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Abstract
The rise of high-quality cloud services has made service recommendation a crucial research question. Quality of Service
(QoS) is widely adopted to characterize the performance of services invoked by users. For this purpose, the QoS prediction
of services constitutes a decisive tool to allow end-users to optimally choose high-quality cloud services aligned with
their needs. The fact is that users only consume a few of the broad range of existing services. Thereby, perform a high-
accurate service recommendation becomes a challenging task. To tackle the aforementioned challenges, we propose a data
sparsity resilient service recommendation approach that aims to predict relevant services in a sustainable manner for end-
users. Indeed, our method performs both a QoS prediction of the current time interval using a flexible matrix factorization
technique and a QoS prediction of the future time interval using a time series forecasting method based on an AutoRegressive
Integrated Moving Average (ARIMA) model. The service recommendation in our approach is based on a couple of criteria
ensuring in a lasting way, the appropriateness of the services returned to the active user. The experiments are conducted on
a real-world dataset and demonstrate the effectiveness of our method compared to the competing recommendation methods.

Keywords Matrix factorization · QoS prediction · AutoRegressive integrated moving average model · Service
recommendation · Time series forecasting

1 Introduction

The rapid development of broadband access technologies
has led to an escalation of rich and varied cloud services and
applications. The plethora of existing services complicates
decision-making for internet users. Recommender systems
address this issue by proposing algorithms to predict
users’ sensitivity for services aligned with their needs.
According to the literature review, recommender systems
are popularly implemented through Collaborative Filtering
(CF) [22].
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Collaborative-filtering-based recommender systems are
mainly organized into two types, namely memory-based
CFs and model-based CFs. Among memory-based CFs,
we identify user-based CFs [11, 12] and item-based CFs
[14] whose respective approaches are based on the study
of interactions between users and items to assess inter-
user similarities and inter-item similarities. Memory-based
CFs are based on the assumption that, within a group
of users with similar or identical behaviors, the previous
experiences of certain users with regard to consumed
services, can help to predict those of others relative to the
same services. Memory-based CFs are easy to implement
and present an acceptable quality of prediction; however,
they are based on resource-intensive algorithms due to
the fact that computational calculations are applied to
the full data matrix [24]. In other words, memory-based
CFs display scalability limitations, an inappropriateness for
large datasets, poor performances in case of data sparseness
and during the cold start problem for new users and
new items [2]. Model-based CFs overcome the limitations
displayed by memory-based CFs. Indeed, model-based CFs
present the advantage of their effectiveness in the case of
large datasets and data sparsity. Among model-based CFs,
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we identify those based on matrix factorization techniques,
those based on clustering and others based on mathematical
models such as Bayesian estimate, deep learning, random
walker, etc [30].

The static nature of the data is an assumption on which
classic recommender systems are modeled. However, a
realistic recommendation approach should take into account
the variability of users’ behavior over time [4]. To address
this issue, time-aware recommenders systems have been
designed with the objective of integrating the dynamicity of
users’ needs and behaviors over time [21]. Existing time-
aware recommendation solutions only predict the current
moment and display poor performances in the case of
data sparsity. In reality, faced with a multitude of services,
users invoke and co-invoke only a small group of services,
thus causing increased porosity of the data matrix with a
large quantity of missing data. The aforementioned inade-
quacies of the state-of-the-art recommendation methods
constitute our motivation to propose a data sparsity resilient
and high-accurate recommendation approach that aims to
predict the current needs but also the near future needs of
end-users. We propose a service recommendation approach
based on a latent feature unsupervised learning coupled
with a time series forecasting method. In this paper, our
contribution is highlighted through the following aspects:

– By applying a flexible matrix factorization technique,
our method addresses the data sparsity problem in the
presence of a large amount of missing data.

– Our approach is based on time series forecasting
method for the prediction of the future time slot tc+1

using the prediction of the current time slot tc. The
prediction of the future time slot anticipates the near
future needs of the active user.

– The variability of users’ behavior and the impact of
data recentness are integrated into our approach by the
definition of a decay function allowing to sketch the
evolution of user interest profiles over time.

– The services recommended to the active user meet
a couple of criteria (qc0 , qc0+1); thus ensuring the
exclusive selection of services whose prediction of the
current time tc, and that of the future time slot tc+1 are
among the highest.

– Extensive experiments are conducted on real-world
datasets and highlight the effectiveness of our pro-
posal compared to state-of-the-art recommendation
methods.

The remainder of this paper is structured as follows:
Section 2 presents state-of-the-art recommendation meth-
ods, Section 3 presents our recommendation approach.
Section 4 describes the experiments and the results obtained.

Section 5 concludes this paper and presents our perspec-
tives.

2 Related work

The growth of the number of cloud services and the
difficulty for internet users to choose services matching
their needs have motivated scientific research in the field
of recommender systems. In this section, we survey the
state-of-the-art methods related to recommender systems.

2.1 Memory-based collaborative filtering

Memory-based CFs present the advantage of their explain-
ability and easy-implementation. They are based on the
assumption that within a group of users with identical or
similar behaviors, the previous experiences of certain users
can be used to predict those of others with regard to the
services never invoked. Within memory-based CFs, a dis-
tinction is made between user-based CFs, item-based CFs
and user-item-based CFs [30]. A cloud service recommen-
dation based on user-based CF is proposed by the authors
[10, 25]. The authors assess inter-user similarities using the
Spearman correlation coefficient [6]. While the authors [32]
propose a Cloud service recommendation method based on
the calculation of inter-user similarities using the Kendall
rank correlation coefficient [20]. The researchers [14] offer
an efficient privacy-preserving recommendation method
based on an item-based CF. The authors assess the inter-item
similarities using a modified Pearson measure to preserve
user privacy. In [31], the authors offer a web service recom-
mendation approach based on hybrid user-item-based CFs.
Using Pearson correlation measure [12], the authors assess
inter-user similarities and inter-service similarities to rec-
oncile the advantages of user-based CFs and item-based
CFs.

The aforementioned recommendation methods are
greedy in terms of computational resources, non-scalable
and low-accurate. Indeed, similarity computations on large
datasets are hard-achievable. Furthermore, these memory-
based recommendation approaches display poor perfor-
mances in the case of data sparseness; meaning in the
presence of a large amount of missing data. To overcome
these shortcomings, model-based recommender systems are
widely adopted for their effectiveness.

2.2 Model-based collaborative filtering

Model-based CFs overcome the limitations displayed by
memory-based CFs. Indeed, model-based CFs are highly
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accurate, scalable and suitable for large datasets [2]. In
the literature review, we distinguish the model-based CF
implemented based on the matrix factorization technique,
those whose implementation is based on clustering-based
algorithms and others based on deep learning, the bayesian
network, etc. Yang et al [30]. The authors [16] offer
a recommendation approach based on both user-based
CFs and item-based CFs. The method proposed by the
authors is based on the Bayesian estimate of the probability
with which the active user rates an item. The authors’
method reconciles the efficiency of model-based CFs
and the easy-understandability of memory-based CFs.
Researchers [33] offer a cold start recommendation method.
To alleviate the cold start problem for new elements in
the recommender system, the authors adopt the matrix
factorization technique by reducing the original high-rank
matrix to low-rank matrices. In [8], the authors predict
users’ tastes by applying matrix factorization based on a
Bayesian probabilistic model. The authors’ proposal in [13]
performs an improved matrix factorization technique for
predicting metabolite-disease associations. In [15, 23], the
service recommendation is based on a matrix factorization
supported by deep learning algorithms. The model-based
CFs are scalable, robust and efficient even in case of data
sparsity, case of a cold start problem for newly added users
and items; they are suitable for large datasets. However,
the above-mentioned methods do not take into account the
dynamic nature of users’ needs over time.

2.3 Time-aware recommender systems

Classic recommender systems assume static users’ behavior
over time. In reality, user preferences display variability
over time which is ignored by existing recommenders
systems. To address this issue, time-aware recommender
systems [17, 18, 29] have been developed to integrate
the dynamic nature of the service performances. In [28],
the authors offer a time-aware service recommendation
approach based on the tensor factorization technique. The
authors perform a personalized QoS prediction based on a
latent feature learning. However, the method proposed by
the authors does not integrate the variability of users’ needs
over time. In other words, the data recentness is ignored
by the authors’ approach; all data whatever their seniority,
contribute identically in the prediction process. Following
[5], they propose a cloud service recommendation approach
based on user-based CF and an ARIMA model. Their
method focused on the inter-user similarity evaluation
displays limitations faced with the cold start problem and
data sparsity. The authors in [7] propose a forecasting
ARIMA-based model to predict the Coronavirus evolution

throughout the world. Of course, in the literature, some
time-aware recommendation approaches to consider the
users’ variability over time, use a decay function. Most
often, the decay function is coupled to memory-based
approaches [5, 19, 26]. The matrix factorization technique
is popularly adopted in several time-aware recommender
systems thanks to its efficiency. However, a properly
chosen decay function could help to accurately model the
dynamic character of users’ tastes over time. In addition,
the baseline matrix factorization technique used in the
state-of-the-art time-aware recommender systems can be
also improved to accurately model intricate user-items
interactions.

The novelty of our proposal relies on a fitting proposed
decay function embedded into a flexible matrix factorization
process. The proposed decay function properly sketches
the variability of users’ needs over time and therefore,
contributes to the refinement of users’ tastes prediction.
Moreover, the used matrix factorization technique is
doubly biased to accurately model intricate user-service
interactions. In addition, ARIMA models are most often
used for memory-based recommender systems that are very
poor-scalable. To remedy this limitation, our proposal uses
the effectiveness of ARIMA model combined with the
robustness of model-based recommender systems such as
matrix factorization-based ones.

In this paper, we address the data sparsity problem and
the problem of service targeting. We are interested in the
proposal of a service recommendation model which is data
sparseness robust and which considers the dynamic nature
of needs and the behavior of users over time. The approach
presented in this article aims to predict the current moment
and also the future time slot in order to anticipate the near
future users’ needs. Our recommendation method is based
on two main prediction phases. The first step is to predict
the current time interval. At this phase, a flexible matrix
factorization technique is applied to a set of instantaneous
data matrices in order to perform the QoS prediction for the
current time slot. The second step is devoted to predicting
future time intervals using a time series forecasting method
based on an AutoRegressive Integrated Moving Average
(ARIMA) model.

The next section presents our TASERM approach.

3 Time series analysis based service
recommendation usingmatrix factorization
(TASERM)

Our approach aims to make a QoS prediction of the current
time interval and the future time slot based on past historical
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Fig. 1 TASERM Model

QoS experiences. The purpose is to return to the active user,
services which meet his current and near future needs. In
this way, the relevance of the results returned to the end-
user is extended over time in order to durably meet the
current and future expectations of the active user. Figure 1
represents our TASERM’s model workflow. It works as
follows:

– The active user invokes cloud services thus generating
QoS data which are stored in the database. These QoS
data are derived from service invocations spread over
regular time slots.

– During the data preprocessing, QoS data are normalized
and a logistic function is applied on collected data to
consider the dynamic character of users’ behaviors over
time.

– Thereafter, for each time slot, a user-service matrix
is constructed. Therefore, the |Ψ | instantaneous user-
service matrices are obtained knowing that |Ψ | rep-
resents the number of time slots in the observation
window.

– The QoS prediction is carried out by a flexible matrix
factorization technique in order to predict the current
time slot tc.

– The future time slot tc+1 is predicted using a time series
forecasting method based on an ARIMA model.

– Services whose predicted QoS data at the current
time tc and future time slot tc+1 are the highest, are
recommended to the active user.

The next subsection presents the mathematical formula-
tion of our problem.

3.1 Problem formulation

We consider a recommender system in which m users
belonging to the set U = {u1, u2, ..., ui, ..., um} invoke n

services belonging to the set S = {s1, s2, ..., sj , ..., sn} dur-
ing a time interval tk , where tk ∈ Ψ = {t1, t2, ..., tk, ..., tc}
(see Fig. 2). At each invocation of a service s by a user u

during a time slot tk , the observed QoS value is recorded
as qs

u(tk) in the instantaneous user-service matrix Mk =[
qs
u(tk)

]
m×n

where u ∈ U , s ∈ S, tk ∈ Ψ . Deductively,
on the observation window Ψ , the QoS data are recorded in
the set M = {M1, M2, ..., Mk, ..., Mc} of the instantaneous
user-service matrices respectively collected during instants
t1, t2, ..., tk, ..., tc.

A logistic function is applied on collected data to
consider the data recentness impact. Indeed, the more recent

Fig. 2 Our mathematical model
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the QoS values involved in the system, the more they
contribute significantly to the prediction process [26]. Our
decay function is defined by:

y(t) = exp(−γ |t − tc|), (1)

where t ∈ Ψ and γ is the decay rate. An increase of the
decay rate induces a faster decrease of the decay function.

We perform a rescaling to [1, 5] in order to have a sim-
ilarity to ratings that are widely used to feed recommender
systems. The values obtained by the prediction process
can be transformed to their original status by using the
reverse scaling formula. Without loss of generality, QoS val-
ues are rescaled to the interval [1, 5] using the following
function:

g(x) =
⎧
⎨

⎩

1 , if x ≺ Qmin

5 , if x � Qmax

1 + 4(x−Qmin)
Qmax−Qmin

, otherwise

, (2)

where Qmin and Qmax are respective minimal and maximal
bounds of QoS values.

The predicted score after the scaling step could not be
the same since the scaling process is directly applied to
QoS values that are thereafter embedded in the prediction
formula.

3.2 QoS prediction for current time slot

In this subsection, the goal is to predict the current time slot
tc. For this purpose, we are interested in the current user-
service matrix Mc = [

qs
u(tc)

]
m×n

. The matrix factorization
technique is a method widely adopted in recommender
systems [2]. It is based on unsupervised feature learning
and consists of reducing the computational load induced by
the prediction process. By applying matrix factorization, the
original high-dimensional matrix Mc (simply noted in M

thereafter) is approximated by two low-rank matrices (see
Fig.3).

To predict the QoS value of the current time interval,
we adopt a progresive reasoning based on the following
assumptions:

Assumption 1 QoS data are assumed to be static over time.

According to the matrix factorization, the QoS value qs
u

is approximated as follows:

qs
u ≈

∑

r∈F

wurvsr , (3)

where r � min(m, n) is the number of latent features
and r ∈ F = {1; 2; ...; f − 1; f }. The product wurvsr

approximatively assesses the interaction between a user u

and a service s.
From the matrix point of view, the approximation of

the user-service matrix M = [
qs
u

]
m×n

by the matrix M̂ is
defined as follows:

M̂ = WV = [
q̂s
u

]
m×n

, (4)

where W = [wur ]m×f and V = [vsr ]f ×n are the two low-
rank matrices from factorization process. The user latent
factor matrix W means the users’ interest for each latent
factor while V evaluates the interest aroused by each latent
factor.

We consider the bias bus to compensate for the QoS
values variations induced by the interactions between a user
u and a service s as follows [27]:

bus = q + bu + bs, (5)

where bu is the difference between the overall QoS values
average q and the average of QoS values from u’s service
invocations, bs is the difference between the overall QoS
values average q and the average of QoS values related to
s service invocations. The overall QoS values average q is
computed as follows:

q =
∑

u∈U

∑

s∈S

Iusq
s
u

∑

u∈U

∑

s∈S

Ius

, (6)

Fig. 3 Matrix factorization
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where Ius is the indicator function which is equal to 1 when
a user u invokes a service s and 0 otherwise.

By applying the bias bus , the approximation of the QoS
value qs

u is reformulated as follows:

qs
u � bus +

∑

r∈F

wurvsr = q̂s
u. (7)

From the matrix point of view, the approximative user-
service matrix M̂ is defined as follows:

M̂ = B + WV, (8)

where B = [bus]m×n is the bias matrix with u ∈ U , s ∈ S .
The matter now is to minimize the approximation error

E defined as follows: :

E = 1

2
||M − M̂||2F , (9)

where is ||.||2F the Frobenius norm [1].
The minimization of the approximation error of the

matrix M by the matrix M̂ is an optimization problem
whose objective function is defined as follows:

min
Wopt ,V opt

E = 1

2
||M − M̂||2F = 1

2

∑

u∈U

∑

s∈S

Ius(q
s
u − q̂s

u)
2
,

(10)

where q̂s
u = q + bu + bs + ∑

r∈F

wur .vsr .

To avoid overfitting problem, additional parameter ρ is
integrated in the objective function expression as follows:

min
Wopt ,V opt

1

2

∑

u∈U

∑

s∈S

Ius

⎛

⎝
(

qs
u − bus −

∑

r∈F

wurvsr

)2

+ ρ

(
∑

u∈U

||wu||2 +
∑

s∈S

||vs ||2 +
∑

u∈U

b2
u +

∑

s∈S

b2
s

))

⇔ min
Wopt ,V opt

1

2

∑

u∈U

∑

s∈S

Ius

⎛

⎝

(

qs
u − q − bu − bs −

∑

r∈F

wurvsr

)2

+ ρ

(
∑

u∈U

∑

r∈F

w2
ur +

∑

s∈S

∑

r∈F

v2
sr +

∑

u∈U

b2
u +

∑

s∈S

b2
s

))

(11)

Assumption 2 QoS data are assumed to be dynamic over
time.

We consider the variability of QoS values over time
and the data recentness impact; the objective function is
reformulated as follows:

min
Wopt ,V opt

1

2

∑

u∈U

∑

s∈S

y(t).Ius(t)
(
(qs

u(t) − q̂s
u(t)

)2

+ ρ

(
∑

u∈U

∑

r∈F

w2
ur (t) +

∑

s∈S

∑

r∈F

v2
sr (t) +

∑

u∈U

b2
u(t) +

∑

s∈S

b2
s (t))

)

⇔ min
Wopt ,V opt

1

2

∑

u∈U

∑

s∈S

exp(−γ |t − tc|).Ius(t)((q
s
u(t) − q̂s

u(t))
2

+ ρ

(
∑

u∈U

∑

r∈F

w2
ur (t) +

∑

s∈S

∑

r∈F

v2
sr (t) +

∑

u∈U

b2
u(t) +

∑

s∈S

b2
s (t))

)

,(12)

where q̂s
u(t) = q(t) + bu(t) + bs(t) + ∑

r∈F

wur(t).vsr (t).

The challenge now is to solve the aforementioned
optimization problem. The stochastic gradient descent is a
widely used as an optimization method [30]. We adopt this
method to solve our optimization problem. The stochastic
gradient descent is based on an iterative algorithm which
updates W and V matrices following the direction of the
gradient descent of the objective function. The update rules
for low-rank matrices W and V are defined by (13) and
(14).

∂D

∂W
=

∑

t∈Ψ

∑

u∈U

∑

s∈S

y(t).Ius(t)

(
(
q̂s
u(t) − qs

u(t)
) ∑

r∈F

vsr (t)

+ ρ
∑

u∈U

∑

r∈F

wur(t)

)

. (13)

∂D

∂V
=

∑

t∈Ψ

∑

u∈U

∑

s∈S

y(t).Ius(t)

(
(
q̂s
u(t) − qs

u(t)
) ∑

r∈F

wur(t)

+ ρ
∑

s∈S

∑

r∈F

vsr (t)

)

. (14)

The stochastic gradient descent process starts with the
initialization of the latent features matrices W and V with
random positive values. The optimal matrices Wopt and
V opt which minimize the objective function are obtained
during the convergence of iterations carried out based
on (13) and (14). Algorithm 1 describes the latent factors
unsupervised learning process.
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In the next subsection, we perform the QoS Prediction for
the future time slot.

3.3 QoS prediction for future time slot

AutoRegressive Integrated Moving Average (ARIMA)
models are widely adopted for time series forecasting [5].
Based on the Box-Jenkins approach [3], ARIMA models
predict future values of time series by extrapolating past
values. We perform the QoS prediction for the future time
slot based on the ARIMA-based prediction method in [9].
The predicted value qs

u(tc+1) of the future time interval is
computed as follows:

qs
u(tc+1) =

tc∑

t=tc−a+1

φt .q
s
u(t) +

tc∑

t=tc−b+1

θb.ε(t) + ε(tc), (15)

where a and b are the orders of ARMA model; qs
u(tc+1)

is the QoS value recorded from s service invocation
by u user at the future time slot tc+1. Parameters ε(t)

with t = tc−b+1, ..., tc correspond to past and current
errors independently and normally distributed following
the Gaussian probability density with a mean set to 0
and variance σ 2. Parameters φt and θb are respectively
the autoregressive coefficient and the moving average
coefficient. They correspond to parameters of Maximum
Likehood Estimate (MLE), which maximize the likehood
function η defined as follows:

∞(σ 2)
− |Ψ |

2 exp

(

− 1

2σ 2

∑

t∈Ψ

ε(t)
2
)

, (16)

where |Ψ | is the number of time slots in the observation
window Ψ . To integrate the impact of the data recentness,
we apply the decay function effect on the QoS prediction
of the future time slot. For this purpose, we customize the
estimate of QoS value qs

u(tc+1) as follows:

qs
u(tc+1) =

tc∑

t=tc−a+1

φt .y(t)qs
u(t) +

tc∑

t=tc−b+1

θb.ε(t) + ε(tc),

(17)

where y(t) is the decay function.
The ARIMA based prediction is presented through a user

u regarding a service s in order to deeply appreciate how
the forecasting process has been performed. Thereafter, the
forecasting can be extended to the whole set of users and the
set of existing services.
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The next subsection describes the service recommenda-
tion.

3.4 Service recommendation

The service recommendation is based on the coupling of the
QoS prediction of the current time interval and the future
time interval. Indeed, our method aims to guarantee the
appropriateness of the services offered at the current time
slot; but our approach also aims to ensure that the relevant
services for the active user at the current time, that these
services remain relevant in a lasting manner on the next time
interval after the current time. Therefore, predicting only
the current time may not be sufficient to meet the active
user’s expectations in a sustainable manner. To alleviate this
challenge, the prediction of the future time interval aims
to anticipate the future needs of the active user with the
purpose of extending over time the active user’s satisfaction.

The service selection lays on criteria (qc0 , qc0+1)

describing the set of recommended services Srec = {s ∈
S|qs

u(tc) ≥ qc0
∧ qs

u(tc+1) ≥ qc0+1}, where qc0 and qc0+1
are thresholds in order to solely select high-quality services.
qs
u(tc) and qs

u(tc+1) are respectively QoS values from s

service invocation by u user for the current time interval and
the future time interval. By including the aforementioned
steps of the prediction process, Algorithm 2 describes the
service recommendation process.

The next section presents the performed experiments and
results.

4 Experiments and results

In this section, the performances of our method are
evaluated comparatively to existing recommender systems.
Experiments are performed on a real-world dataset of
QoS values from web service invocations. Thereafter,
TASERM’s performances are studied comparatively to
other recommendation methods.

The next subsection describes the experiment process.

4.1 Experiments setup

We have performed experiments on a computer with a
processor of type Intel Core i7 (2.4 GHz) with 16 GB
RAM, running Windows 10 Operating System. The free-
available Anaconda Distribution version 1.8.5 has been used
to implement our algorithm. From Anaconda, we have used
Spyder version 3.2.6 as Python environment development.

The experiments have been performed using an open
real-world dataset of QoS values from web services
invocations. The researchers [28] have collected QoS values
using WSMonitor tool to record performances during
web services invocations by distributed computers from
PlanetLab (https://www.planet-lab.org/). In this dataset,
we use the response time and throughput performances
from invocations of 4500 web services by 142 users
during 64 regular time slots. Each time slot lasts 15
minutes. Thereafter, 64 instantaneous user-service matrices
of dimension 142 ∗ 4500 have been built.

The matrix from the 63rd time slot represents the current
time matrix; while the matrix from the 64th time slot
represents the future time matrix. The current time matrix
hosts QoS values to split into test data and training data.
We progressively dig the current time matrix to sketch the
data sparsity effect. For this purpose, the matrix density
is defined as the matrix porosity intensity; meaning the
training data percentage ranging from 5% to 60% in steps
of 5%. For instance, a matrix density set to 10% means that
10% of training data and 90% of test data are represented in
the current time matrix. Moreover, we blend 85% of training
data hosted in the current time matrix with QoS values
issued from other matrices.

The next subsection presents the evaluation metrics used
to study TASERM’s performances.

4.2 Evaluationmetrics

The TASERM’s performances are measured using key
indicators namely the Mean Absolute Error (MAE), the
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Fig. 4 Matrix Density Impact
on MAE Performances with
r = 20 (throughput)
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Root Square Mean Error (RSME) and the Normal-
ized Discounted Cumulative Gain (NDCG). MAE and
RSME indicators evaluate the prediction accuracy. The
lower values of MAE and RSME, the higher predic-
tion accuracy. MAE and RSME values are computed as
follows:

MAE =

∑

s∈Srec

|qs
u(t) − q̂s

u(t)|
N

, (18)

RMSE =

√√√√
∑

s∈Srec

(qs
u(t) − q̂s

u(t))
2

N
, (19)

where qs
u(t) is the original QoS value and q̂s

u(t) the
approximated value; N is the number of recommended
services.

NDCG is widely adopted to evaluate the service ranking
accuracy and is computed as follows:

Fig. 5 Matrix Density Impact
on RSME Performances with
r = 20 (throughput)
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Fig. 6 Matrix Density Impact
on NDCG Performances with
r = 20 (throughput)
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NDCGN = DCGN

IDCGN

, (20)

where IDCGN and DCGN respectively represent the
Ideal Discounted Cumulative Gain and the Discounted
Cumulative Gain of Top-N recommended services. DCGN

is computed as follows:

DCGN =
N∑

j=1

2relj − 1

log2(j + 1)
, (21)

where relj is the QoS value related to service ranked at j

position. A high NDCGN expresses a high-accurate service
ranking.

The next subsection analyzes the obtained results.

4.3 Results and analysis

For the experiments, the thresholds are set as qc0 = 2.5,
qc0+1 = 1.5. At the process starting, the decay rate γ is
set to 0.2; the number r of factors gradually increases from

5 to 50 in steps of 5. The matrix density is set to 5% and
progressively raises to 60%.

In the next point, TASERM’s performances are compared
to those of the other recommendation methods.

4.3.1 Performances analysis

Our method is compared to the following recommendation
methods:

– IPCC is a recommendation method that lays on item-
based CF using Pearson Correlation Coefficient (PCC)
for the inter-item similarities evaluation [30].

– UPCC is a recommendation method that lays on user-
based CF using PCC for the inter-user similarities
evaluation. Thereafter, the prediction is performed
based on the weighted average of QoS values [30].

– WSPred is a time-aware recommendation
method based on a personalized QoS prediction
[28].

Table 1 Throughput performance evaluation at r = 20

Matrix Density (%) 50 55 60

Algorithms MAE RMSE NDCG MAE RMSE NDCG MAE RMSE NDCG

TASERM 0.313 0.7391 0.9755 0.2698 0.6877 0.9785 0.2462 0.6606 0.9795

IPCC 1.1103 1.5723 0.8512 1.0894 1.5553 0.8551 1.0708 1.5417 0.8572

UPCC 0.8080 1.1649 0.8559 0.7943 1.15308 0.8594 0.78105 1.1424 0.8626

WSPred 0.6784 0.9994 0.9728 0.6479 0.9595 0.9773 0.6275 0.937 0.9793
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Fig. 7 Matrix Density Impact
on MAE Performances with
r = 20 (response time)
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Impact of the matrix density Following the throughput
performances, Figs. 4, 5 and 6 illustrate the negative impact
of data sparseness on the prediction precision. For each
method, the QoS prediction accuracy is improved with the
matrix density increase. Once more, the TASERM method
significantly outperfoms others methods even in the data
sparseness case. Indeed, following Table 1 and Fig. 4, MAE
performance of TASERM approach shows an improvement
of 52.517% compared to IPCC, 35.092% compared to
UPCC and 23.273 % compared to WSPred. Moreover, in

Fig. 5, RSME performance of TASERM approach displays
an improvement of 43.928 % compared to IPCC, an increase
of 24.307 % compared to UPCC and 13.111% compared
to WSPred. In addition, in Fig. 6, NDCG performance of
TASERM method is 9.533% better than IPCC, 8.879%
better than UPCC, but decreases of 3.234 % compared to
WSPred.

Following the response time performances, Figs. 7, 8
and 9 illustrate the negative influence of data sparsity on
the QoS prediction accuracy and service ranking accuracy.

Fig. 8 Matrix Density Impact
on RSME Performances with
r = 20 (response time)
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Fig. 9 Matrix Density Impact
on NDCG Performances with
r = 20 (response time)
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Indeed, it can be observed that for each method, the
QoS prediction is refined with the matrix density increase.
However, the TASERM method significantly outperfoms
others methods even in the severe data sparseness situation.
Indeed, following Table 2 and Fig. 7, MAE performance
of TASERM approach shows an improvement of 37.21
% compared to IPCC, 32.61 % compared to UPCC
and 30% compared to WSPred. Moreover, in Fig. 8,
RSME performance of TASERM approach displays an
improvement of 35.39 % compared to IPCC, 33.40 %
compared to UPCC and 30% compared to WSPred. In
addition, in Fig. 9, NDCG performance of TASERM
method is 4.35% better than IPCC, 1.86% better than UPCC
and 1.61% better than WSPred.

Impact of the number of factors To study the impact of the
number of factors r , we configure r to 5; then it gradually
increases to 50 in steps of 5. We propose to study TASERM
performances at matrix densities equal to 15% and 60%.

Figures 10, 11 and 12 shows the impact of the number of
factors. In these figures, it can be observed that TASERM’s
performances are maximized for r = 20. Indeed, in
Figs. 10 and 11, for r = 20, MAE and RSME performance
are minimal, meaning a high-accurate prediction while in
Fig. 12, NDCG trend is maximal, meaning a high-accurate
service ranking. This means that for a number of factors
greater than 20, the additional data constitutes noise which
affects the quality of prediction.

5 Conclusion and perspectives

In this paper, we proposed a data sparseness robust service
recommendation approach which aims to guarantee in
a sustainable way the relevance of services returned to
end-users. Our method first performs the QoS prediction
of the current time using a flexible factorization matrix
technique applied to a set of instantaneous two-dimensional
user-service matrices. Thereafter, the QoS prediction of

Table 2 Response time performance evaluation at r = 20

Matrix Density (%) 50 55 60

Algorithms MAE RMSE NDCG MAE RMSE NDCG MAE RMSE NDCG

TASERM 0.229194 0.399042 0.98381171 0.224784 0.394821 0.986705865 0.217539 0.387765 0.9930522

IPCC 0.35973 0.60975 0.942532 0.34857 0.60057 0.941219 0.33561 0.58554 0.9539

UPCC 0.34776 0.61362 0.955157 0.34461 0.6093 0.953339 0.33894 0.60174 0.9557

WSPred 0.32742 0.57006 0.9677076 0.32112 0.56403 0.96754551 0.31077 0.55395 0.96857279
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Fig. 10 Factors number impact
on MAE performances
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the future time interval is performed using a time series
forecasting method based on an AutoRegressive Integrated
Moving Average (ARIMA) model. Based on past user-
side QoS observations, the QoS prediction for the current
time slot indicates the service relevance in the current time
while the QoS prediction for the future time slot provides
information on the anticipated service relevance relatively
to the active user’s needs. The service recommendation is

based on the pair of criteria (qc0 , qc0+1) which aims to
ensure the sustainable appropriateness of services returned
to the active user. Experiments conducted on a real-
world dataset show the high-performances of our method
compared to competing approaches. Since the rapid growth
of big data offers increased possibilities and important
sources of information to integrate into the recommendation
process, we plan in the future, to exploit other data sources

Fig. 11 Factors number impact
on RSME performances
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Fig. 12 Factors number impact
on NDCG performances
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to refine the service targeting and to get closer to end-users’
expectations.
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