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Abstract
The computationally hard problem of finite language decomposition is investigated. A finite language L is decomposable if
there are two languages L1 and L2 such that L = L1L2. Otherwise, L is prime. The main contribution of the paper is an
adaptive parallel algorithm for finding all decompositions L1L2 of L. The algorithm is based on an exhaustive search and
incorporates several original methods for pruning the search space. Moreover, the algorithm is adaptive since it changes its
behavior based on the runtime acquired data related to its performance. Comprehensive computational experiments on more
than 4000 benchmark languages generated over alphabets of various sizes have been carried out. The experiments showed
that by using the power of parallel computing the decompositions of languages containing more than 200000 words can be
found. Decompositions of languages of that size have not been reported in the literature so far.

Keywords Adaptive parallel algorithm · Parallel exhaustive search with pruning · Finite language decomposition ·
Primality test · Formal language theory

1 Introduction

A finite language L is decomposable (or composite) if
there are two nontrivial languages L1 and L2 such that
L = L1L2. Otherwise, L is prime. It was proved that the
complexity of deciding primality of a finite language is
NP-hard [1].

The main contribution of this paper is an adaptive
parallel algorithm that finds all decompositions L1L2 of
L, or concludes that L is prime when no decomposition is
found. The algorithm is based on an exhaustive search, and
incorporates several original methods for pruning the search
space. Moreover, the algorithm is adaptive; it changes its
behavior based on the runtime acquired data related to the
performance of its recursive phase. Since the question of
decomposing finite languages is computationally hard, a
motivation of our work is to investigate to what extent the
power of parallel computing makes it possible to tackle that
question for large-size instances of finite languages.
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The decomposition algorithm has a number of applica-
tions. It is useful for determining the prime decomposition
of a supercode. A finite language L can be represented by
the list of words. However, such representation is memory
intensive if L is large. Therefore a better option is to decom-
pose L and store its factors L1 and L2. The decomposition
algorithm can be used to find a context-free grammar G.
Given the sets of words S+ and S−, called examples and
counterexamples, a grammar G should be found that accepts
words in set S+, and rejects words in set S−. We describe
these applications in more detail in Examples 3–6.

The rest of the paper is organized into six sections.
Section 2 presents a survey of previous work on finite
language decomposition. Section 3 recalls selected concepts
of the theory of languages and automata. Section 4 describes
the basic algorithm, which has been a starting point for
developing the adaptive algorithm proposed in Section 5.
Section 6 reports on the results of the computational
experiments conducted using the algorithms. Section 7
contains conclusions and future work.

2 Related work

M. Martin and T. Kutsia [2] proposed a representation of
regular languages by linear systems of language equations,
which is suitable for computing left and right factors of
a regular language. An n-subfactorization of a regular
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language L is a tuple of languages (L1, L2, . . . , Ln)

for some n ≥ 1 such that the language concatenation
L1L2 . . . Ln is a proper subset of L, so L1L2 . . . Ln �

L. A left (resp. right) factor of L is the leftmost (resp.
rightmost) term in a factorization of L. The algorithm
for computing the sets of left and right factors of L is
proposed.

S. Afonin and D. Golomazov [3] presented an algorithm
for constructing a minimal union-free decomposition of
a regular language L. A representation L = L1 ∪
L2 ∪ . . . ∪ Lk is called a union-free decomposition of
L iff Li is a union-free language for all i = 1, 2,
. . . , k. The decomposition is called minimal iff there
is no other union-free decomposition of L with fewer
factors. The algorithm for constructing a minimal union-
free decomposition for a given regular language L is
provided. The algorithm involves an exhaustive search, so
its computational complexity is exponential in the size of
the DFA accepting L.

W. Wieczorek and A. Nowakowski [4] considered the
problem of finding a multi-decomposition of a finite
language W = {w1, w2, . . . , wn}, n ≥ 1, that contains
words wi of fixed length d ≥ 2, composed of symbols
taken from the nonempty finite alphabet Σ . It is assumed
that a desired multi-decomposition is a set of concatenations
LiRi whose union contains W , that is W ⊆ L1R1 ∪
L2R2 ∪ . . . ∪ LmRm for some m ≥ 1 depending on the
size of W . The nonempty sets Li and Ri , which include
the prefixes and suffixes of words wi ∈ W , respectively,
are the subsets of complete sets of prefixes and suffixes
obtained from all possible splits of words wi ∈ W . Denote
the splits by wi = uij vij , i ∈ [1, n], and j ∈ [1, d − 1].
The prefix uij consists of j leading symbols of wi , while
the suffix vij consists of the d − j trailing symbols of
wi . A multi-decomposition is related to the cliques of an
undirected graph G = (V , E) with the set of vertices
V = {(uij , vij )|wi = uij vij , wi ∈ W } and the set of
edges E = {((uij , vij ), (ukl, vkl))|uij vkl, uklvij ∈ W }. It
can be shown that each concatenation LiRi of a multi-
decomposition is represented by the corresponding clique in
graph G, that is {(ut1 , vt1), (ut2 , vt2), . . . , (utr , vtr )} where
Li = ∪r

j=1{utj } and Ri = ∪r
j=1{vtj }. The authors provide a

randomized algorithm to find all cliques in graph G, which
runs in polynomial time with respect to the size of W . As
an example, consider language W = {aa, ab}. The graph
G for it has two vertices labeled (a, a) and (a, b) (u11 =
v11 = a, u21 = a, v21 = b), and one edge ((a, a), (a, b)),
as u11v21 = ab and u21v11 = aa are in W . There is only
one clique in the graph, so L1 = u11 ∪ u21 = {a} and
R1 = v11 ∪ v21 = {a, b}, and finally W = {a}{a, b}.
The proposed method of finding a multi-decomposition was
applied to create an opening book for the Toads-and-Frogs
game.

H. J. Bravo et al. [5] investigate the manufacturing
problem that involves batches of identical or similar items
produced together for different sized production runs. A
production run, consisting of a fixed number of interleaved
workcycles, and is controlled by a monolithic supervisor,
whose operation is described using a deterministic finite
automaton (DFA). The automaton accepts a regular
language R over some finite alphabet Σ , with states
representing points in time, and transitions representing
events occurring within a production run. Events are
operations that are performed by machines (for example,
take a workpiece, process it, etc.) to obtain the product. An
event a has a specific time of execution d(a), and belongs
to the alphabet of a DFA, a ∈ Σ . A production run, being
a sequence s = a1a2 . . . an of events, has a makespan equal
to the sum of the event execution times,

∑n
i=1 d(ai). For

a product there can be a number of sequences s that differ
in the order of individual events ai , with each sequence
corresponding to a route in a DFA. The paper proposes
a factorization-based approach to compute a route with
the minimum makespan. As for a given product P the
production run length is finite (measured by the number of
events), the finite language L is extracted from a regular
language R, L ⊆ R, which describes all possible routes for
P . Then L is decomposed into factors L = L1L2 . . . Lk

for some k, where each factor Li describes a set of possible
subroutes betwen the so called symmetrically reachable
idle states (the notion introduced in the paper). Finally, for
all sets Li , i ∈ [1, k], the subroutes ri of the minimum
makespan are determined, which give the optimal route r =
r1r2 . . . rk . The authors claim that the proposed approach
mitigates the computational complexity of finding route r .

Several decomposition algorithms were developed for
codes, which are sets of words and hence they are
formal languages. Codes are categorized by their defining
properties, for example, prefix-freeness, suffix-freeness,
infix-freeness, etc.

Y. -S. Han and K. Salomaa [6] studied solid codes
defined as follows: a set S of words is a solid code, if S

satisfies two conditions: (i) no word of S is a subword of
another word of S (infix-freeness), and (ii) no prefix of a
word in S is a suffix of a word in S (overlap-freeness). In
other words, S has to be an infix code and all words of S
should not overlap. Moreover, a language L is a regular solid
code if L is regular and a solid code. The paper proposed
two algorithms related to the decomposition problem for
solid codes. The first algorithm determines in polynomial
time whether or not a given regular language is a solid code.
The second efficient algorithm finds a prime solid code
decomposition for a regular solid code when it is not prime.

K. V. Hung [7] considered the prime decomposition of
supercodes. A finite language L is a supercode, if no word
in L is a proper permu-subword of another word in it. Let u
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and v be words of L. A word u is called a permu-subword
of v, if u is a subword of v in which symbol permutations
are allowed. A supercode L is prime if L �= L1L2 for
any supercodes L1 and L2. A linear-time algorithm was
provided that for a given supercode L discovered that it was
prime, or returned the unique sequence of prime supercodes
L1, L2, . . . , Lk+1 such that L = L1L2 . . . Lk+1 with
k ≥ 1.

In addition to the above recent work on supercodes, there
were previous works on this subject. J. Czyzowicz et al.
[8] proved that for a given prefix-free regular language
L, the prime prefix-free decomposition is unique, and the
decomposition for L that is not prime can be computed in
O(m) worst-case time, where m is the size of the minimal
DFA accepting L. Y. -S. Han et al. [9] investigated the prime
infix-free decomposition of infix-free regular languages and
demonstrated that the prime infix-free decomposition is not
unique. An algorithm for the infix-free primality test of an
infix-free regular language was given. It was also shown
that the prime infix-free decomposition can be computed in
polynomial time. Y. -S. Han and D. Wood [10] investigated
the finite outfix-free regular languages. A word x is an
outfix of a word y if there is a word w such that x1wx2 = y

and x = x1x2. A set X of words is outfix-free if no word
in X is an outfix of any other word in X. A polynomial-
time algorithm was developed to determine outfix-freeness
of regular languages. Furthermore, a linear-time algorithm
that computed a prime outfix-free decomposition for outfix-
free regular languages was given. There are also papers on
theoretical issues related to the problem of formal language
decomposition [11–16].

Let us note that all the works discussed above differ from
our approach to solving the decomposition problem. Firstly,
we consider finite languages that do not have to satisfy
any specific conditions. Secondly, the parallel algorithm we
propose is intended to compute all decompositions of a
finite language L in the form of L = L1L2.

This paper builds on our previous efforts in developing
the sequential and parallel algorithms for finite language
decompositions. Let us briefly review the results obtained
in those efforts. A sequential algorithm for finding the
decomposition of a finite language was proposed in [17].
The algorithm returned only the first decomposition found
of a given language. A threshold parameter T (see p. 12)
that impacted the operation of the algorithm was kept
constant, meaning it was not adaptively adjusted while the
algorithm was running. The article introduced the concept
of significant state along with the proof that for every
composite language there is at least one decomposition
based solely on significant states. In the experimental
part of the paper, 240 languages of size less than 2000
words were studied, including 120 prime languages. The
implementation was done in Python, and the average

running time of the algorithm for test languages was in the
order of a few seconds.

The approach for finding the first decoposition of
a finite language by using selected meta-heuristics was
discussed in [18]. The paper presented the results for the
simulated annealing algorithm, tabu search, and genetic
and randomized algorithms, all sequentially implemented
in Python. Computational experiments were carried out
on 1200 languages of sizes less than 2000 words with
algorithm execution time limits of 10 and 60 seconds.
Within these limits, the algorithms returned quite a lot of
wrong answers for composite languages, claiming they were
prime.

A basic parallel algorithm (its short description is
included in Section 4) for finding all decompositions of a
finite language using the concept of significant state was
given in [19]. The algorithm consisted of two phases. In
the first phase, each process executed the same code, and
in the second phase the computation was spread across
the processes available based on their ranks. The algorithm
was implemented in the C language and Message Passing
Interface (MPI). The experiments, conducted with up to
22 processes covered four languages with a word count
between 800–6583 words.

A preliminary version of an adaptive parallel algorithm
for solving the decomposition problem was given in [20].
The adaptive algorithm was based on the modified concept
of significant state compared with that given in [17]. The
algorithm consisted of two phases and included a method of
pruning of the search space, and a simplified verification of
prospective decomposition sets. It also involved an adaptive
way for adjusting the threshold parameter T to keep the
balance between the times spent in two phases of the
algorithm. The experiments concerned nine languages up to
90000 words in size, solved with 32 processes in the run
time of a few minutes. The algorithm was implemented in
the C language and MPI interface.

To summarize, our previous work encompassed several
sequential and parallel algorithms to solve the decompo-
sition problem for finite languages. The sequential algo-
rithms were able to decompose the languages of size
up to 2000 words, while the parallel algorithms could
tackle the languages of size up to 90000 words with 32
processes.

In the current paper we provide the advanced adaptive
parallel algorithm, which can solve languages of size
between 160000 and more than 200000 words in the run
time of tens of minutes by using 128 processes. The
results of comprehensive computational experiments on the
variety of 4000 benchmark languages are also given. To the
best of our knowledge, the parallel algorithm and in-depth
experimental study of the problem under consideration have
not been reported in the literature thus far.
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3 Preliminaries

Below, we recall selected concepts from the theory of formal
languages and automata. For more details the reader may
refer to the textbooks [21, 22].

An alphabet Σ is a nonempty finite set of symbols. A
word w is a sequence of zero or more symbols taken from
Σ . The length of a word is denoted by |w|, with the special
case of zero-length word being the empty word λ, for which
|λ| = 0. A prefix of a word is any number of leading
symbols of that word, and a suffix is any number of trailing
symbols. By convention, Σ∗ denotes the set of all words
over an alphabet Σ , and Σ+ denotes the set Σ∗ − {λ}.

A finite language L ⊂ Σ∗ is a finite set of words
w ∈ Σ∗. A finite language L is trivial if it consists of the
empty word λ, that is L = {λ}, and it is nontrivial if it
contains at least one nonempty word. Let u, v, w ∈ Σ∗.
A concatenation of words u and v produces a word w =
uv, where w is created by making a copy of word u and
following it by a copy of word v. Let U, V, W ⊆ Σ∗. Then
the concatenation (or product) of sets U and V produces a
set W = UV such that W = {w : w = uv, u ∈ U, v ∈ V }.

A deterministic finite automaton (DFA) is defined by a
quintuple A = (Q, Σ , δ, s, QF ), where Q denotes a finite
set of automaton states, Σ is an alphabet, δ : Q × Σ → Q

is a transition function, s ∈ Q is the initial (start) state, and
QF ⊆ Q is a set of final (accepting) states. An automaton
is deterministic iff for all states q ∈ Q and symbols a ∈ Σ ,
|δ(q, a)| ≤ 1; in other words, each state q has at most one
out-transition marked by a. A deterministic automaton is
finite iff its state set Q is finite. Let us extend the transition
function δ to words over Σ . Formally we define δ(q, λ) =
q, and for all words w and input symbols a, δ(q, wa) =
δ(δ(q, w), a). So δ(q, w) = q ′ means that the word w takes
A from the state q to the state q ′.

A directed graph G = (V , E), called a transition
diagram, is associated with a finite automaton A, where
V = Q, E = {p a→ q | q = δ(p, a)}, and p

a→ q

denotes an arc labeled a in the transition diagram. Given
a word w = a1a2 . . . am, ai ∈ Σ , i ∈ [1, m], a w path
is a sequence of transitions labeled with symbols of w in
the transition diagram. A w path is denoted by a sequence
of states q1, q2, . . . , qm+1 where qj ∈ Q, j ∈ [1, m + 1],
lying on the path. A deterministic automaton A accepts a
word w if there is the w path q1q2 . . . qm+1 leading from
the initial state to a final state of A, so q1 = s and
qm+1 ∈ F .

Define the left (resp. right) language of a state q ∈ Q as←−
q = {w : δ(s, w) = q} (resp. −→

q = {w : δ(q, w) ∈ QF }).
Put simply, the left (resp. right) language of q consists of
words w for which there is a w path from the initial state s

to q (resp. from q to a final state).

A finite automaton A = (Q, Σ, δ, s, QF ) is said to
accept a language L when for each word w ∈ L there is a w

path beginning in the state s, and ending in a state q ∈ QF ,
or more formally L = {w|δ(s, w) ∈ F }. Deterministic
and nondeterministic1 finite automata accept the same set of
languages, namely the set of regular languages. Minimum-
state acyclic DFAs accept the set of finite languages. Given
all states p, q ∈ Q, p �= q, a DFA is minimum-state iff−→
p �= −→

q ,2 and it is acyclic iff δ(q, w) �= q for every word
w ∈ Σ+ and state q ∈ Q.

In what follows, we only consider minimum-state acyclic
deterministic automata, so each such automaton will be
referred to as automaton herein.

Let L be a nontrivial finite language. A decomposition
of L of index k where k ≥ 2 is the family of languages
Li for i ∈ [1, k] called factors that once concatenated
give language L, so we have L = L1L2 . . . Lk . The
decomposition is nontrivial if languages Li are nontrivial,
that is Li �= {λ} for i ∈ [1, k]. Otherwise, the decomposition
is trivial. In every nontrivial decomposition of a finite
language L, the number of factors, k, is at most equal to
the length of the longest word in L. Clearly, any language
L has the trivial decompositions L{λ} and {λ}L. In what
follows, by a decomposition we always mean a nontrivial
decomposition. A language L is called prime if L has no
decomposition of index 2, otherwise it is called composite
(or decomposable). The prime decomposition of L is a
decomposition L = L1L2 . . . Lk , k ≥ 2, where each
language Li for i ∈ [1, k] is prime. It has been proven that
every finite language is prime or has a prime decomposition,
which is generally not true for infinite languages [13–16].

In this paper, we investigate the problem of finding all
decompositions of index 2 of a nontrivial finite language
L. For a particular decomposition we are looking for
two nonempty finite languages L1 and L2 that once
concatenated give language L, so we have L = L1L2. Note
that a given language L can have many decompositions of
index 2.

Let us introduce the notion of a decomposition set
that is suitable for the study of decompositions of regular
languages.3 The notion is related to the left quotients of
regular languages. Let L be a regular language over an
alphabet Σ , and let A = (Q, Σ, δ, s, QF ) be the minimum-

1A state q ∈ Q of a nondeterministic automaton may have more than
one out-transition marked by a given symbol a ∈ Σ ; then |δ(q, a)| >

1.
2When two distinct states have the same right language, they could be
merged into one, making a smaller deterministic automaton. Two states
p, q can be merged giving a single state (

←−
p ∪ ←−

q ,
−→
p ) by combining

their in-transitions and using the out-transition from just one of them.
3Recall that finite languages we deal with are regular.
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state finite deterministic automaton accepting L. For any
nonempty set D ⊆ Q, we define the left and right languages
of D:4

LD
1 = ∪g∈D

←−
g and LD

2 = ∩g∈D
−→
g . (1)

Note that languages LD
1 and LD

2 are regular as they are
subsets of the regular language L.

Theorem 1 Having L and A defined as above, assume that
L is composite, so L = L1L2 for regular languages L1 and
L2. Define a set D ⊆ Q, called a decomposition set, by

D = {z ∈ Q | δ(s, w) = z, for some w ∈ L1}.
Then L1 ⊆ LD

1 , L2 ⊆ LD
2 and

L = LD
1 LD

2 (2)

is the decomposition of L into two regular languages.

Proof See [1, 16].

The decomposition L = LD
1 LD

2 is referred to as
decomposition induced by the set D. Theorem 1 implies that
every decomposition of the regular language L is included
in the decomposition of L induced by the decomposition set.
The decomposition L = L1L2 is said to be included in the
decomposition L = L′

1L
′
2 if Li ⊆ L′

i for i = 1, 2.

Corollary 1 To solve the problem of finding all decompo-
sitions of index 2 of a nontrivial finite language L, we need
to check (2) for all subsets D of Q. If none of these subsets
induces a decomposition, we conclude that L is prime.

It follows from the corollary that solving this problem is
equivalent to solving the primality problem.

Problem 1 (Primality) Let L be a finite language over a
finite alphabet Σ given as a DFA. Answer the question
whether L is prime.

It was shown that the primality problem for finite
languages is NP-hard [1], and for regular languages it is
PSPACE-complete [23, 24].

Example 1 As an illustration of Theorem 1, consider a finite
composite language L = {λ, a, b, aa, ab, aaa, aab, aaaa}

4The languages can be also written as LD
1 = {w | δ(s, w) ∈ D}, and

LD
2 = ⋂

g∈D{w | δ(g, w) ∈ QF }.

that has a single decomposition of index 2. The transition
diagram for the minimum-state deterministic automaton A

accepting language L is depicted in Fig. 1. Note that L =
L1L2, where L1 = {λ, a} and L2 = {λ, b, aa, ab, aaa}.

Then, according to Theorem 1 there is the decomposition
set D ⊆ Q where Q = {s, q, r, p, t} such that L = LD

1 LD
2 ,

L1 ⊆ LD
1 and L2 ⊆ LD

2 . Indeed, in our case D = {s, q}, the
left language LD

1 includes words w satisfying δ(s, w) ∈ D:
LD

1 = ←−
s ∪←−

q = {λ}∪ {a} = {λ, a}, and the right language
LD

2 includes words w satisfying δ(g, w) ∈ QF where
g ∈ D: LD

2 = −→
s ∩−→

q = {λ, a, b, aa, ab, aaa, aab, aaaa}∩
{λ, a, b, aa, ab, aaa} = {λ, a, b, aa, ab, aaa}. Moreover,
L1 = LD

1 and L2 ⊂ LD
2 . Observe that words in LD

1 and
LD

2 are prefixes and suffixes of L, and each word w ∈ L

is divided by at least one state g ∈ D such that w = xgy

where x and y are a prefix and suffix of w, respectively. For
example, considering words of L we have (s, q ∈ D): λsλ,
λsa, aqλ, λsb, λsaa, aqa, λsab, aqb, λsaaa, aqaa, aqab,
aqaaa.

Example 2 A finite language may have more than one
decomposition of index 2. The following language L = {ab,
aba, abb, bb, bba, bbb} (Fig. 2) has two decompositions,
the first defined by D = {p}, L1 = LD

1 = ←−
p = {a, b},

L2 = LD
2 = −→

p = {b, ba, bb}, and the second by D′ = {q},
L1

′ = L1
D′ = ←−

q = {ab, bb}, L2
′ = L2

D′ = −→
q =

{λ, a, b}.

Below we give a few examples of application of finite
language decomposition.

Example 3 As already mentioned in Section 2, K. V. Hung
considered factorization of supercodes [7]. He designed
the algorithm to decompose a supercode L into prime
components. The algorithm is based on the so-called
bridge states, which are found in a non-returning and non-
exiting acyclic deterministic finite automaton (N-ADFA)
A accepting the code-words w ∈ L. An automaton A
is non-returning if its start state has no in-transitions, and
it is non-exiting if its final states have no out-transitions.
A state b in automaton A is called a bridge state if b is
neither the start state nor a final state, and each w path in A
passes through b. Assume that A is the minimal N-ADFA
accepting a supercode L that has k, k ≥ 1, bridge states.
Then L can be decomposed into k + 1 prime supercodes
L1, L2, . . . , Lk+1 such that L = L1L1 . . . Lk+1. The bridge
states for a given automaton A can be identified in O(|Q|+
|δ|) time where |Q| and |δ| are the number of states and
transitions of A , respectively. As an example the supercode
L = {ab2ac, ab5c, ac3bac, ac3b4c} is considered.5 The

5A word ai is a sequence of a’s of length i.
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Fig. 1 Transition diagram for
automaton accepting language L

from Example 1

minimal N-ADFA A accepting L has four bridge states, so
L may be decomposed uniquely into five prime supercodes:
L = {a}{b, c3}{b}{a, b3}{c} [7].

Instead of employing the notion of bridge states, one
can readily find this factorization by calling recursively our
parallel decomposition algorithm (described in Section 5).
The sequence of calls gives the following: L = L1L2 where
L1 = {ab, ac3}, L2 = {bac, b4c}; then L1 = L1

1L
1
2 where

L1
1 = {a}, L1

2 = {b, c3}; L2 = L2
1L

2
2 where L2

1 = {b}, L2
2 =

{ac, b3c}; and finally L2
2 = L3

1L
3
2 where L3

1 = {a, b3},
L3

2 = {c}. In general, to find the prime decomposition of a
supercode consisting of n prime components, at most n calls
of the decomposition algorithm are needed.

Example 4 Deterministic finite automata (DFAs) are of
importance in many fields of science. They also have
many practical applications—in the design of compilers
and text processors, in natural language processing,
speech recognition, among others. One of the concerns
regarding DFAs is the memory efficient storage of their
representation. A DFA A can be represented by the list
of words of a language L (assuming it is finite) accepted
by A . Such representation can be memory intensive if L

is large, therefore a better option is to decompose L and
store its factors L1 and L2. Table 1 shows the reduction of
size of languages (expressed in word count) from Section 6,
obtained by using the decomposition based option. As can
be seen, the reduction rate exceeds 99% for all languages in
the table.

Example 5 A company signed the contract to supply the
pipes with lengths 30, 31, 32, 36, 37, and 38 m. For technical
reasons, the company can manufacture pipes of any length,
but no greater than 30 m. A longer pipe can be produced by

welding shorter pipes. The main part of the pipe production
cost is to prepare a mold of the given length, so the
number of molds needed to complete the contract should
be minimized. The question is, which lengths should have
the molds that must be prepared to implement the supply
contract mentioned above. To answer this question, let us
define the set of words L = {a30, a31, a32, a36, a37, a38}.

Then, among all decompositions L = L1L2, we look for
the one for which the size of set L1 ∪ L2 is minimal, and
each word in L1 and L2 is no longer than 30. The solution
is the decomposition L = {a15, a16, a17}{a15, a21}, so we
need only four molds of lengths 15, 16, 17, and 21 m.

Example 6 Given the sets of words S+ and S−, called exam-
ples and counterexamples, find a context-free grammar G =
(V , Σ, P, S) such that S+ ⊆ L (G), and S− ∩ L (G) = ∅
where L (G) denotes the language generated by G. The
basic decomposition algorithm (described in Section 4) can
be readily modified to find an incomplete decomposition
that allows a finite language L to be written as L = L1L2 ∪
R where concatenation L1L2 is the greatest possible, and R

is the set of other words belonging to L.
Let S+ = {ab, ba, aabb, abab, baba, bbaa, baab, abba}

be the set of examples, and let S− = {a, b}d − S+ with
d ≤ 4 be the set of counterexamples. Based on these sets
the context-free grammar can be found in two stages. In the
first stage, using the modified basic decomposition algo-
rithm, we create a series of incomplete decompositions.
In particular, we get S+ = LL ∪ R where L = {ab, ba},
and R = {ab, ba, aabb, bbaa}; then R = AB ∪ F where
A = {a}, B = {b, abb}, and F = {ba, bbaa}; and further
F = HI where H = {b}, and I = {a, baa}, and so on.
This procedure is iterated for the subsequent sets of words
until a grammar in the Chomsky normal form is obtained (a

Fig. 2 Transition diagram of
automaton A accepting language
L from Example 2

T. Jastrza̧b et al.3034



Table 1 Storage reduction R obtained by replacing language L by its
factors, L = L1L2

|L| |L1| |L2| |L1| + |L2| R [%]

60486 149 418 567 99.1

69858 292 244 536 99.2

150864 489 313 802 99.5

159239 331 495 826 99.5

169477 507 339 846 99.5

172221 393 447 840 99.5

194390 592 332 924 99.5

214994 447 486 933 99.6

217183 482 462 944 99.6

220482 468 475 943 99.6

230512 665 348 1013 99.6

context-free grammar G not generating the empty word λ is
said to be in Chomsky normal form if all of its production
rules are of the form A → BC or A → a where A, B, and
C are nonterminal symbols and a is a terminal symbol). The
sets S+, L, R, A, B, F, H, I , etc., are represented by gram-
mar variables, and each set concatenation (decomposition)
corresponds to the grammar production rule. The second
stage simplifies the grammar through examining whether
each pair of grammar variables can be merged. It can be
done if after such merger the grammar does not accept
any word from the set S−. Furthermore, the unit produc-
tion rules are eliminated. For the sets S+ and S− specified
above, we get the following context-free grammar:

S → S S | AB | B A A → a

B → b | AC | B S C → B B

which defines the infinite language of words having the
same number of symbols a and b. For more details, see
[25, p. 71], [26, 27].

4 Basic parallel decomposition algorithm

In this section we outline the basic parallel algorithm (or
shortly, basic algorithm) for finite language decomposition
[19]. It has been a starting point for devising the adaptive
parallel decomposition algorithm (or, adaptive algorithm).
The pseudocode of the basic algorithm expressed as a
recursive procedure DECOMPOSE(W, D) is shown in Fig. 3.

Let A = (Q, Σ, δ, s, QF ) be the minimum-state
acyclic DFA6 accepting an input language L = {wi},
i ∈ [1, n]. The basic algorithm explores the set of states
Q to find the decomposition sets D where D ⊆ Q.
According to Theorem 1 each decomposition set D induces

6There are several algorithms of time complexity O(
∑

wi∈L |wi |) to
construct such automaton for a given language L; see for example [28].

a decomposition L = LD
1 LD

2 . The algorithm finds all
decompositions of the input language L by employing an
exhaustive search of Q with pruning.

Let W be a set of pairs (wi, Qwi
) where the word

wi = a1a2 . . . am, wi ∈ L, aj ∈ Σ , j ∈ [1, m], and
let Qwi

= {q1, q2, . . . , qm+1}, be a set of states qk ∈ Q,
k ∈ [1, m + 1] lying on the wi path where q1 = s, and
qm+1 ∈ QF . Let STATES(W) be the function that returns
a set of states appearing in all sets Qwi

for wi ∈ L,
and let MINSTATES(W) be the function that returns a pair
(wi, Qwi

) ∈ W in which set Qwi
of states dividing wi , is

minimal.
Assume that D is a decomposition set to be found (see

Phase1 in Fig. 3). Initially this set is empty, and it is
gradually built up as the basic algorithm processes the words
wi ∈ L. The words to be processed are selected in order
of increasing sizes of their sets Qwi

by using the function
MINSTATES(W). Each state q ∈ Q that divides a word
wi ∈ L into two parts is inserted in set D, which is
then checked to see if it is a decomposition set. The basic
algorithm is recursive, so each subset of states in Q that can
be a candidate for a decomposition set is examined.

Definition 1 Suppose a word w ∈ L is divided by a state
q ∈ Q into two parts, so w = xy where x ∈ ←−

q and y ∈ −→
q ,

and suppose the state q is inserted in set D. Then each state
r ∈ STATES(W ) for which y /∈ −→

r is considered redundant
(or significant otherwise).

In words, suppose w = xy. If state q ∈ Q is inserted in
D then each state r ∈ Q that does not have y in its suffix set
becomes redundant. Note that a given state r may be either
redundant or significant depending on the states that are in
set D in the current recursive execution of the algorithm.

Lemma 1 Let D where D ⊆ Q be the decomposition set
for a finite languageL. Then each state q ∈ D is significant.

Proof If D is a decomposition set for L, then each w ∈ L

is divided into two parts by at least one state q ∈ D, that is
w = xy, x ∈ ←−

q and y ∈ −→
q . Once state q is inserted in D,

suffix y appears in the right language LD
2 . The definition

LD
2 = ∩r∈D

−→
r involves the intersection of sets −→

q , thus
suffix y must be in a set −→

r for each r ∈ D. If a state r

does not satisfy this condition, it is redundant and can be
omitted during further recursive search. To conclude, only
significant states can occur in a decomposition set [17].

Let SUFFIX(w, q) be the function that returns suffix y

of a word w = xy that is divided by a state q. Suppose
the set D has already been built based on words w1, w2,
. . . , wi−1, and we want to extend D for a word wi with
Qwi

= {q1, q2, q3, . . . , qm+1} for some m. With this aim,
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Fig. 3 Basic algorithm

we first select state q1 that divides wi (wi = x1
i y1

i ), add q1

to D, and remove redundant states (based on Definition 1)
from all sets Qwk

∈ W for k = i + 1, i + 2, . . . , n, using the
procedure REMOVERED(W, y) with y = y1

i (Fig. 4). Once
the recursive call DECOMPOSE(W ∪ {q1}) completes, we
carry out the above operations for states q2, q3, . . . , qm+1,
and different divisions wi = x2

i y2
i , wi = x3

i y3
i , etc. Due

to the removal of redundant states, the number of states in
structure W decreases in subsequent recursive executions
of procedure DECOMPOSE(W, D). To sum up, Phase1 of
the basic algorithm builds up the decomposition set D by
processing words w1, w2, . . . , and so on, while downscaling
the set Q = STATES(W)−D of candidates to extend the set
D.

The basic algorithm shown in Fig. 3 is run by a set
of sequential processes Pr , r ∈ [0, π − 1], where r is
the rank (index) of a process, and π is the number of
processes available. Each process Pr executes the code of
procedure DECOMPOSE(W, D), and all processes in the set
are running in parallel.

A process is executed by a conventional processor, or
core of a multi-core processor (from now on, we will use
term processor for both of these computing devices).

The execution of the basic algorithm in each process
consists of two phases. In Phase1 subsequent sets D are
established, which are then processed in Phase2. The code
executed in Phase1 is the same in all processes, while
in Phase2 the computations performed by processes differ
from each other.

As mentioned above, Phase1 builds gradually decompo-
sition sets D while reducing sets Q containing states, which
are candidates to extend sets D. Notice that Phase1 does
not determine the complete set D but only a partial set D
where D ⊂ D.7 When Q becomes small enough due to
the removal of redundant states, that is |Q| ≤ T for some
threshold T , the algorithm moves to Phase2 in which each
process takes a collection of prospective sets D ∪Cj to ver-
ify as to whether they constitute decomposition sets for L,
where each Cj is a subset of Q for j ∈ [0, 2|Q| − 1].

More specifically, process P0 takes sets D ∪ Cj with
Cj = C0, Cπ , C2π , ..., process P1 sets D ∪ Cj with
Cj = C1, Cπ+1, C2π+1, . . . , etc. The advantage of such
an arrangement is that each collection of sets D ∪ Cj can
be verified separately from other collections. As a result, it
allows the work related to verifying sets D∪Cj to be readily
spread across processes Pr .

In order to boost performance by making the most
of parallel computing capabilities, the basic algorithm
controls the depth of recursion in Phase1. For this purpose,
a threshold T , already mentioned, is imposed on the size of
set Q containing candidate states to extend set D built to
date. The threshold T is a parameter of the algorithm (the
parameter is adjusted at runtime in the adaptive algorithm,
see Section 5). When the size of Q becomes reasonably
small as a result of the downscaling process, then instead of

7The partial set D is denoted by D in the code of the basic algorithm
in Fig. 3.
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Fig. 4 Procedure REMOVERED

looking for the complete decomposition set on a deep level
of recursion in Phase1, the processes move to Phase2 to
verify sets D ∪ Cj . It is worth noting that while running the
basic algorithm the processes do not communicate with one
another. They only synchronize their action at the beginning
of computation to enter the input language, and at the end of
computation when the results obtained by the processes are
collected.

Let us consider the average time complexity of basic
algorithm, Tb(π, n). Let d(n, T ) be the average number of
sets D found in Phase1. Let t1(n, T ) be the average time
to find a single set D in Phase1, and let t2(n, ψT ) be the
average time to verify as to whether a set D ∪ Cj , j = 0, 1,
. . . , 2ψT − 1, is a final decomposition set for L in Phase2.
The value of ψT determines the average size of sets Q
processed in Phase2 where ψ ∈ (0.0, 1.0]. Considering the
above, the average time complexity of basic algorithm is as
follows:8

Tb(π, n) = d(n, T ) · (t1(n, T )+ (t2(n, ψT ) · 2ψT )/π). (3)

There are two components in this equation: the first,
d(n, T ) · t1(n, T ), determines the total average run time of
Phase1, and the second, d(n, T ) · (t2(n, ψT ) · 2ψT )/π , the
total average run time of Phase2. For a fixed value of n,
the run time of Phase2 grows exponentially as a function
of ψT . This growth is due to the exponential number of
prospective decomposition sets D ∪ Cj to be verified in
Phase2.

5Adaptive parallel decomposition algorithm

With the aim of improving the basic algorithm, we propose
several refinements. The first three refinements introduce into
the adaptive algorithm the effective methods for pruning the
search space (Fig. 5). The fourth refinement adjusts threshold
T while the adaptive algorithm is executed, based on the
runtime acquired data related to the performance of Phase1.

Let us discuss the refinements in more detail. The first
refinement concentrates on removing the redundant states
q ∈ Q of the automaton accepting the input language L. The
redundant states have already been eliminated in the basic

8Equation (3) defines the average time complexity of the algorithm
solving composite languages. In case of prime languages, a partial
decomposition set may not exist, and then d(n, T ) = 0.

algorithm (see procedure REMOVERED(W, y)). We extend
the scope of such an elimination in the adaptive algorithm.

Definition 2 A state q ∈ Qw, Qw ⊆ Q, is considered
redundant (or significant otherwise) if for a word w = xy,
w ∈ L, x ∈ ←−

q , and y ∈ −→
q , the following holds:

U(y) · |−→q | < |L| (4)

where U(y) denotes the number of occurrences of suffix y

in all words w ∈ L.

To justify (4), suppose q is the only state in the decomposi-
tion set D defined in Theorem 1. Then, given word w = xy

that is divided by state q, the values of U(y) and |−→q | deter-
mine the sizes of sets LD

1 = ∪q∈D
←−
q and LD

2 = ∩q∈D
−→
q ,

respectively. In fact, the value of U(y) is the number of pre-
fixes x belonging to set LD

1 , since U(y) is counted over all
words w = xy, w ∈ L, with prefix x followed by suffix y.
In view of the above, the product U(y) · |−→q | on the left side
of (4) determines the upper limit of the number of words that
could be created by concatenating sets LD

1 and LD
2 . Now, if

this product is less than |L|, then L = LD
1 LD

2 is not satis-
fied, which means that D cannot be the decomposition set
for L. So the state q ∈ D is redundant.

Elimination of redundant states q ∈ Qw satisfying
(4) is implemented in the procedure REMOVERED2(W, y)

(Fig. 6). When one or more states are found redundant and
removed from sets Qw ∈ W , which is indicated by variable
f , it can cause a decrease in the number of occurrences
of suffix y, given by U(y), and also in the size of right
language −→

q . As a result, more redundant states can be
removed from sets Qw.

Using (4), we can also remove redundant states before
the adaptive algorithm begins. Once automaton A has been
constructed, the procedure BUILDW(A, W) (Fig. 7) builds
structure W , which is the input parameter to procedure
DECOMPOSE2(W, D) (Fig. 5). While creating sets Qw only
significant states of Q are considered. Hence, the number of
states in W that are then processed by the adaptive algorithm
is smaller than the number of states in A.

Example 7 To clarify how structure W = {(wi, Qwi
)} is

built, consider the language L = {a, aaa, aab, b} (Fig. 8).
The suffixes of words wi ∈ L along with their frequency

counts in L are (λ, 4), (a, 2), (aaa, 1), (aa, 1), (aab, 1),
(ab, 1), (b, 2), and the sizes of right languages are |−→q0| = 4,
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Fig. 5 Adaptive algorithm

Fig. 6 Procedure
REMOVERED2 – improved
version of REMOVERED

Fig. 7 Procedure BUILDW
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Fig. 8 Transition diagram of automaton accepting language L = {a,
aaa, aab, b}

|−→q1| = 3, |−→q2| = 2 (we omit state q3, because it leads
to the trivial decomposition L = Lλ). To establish a pair
(wi, Qwi

), we need to check (4) for word wi . Let us check
this equation for wi = aab, which is divided by states q0,
q1, and q2. The suffixes and checks are aab, ab, b, and
U(aab) · |−→q0| = 4 ≥ |L|, U(ab) · |−→q1| = 3 < |L|, and
U(b)·|−→q2| = 4 ≥ |L|. Thus, states q0 and q2 are significant,
while state q1 is redundant. Continuing the similar analysis
for the remaining words wi ∈ L, we end up with W =
{(a, {q0, q1}), (aaa, {q0, q2}), (aab, {q0, q2}), (b, {q0})}.
Note, that the decomposition set for L is D = {q0, q2} with
LD

1 = {λ, aa} and LD
2 = {a, b}.

The second refinement implements a method for
reducing the search space by skipping the verification, if
possible, of prospective decomposition sets D = D ∪ Cj .
The verification is carried out in the basic algorithm by
checking the condition L = LD

1 LD
2 (Fig. 3). To make this

verification more efficient, we determine the upper bound
size of the language generated by set D ∪ Cj (7). If the size
of the input language L exceeds this bound, then we can
omit the verification of D ∪ Cj .

Lemma 2 Let A = (Q, Σ, δ, s, QF ) be the automaton
accepting a finite language L, let D ⊆ Q be the final
decomposition set for L, and let sets LD

1 and LD
2 be defined

as in (1). Then the upper bound size of set LD
1 LD

2 is:

|LD
1 LD

2 | � |LD
1 | · min

q∈D
|−→q | (5)

Fig. 10 Transition diagram of DFA accepting language L from
Example 8

where |LD
1 | is the size of LD

1 , and minq∈D |−→q | is the
minimum size of the right language for states q ∈ D.

Proof The lemma follows directly from the definition of
set LD

2 = ⋂
q∈D

−→
q . The size of LD

2 defined as the

intersection of right languages −→
q cannot be greater than

minq∈D |−→q |.

Lemma 3 The necessary condition for a finite language L

to be decomposed by set D ⊆ Q is:

|L| � |LD
1 LD

2 |. (6)

Proof Suppose we have L = L1L2. By Theorem 1, Li ⊆
LD

i for i = 1, 2. Hence, L ⊆ LD
1 LD

2 , and then |L| �
|LD

1 LD
2 | � |LD

1 | · |LD
2 |.

Combining (5) and (6) we get the upper bound for |L|:
|L| � |LD

1 | · min
q∈D

|−→q | (7)

which makes it possible to verify as to whether D can be the
final decomposition set. The full verification first requires
computing the sets LD

1 and LD
2 , then concatenating them,

and finally checking whether L = LD
1 LD

2 . However, if (7)
does not hold, then these operations can be avoided. The
procedure VERIFY(D) (Fig. 9) performs a double-check of
the constraints related to the upper bound size of set D. Both
checks may result in the rejection of set D. We implement
them consecutively because the cost of the first check is
lower than the cost of the second one.

Fig. 9 Procedure VERIFY
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Fig. 11 Procedure
COMPLOWBOUND

Example 8 To illustrate the procedure VERIFY let us
examine language L = {a, aa, aaa, aaab, aaaab, aab, ab,
abab, abb, b, ba, baab, bab, bb} (Fig. 10). Assume that
the adaptive algorithm moves from Phase1 to Phase2 with
D = {q0} and Q = {q1, q2} (such assignments are made
when the considered word a is divided by state q0). Suppose
the procedure VERIFY is called with D = {q0, q2}. Then

|LD
1 | = 3 (LD

1 = {λ, aa, b}), and minq∈D |−→q | = 5 (
−→
q0 = L

and
−→
q2 = {λ, a, aab, ab, b}). So the result of the first

check: |L| � |LD
1 | · minq∈D |−→q | is positive as 14 ≤ 3 · 5.

The size |LD
2 | = 4 as −→

q0 ∩ −→
q2 = {a, aab, ab, b}. Thus

the condition |L| � |LD
1 | · |LD

2 | in the second check is not
met because it holds 14 > 3 · 4. Therefore D = {q0, q2}
is not a decomposition set for L. Due to double-checking
of conditions in the procedure under consideration, we do
not need to concatenate sets LD

1 and LD
2 , nor compare the

concatenation result with L. The decomposition set for the
language in question is D = {q1, q2, q3}, and L1 = {a, b,
aa, ab, ba, aaa}, L2 = {λ, b, ab}.

The approach taken in the third refinement is similar
to that of the second refinement. We have established
the lower bound size of subsets Cj (Lemma 4), which
complete the partial decomposition set D . A subset Cj —
and consequently a set D ∪ Cj as well—can be disregarded
when the size of Cj is below the lower bound.

Lemma 4 Let D be a partial decomposition set for L. Let
Cj ⊆ Q be an arbitrary subset of candidate states to extend
D . Let D ∪ Cj be a prospective decomposition set for L.
Then

|L| � |LD
1 ∪ L

Cj

1 | · min
q∈D

|−→q |. (8)

Proof By Lemma 3, |L| ≤ |LD∪Cj

1 L
D∪Cj

2 |, and by

Lemma 2, |LD∪Cj

1 L
D∪Cj

2 | ≤ |LD
1 ∪ L

Cj

1 | · minq∈D |−→q |, as
D ∪ Cj is a prospective decomposition set for L.

From (8) we can derive the lower bound of L
Cj

1 size for
an arbitrary subset Cj :

|LCj

1 | � |L|/ min
q∈D

|−→q | − |LD
1 |. (9)

Based on (9) the procedure COMPLOWBOUND (Fig. 11)
helps to reduce the number of subsets Cj ⊆ Q, j ∈
[0, 2|Q| − 1], which are verified in Phase2 of the adaptive
algorithm. Recall that set Q = STATES(W) − D includes
candidate states to extend the partial decomposition set D

obtained in Phase1. The set L
Cj

1 occurring on the left side

of (9) is the sum of left languages: L
Cj

1 = ⋃
q∈Cj

←−
q

where Cj ⊆ Q (see (1)). The procedure COMPLOWBOUND

computes the minimum cardinality of Cj such that the sum
of sizes of left languages generated by states q ∈ Cj ,
determined by the function PREFIXSUM, is greater than or
equal to the value appearing on the right-hand side of (9).
Using the required minimum cardinality of a subset Cj ,
it is either processed or discarded from further analysis in
Phase2.

Example 9 To illustrate procedure COMPLOWBOUND

consider language L = {a, aa, aaa, aaab, aaaab, aab,
ab, abab, abb, b, ba, baab, bab, bb, bbab, bbb} (Fig. 12).
Suppose we enter Phase2 with D = {q3} and Q =
{q1, q2, q6} (such assignments result from dividing word

aaa by state q3). Then we have minq3∈D |−→q3| = 3 (based

on words λ, ab, b) and |LD
1 | = |←−q3| = 4 (based on words

aaa, ab, ba, bb), and thus |LCj

1 | = |L|/ minq∈D −|LD
1 | =

16/3 − 4 = 1.33.9 Sizes of left languages for states q1,
q2, and q6 are 1, and the prefix sums equal then S =
{1, 2, 3}, which means that the value of c returned from
COMPLOWBOUND is 2. Consequently, we do not need to
analyze single state subsets of Q. The final decomposition
set for L = L1L2 is {q1, q2, q3, q6} where L1 = {a, aa,
aaa, ab, b, ba, bb} and L2 = {λ, ab, b}.

The fourth refinement makes the algorithm adaptive.
We have found out that depending on the input language,
the time to execute Phase1 of basic algorithm could be
much longer than the time to execute Phase2. This is
a disadvantage as in Phase1 the processes run the same
code while in Phase2 they work in parallel verifying sets

9Note that on input to COMPLOWBOUND D = D .
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Fig. 12 Transition diagram of DFA accepting language L from
Example 9

D ∪ Cj . Therefore, when the run time of Phase2 is shorter
compared to Phase1, the capacity to take advantage of
parallel computation is not fully utilized.

The purpose of Phase1 is to reduce the set Q =
STATES(W) − D so that its size becomes smaller than the
threshold T . Apparently, the cause of a long run time of
Phase1 is that the size of Q remains constant through a
series of recursive runs of Phase1. So instead of repeating
Phase1, it is better to start Phase2 by increasing the value
of threshold T . Setting the new value of T (procedure
ADJUSTT, Fig. 13) is triggered when a specified number of
recursive runs of Phase1 is completed with no change of Q.
More precisely, when the number of runs wherein old s = s

reaches the fixed value of e, the value of T is increased.
However, the rate of growth of T should be controlled so
that it does not become too large. Once the value of T is
doubled (or tripled) in relation to T0, the number of recursive
runs e to be performed before T is increased again, is also
doubled (or quadrupled).

Note that the greater value of threshold T causes the size
of set Q to grow. Consequently, the number of subsets Cj

where Cj ⊆ Q, and thus the number of sets D∪Cj to verify,
increases (the number of subsets Cj is exponential and equal
to 2|Q|, as the subsets are members of the power set of Q).
This means that the degree of parallelism grows, which is
desirable since we may use more processes to conduct the
search.

The average time complexity of adaptive algorithm given
by

Ta(π, n) = d(n, T̂ ) · (t1(n, T̂ ) + (t2(n, ε, ψT̂ ) · ε · 2ψT̂ )/π) (10)

this is similar to that of basic algorithm (3). There are,
however, two differences. First, the coefficient ε takes into
account the fraction of sets D ∪ Cj that skip verification
in Phase2. Second, the threshold T that was kept constant
in the basic algorithm can now be increased adaptively,
so it holds that T̂ ≥ T . The coefficient ε where ε ∈
(0.0, 1.0] can considerably reduce the total average run time
d(n, T̂ ) · (t2(n, ε, ψT̂ ) · ε · 2ψT̂ )/π of Phase2 (see Table 8).
Similarly, the growing average value of T̂ resulting from
adaptation reduces the amount of computation in Phase1
while increasing the amount of computation in Phase2,
which is distributed among π processes.

To conclude, the adaptive algorithm introduces the three
refinements aimed at pruning the search space. In contrast
to the basic algorithm, which only eliminates particular
redundant states, the adaptive algorithm also targets whole
sets of states that may generate resultant decompositions.
The fourth refinement involving the adjustment of threshold
T ensures not only a better balance between the run times of
Phase1 and Phase2, but it also provides a better exploitation
of parallelism in the decomposition problem. However, all
the refinements do not reduce the order of the adaptive
algorithm complexity, which remains exponential.

6 Computational experiments

This section reports on the comprehensive experiments
conducted to evaluate the performance of basic and adaptive
algorithms. The run times to solve the decomposition
problem were measured for almost 1450 languages over
an alphabet of size |Σ | = 3–5, and for more than 2700
languages over binary and unary alphabets, and over an
alphabet of size |Σ | = 10 (in what follows we refer to these

Fig. 13 Threshold adjustment
procedure
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Table 2 Characteristics of
languages (a) and automata
built by basic (b) and adaptive
(c) algorithm (N – number of
languages in the set, |Σ | –
alphabet size; Min, Max –
minimum and maximum
values, 1st-q, 3rd-q – first and
third quartiles, Med (or 2nd
quartile) – median; |L| –
number of words in the
language, |Q| and |Q′| –
numbers of states searched by
algorithms)

(a)

Set N |Σ | Min |L| 1st-q |L| Med |L| 3rd-q |L| Max |L|

E1 375 3–4 6012 7552 9664 12339 14984

E2 348 5 60217 66231 74068 81790 89812

P1 375 3–4 6012 7552 9664 12339 14984

P2 348 5 60217 66231 74068 81790 89812

(b)

Set N |Σ | Min |Q| 1st-q |Q| Med |Q| 3rd-q |Q| Max |Q|
E1 375 3–4 38 76 89 101 172

E2 348 5 81 127 148 168 276

P1 375 3–4 64 97 109 121 192

P2 348 5 102 152 172 192 295

(c)

Set N |Σ | Min |Q′| 1st-q |Q′| Med |Q′| 3rd-q |Q′| Max |Q′|
E1 375 3–4 35 69 80 92 155

E2 348 5 66 113 132 153 253

P1 375 3–4 48 79 90 101 168

P2 348 5 80 126 144 163 260

alphabets as Σ3−5, Σ2, Σ1, and Σ10). Furthermore, the
impact of the adaptive setting on the results obtained, and
the speed-ups of adaptive algorithm were studied.

The basic and adaptive algorithms10 were implemented
in C language using the MPI library functions in the Intel MPI
5.1.1.109 version. Each process ran a sequential stream of
instructions defined by DECOMPOSE (or DECOMPOSE2)
procedure. The processes running the algorithms were inde-
pendent of one another, and synchronized their operation
only at the beginning and end of computation. The imple-
mentation structure based on the master-worker paradigm
is shown in Fig. 14. The aim of the master process was to
send the input language L to all the workers, and to collect
the decompositions of L found (in the actual implementa-
tion, the master process M and worker process W0 were
combined into a single process).

The experiments were carried out on the Tryton
supercomputer with a computation speed of 1.48 Pflop/s,
running the Linux kernel 2.6.32-754.3.5.el6.x86 64 along
with the Slurm utility (Simple Linux utility for resource
management). The supercomputer is composed of 1607
compute nodes, each equipped with two 12-core Intel
Haswell processors (Xeon E5 v3) operated at 2.3 GHz, with
128 GB of RAM memory. The processors are connected
by the 56 Gb/s Infiniband fat tree network. The complete
system with a cluster architecture, located in the Computer
Centre in Gdańsk, Poland (http://task.gda.pl/centre-en),

10The source code of the algorithms and selected benchmark
languages used in the experiments are available on the GitHub website
and service (https://github.com/tjastrzab/ai).

houses 3214 processors (38568 cores), and 48 Nvidia Tesla
accelerators.

6.1 Benchmark languages

For the purpose of the experiments, we generated four sets
of languages. The sets E1 and E2 contained composite
languages, while the sets P1 and P2 prime languages. The
sets E1 and P1 included between 6000 and 15000 words,
and the sets E2 and P2 between 60000 and 90000 words
(Table 2a). The composite languages were created using
random grammars [17]. Let Σ = {a1, a2, . . . , al} be the
set of terminal symbols, l ≥ 1, let V = {V1, V2, . . . , Vr}
be the set of nonterminal symbols, r > l, and let Vr be the
initial symbol. The grammars for composite languages were
obtained as follows:

1. For each terminal symbol ai ∈ Σ , create a production
Vi → ai .

2. For each nonterminal symbol Vj where j = l + 1, l +
2, . . . , r − 1:

Fig. 14 Master-worker structure of implementation of algorithms (M
– master process, Wi , i = 0, 1, . . . , π − 1 – worker processes)
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– Draw at random a terminal symbol a ∈ Σ . Create
a production Vj → a.

– Draw at random l pairs (a, Vi), where a ∈ Σ and
Vi ∈ V , i < j . Create a production Vj → aVi .

3. Create a production Vr → Vr−2Vr−1.

When creating the composite languages, we rejected the
grammars that generated a number of words outside the
ranges 6000–15000 (for set E1) and 60000–90000 (for set
E2). The values of l and r were selected from the ranges 3–
5 and 11–21, respectively, so the maximum length of a word
for composite languages was 2(r − l) − 1 = 35. The sets of
prime languages P1 and P2 were created based on sets E1

and E2. Let L be a composite language in set E1 (or E2).
The language L can be transformed into a prime language
L ′ belonging to set P1 (or P2) using the following steps: (1)
find the longest word ω ∈ L ; (2) generate a random word
ωr over Σ such that |ωr | = |ω|; (3) if ωr /∈ L then copy
language L into L ′, and replace ω ∈ L ′ with ωr . (Note
that these steps do not guarantee that L ′ will always be
prime. However, the probability to get a composite language
is small. If L ′ is composite, one can repeat the steps.)

Consider the size of the input data of the algorithms.
There are three independent variables defining this size: the
number n of words in L, the size |Σ | of the alphabet, and
the maximum length h of a word in L. In Section 6.2 we
limit the alphabet size to |Σ | = 5, and the maximum length
of a word to h = 35. Consequently, the values of |Σ | and h

become the parameters of the algorithms. So we can assume
that the only variable defining the size of the input data of
the decomposition problem is the number n of words in L.

6.2 Experimental results

While performing the experiments we ran the basic and
adaptive algorithms by employing 16 processes11 for
languages in sets E1, E2, P1, and P2. We set the maximum
run time allowed to solve a given language L to six hours.
By solving the language we mean that the algorithm either
determines all decompositions of L, or finds out that L

is prime. Since the basic algorithm failed to solve some
languages within the six-hour limit, we defined the success
rate as

R = Ns

N
· 100% (11)

where Ns was the number of languages solved by both
algorithms, and N was the number of languages in the set.
As shown in Table 3, the adaptive algorithm outperformed

11In order to run 16 processes (tasks) on the Tryton cluster, the Slurm
utility allocated a single compute node equipped with two 12-core
processors, and assigned eight tasks to each processor with one task
per core.

Table 3 Success rates of algorithms

Basic algorithm Adaptive algorithm

Set N Ns R N Ns R

E1 375 323 86% 375 375 100%

E2 348 151 43% 348 348 100%

P1 375 366 98% 375 375 100%

P2 348 328 94% 348 348 100%

Total 1446 1168 1446 1446

the basic algorithm with respect to success rates for all sets
under consideration.

A comparison of run times measured by the
MPI Wtime() function is shown in Table 4 and Fig. 15.
Out of a total of 1446 languages, the comparison relates
only to 1168 languages that were solved by both algorithms
within the six-hour limit. The box plots of Fig. 15 depict the
times through their quartiles. The bottom and top of each
box are the first and third quartiles of measurements, and
the band inside the box is the second quartile (the median).
The lines extending vertically from the boxes, the so-called
whiskers, indicate minimum and maximum measurements.

The median run times in Table 4 show that both
algorithms solve prime languages faster than composite
languages. As the aim is to find all decompositions of
a language L, the algorithms have to explore the whole
solution space for L. The size of this space is similar
for both types of languages, because the cardinalities of
languages in sets E1 and P1, and E2 and P2 are the same.
The experiments prove that the number of sets D ∪ Cj

verified by both algorithms for prime languages is smaller
compared to composite languages (Table 5). Consequently,
the run times for prime languages are shorter, because fewer
decomposition sets need to be verified.

Table 4 Run times (in seconds) of algorithms (Min, Max – minimum
and maximum times, 1st-q, 3rd-q – first and third quartile, Med –
median)

Basic algorithm

Set Ns Min 1st-q Med 3rd-q Max

E1 323 0.4 18.1 98.6 171.4 20948.4

E2 151 19.2 1028.1 1296.0 1571.2 15403.4

P1 366 0.3 0.6 1.4 24.6 19619.8

P2 328 2.0 3.7 5.9 62.3 4132.9

Adaptive algorithm

E1 323 0.2 0.5 0.7 1.2 53.8

E2 151 4.1 10.7 15.3 22.7 1311.7

P1 366 0.2 0.3 0.5 0.8 2.7

P2 328 2.7 7.1 11.2 15.9 56.5
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Fig. 15 Comparison of run times (in seconds) of algorithms for 1168
languages

Comparing the median run times (Table 4), we can see
that the adaptive algorithm outperforms the basic algorithm
for sets E1, E2, and P1. However, for set P2 the adaptive
algorithm shows a slightly worse performance. One of the
refinements considers only significant states of automaton
A accepting the language L. Due to this refinement, fewer
decomposition sets D ∪ Cj are verified. The redundant
states are removed in the course of building structure W ,
which is created by procedure BUILDW. Its execution takes
a certain amount of time, but one can expect that this
amount will be amortized by fewer sets D ∪ Cj that need
to be verified. However, such amortization did not occur for

Table 5 Numbers of decomposition sets D ∪ Cj verified by the
algorithms (IQR – interquartile range, difference between third and
first quartile)

Basic alg. Adaptive alg.

Set Ns Med IQR Med IQR

E1 323 ∼ 106 ∼ 540000 11 45

E2 151 ∼ 106 ∼ 16000 7 54

P1 366 ∼ 8000 ∼ 650000 0 0

P2 328 8 ∼ 16000 0 0

Table 6 Data samples d1 = (n1, ȳ1, s1) and d2 = (n2, ȳ2, s2) to test
the equality of mean run times for the algorithms; the threshold was
initially set to T = 20 (n1, n2 – numbers of measurements; ȳ1, ȳ2 –
means, in seconds; s1, s2 – standard deviations)

Basic algorithm Adaptive algorithm

Set n1 ȳ1 s1 n2 ȳ2 s2 Z

E1 295 89.4 74.5 345 1.0 0.6 20.4

E2 115 1230.7 364.8 317 23.6 12.4 35.5

P1 296 5.3 10.1 341 0.5 0.3 8.2

P2 280 21.5 32.3 326 11.6 5.6 5.1

set P2, because no sets D ∪ Cj for those languages were
discovered by the adaptive algorithm (Table 5).

Considering the above, we make the claim that the
adaptive algorithm is faster than the basic algorithm while
solving composite and prime languages. We test this claim
statistically on the four pairs of data samples by using
the one-sided two-sample test for comparing two means
(Table 6). The data samples were created by eliminating the
outliers. For example, by means of basic algorithm, the set
of 323 measurements for set E1 was acquired (column Ns

in Table 3). From this set, 28 measurements were eliminated
as outliers (n1 = 295 in Table 6). A measurement was
considered as an outlier if it fell outside the range [m, M]
where m = 1st-q − 1.5 · (3rd-q − 1st-q) and M = 3rd-q +
1.5 · (3rd-q − 1st-q) (Table 4).

For samples d1, d2, and sets Ei, Pi , i = 1, 2, we set up
the null and alternative hypotheses

H0 : μ1 = μ2 and H1 : μ1 > μ2

where μ1 and μ2, respectively, are the mean values of
run time to solve the population of composite and prime
languages by the algorithms. Using the test statistic:

Z = ȳ1 − ȳ2
√

s2
1

n1
+ s2

2
n2

where ni , ȳi , and si are components of sample di , the
hypothesis H0 is rejected at the α = 0.01 significance level
if Z > zα where zα = 2.326. The sizes of our data samples
are in the range of 115–345 (Table 6). In statistics, a sample
size of ni ≥ 30 is considered large enough to assume
that its distribution is normal. Thus, the critical value of
zα is determined based on the standard normal distribution

Table 7 Values of threshold T̂ set by the adaptive algorithm

Set Ns Min Med Max

E1 375 20 21 32

E2 348 20 33 58

P1 375 20 20 20

P2 348 20 20 20
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Table 8 Variability and average
values of terms and coefficients
appearing in time complexity
formulas given in (3) and (10);
times t1 and t2 are in seconds

Basic algorithm (T = 20, π = 16)

E1 E2

Term Range Avg Range Avg

d(n, T ) (2.0, 2.3) 2.1 (2.0, 2.2) 2.1

t1(n, T ) (0.2, 3.1) 1.4 (26.1, 60.5) 45.6

t2(n, ψT ) (0.001, 0.003) 0.002 (0.01, 0.02) 0.02

ψ (0.9, 0.9) 0.9 (0.9, 1.0) 1.0

P1 P2

d(n, T ) (1.1, 1.4) 1.3 (1.0, 1.2) 1.1

t1(n, T ) (0.2, 0.8) 0.3 (7.5, 25.6) 14.4

t2(n, ψT ) (0.0003, 0.001) 0.0005 (0.0005, 0.002) 0.001

ψ (0.7, 0.9) 0.8 (0.6, 0.8) 0.8

Adaptive algorithm (T0 = 20, T̂ ≥ T0, π = 16)

E1 E2

d(n, T̂ ) (1.0, 1.1) 1.0 (1.0, 1.0) 1.0

t1(n, T̂ ) (0.1, 0.7) 0.3 (7.5, 12.8) 9.7

t2(n, ε, ψT̂ ) (0.003, 0.01) 0.004 (0.02, 0.03) 0.02

ψ (1.0, 1.0) 1.0 (1.0, 1.0) 1.0

ε (6 · 10−7, 8 · 10−5) 7 · 10−6 (2 · 10−12, 10−8) 4 · 10−12

T̂ (21.5, 26.7) 24.7 (36.3, 50.7) 48.0

P1 P2

Since no prospective decomposition sets were found,

the values of t1, t2, ψ , ε, and T̂ could not be measured

Term Range Avg Range Avg

d − 0.0 − 0.0

N(0, 1). Clearly, all values of Z are above the critical value
of 2.326 (Table 6), so we reject the null hypothesis H0 in
favor of the alternative hypothesis H1. This means that there
is sufficient evidence at the α = 0.01 level of significance
to claim that the adaptive algorithm solves composite and
prime languages faster than the basic algorithm.12

Several methods for reducing the search space are
proposed in Section 5. The idea behind those methods
is to omit the full verification of a set D ∪ Cj as to
whether it is a decomposition set. When the set is large,
its verification can be computationally expensive. However,
Lemmas 2-4 allow us to discard a vast majority of the sets
without verification. As seen in Table 5, the numbers of sets
verified by the adaptive algorithm for composite languages
are reduced by several orders of magnitude compared with
the corresponding numbers for the basic algorithm. This
indicates that the proposed methods of pruning the search
space are effective.

12This claim is also true if we take into account the outliers. After
including the outliers into the data samples d1 and d2, all values of Z

are still above the critical value. In general, the outlying data points
may highly distort the mean and variance of measurements, which,
as a result, may give a misleading impression regarding the shape of
algorithm run time distributions.

Another way to prune the search space is by removal
of redundant states of automaton A accepting the input
language L. Due to such removal the state sets of A for the
composite languages decrease by approximately 10%, and
for the prime languages by approximately 16%–17% (see
Med |Q| and Med |Q′| in Table 2b–c). The basic algorithm
discovered some prospective decomposition sets for prime
languages while the adaptive algorithm did not find any set
of that type (Table 5). We believe that the reason for this
was smaller automata processed by the adaptive algorithm
compared with the basic algorithm.

The adaptive algorithm changes its behavior by setting
the value of threshold T (denoted then by T̂ ) at runtime.
The adaptation was most beneficial for languages of set
E2, which turned out to be most demanding in terms of
solving the decomposition problem. For these languages the
values of T̂ varied in a wide range of 20–58 (Table 7). The
capability of adaptation was exploited to a lesser extent for
languages in set E1 with the values of T̂ varying within a
range of 20–32, and for the prime languages the adaptive
adjustment of T̂ did not occur.

The time complexity formulas Tb(π, n) and Ta(π, n) for
the algorithms include several terms and coefficients. To
investigate the variability of these quantities, we took the
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Table 9 Run times (in
seconds) of adaptive algorithm
for languages over alphabets
Σ10, Σ2, and Σ1 where R –
range of language size, N –
number of languages in the set

Languages over alphabet Σ10

Set R N Min 1st-q Med 3rd-q Max

E d
1 6–15k 375 0.2 1.4 3.8 5.2 9.6

E d
2 60–90k 348 2.7 6.6 8.8 11.3 36.8

Pd
1 6–15k 375 0.1 0.2 0.3 0.3 1.3

Pd
2 60–90k 348 1.7 2.9 3.6 5.4 32.1

Binary languages (alphabet Σ2)

E b 6–15k 190 0.5 11.3 75.6 743.8 19574.7

Pb
1 6–15k 375 0.2 0.8 1.0 1.6 6.1

Pb
2 60–90k 348 26.6 50.1 63.2 82.8 253.0

Unary languages (alphabet Σ1)

E u 100–1000 135 55.9 1993.7 5232.4 11807.5 21289.4

Pu 100–1000 220 19.3 811.2 4982.8 11291.9 21311.9

measurements reported in Table 8. The Avg entry contains
the average value of a quantity, q, calculated over a language
set. The Range entry describes the variability of q through
a pair (qmin, qmax) where qmin and qmax are the minimum
and maximum average values of q calculated over average
values in a distinguished interval. The range [6000, 15000]
of language size for sets E1 and P1 was divided into nine
equal intervals, and the range [60000, 90000] for E2 and P2

into ten intervals.
The Range values indicate that the times t1 and t2 are

slowly increasing functions of language size n (Table 8).
Recall that t1 is the average time to find a partial
decomposition set D in Phase1, and t2 the average time to
verify a set D ∪ Cj in Phase2. Small values of coefficient

Fig. 16 Run times (in seconds) of adaptive algorithm for languages
over alphabet Σ10, and for unary languages

ε indicate that pruning of the search space is effective. The
values of d(n, T ) and t1(n, T ) allow us to estimate the
average run time of Phase1 of basic algorithm for set E2.
This time is 2.1 · 45.6 ≈ 95.8 s. For the adaptive algorithm
the run time of Phase1 is equal to 9.7 s. Since, we have the
average run times of complete algorithms (ȳ1 and ȳ2 for E2

in Table 6), we can calculate execution times of Phase2 for
both algorithms. We get 1230.7 − 95.8 = 1134.9 s for the
basic algorithm, and 23.6 − 9.7 = 13.9 s for the adaptive
algorithm. Clearly, the run time balance between Phase1
and Phase2 is much better for the adaptive algorithm (9.7 vs.
13.9 s) compared to the basic algorithm (95.8 vs. 1134.9 s).
The better balance was achieved due to effective pruning of
the search space, and to the increase in threshold T done by
the adaptive algorithm at runtime.

We also conducted the experiments on languages over a
comparatively large alphabet Σ10, and over small alphabets,
in particular on the binary and unary languages. The setting
was the same as before. The adaptive algorithm was run
by 16 processes, and the time limit for solving a language
was six hours. The languages over alphabets Σ2 and Σ10

Fig. 17 Run times (in seconds) of adaptive algorithm for binary
languages
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Table 10 Sizes of state sets Q′
of automata searched by
adaptive algorithm

Set N |Σ | Min |Q′| 1st-q |Q′| Med |Q′| 3rd-q |Q′| Max |Q′|

E d
1 375 10 22 42 50 59 90

E d
2 348 10 44 84 98 113 166

Pd
1 375 10 29 47 55 64 94

Pd
2 348 10 53 92 106 121 172

E b 190 2 33 85 104 126 202

Pb
1 375 2 39 108 126 150 248

Pb
2 348 2 149 225 261 317 553

E u 135 1 1914 1993 1997 1999 2000

Pu 220 1 1905 1987 1994 1997 1999

Total 2714

were created in a similar fashion as described in Section 6.1.
To produce unary languages, the random number of ones
forming the words of a language were generated.

The experiments have shown that the languages over
an alphabet Σ10 were easy to solve. Their decomposition
times, in the order of seconds (column Med in Table 9, and
Fig. 16a–d), compared favorably with the languages over
an alphabet Σ3−5 (column Med in Table 4, and Fig. 15).
The experiments revealed that the binary languages were
harder to solve, while the unary languages were the worst-
case input data to solve the problem. The median run

times for the binary languages were in the order of tens of
seconds, and for the unary languages somewhat longer than
80 minutes (column Med in Table 9, and Figs. 17 and 16e–
f). A major difficulty in solving these languages were the
large sizes of automata that had to be searched. The ranges
of median size of automata accepting the binary and unary
languages were, respectively, [104, 261] and [1994, 1997]
(column Med|Q′| in Table 10). As a result, the run times
for those larger automata were longer, compared to the
languages over an alphabet Σ10 for which the sizes of
automata were in the range of [50, 106].

Fig. 18 Speed-ups, S, for binary
languages (a)–(b), and for
languages over alphabet Σ3−5:
sets E1 (c)–(d), E2 (e)–(f), and
large sets (g)–(i), (|L| – number
of words in the language, p –
number of processes)
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6.2.1 Scalability study

The results of the adaptive algorithm speed-up evaluation
are presented in Fig. 18.13 The speed-ups achieved for the
binary languages (set E b) and the sets of languages over an
alphabet Σ3−5 (set E1) were quite good. For the set E2 the
result was satisfactory.

As can be seen, the speed-ups obtained are not linear.
The reason for this is that the parallel processes in the
algorithm execute the same code in Phase1. So, the
overhead of excess computation performed by the processes
occurs, which decreases the speed-up. We have significantly
reduced that overhead by shortening the run time of Phase1
(compare Avg times t1 for the basic and adaptive algorithms
in Table 8). It was done by means of the algorithmic
refinements, in particular by removing redundant states
in procedures REMOVERED2 and BUILDW, and by the
adaptive adjustment of threshold T .

The large languages in size ranging from 160000 to
more than 200000 words scaled very well (Fig. 18g–i). The
computational work for these languages was higher, and
so the impact of the overhead on the speed-up obtained
was smaller. The times to find decompositions of large
languages by using 128 processes varied in a range of 7–37
minutes.

As mentioned before, we solve the problem of finding
all decompositions of a finite language L in the form of
L = L1L2. The language L does not have to satisfy any
specific conditions. To the best of our knowledge, parallel
algorithms to solve this problem have not been presented
in the literature so far. Therefore we could not compare
the outcome of our experiments with the results of other
algorithms.

7 Conclusions and future work

In this paper the problem of finite language decomposition
is investigated. The problem under consideration, assuming
that a language is given as a DFA, is NP-hard. The
main contribution of the paper is the adaptive parallel
algorithm based on an exhaustive search used for finding all
decompositions of a given finite language. The algorithm
implements several methods for pruning the search space.
Furthermore, the algorithm is adaptive; it modifies its
behavior at the time it is run by adjusting one of the
parameters based on the runtime acquired data related to its
performance. As a consequence, a substantial reduction in

13For the experiments involving 128 processes (tasks), the Slurm
utility allocated six compute nodes, and two nodes received 22 tasks,
and the other 21 tasks each. Within a node the tasks were assigned as
evenly as possible between the two 12-core Haswell processors.

the amount of computation necessary to solve the problem
has been achieved.

Comprehensive computational experiments carried out
on almost 1450 languages over an alphabet Σ3−5 proved
that the methods for pruning the search space proposed in
Lemmas 2–4 were very effective. The methods allowed the
adaptive algorithm to reduce the search space by several
orders of magnitude compared with the basic algorithm. As
a result, the median run time to solve the languages in set
E2 by the adaptive algorithm was equal to approximately
15 s whereas by the basic algorithm it was 1296 s. The
adaptive feature of the algorithm proved most beneficial
for languages from set E2 for which the value of threshold
T varied in a range of 20–58. The higher value of T

is advantageous, because it gives rise to an increase in
computational parallelism, which enables better use of
available processes.

We also tested more than 2700 languages over a large
alphabet Σ10 and over small alphabets, specifically the
binary and unary languages. The results indicated that the
languages over an alphabet Σ10 were easier to solve than
those over an alphabet Σ3−5. Furthermore, it took longer
to decompose the binary languages in comparison to the
languages over the alphabets Σ10 and Σ3−5, while the unary
languages turned out to be the worst-case input data to solve
the decomposition problem. Based on these findings, we
conclude that finite languages over small alphabets are more
difficult to decompose than those over large alphabets.

The scalability study revealed that the binary languages,
and the languages generated over an alphabet |Σ | = 3–5,
containing from 6000 to more than 200000 words, scaled
well, especially those with larger sizes.

In terms of future work, the two issues can be
investigated. The first is adaptive setting of the algorithm,
which we believe has the potential to be improved.
Presently, the algorithm establishes the value of threshold
T based solely on the number of recursive runs of Phase1.
We suppose that the number of processes executing the
algorithm should also be considered while determining the
value of T . Another issue to investigate is the further
scalability of the adaptive algorithm. At present, the
algorithm by using 16 processes can solve the language
instances of up to 90000 words in the median run time of
tens of seconds, and by using 128 processes the languages
of sizes between 160000 and more than 200000 words, in
the run time of tens of minutes. The question is to what
extent the language size could be enlarged by increasing the
number of processes while maintaining the short run time of
the algorithm, and possibly high processor utilization.
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