVID-19, and further the reliability and
accuracy of the forecasting model.

5 Conclusion

The COVID-19 has resulted in high mortality worldwide.
Researchers have built many pandemic models based on lim-
ited data and they often focus on analyzing the spread path

itself and the impact of the pandemic. Nonetheless, many
geographic and local factors are as well crucial to the forecasts
of confirmed COVID-19 cases in certain regions. In this
study, we considered both daily time-series data of confirmed
cases and regional attributes in the United States as important
features. Subsequently, we conducted a cross-sectional anal-
ysis and data-driven forecasting on this pandemic. The main
findings of this study can be concluded as two parts:

1. We selected a set of influential factors that might affect
the spread rate of COVID-19. XGB and SHAP were in-
corporated to quantify the importance static features and
RF, LGB are comparable feature selectors. Through the

Table 9 The prediction results using the data in Los Angeles

Model Training Testing

MAE RMSE R2 MAE RMSE R2

LSTM-based
DA-RNN

935.5827 1148.7093 0.9994 1148.3849 1347.3209 0.9837

GRU-based
DA-RNN

857.4780 1058.3201 0.9994 1049.1987 1230.2390 0.9810

Encoder-Decoder 1829.1779 2270.9733 0.7176 2029.1921 2346.2892 0.6744

SVR 2159.8801 2454.7972 0.6767 2126.2587 2587.6133 0.6089

Table 8 The prediction results using the data in Ohio

Model Training Testing

MAE RMSE R2 MAE RMSE R2

LSTM-based
DA-RNN

779.2359 1015.8341 0.9993 954.3849 1342.0370 0.9156

GRU-based
DA-RNN

699.2269 932.7992 0.9994 909.3970 1134.3039 0.9130

Encoder-Decoder 939.3892 1237.9832 0.8128 1049.2895 1689.3498 0.7496

SVR 1437.604 2038.3557 0.6781 1704.4902 2368.9732 0.5810

Table 7 The prediction results using the data in Washington

Model Training Testing

MAE RMSE R2 MAE RMSE R2

LSTM-based
DA-RNN

305.2435 397.7334 0.9824 496.2958 669.4930 0.9342

GRU-based
DA-RNN

253.4356 372.8175 0.9997 463.6574 654.5355 0.9474

Encoder-Decoder 595.3059 723.4670 0.8428 635.4309 853.9572 0.8134

SVR 1352.5391 1503.4896 0.6309 1662.2470 1751.1622 0.5932
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experimental results, the most important three factors are
temperature, age 65+ and pollution.

2. We applied GRU-based DA-RNN and LSTM-based DA-
RNN to forecast the number of the confirmed COVID-19
cases for certain states in the United States. The

superiority of DA-RNN was demonstrated in comparison
to baseline methods including SVR and the encoder-
decoder network.

Notice that, virus variation may greatly affect the spread
rate and seriousness of COVID-19, and further the accuracy of

Fig. 8 The comparison of the predicted and true values employing GRU-
based DA-RNN on three different states. (a)Washington (b) Ohio (c) Los
AngelesFig. 7 The iterative process of loss function during the training process of

GRU-based DA-RNN on three different states. (a) Washington (b) Ohio
(c) Los Angeles
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the forecasting model. In future, we will consider more char-
acteristics (e.g. the incubation period, pathogenesis, symp-
toms, diagnosis, etc.) from COVID-19 itself.
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