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Abstract
Predicting the number of COVID-19 cases in a geographical area is important for the management of health resources and
decision making. Several methods have been proposed for COVID-19 case predictions but they have important limitations
in terms of model interpretability, related to COVID-19’s incubation period and major trends of disease transmission. To be
able to explain prediction results in terms of incubation period and transmission trends, this paper presents the Multivariate
Shapelet Learning (MSL) model to learn shapelets from historical observations in multiple areas. An experimental evaluation
was done to compare the prediction performance of eleven algorithms, using the data collected from 50 US provinces/states.
Results show that the proposed method is effective and efficient. The learned shapelets explain increasing and decreasing
trends of new confirmed cases, and reveal that the COVID-19 incubation period in the USA is around 28 days.
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1 Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) caused a pandemic around the world, and
became a global threat in the past months [1]. It’s also
known as the Corona Virus Disease 2019, and in short of
COVID-19. The COVID-19 has caused 7,720,830 active
cases, and produced 1,013,992 deaths till September 31,
2020. China reported the pandemic in Wuhan city, in late
December 2019. World Health Organization reported the
pandemic on June 7, 2020.

Governments and authorities have been struggling to
make critical decisions. The COVID-19 prediction is a novel
area, and an important tool for predicting future events
or situations, such as, allocation of medical supplies and
dispatch of medical staff. The prediction tools generate
predictions of the spread of the virus, and support decisions,
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such as preventive medicine and healthcare intervention
strategies.

Several methods have been done to predict the number
of COVID-19 cases. These methods build a model for
each area, and ignore the interconnections among areas.
Meanwhile, their interpretability is poor, such as COVID-
19’s incubation period [2] and transmission trends.

Our goal is to develop a high interpretable model [3]
to predict upcoming COVID-19 cases in multiple areas.
The model should tackle the two issues as follows: (1)
the determination of COVID-19’s incubation period among
geographically connected areas, such as provinces/states in
a country. (2) the obtainment of key transmission trends in
multiple connected areas.

Inspired by the interpretability of shapelets [4], we
exploit shapelets to represent key trends of the COVID-19
time series in multiple areas, and use the shapelet length
to denote the incubation period length. The shapelets are
introduced to enhance classifiers [5]. They are defined
as discriminative subsequences of several time series,
which belong to a common class. In the past decade,
shapelet studies mainly focus on improving the classifier
performance in terms of accuracy and speed. Can shapelets
be representative subsequences of several interrelated time
series? Can shapelets predict the upcoming values of those
time series as well?

We propose a model named “Multivariate Shapelet
Learning (MSL)” to efficiently solve the two questions. The
MSL consists of four procedures as follows. (1) To degrade
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the search complexity, we adopt the one-step-forward split
to window multivariate time series. Another benefit of the
one-step-forward split is the transformation from time series
data to supervised data, which means the MSL can be
trained. (2) We design a shapelet layer to store the shapelets.
(3) To learn and keep shapelets in the shapelet layer, we
use the softmin distance to measure the distance between a
time series and a shapelet. (4) A linear layer is adopted to
connect the softmin distances and model outputs. Therefore,
good shapelets can be found by minimizing the gap between
model outputs and real observations.

The major contributions of this paper are summarized
below.

(1) The determination of COVID-19’s incubation period
in geographically connected areas.

(2) The obtainment of trends on COVID-19 transmission
in geographically connected areas. These trends are
visualized by the learned shapelets, which show the
high interpretability of MSL.

(3) The MSL model is proposed to simultaneously predict
the upcoming new COVID-19 cases with better
performance.

The rest of this paper is organized as follows. Section 2
addresses this research. Section 3 gives formulations and
notations. Section 4 illustrates our proposed method.
Section 5 gives descriptions of the COVID-19 data, perfor-
mance criteria and experimental configurations. Section 6
analyses evaluated results, visualizes and the learned
shapelets. Finally, a conclusion is drawn in Section 7.

2 Related work

This section addresses this research via reviewing recent
studies.

2.1 COVID-19 prediction

According to the nature of methods, we categorize COVID-
19 prediction methods into parsimonious methods and
mathematical methods.

Parsimonious methods fit a linear or non-linear function
from training data and show positive effects on the early
prediction of the pandemic [6]. [7] uses ARIMAmodels and
polynomial functions to predict daily cumulative COVID-
19 cases in 145 countries, where each country has a
tuned model. [8] uses ARIMA models to predict the daily
cumulative confirmed cases in 3 European countries. [9]
uses ARIMA models to predict the daily new confirmed
cases for the 7-day period.

Mathematical methods model epidemic situations to
enhance predictions. [10] applies mathematical models to

describe the outbreak among passengers and crew members
on Princess Cruises Ship. [11] realizes forward prediction
and backward inference of the epidemic situation. [12]
introduces a Composite Monte Carlo method to predict
daily new confirmed COVID-19 cases, which is enhanced
by deep learning and fuzzy rule induction. [13] exploits
epidemic propagation model to predict daily cumulative
confirmed cases of five worst affected states in India.

The above methods build a model for each time
series. Hence, the interrelationship of these time series
are ignored, such as the transmission among geographical
areas. Moreover, not only parsimonious methods but also
mathematical methods can not interpret their models, such
as the determination of incubation periods, and the key
trends of disease transmission. In this paper, an interpretable
model using shapelet learning is proposed to predict
COVID-19 cases in several interconnected areas.

2.2 Shapelet learning

The shapelets concept is first introduced by [4] for data
mining. Its original definition is “subsequences that are
in some sense maximally representative of a class”. The
shapelet has high interpretability and good explanations.
But it is still a challenge to efficiently find good shapelets.

According to the way of shapelet obtainment, these
methods are divided into two categories: (1) shapelets
mining, which optimizes the procedures on searching the
optimal time series segment, such as brute force searching
[14] and tree-based pruning [15]; (2) shapelet learning,
which learns several shapelets by optimizing a classification
loss function, such as LTS [5] and FastLTS [16]. As a key
component in learning shapelets, the distance measurement
between a shapelet and a segment is studied as well [17].
These methods are developed to deal with time series
classification tasks. Their target is to learn discriminative
shapelets from each inputted time series in a class, i.e., a
classification task [18].

However, we learn representative shapelets frommultiple
time series, and generate predictions for each time series,
i.e., a regression task. These shapelets have a probability
of being similar or common segments. We adopt the
shapelets concept to describe the key data points of the
observed time series. Meanwhile, we use the one-step-ahead
split method to segment multiple time series. Based on
this split method, the shapelets are learned under linear
complexity.

3 Formulations and notations

This section gives formulations and notations. The main
symbols used are listed in Table 1.
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Table 1 Symbols and semantics

Symbol Semantic

I area number

K time step number

C shapelet number

N time step number in test set

T look-back window size

Z outpatient cases matrix, Z ∈ R
I×K

S shapelet matrix, S ∈ R
C×T

W weight matrix of shapelets, W ∈ R
C

D distance matrix, D ∈ R
I×C

Di,c element of distance matrix D

M softmin distance matrix, M ∈ R
I×C

Mi,c element of softmin distance matrix M

X input matrix X ∈ R
I×T

Y output matrix Y ∈ R
1×T

X inputsX ∈ R
(K−T +1)×I×T

Y outputs Y ∈ R
(K−T +1)×1×T

Multivariate time series (MTS) We adopt a MTS to describe
the observed daily new confirmed cases in multiple
states/provinces in the America. The symbol Z ∈ R

I×K

denotes the cases of I areas in K consecutive days.

Look-back window A look-back window of size T is an
ordered sub-sequence of a MTS. and is exploited to observe
the cases in a certain period. We use symbol Z:,t+1:t+T ∈
R

I×T to denote a look-back window.
Shapelet. A shapelet of size T is an ordered sequence of

values, and is employed to represent the key data points of
a series. To represent key data points of a MTS, we need
several candidate shapelets. These shapelets is denoted by
S ∈ R

C×T . C is the number of shapelets.

Distances between shapelets and MTS The distance mea-
surement is a critical step to learn shapelets from a MTS.
The distance between a time series and a shapelet is defined
as:

Di,c := min
t

1

T

T∑

k=1

(Zi,t+k − Sc,k)
2, (1)

where Di,c is the distance between i-th time series and c-
th shapelet, and D ∈ R

I×C is the total distances between
candidate shapelet S and observed Z.

MTS prediction problem Typically, the MTS prediction
problem is formulated as:

Ẑ:,T +1 = F(Z:,1:T ), (2)

Normalization

Windowed MTS

One-step-ahead

Pre-processing Multivariate Shapelet Learning (MSL) Post-processing

Evaluation

Predictions

Shapelet layer

The detailed procedures on learning shapelets 

MTS

Distance

Softmin

De-normalization

Softmin distanceWindowed MTS

Raw data Processed data Time series data

RAE

RSE

CORR

Generated values

SoftminShapelet Linear

Distance Softmin distance

Linear layer

∈ ℝ∈ ℝ ∈ ℝ ∈ ℝ ∈ ℝ

∈ ℝ

∈ ℝ

Model parameters

Fig. 1 The schematic illustration of Multivariate Shapelet Learning (MSL)
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where Ẑ:,T +1 ∈ R
I is the predicted values of I areas

in the upcoming day, Z:,1:T = [Z:,1, Z:,2, · · · , Z:,T ] is
observations over a look-back window of size T , and F(·)
is the mapping.

The problem of MTS prediction via shapelet learning is
formulated as:

Ẑ:,T +1 = F(Z:,1:T , S), (3)

where S ∈ R
C×T is the learned shapelets.

4 TheMSLmodel

This section illustrates the proposed MSL. The diagram of
the proposed MSL is graphically displayed in Fig. 1.

Firstly, the normalization of MTS data, see the upper left
part in Fig. 1. Because there are significant differences in
the range of confirmed cases data in different regions, we
normalize those data into [0, 1]. The normalized data can
also speed up the training process of models.

Secondly, the transformation from MTS data to super-
vised data, see the upper left part in Fig. 1. Due to the MTS
data can not be directly fed into a model, we use one-step-
ahead to split MTS data into supervised data, and use the
supervised data to train models.

Thirdly, the shapelet learning stage, see light blue shade
parts in Fig. 1. There are two tasks in this stage: (1)
obtainment of key data points, i.e., shapelets. (2) accurate
predictions of future values; For the first task, we designed a

shapelet layer, a distance layer, and a softmin layer to learn
parameters that are close or similar to import inputs. For the
second task, we add a linear layer to receive the minimum
distances and generate predictions.

Finally, the de-normalization from model outputs to
predicted values, see the upper right part in Fig. 1. To obtain
the predictions, we de-normalize the model outputs, since
the model are trained using normalized data.

The pseudo code for training MSL is shown in Algorithm
1.

4.1 Normalization and time series transformation

Min-Max normalization The Min-Max normalization is
chosen to compress all the variables into the range [0, 1].
The normalization formula and its de-normalization formula
are as follows:

d ′ = d − min(d)

max(d) − min(d)
, (4)

d = d ′ ∗ (max(d) − min(d)) + min(d), (5)

where d ∈ R
K denotes a vector of all the observed

samples, M is the number of observed samples, d ′ ∈ R
K

is the normalized data, max(d) is the maximum value
of d, and min(d) is the minimum value of d. The de-
normalization formula is applied for outputs of models in
the post-processing stage.

One-step-ahead split Given a MTS Z with K consecutive
time intervals, the one-step-ahead split is formulated as:
⎡

⎢⎢⎣

Z:,1 Z:,2 · · · Z:,T
Z:,2 Z:,3 · · · Z:,T +1

· · · · · · · · · · · ·
Z:,K−T −1 Z:,K−T · · · Z:,K−1

⎤

⎥⎥⎦ →

⎡

⎢⎢⎣

Z:,T +1

Z:,T +2

· · ·
Z:,K

⎤

⎥⎥⎦ , (6)

where the left part is inputs of a model, a.k.a, windowed
MTS, the right part is the output of a model. For
lucid presentation, let X ∈ R

(K−T −1)×I×T and Y ∈
R

(K−T −1)×1×T denote inputs and outputs, respectively.
Each sample in (X ,Y) is denoted by (X ∈ R

I×T , Y ∈
R
1×T ).

4.2 Shapelet learning and prediction generation

Shapelet layer The shapelet layer receives the input X, and
passes the values of shapelets to the subsequent distance
layer.

Let symbol C denote the number of shapelets. The
shapelets can be denoted by S ∈ R

C×T . From the data
structure perspective, a shapelet of length T is an ordered
sequence of values [5].

The shapelets are parameters, and designed to approx-
imate the key data points of input data, which can help
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predicting future values. The approximation of shapelets
from historical observations consists of two steps. Firstly,
we calculate the distances between all inputted windowed
time series and shapelets. Secondly, we use a softmin layer
to figure out the minimum distance.

Distance layer This layer receives inputs and shapelets from
prior layers. To figure out the minimum distance between
inputs and shapelets, the distances of inputs and shapelets
should be calculated.

The distances between inputs and shapelets are formu-
lated as:

Di,c = 1

T

T∑

t=1

(Xi,t − Sc,t )
2, (7)

where Di,c denotes the distance between the i-th windowed
time series and the c-th shapelet, Xi,t is the COVID-19 case
value in the i-th area at the t-th inputted time step, and Sc,t

is the shapelet value of the c-th shapelet at the t-th time step.
Other distance measurements can be applied to calculate

the distances between inputs and shapelets as well, such as
Euclidean distance. The reason we choose mean squared
error (MSE) is that, the loss function of the MSL is also
MSE.

Softmin layer This layer receives distances, applies softmin
function to those distances, and the softmin distances are
delivered to the subsequent linear layer.

The minimum distance is employed to search a target
shapelet, which is the closest or most similar to the inputs.
We adopt softmin function to select the closest shapelet, and
generate predictions based on the shapelet, via inputting it
into a linear layer. The softmin distance is defined as:

Mi,c = Di,c exp(αDi,c)∑C
c′=1 exp(αDi,c′)

, (8)

where α is a constant parameter, and Mi,c is the softmin
distance. The α should be a small negative value, since a
big value would cause numeric overflow. According to our
experience, we set α to -10.

Linear layer This layer linearly combines the softmin
distances, and generates values for post-processing. The
combination of the softmin distances is formulated as
follows:

P̂ = M :,c · W , (9)

where P̂ ∈ R
1×T is the model outputs, and W ∈ R

C is the
shared weights assigned to received softmin distances.

5 Experimental configuration

This section gives evaluation metrics and comparable
methods.

5.1 Data collection

The COVID-19 data collections are publicly available and
daily updated on the GitHub website1. The basic statistics
of COVID-19 cases on provinces/states in the US are listed
in Table 2.

The duration of the collected data ranges from January
22, 2020 to September 17, 2020. Tens of thousands of
COVID-19 infected people were newly confirmed in a
day. Those colonized regions of America are removed.
The confirmed cases in 50 provinces or states are counted
in days. We organize those statistics into two groups:
cumulative confirmed cases and new confirmed cases. The
statistics consist of minimum value, maximum value, mean
value and standard deviation.

The infected statuses of California, Florida and Texas are
the most serious in America, and the new confirmed cases in
these states commonly increase more than 10,000 in recent
days. Whereas, the statuses of Vermont, Wyoming, Maine
and Alaska are moderate, and the total number of infected
persons are all less than 7,000.

STD denotes standard deviation, which reflects the
degree of dispersion of a set of data points. When
observing the STD values of new confirmed cases of
each province/state, (1) California, Florida and Texas all
exceed 200,000, which means serious outbreaks; (2) but
for Vermont, Wyoming, Maine and Alaska, their infectious
statuses are relatively stable.

When observing the maximum values of new confirmed
cases, (1) the cases of California, Florida and Texas are
all about 1500, which means the situation has always been
threats; (2) but the cases of Vermont and Maine are all less
than 100, which shows their situations are under control.
The main reason for these phenomenons is these states have
a large population. Another potential reason is government
control and policies.

This paper aims to predict upcoming new COVID-19
cases for these 50 provinces/states. Moreover, the COVID-
19’s incubation periods of the US and major transmission
trends should be learned from the above observations. To
create a model with high interpretability, we learn core
shapelets from past observations.

1https://github.com/datasets/COVID-19

599COVID-19 prediction in multiple areas

https://github.com/datasets/COVID-19


Ta
bl
e
2

T
he

ba
si
c
st
at
is
tic
s
of

C
O
V
ID

-1
9
ca
se
s
on

pr
ov
in
ce
s/
st
at
es

in
U
S

Pr
ov
in
ce
/S
ta
te

C
um

ul
at
iv
e
co
nf
ir
m
ed

ca
se
s

N
ew

co
nf
ir
m
ed

ca
se
s

Ja
n.

22
Se
p.

17
M
in

M
ax

M
ea
n

ST
D

Ja
n.

22
Se
p.
17

M
in

M
ax

M
ea
n

ST
D

A
la
ba
m
a

0
14
17
57

0
14
17
57

36
94
7.
39

45
71
8.
81

0
67
0

0
23
99

59
3.
13

62
9.
13

A
la
sk
a

0
65
37

0
65
37

13
70
.0
8

18
80
.1
5

0
10
5

0
18
6

27
.3
5

35
.8
1

A
ri
zo
na

0
21
16
60

0
21
16
60

64
23
2.
76

79
51
6.
87

0
17
53

0
48
77

88
5.
61

11
79
.1
1

A
rk
an
sa
s

0
73
21
1

0
73
21
1

18
15
1.
74

22
65
9.
75

0
99
2

0
17
99

30
8.
03

32
7.
04

C
al
if
or
ni
a

0
77
50
37

0
77
50
37

21
40
83
.8
8

25
65
30
.4
3

0
37
16

0
15
11
7

32
42
.8
3

33
90
.4
7

C
ol
or
ad
o

0
63
12
5

0
63
12
5

23
76
2.
43

20
82
6.
01

0
45
9

0
97
8

26
4.
12

19
6.
09

C
on
ne
ct
ic
ut

0
55
38
6

0
55
38
6

28
91
9.
85

21
61
0.
45

0
22
0

0
21
09

23
1.
85

33
8.
79

D
el
aw

ar
e

0
19
31
8

0
19
31
8

76
55
.0
5

66
35
.9
6

0
84

0
45
8

81
.0
1

82
.3
1

Fl
or
id
a

0
67
44
56

0
67
44
56

17
93
94
.2
9

23
37
91
.2
3

0
32
55

0
15
30
0

28
21
.9
9

35
82
.0
7

G
eo
rg
ia

0
30
09
03

0
30
09
03

82
19
5.
76

96
70
8.
81

0
18
47

0
48
13

12
59
.0
1

12
64
.6
4

H
aw

ai
i

0
11
10
5

0
11
10
5

17
91
.3
8

28
78
.1
4

0
15
9

0
35
4

46
.4
9

79
.9
3

Id
ah
o

0
36
48
9

0
36
48
9

86
38
.5
5

11
58
7.
30

0
39
6

0
72
9

15
2.
68

19
4.
31

Il
lin

oi
s

0
27
02
94

0
27
02
94

97
54
0.
25

86
77
8.
57

0
20
56

0
55
94

11
30
.9
4

90
3.
57

In
di
an
a

0
10
86
46

0
10
86
46

34
47
2.
90

33
17
9.
01

0
83
7

0
16
60

45
4.
59

34
7.
82

Io
w
a

0
77
20
4

0
77
20
4

21
99
4.
40

23
18
9.
08

0
55
2

0
26
81

32
3.
03

32
3.
78

K
an
sa
s

0
51
16
4

0
51
16
4

13
19
8.
72

14
99
2.
99

0
44
4

0
10
19

21
4.
08

23
3.
71

K
en
tu
ck
y

0
59
37
0

0
59
37
0

14
63
7.
71

17
10
8.
50

0
60
6

0
11
52

24
8.
42

27
1.
10

L
ou
is
ia
na

0
15
93
04

0
15
93
04

52
85
6.
44

53
06
9.
35

0
47
8

0
38
40

66
7.
04

77
8.
09

M
ai
ne

0
49
62

0
49
62

20
14
.0
3

17
20
.2
9

0
21

0
78

20
.7
7

17
.3
4

M
ar
yl
an
d

0
11
85
19

0
11
85
19

44
83
9.
28

40
59
2.
53

0
63
1

0
17
84

49
5.
91

37
6.
92

M
as
sa
ch
us
et
ts

0
12
61
28

0
12
91
82

67
83
4.
98

51
33
1.
95

0
42
9

0
49
73

55
9.
68

69
9.
48

M
ic
hi
ga
n

0
12
67
22

0
12
67
22

51
04
5.
24

40
58
7.
95

0
98
0

0
19
91

53
0.
22

45
1.
32

M
in
ne
so
ta

0
86
72
2

0
86
72
2

26
08
7.
94

27
64
5.
40

0
90
9

0
11
54

36
2.
85

30
7.
00

600 Z. Wang and B. Cai



Ta
bl
e
2

(c
on
tin

ue
d)

Pr
ov
in
ce
/S
ta
te

C
um

ul
at
iv
e
co
nf
ir
m
ed

ca
se
s

N
ew

co
nf
ir
m
ed

ca
se
s

Ja
n.

22
Se
p.

17
M
in

M
ax

M
ea
n

ST
D

Ja
n.

22
Se
p.
17

M
in

M
ax

M
ea
n

ST
D

M
is
si
ss
ip
pi

0
91
93
5

0
91
93
5

25
34
1.
64

29
78
5.
48

0
70
1

0
17
75

38
4.
67

40
9.
11

M
is
so
ur
i

0
10
95
57

0
10
95
57

24
19
1.
67

30
22
1.
85

0
17
04

0
21
97

45
8.
40

53
1.
13

M
on
ta
na

0
96
47

0
96
47

18
32
.4
3

26
57
.6
3

0
21
6

0
22
1

40
.3
7

56
.0
3

N
eb
ra
sk
a

0
39
92
1

0
39
92
1

12
99
0.
62

12
75
5.
38

0
50
2

0
72
7

16
7.
22

15
1.
74

N
ev
ad
a

0
74
59
5

0
74
59
5

19
98
8.
43

24
95
2.
28

0
34
7

0
14
47

31
2.
55

35
8.
78

N
ew

H
am

ps
hi
re

0
77
81

0
77
81

35
07
.9
7

28
87
.0
2

0
0

0
21
7

32
.8
2

35
.4
1

N
ew

Je
rs
ey

0
19
83
61

0
19
83
61

10
97
93
.8
5

78
47
1.
83

0
56
9

0
43
05

83
0.
09

11
23
.2
6

N
ew

M
ex
ic
o

0
27
19
9

0
27
19
9

91
69
.3
1

93
71
.1
4

0
15
8

0
46
0

11
3.
80

97
.3
1

N
ew

Y
or
k

0
44
72
62

0
44
72
62

25
89
41
.1
1

17
65
66
.3
1

0
89
6

0
11
43
4

18
71
.3
9

27
17
.5
5

N
or
th

C
ar
ol
in
a

0
18
95
76

0
18
95
76

52
55
7.
93

61
54
8.
51

0
15
52

0
26
03

79
3.
21

72
5.
05

N
or
th

D
ak
ot
a

0
16
72
3

0
16
72
3

34
68
.7
8

42
19
.7
0

0
39
0

0
46
7

70
.1
2

91
.5
7

O
hi
o

0
14
15
85

0
14
15
85

42
66
8.
13

44
36
2.
01

0
10
67

0
17
33

59
2.
41

47
5.
22

O
kl
ah
om

a
0

73
31
8

0
73
31
8

16
10
0.
90

21
23
2.
70

0
10
34

0
14
00

30
6.
77

35
8.
16

O
re
go
n

0
30
06
0

0
30
06
0

81
86
.8
9

95
62
.4
1

0
21
0

0
43
0

12
5.
77

12
3.
57

Pe
nn
sy
lv
an
ia

0
15
27
75

0
15
27
75

62
61
6.
12

51
55
7.
84

0
92
5

0
22
97

63
9.
23

48
7.
05

R
ho
de

Is
la
nd

0
23
48
8

0
23
48
8

10
64
0.
30

85
51
.3
2

0
13
0

0
64
8

98
.2
8

12
2.
57

So
ut
h
C
ar
ol
in
a

0
13
54
46

0
13
54
46

35
19
5.
04

44
69
4.
39

0
13
24

0
24
54

56
6.
76

63
5.
48

So
ut
h
D
ak
ot
a

0
17
68
6

0
17
68
6

48
63
.8
2

47
84
.9
2

0
39
5

0
62
3

74
.0
0

86
.9
2

Te
nn
es
se
e

0
17
81
40

0
17
81
40

45
44
8.
44

55
82
0.
45

0
10
53

0
33
14

74
5.
36

80
4.
80

Te
xa
s

0
70
13
50

0
70
13
50

17
80
59
.5
9

23
15
05
.9
9

0
45
43

0
14
96
2

29
34
.5
2

33
49
.6
9

U
ta
h

0
60
65
8

0
60
65
8

17
29
2.
81

19
45
2.
15

0
91
1

0
95
4

25
3.
80

22
9.
25

V
er
m
on
t

0
17
05

0
17
05

84
0.
71

59
0.
89

0
3

0
72

7.
14

10
.1
2

V
ir
gi
ni
a

0
13
73
67

0
13
73
67

44
27
3.
90

44
12
2.
85

0
10
98

0
20
15

57
4.
76

43
2.
00

W
as
hi
ng
to
n

1
81
19
8

1
81
19
8

27
13
2.
35

26
22
1.
48

1
38
6

0
17
38

33
9.
90

29
3.
07

W
es
tV

ir
gi
ni
a

0
13
43
4

0
13
43
4

31
28
.3
9

37
16
.8
6

0
23
2

0
35
1

56
.2
3

65
.3
7

W
is
co
ns
in

0
93
81
9

0
93
81
9

24
64
3.
87

27
61
2.
16

0
16
60

0
16
60

39
2.
55

37
6.
29

W
yo
m
in
g

0
46
52

0
46
52

12
69
.3
0

13
69
.2
2

0
86

0
12
6

19
.5
3

21
.3
9

“S
T
D
”
de
no
te
s
st
an
da
rd

de
vi
at
io
n

601COVID-19 prediction in multiple areas



5.2 Metrics

Many evaluation metrics can be applied to measure the
performance of MTS prediction. For a fair competition,
we follow the metrics in [20–22]. The three metrics are
formulated as follows:

– Relative Absolute Error (RAE):

RAE =
√∑

(i,t)∈ΩT est
|Zi,t − Ẑi,t |

√∑
(i,t)∈ΩT est

|Zi,t − mean(Ẑi,:)|
, (10)

– Relative Squared Error (RSE):

RSE =
√∑

(i,t)∈ΩT est
(Zi,t − Ẑi,t )2

√∑
(i,t)∈ΩT est

(Zi,t − mean(Ẑi,:))2
, (11)

– Empirical Correlation Coefficient (CORR):

CORR =
1

I

I∑

i=1

∑
t (Zi,t − mean(Zi,:))

∑
t (Ẑi,t − mean(Ẑi,:))√∑

t (Zi,t − mean(Zi,:))2
∑

t (Ẑi,t − mean(Ẑi,:))2
,

(12)

where Z, Ẑ ∈ R
I×N are ground true values and model

predictions in the MTS task, respectively. I is the number of
areas, N is the number of time steps in the testing set, and
ΩT est is the set of time stamps used for testing.

RAE is a normalized version of mean absolute error
(MAE), and RSE is also a normalized version of mean
absolute error (RMSE). Hence, both RAE and RSE are
not sensitive to the data scale. For RAE and RSE, the
lower value is the better performance. Whereas, for CORR,
the higher value is the better performance. In reality, RAE

and RSE describe the prediction accuracy, and CORR

describes the similarity.

5.3 Methods for comparison

The proposed model is compared with following methods:

– GAR combines an autoregressive component with a
log-linear component, and allows the use of global
features to compensate for the lack of data.

– AR is a statistical method to process time series, which
is a kind of linear predictive model. The advantage
of this method is that it needs little data and can be
predicted by its own variable sequence.

– VAR [23] is a generalization of AR, which maps the
future values to all past observed values. MA and
ARMA can also be transformed into VAR under certain
conditions.

– LSTM [24] is a kind of recurrent neural network, which
is composed of a cell, an input gate, an output gate and

a forget gate. The number of hidden neurons is tuned to
optimize the model.

– GRU [25] is a variant of LSTM, which uses an update
gate to replace the hidden gates and cell gates of LSTM.
The GRU method adjusts hidden neurons to control the
scale of a neural network.

– Encoder-decoder (ED) [26] is an extraordinarily ordi-
nary framework in deep learning, which uses RNN in
the encoding process and the decoding process, respec-
tively. It’s an end-to-end learning framework.

– LSTNet [21] contains a convolutional layer [27] to
extract the local dependency patterns, a recurrent
layer to capture long-term dependency patterns, and a
recurrent-skip layer to capture periodic properties in the
input data for prediction.

GAR, AR and GAR are traditional baseline methods.
LSTM, GRU and ED are RNN series, which are designed
for time series data or sequential data. LSTNet is a state-
of-the-art method based on deep neural networks, which is
designed for MTS data.

5.4 Configurations

All models are trained using the Adam optimizer [19]. The
mean squared error (MSE) is chosen as the loss function of
all the models. The batch size is set to 32. For RNN, LSTM,
ED and LSTNet, the number of hidden neurons is in {32,
64}. Their learning rates are set to 0.001.

The COVID-19 cases data are divided into two subsets:
the first part, from the January 22, 2020 to the July 31, 2020,
is used to build and train models; the remaining part, from
August 1, 2020 to the September 17, 2020, is utilized to
assess the learned models. The ratio of the training set to the
test set is 8 : 2.

6 Experimental results and analyses

This section gives several experiments on parameters of the
proposed MSL, and compares the MSL with other methods.
These experiments are intended to address the following
questions:

(1) How T and C affect predictions? Technically, how
the inputted data and the learned shapelets affect
predictions?

(2) Can MSL outperform other comparable methods?
(3) Finally, what is harvested from the learned shapelets?

6.1 Effects on C and T

To study how the shapelets and windowed time series
affect shapelet learning and predictions, we measure the
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Fig. 2 The sensitiveness of shapelet size C in terms of RAE, RSE and CORR. The windows size T is fixed at 28. Both the optimal values of
RAE and RSE are found when C = 3, and the optimal value of CORR is found at C = 2 a RAE versus C. b RSE versus C. c CORR versus C

performance in terms of RAE, RSE and CORR. We
change C or T while holding other parameters. There are
so many compositions of parameter C or parameter T .
To efficiently search the parameters, C is first randomly
set to a small value, and then T is tuned to obtain the
optimal prediction performance. The window size T can be
tuned by one of the comparable methods as well. In these
experiments, the best performance of comparable methods
is found when T = 28.

The effects on C are plotted in Fig. 2. As Fig. 2a and b
state, we hold window size T = 28 and change shapelet
size C from 2 to 7 with step size 1, both the optimal
values of RAE and RSE are found when C = 3. As
Fig. 2c reveals, the optimal value of CORR is found at
C = 2. There are few learned shapelets if the shapelet
size C is small. Meanwhile, few learned shapelets have
better prediction performances, which means the features
of disease outbreaks are few. In reality, the trends of
COVID-19 outbreaks in the provinces/states of America are
similar.

The effects on T are plotted in Fig. 3. As presented in
Figs. 2a, 2b and 2c, the optimal values of these metrics
are found at T = 28, which is shown in the red dash

lines. Compared the window size T with some quick onset
disease, such as HFMD [28, 29] and infectious diarrhea [2],
the optimal value T of COVID-19 is larger than the value of
other diseases. A possible reason is that the COVID-19 has
a longer incubation period than other quick onset diseases,
or it can spread to other persons in the incubation period.

6.2 Method comparison

According to the conducted experiments on shapelet size C

and window size T , we learn the effects on the parameters
with respect to the three metrics, the optimal values of
these metrics can be found at around C = 3 and T =
28. Note that, the optimal value of CORR is found at 2
when T = 28. The CORR metric measures the directions
differences between two vectors, which can also be adopted
to measure the trend differences between real confirmed
cases and predicted confirmed cases. For a fair competition,
the inputted window size T of all methods is set to 28. The
parameter C of MSL is set to 3.

As presented in Fig. 4, all the comparable methods are
well-tuned, and their performances are measured in terms of
RAE, RSE and CORR.
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Fig. 3 The sensitiveness of window size T in terms of RAE, RSE and CORR. The shapelet size C is fixed at 3. The optimal values of these
metrics are found at T = 28, see the red dash lines a RAE versus T . b RSE versus T . c CORR versus T
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Fig. 4 The comparison of twelve methods in terms of RAE, RSE and CORR. The windows size T is fixed at 28. The shapelet size C is set to 3
a RAE comparison. b RSE comparison. c CORR comparison

The following summarizes the key conclusions we
observe from the results:

(1) The proposed MSL outperforms other methods in
terms of three metrics.

(2) The GAR has the second best performance in terms of
RAE and CORR.

(3) The AR has the second best performance in terms of
RSE.

(4) From the perspective of RAE, the LSTM poorly
performs than other methods.

(5) From the perspective of RSE, the VAR and LSTM has
the worst performance and second worst performance,
respectively.

(6) From the perspective of CORR, the ED has the worst
performance.

The GAR linearly transforms inputs to targets, and
shares common weights for all the inputted variables (i.e.,
areas). The AR linearly transforms the inputs of an area
to the target of this area, and the weights of areas are
not shared. The GAR has the second best performance in
terms of RAE and CORR. Meanwhile, the AR has the
second best performance in terms of RSE. This reveals

that new confirmed cases in the US are linearly increased
somehow.

The VAR linearly connects all inputs to all targets, where
each target is mapped from all the inputs. However, the
performance is worst in terms of RSE. Meanwhile, the
performances of RNN models are poor, such as LSTM,
GRU and ED. This discovers that the connections of disease
statuses between any two states are relatively independent.

The MSL globally considers important subsequences of
time series data. It learns core shapelets from inputs, and
generates prediction based on the learned shapelets. Hence,
the learned shapelets should be analyzed to investigate the
improvements.

6.3 Analyses on shapelets

The visualization of three shapelets is given in Fig. 5.
Since the best prediction performance is found at shapelet
size C = 3 and window size T = 28, we obtain three
shapelets and the length of each shapelet is 28. For a
better comparison and understanding of these shapelets,
these shapelets are mapped to range [0, 1] using Min-Max
normalization, which is presented in (4).
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Fig. 5 The visualization of normalized learned shapelets within MSL, given shapelet size C = 3 and window size T = 28 a Shapelet 1. b Shapelet
2. c Shapelet 3
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The major observations from these learned shapelets are
as follows:

(1) The length of periods in the three shapelets are around
seven days. This reveals that the activities in American
have a strong periodic connection to the disease.

(2) When observing periods in Fig. 5a and 5c, it takes
two days to degrade the new confirmed cases, but will
strongly increase in the coming five days.

(3) According to the slopes of the trend lines, the growth
rate is larger than the descent rate. This suggests that
the infection among people is going stronger.

From the above observations, the trends of new cases
in some areas are still increasing quickly (e.g., California),
while some areas are slowly descending. The proposedMSL
learns these trends, and then generates predictions based
on them. It also suggests that future prediction models
should consider the periodic events, such as weekdays and
weekends.

7 Conclusions

This paper investigated the simultaneous prediction of
the upcoming new confirmed COVID-19 cases in 50
provinces/states in America. The MSL is proposed to
generate predictions via shapelet learning. Experimental
results on real data collections show the effectiveness of
the proposed method. Meanwhile, experimental analyses
show the COVID-19’s incubation period is around 28 days.
Moreover, three learned shapelets depict the growing trend
and descending trend of the disease.

In the future, the multi-horizon COVID-19 prediction
will be further investigated, which would provide further
visions for disease prevention and control.
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