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Abstract
This paper focus on multiple CNN-based (Convolutional Neural Network) models for COVID-19 forecast developed by our
research team during the first French lockdown. In an effort to understand and predict both the epidemic evolution and the
impacts of this disease, we conceived models for multiple indicators: daily or cumulative confirmed cases, hospitalizations,
hospitalizations with artificial ventilation, recoveries, and deaths. In spite of the limited data available when the lockdown
was declared, we achieved good short-term performances at the national level with a classical CNN for hospitalizations,
leading to its integration into a hospitalizations surveillance tool after the lockdown ended. Also, A Temporal Convolutional
Network with quantile regression successfully predicted multiple COVID-19 indicators at the national level by using data
available at different scales (worldwide, national, regional). The accuracy of the regional predictions was improved by using
a hierarchical pre-training scheme, and an efficient parallel implementation allows for quick training of multiple regional
models. The resulting set of models represent a powerful tool for short-term COVID-19 forecasting at different geographical
scales, complementing the toolboxes used by health organizations in France.

Keywords Deep learning · Convolutional neural networks · Temporal convolutional network · Transfer learning · Quantile
regression · COVID-19

1 Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2, or
SARS-CoV-2, was initially described in Wuhan, China. Its
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Champagne Ardenne, 51097 Reims, France

2 ATOS - Pole Intelligence Artificielle, Rue du Mas de
Verchant, 34000 Montpellier, France

spread is responsible for the COVID-19 disease pandemic,
with 188 affected countries, 29,897,412 confirmed cases,
and 941,363 confirmed deaths (September 17th). This
paper focuses on the evolution of the French COVID-19
epidemic, which presented an elevated spreading rate at its
beginning. Indeed, the first French cases were confirmed
on January 24th and the 100th case was confirmed on
February 29th. The transmission of the virus accelerated
in March 2020, following an exponential growth of the
number of confirmed cases and hospitalizations, and
emergency measures had to be taken to avoid hospital
services saturation. As a result, a national lockdown was
adopted from March 17th to May 11th. Schools, non-
essentials businesses, and public parks were closed. Most
outdoor activities and long-distant travels were banned,
and a signed form was required for every essential trip
(to buy food or medicine, to help a vulnerable family
member, etc.). The reproductive number (i.e., the average
number of people that would get infected by an already
infected person) was estimated to be 2.9 before the
lockdown and 0.67 during the lockdown [45]. While the
lockdown successfully stopped the virus propagation, the
death toll was still high, with 26,619 confirmed deaths at
the end of lockdown (reaching 31,045 confirmed deaths
on September 17th). A second COVID-19 wave hit France
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during Autumn 2020, with confirmed cases rising since the
beginning of August. Indeed, the 7-day moving average
since August 28th has been higher than the first wave
average. Hospitalization rates increased slower than during
the first wave, mostly because the affected population
now included younger people, but reached critical levels
anyway. While mandatory actions such as the use of face
masks in closed areas (and often even in the streets),
physical distancing, telecommuting work, and massive
testing campaigns delayed the rise of new cases, a new
lockdown was set in November 2020. This lockdown
was less strict than the precedent, mainly because of the
negative impacts on the economy. Indeed, the Organization
for Economic Cooperation and Development (OECD)
estimated a GPD recession of 11.4% for 2020 without a
second wave and a 14.1% recession in the case of a second
wave by Fall 2020 [38]. Since the end of the lockdown in
mid-December 2020, a generalized curfew and several rules
to prevent public gatherings have been set to reduce the
virus’s spread.

All through 2020, the scientific community has been very
dynamic in providing useful decision tools for epidemic
modeling, not only for contamination or death cases.
Providing different projections of the epidemic evolution
helps make effective decisions, whose goals are to reduce
the number of victims while avoiding a severe economic
recession that would increase poverty and political tensions.
Multiple French projects have been initiated to model the
COVID-19 epidemic and help reduce its harmful effects,
often associating French authorities and services at national
and regional scales, public research laboratories, and private
companies. Most of these projects aim to capitalize on
French high-performance computing resources and inter-
disciplinary skills related to digital technologies.

Our team at the University of Reims Champagne
Ardenne (URCA) is currently involved in several projects
related to COVID-19 mitigation. At the pharmacology
level, the ANR HT-Covid project relies on the ROMEO
Supercomputing Center to simulate millions of molecules
and protein interactions (molecular docking). The goal is
to identify the molecules that can inhibit the SARS CoV-
2 virus and lead to a treatment. We may also cite a
collaboration with researchers from the French Ministry
of Defense, which developed a dashboard to investigate
the impact of sanitary and economic restrictions during
the lockdown [15]. Contrarily to the models presented in
this paper, that work uses multiple epidemic and economic
simulators based on traditional parametric models, with
an optimization algorithm to select the best resulting
scenario. We are also involved in the Grand-Est region
project PrédictEst,1 whose objective is to provide a unique

1https://predictest.eu/

dashboard for COVID-19 monitoring and forecast by
combining multiple prediction models and indicators. This
project is partially based on the work presented in this
paper, and its goal is to aggregate research models into an
operational decision tool.

Therefore, this paper aims at presenting our experience
using deep neural networks (and especially Deep learning)
to model and forecast different COVID-19 indicators
and at different geographical scales. Machine learning
and deep learning models are powerful modeling tools
that revolutionize several domains. Contrarily to classical
parametric models, modern neural networks do not depend
on the knowledge of a given phenomenon but can use a data-
centric approach that can be applied to raw data and still
model complex tasks. On several occasions, Deep learning
proved to be competitive against well known traditional
modeling algorithms, as presented in our previous works [1,
9], and our team specialized in deep learning for agricultural
problems, which often rely on small datasets due to the
large span of agricultural cycles (seasons, crops, etc.). As
a result, our first experiments on COVID-19 were carried
with LSTM [24], Prophet [50] and Convolutional Neural
Network(CNN) [34], the latter showing the most promising
results.

In this study, we demonstrate how data-driven models
can produce excellent predictions. Because Deep learning
usually depends on massive input data, it was thought that
it could not efficiently model the COVID-19 epidemic as
the existing data during the epidemic breakout was reduced
and fragmented. Nonetheless, our data processing efforts
(including the generation of synthetic data for pre-COVID-
19 months) proved successful. For instance, our models can
perform national forecasts for a 20-30 days window with
error rates as low as 1%, in the best cases.

This work was carried on the basis of the official data
provided by the French Ministry of Health, and the different
models designed by our team were constructed to respond
to the current needs of leading authorities. Hence, the
first task we focused on was modeling confirmed COVID-
19 cases, an important indicator because it represents the
transmission of the disease. However, it depends on the
number of available tests being conducted and does not
relate directly to the actual burden of the epidemic on the
health system. Consequently, the second task we focused
on was the hospitalization forecast, at both national and
regional scales. This is a more meaningful indicator as
a sudden increase in hospitalization can lead to hospital
services’ saturation, which may be forced to move patients
to other facilities (often in different regions of the country)
with available beds and healthy medical staff. To better
anticipate the health structures’ impact, we created a deep
learning approach to model a comprehensive set of COVID-
19 indicators, such as confirmed cases, hospitalizations,
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hospitalizations requiring artificial ventilation, number of
recoveries, and number of deaths.

This paper is organized as follows: Section 2 describes
related work on COVID-19 epidemic modeling, Section 3
describes the data sources used in this work, how they were
used, as well as the computing environment supporting our
experiments. Section 4 describes the proposed models and
Section 5 describes the obtained results. Finally, Section 6
discusses the results and their implications, and Section 7
concludes this work.

2 Related works

Epidemic modeling is commonly achieved with compart-
mental models like Susceptible - Infectious - Recovered
(SIR) [42]. In the SIR model, the population is divided into
three compartments:

– Susceptible: the part of the population that can be
infected.

– Infectious: the part of the population currently infected.
– Recovered: the part of the population that recovered

from the disease and that is now immune.

Each compartment is associated with a function that
represents the evolution of the population. The modeling is
performed by solving a system of differential equations. The
SIR model can be extended with other compartments like
Deceased (SIRD model) or Exposed (SEIR model). Those
models need parameters specific to the studied disease like
the rate of infection, rate of recovery, and mortality rate.
Initial conditions for the compartments population are also
needed. In practice, parameters are estimated by fitting
the models to the available data, which is achieved using
non-linear optimization methods like the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [36]. Compartmental
models can be used for prediction modeling or a-posteriori
analysis.

The need for good initial conditions and a good
knowledge of the studied disease is one of the main
weaknesses of this parametric approach. In the case of
COVID-19, a SIRD model predicted the peak of the Italian
first wave for March 21th with 26,000 confirmed cases
and 18,000 deaths by the end of the epidemic [18]. Those
predictions revealed to be highly inaccurate, as the peak
was reached on April 19th reaching more than 109,000
cases, and the death toll rose above the predicted 18,000
as earlier as April 9th. Similarly, a SEIR model was
proposed to predict the second wave in France and Italy
[19]. This model was first used to estimate the fraction
of the population infected during the first wave, projecting
that 6% of the French population would be infected during
the first wave. A similar work was proposed by [45],

using the Diamond Princess outbreak data to estimate the
infection fatality ratio in France. A compartmental data
was applied to hospital data, estimating that 4.4% of the
French population would have been infected by May 11th.
Both results are close. However, the uncertainty of the
estimate achieved by [19] is high, with estimations ranging
from hundreds of thousands to 18 million infections in
France. Nonetheless, SIRD models were used to measure
the impact of the French epidemic’s lockdown, and it
was estimated that the reproductive number R0 was
divided by 7. While compartmental models are useful for
creating complex scenarios and performing analysis of past
epidemics, other methods based on statistical and machine
learning techniques seem to be more suitable for real-time
forecasting [25].

An alternative to compartmental models is a data-centric
approach that does not use predetermined rules about
the disease spreading behavior but where the rules are
determined from the data. For example, a death prediction
model using a mixture of past predictors was proposed by
[47]. The main idea is that the death trend of a country
can be represented as a mixture of past death trends from
other countries. As a result, acceptable accuracy levels
were achieved for up to 10 days forecasts. However, this
modeling approach is limited to short-term forecasts. The
mixture model needs multiple sequences from different
countries with higher death rates (countries considered to
be ahead in the epidemic trajectory with respect to the
studied country). In practice, the authors have shown that
accuracy is low beyond ten days forecasts because not
enough predictors (countries) are available. Therefore, a
SIRD model was used as a predictor for longer forecasts.

Also, Genetic Expression Programming was used by [44]
to create formulas for confirmed cases and deaths evolution
in 15 countries. This method seems to be more reliable
than LSTM with a higher RMSE and higher R2. However,
this approach is limited as only COVID-19 time series are
used in the modeling process. Finally, a hybrid method
using ARIMA and Wavelet-based forecasting was proposed
for confirmed cases forecasting [8], where Wavelet-based
forecasting was used for error remodeling of the ARIMA
model. While this approach presented a good accuracy
on the training set, the accuracy for real-time forecasts in
France is low, with almost twice the RMSE from the training
set.

In this work, we chose to use neural networks as
modeling tools. Neural networks have the ability to
model complex non-linear patterns, and many different
architectures are available. One of the most popular
architecture for time series analysis is Long Short-Term
Memory (LSTM) [24], which is an improvement of the
classical neural network developed to solve the vanishing
gradient problem. LSTM is suitable for sequence modeling
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as it is able to model temporal effects. It was used in
multiple research works on COVID-19 forecasting, as in the
case of Canada [11] or India [51]. Accuracy levels of 93.4%
and 92.67% were found respectively for short and long-term
predictions [11], and similar performances were found by
[51], with error percentages ranging from 1.64% to 8%.

LSTM was also compared to ARIMA and Nonlinear
Auto-Regression Neural Network on confirmed cases
predictions of eight European countries [32], and LSTM
achieved the best accuracy in both cases. Other works
compared multiple neural network architectures to forecast
confirmed cases and recovery predictions, including LSTM,
Recurrent Neural Network (RNN), Bidirectional LSTM,
Gated Recurrent Unit (GRU [12, 13], a variant of LSTM)
and Variational Autoencoder (VAE) [53]. The VAE method
achieved the best results with a clear margin, probably
because VAE needs fewer data than other neural networks.
In comparison with VAE, LSTM can achieve a moderate
accuracy but with a lower explained variance.

Another popular type of neural network is the Convo-
lutional Neural Network (CNN). It became the new state-
of-the-art model for image classification in 2012 when
a CNN won the ILSVRC-2012 competition on the Ima-
geNet dataset [31]. For instance, CNNs were mostly applied
to COVID-19 detection from x-ray images [3, 40, 49].
Although CNNs were first successful on image processing
tasks, they can also be applied on 1D data like COVID-19
time series, and CNNs were used for confirmed cases fore-
casting in China [26]. We observe that CNNs are not as
popular as LSTM, despite their potentially better accuracy
levels and more efficient training with GPU acceleration [4].
Hence, [4] compared CNNs to LSTM, GRU, and the Multi-
layer Perceptron, and CNN achieved better accuracy levels.
In the present work, we chose to explore the use of CNNs
instead of LSTM, as it presented better results during our
preliminary experiments with confirmed cases forecasting.

We may also cite a hybrid of LSTM and CNN, the
ConvLSTM model, an adaptation of CNN for image
sequence modeling. It was used by [41] for COVID-19
spatiotemporal modeling of confirmed cases. In that work,
pixel maps for Italy and the USA were created from the
available datasets, and an ensemble of ConvLSTM was
trained. Indeed, the ConvLSTM uses both convolutional
layers to process image inputs and LSTM layers for
sequence modeling.

CNNs have also been adapted to generic sequence mod-
eling tasks by using causal and dilated convolutional layers.
This family of models is called Temporal Convolutional
Network (TCN). TCN models are fully convolutional net-
works that can be applied to sequences of any length.
TCNs have been applied to different application such as
stock price prediction, energy consumption forecasting, and
automatic sepsis prediction in hospitals [30, 33, 37]. Both

classical CNN and TCN are applied to multiple COVID-19
modeling tasks. To the best of our knowledge, this is the first
time TCNs are used for epidemic modeling. Another differ-
ence from our work to related work is the development of a
multi-level forecast model. Indeed, most works are focused
only on national level modeling, but the epidemic crisis
management is often operated at regional levels. It is there-
fore essential to provide projections at a local scale. In this
work, we preferred to keep the data at a meaningful regional
level (France’s official regional organization) during both
training and prediction.

The next Section will detail the main data sources and
data curation procedures used in our work.

3 Datasets

Our work started in mid-March, at the moment the first
lockdown was declared in France. Several indicators, such
as French hospitalization data, were not yet available.
Therefore, a substantial effort was made on data curation.

3.1 Data sources

In this work, we rely on four datasets composed of different
data sources. They are summarized in Table 1 and were used
to train the neural networks. COVID-19 data come from
different sources like testing laboratories and hospitals. The
centralization of French COVID-19 data is a difficult but
necessary task that involves hundreds of establishments.
Hospitals and testing data are collected and verified by
Santé Publique France, a French public organization for
public health surveillance. Those data are openly available,
and they can be visualized on the official dashboard
[20]. Data reliability is important for modeling, but some
mistakes are expected when many different establishments
are involved. As a consequence, data anomalies are checked
and corrected regularly.

The first dataset (#1) was built from the COVID-19 data
collected by the Center for Systems Science Engineering
at John Hopkins University. It is used for worldwide
visualization of the epidemic on an online dashboard and it
is available on their Github repository [17]. This COVID-
19 time-series dataset starts on January 22nd and is updated
every day. The variables include confirmed COVID-19
cases, confirmed recoveries, and confirmed deaths. Each
sample corresponds to one geographic area and one specific
date (one sample per day). Data for 188 countries are
available. Demographic, economic, and health indicators
coming from the United Nations were added to the dataset.

The second dataset (#2) was built from the official
French dataset regarding COVID-19 hospitalizations [21]. It
includes time-series of current COVID-19 hospitalizations,
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Table 1 Summary of the training datasets. The starting dates of the time series are shown in the Dataset column

Dataset Target Granularity Features

#1 Worldwide dataset (Jan
24)

Confirmed cases Daily / country or region Demographic, health, international
mobility and economic features

#2 French dataset
(Mar 18)

Hospitalizations Daily / departments and
regions

Population by age, population den-
sity. Static mobility data (changes
before and after lockdown) extracted
from Orange operator.

#3 French dataset with mobility
data (Mar 18)

Hospitalizations, Artifi-
cial ventilation, Recover-
ies, Deaths

Daily / departments and
regions

Population, population density,
Google mobility data

#4 Worldwide dataset with
mobility data (Feb 15)

Confirmed
cases

Daily / country or region Google mobility data, demographic,
health, international mobility and
economic features

current hospitalizations with artificial ventilation, cumula-
tive recoveries, and cumulative deaths, grouped at national,
regional, and departmental levels. These time series started
on March 18th and is updated every day. Furthermore,
demographical indicators from the National Institute of
Statistics and Economic Studies (INSEE) and mobility data
extracted by the French mobile operator Orange were inte-
grated into this dataset.

The third dataset (#3) is similar to the second one, only
with Google mobility data [27] instead of Orange mobility
data. This dataset includes six indicators of mobility
changes from a baseline period in different sectors: grocery
and pharmacy, parks, public transports, retail and recreation
services, residences, and workplaces. Finally, the fourth
dataset (#4) is built by merging the dataset #1 and the
Google Mobility data.

As indicated before, most of the development time
was dedicated to data curation (data collection, cleaning,
and preparation) at the beginning of the project. One
problem was to find interesting dynamical data for our
models. Google created mobility reports at different
geographical scales (e.g., national, regional, or city),
including the time series of six mobility indicators described
previously. Such variables are useful because population
mobility has an impact on the epidemic spreading. Finding
relevant dynamical data is difficult because systematic data
collection is sometimes limited by concerns such as ethics,
security, or processing capability.

3.2 Data extraction

Data curation was partially performed with Excel, then with
the Pandas Python library. Data processing was performed
in Python with Pandas and Numpy. Deep learning models
were created and trained with Tensorflow and Keras. To
adapt the data sources to our needs, we developed some
assumptions. Our primary assumption for this work is that

convolutional neural networks (CNN) are robust enough
to learn valuable features from data without much pre-
processing. Another assumption is that CNN can benefit
from data built from countries with different COVID-19
epidemic evolution.

Also, the datasets contain multivariate time-series of
different durations, depending on the country or the data
source. As CNNs require input samples to have the same
size, time-series were converted into input and target
sequences of constant size for supervised learning. One
problem was the size of the datasets at the beginning of
the project. For French hospitals’ data, only 12 days of
data were available for each department. As data before
March 18th was unavailable, the input sequences length was
initially limited to 5 days, a value we conserved afterward
to simplify comparisons.

Because available data was limited at the beginning of
the work, a data augmentation step was performed using
the classical CNN proposed in Section 4 and by reversing
the order of the value in sequences. This data augmentation
technique allowed the addition of ten days of sequences
prior to March 18th. While the datasets were updated every
day with new sequences, there were only a few hundreds
of entries at the end of March 2020, when we started our
project. In comparison, datasets available at the end of 2020
count with thousands of sequences available for training the
neural networks. Even though, due to the entries’ nature, the
datasets are relatively small and can be processed quickly
on consumer-grade hardware.

Features are normalized to zero mean and unit variance.
The Orange mobility data was originally in the form of
daily time-series, but it had to be simplified as constant
features. Indeed, the Orange mobility features represent
the change in mobility before and after the beginning of
lockdown, but it was challenging to obtain frequent data
updates, which motivated the simplification stated above.
Similarly, A 14-days sliding-window average was used to
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smooth Google’s mobility time series and remove noise and
weekly seasonality.

In the next section, we will describe the different models
we experimented.

4 Developingmodels for COVID-19 forecast

As presented in Section 1, we developed several models to
cover different indicators for the COVID-19 epidemic. This
section presents these models and how they were applied to
the datasets to produce forecasts.

4.1 Convolutional neural network for time series

Convolutional Neural Networks (CNNs) were designed in
the late 1980s to solve image classification tasks, and
they were successfully applied to computer vision tasks
like handwritten digits recognition [14]. CNNs are not a
new idea, but many limitations have prevented them from
widespread success in the 1990s. Indeed, CNN training
requires powerful computers and a vast amount of data,
which were not available at the time. Multi-layer neural
networks training was also known to be difficult, and other
techniques like the Support Vector Machine (SVMs) were
successful alternatives. CNN only achieved widespread
recognition when a CNN architecture, Alexnet [31], won
the ILSVRC-2012 challenge. This challenge’s goal was to
achieve the best accuracy on the Imagenet dataset (1000
class tasks), and AlexNet got a 10% improvement over the
second-best entry.

CNNs are Multilayer Perceptron (MLP) adapted to image
processing. A typical MLP is made of fully connected layers
only, which is impractical for image inputs as the number
of parameters would be too high. For example, an MLP
first layer of 32 neurons and 28x28 pixels grayscale image
input would have 25,088 parameters (and over 66 million
parameters for a full HD image), and fully connected
layers do not account for the pixel’s neighborhood, which
limits the ability to learn complex image pattern. The
CNN solves this issue using convolutional layers, where 2D
convolutional filters replace the fully connected neurons.
These filters can be seen as shareable neurons as they
are applied in a sliding window manner on the whole
image, acting as feature extractors that are reused on
every part of the image. The motivation for this is that
shapes, textures, or objects can be anywhere in the image.
Convolutions are followed by a non-linear activation to
produce the final output. Each filter produces a feature
map, and the feature maps are stacked together to be
used as input in the next layer. A sub-sampling (or
pooling) layer can be used after a convolutional layer
to reduce the feature maps’ size. A typical CNN uses a

succession of convolutional/pooling layers to produce a
robust feature extractor. Fully connected layers are then
used for classification with a soft-max function. The
filters’ parameters and the fully connected parameters are
both calculated by optimizing a loss function, which is
generally performed by stochastic gradient descent and
with the back-propagation algorithm [43]. As a result, a
trained CNN can be described as a hierarchical feature
extractor: the first layers can be used to extract low-level
features like edges or lines, while the next layers can be
used for more complex shapes, textures, or object parts
[52].

The idea of using CNN for time series processing is
not new and was proposed in the 1990s by the original
inventor of CNN, Yann LeCun [35]. In this case, a CNN
for time series processing uses 1D filters instead of 2D
filters. Time series can be represented as 1D arrays in the
same way images are represented as 2D arrays. Few changes
can also be made to solve regression tasks, like selecting
the appropriate output activation and loss function, which
can be, for example, ReLU (Rectified Linear Unit) and the
mean-squared error.

4.2 Temporal convolutional neural networks

In addition to the CNN-based architecture for time series
presented in the previous section, the literature contains
other time-series processing architectures that worth being
studied. One of them is the Temporal Convolutional
Network (TCN) architecture, a technique that was first
used in Wavenet [39]. This model was initially designed
for sound-related predictions, such as music or speech
synthesis, using raw data, and setting a new state-of-the-
art in Text-to-Speech systems. TCNs use causal dilated
convolutional layers, in which the convolutions preserve
the time causality. Causal convolutions do not use future
values of the input sequence to calculate their activation.
The difference between a classical and a causal convolution
is illustrated in Fig. 1. Causal convolutions are used in
TCNs with an increasing dilation rate. The dilation rate is a
parameter that can be used to expand the input window of
the convolution while keeping the same kernel size (some
values of the input are ignored). Therefore, a higher dilation
rate corresponds to a higher receptive field, and many causal
and dilate convolutional layers are stacked to process long
sequences. This is illustrated in Figs. 2 and 3.

One inconvenience of most TCNs is that they do not
have pooling layers to avoid losing information. This can
be circumvented by using a residual skip connection, first
introduced in the ResNet models [23]. Skip connections
are inserted between the input and the convolutional layers’
output to overcome the vanishing (or exploding) gradient
problem.
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Fig. 1 a Classical convolution
with a size 3 kernel that does not
respect time causality. b Causal
convolution with a size 3 kernel
[39]

t-1 t t+1

t-1 t t+1

t-1 t t+1

t-1 t t+1

(a) (b)

4.3 Adapting CNNmodels for the COVID-19 epidemic

4.3.1 Description of the proposed CNN

Our first attempt at COVID-19 modeling, at the beginning
of the first French lockdown in mid-March 2020, relies on
a classical CNN for time series regression. Because the
available dataset was small, most of the development time
was focused on data curation, and we chose to apply a
CNN as a one-step-ahead regression model. In this first
attempt, the model receives a five-day input sequence and
produces a forecast for the next day. This limited input
size was selected because there were only 11 days of
hospitalizations data available during the beginning of the
project, and a five days input size was chosen to perform
a training/validation split. Longer input sizes were tested
when more data were available, but their performances were
similar or slightly worse in most cases. Deeper CNN models
also shown similar performances, which advantaged the
relatively lightweight model presented here.

To perform long-term forecasts, multi-step predictions
shift the input and use the one-day forecast as the
input sequence’s last value. The CNN uses a single 1D
convolutional layer with 2x1 filters followed by a max-
pooling layer, and two fully connected layers are then
used to produce the final output. The model architecture is
described in Fig. 4. Another version of this CNN was also

developed, using two separates inputs: a convolutional layer
for the COVID-19 sequences and a dense layer for the static
data. The output of both layers is then concatenated to be
used in the networks’ final dense layers. The summary of
this CNN architecture can be seen in Fig. 5. In this version,
dropout with a probability of 0.5 was used on the dense
input and on the dense hidden layer to reduce the effect of
potential over-fitting [48]. Dropout was also used to produce
confidence intervals [22]. Both CNN versions were trained
with the Adam optimizer with a learning rate of 0.0001 and
a mini-batch size of 64 [28].

4.3.2 Model for confirmed cases prediction

The first version of the CNN-based model was applied to
cumulative confirmed cases forecasting. Three scenarios,
corresponding to three independent training, were built
by filtering the first dataset (Dataset #1), based on the
data available on March 29th. Hence, the first scenario
(optimistic) uses data from countries where the epidemic
was stopped (this corresponds to China and South Korea
data, only). The second scenario (compromise) uses data
from every country with at least 1000 confirmed cases
(including China and South Korea). Finally, the third
scenario is a pessimistic approach to the second scenario,
where China and South Korea were removed from the
training set.

Fig. 2 a A causal convolution
with a dilation rate of 1. b A
causal convolution with a
dilation rate of size 2. The
receptive field is bigger while
having the same number of
parameters [39]

t-2 t-1 t

t-2 t-1 t

(a) (b)

t-2 t-1 t

t-2 t-1 t

Dilation rate = 1 Dilation rate = 2
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Fig. 3 Stacked causal and
dilated convolutional layers.
The increasing dilatation rate is
used to artificially increase the
receptive field while keeping
small kernel of size 2 [39]
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t-7 t-6 t-5 t-4 t-3 t-2 t-1 t
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Layer 3
d = 4

Layer 2
d = 2

Layer 1
d = 1

Input
Sequence

The second version of the CNN was applied to daily
confirmed cases forecasting. The goal of this model was
to create an optimistic scenario of the daily increase
of confirmed cases. The training was achieved using
decreasing sequences only (corresponding to the countries
where the epidemic was receding). Data available on May
8th were used during the training.

4.3.3 Model for hospitalizations prediction

The second version of the CNN was applied to French
COVID-19 hospitalizations modeling. Like the precedent
model, this modeling experiment started in late March
when only 12 days of historical data were available (as
data collection from French hospitals started on March
18th). In the following weeks, the training was re-executed
every week to include the new data, and projections
at both regional and national levels were systematically
sent to the French Ministry of Health. Indeed, we were
committed to creating a model that could be used to
monitor the epidemic after the end of lockdown on
May 11th. Therefore, a baseline model was trained for

this purpose, using the data available on May 10th for
training, and only decreasing sequences were kept in the
training set. The model was then used for short-term
projections, corresponding to a fictional extended lockdown
where COVID-19 hospitalizations decrease. Projections and
observations were therefore compared at both regional and
national levels to detect a slow-down of recoveries or an
increase in hospitalizations compared to that ideal scenario.

4.4 Adapting TCNmodels for the COVID-19 epidemic

4.4.1 Description of the proposed TCN

The CNN-based models proposed in the previous sections
have good short-term accuracy but has several limitations.
For example, it only used small sequences of five days as
input when it was designed, mostly because the datasets
were too small. With time, new data becomes available and
more complex models could be used for longer sequence
processing. Therefore, this work also proposes the use of
a TCN model. The training of a more complex model
was possible because COVID-19 data are updated daily,

1D Convolution Max Pooling Fully Connected Fully Connected

Input Sequence +
Static Features

Forecast

Fig. 4 The proposed CNN for confirmed cases modelling scenarios
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Fig. 5 Multi-input CNN with dropout

and our datasets were large enough when the development
of the TCN model began (mid-May). The TCN proposed
here is an adaptation of the conditional TCN introduced
by [6], applied initially to financial data forecasting with
time series conditioning. This model is built with three
blocks. The input block has two separate inputs, one for
the main sequences and one for conditional sequences. The
two separate paths contain a 1D causal convolutional layer
as explained in Fig. 6. Residual skip connections are used
for both inputs. 1x1 convolutional layers can be used in the
skip connections to change the number of feature maps (to
have the same sequence sizes for the addition operation of

Fig. 6 Input block with 2
separate paths to process the
target sequences and the
conditional sequences. Residual
skip connections are also used
with a 1x1 convolution layer to
have the same number of
features maps before the final
concatenation [6]

Fig. 7 A central block made of one dilated causal convolutional
layer with a residual skip connection. The dilation rate is increased
when multiple central blocks are stacked together to process longer
sequences [6]

the skip connection). The central blocks are residual blocks
with causal convolutions and an increasing dilation rate
(Fig. 7).

Multiple central blocks are stacked with an increasing
dilation rate. The last central block will have a receptive
field that covers the complete sequence length. From
the original publication, the output block is a single
1x1 convolutional layer with one filter per output and
followed by a global pooling layer (Fig. 8). The TCN
proposed in this work uses the same input and central
blocks, where each layer has 32 1D filters of size 2 with
ReLU activation. However, the output block was adapted
to produce confidence intervals with quantile regression
as proposed in [10, 29]. This is achieved with three
independent output blocks with 5%, 50% and 95% quantile
losses as explained in Fig. 9. The following quantile loss
equations were used to train the TCN (1 and 2):

l(y, ŷ, q) = q×max(0, y−ŷ)+(1−q)×max(0, y−ŷ) (1)
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Fig. 8 The original output block with one 1x1 convolution layer and a
final global pooling layer to produce a one-step ahead prediction. The
1x1 layer can be adapted for multi-task forecasting by using a filter for
each prediction target. Adapted from the figure shown in [6]

LOSS =
k∑

(i=1)

l(y, ŷ, qi) (2)

Each output block contains a convolutional layer with
1x1 filters with ReLU activation and dropout regularization.
This layer acts as a dense layer applied in a sliding window
manner on the feature maps produced by the last central
block. A final convolutional layer then follows it, with a
single 1x1 filter with ReLU activation and global polling,
and a multi-task version of the TCN was studied in this
work. It is a multi-task model with hard-parameters sharing
because the whole network is used to produce the outputs. It
was found that the 1x1 layers with dropout in the output blocks
were necessary for the multi-task model to achieve good
accuracy (without this layer, the model performs terribly).
The multi-task model has three output blocks, one for each
quantile, and each block produces a single day prediction
for each target. Another possible way was to add one output
block for each target and each quantile. This approach is
closer to the one used by other multi-task CNN [2, 54], but
it was not able to converge appropriately during training.

The final objective is to produce multiple outputs from
different COVID-19 time series, as several COVID-19 vari-
ables like hospitalizations and deaths are highly correlated.
The multi-task output is achieved by using one filter for each
target in the network’s last convolutional layer.

4.4.2 Transfer learning andmulti-task TCN for regional
COVID-19 prediction

The TCN with quantile regression was applied to the four
COVID-19 time series of the French dataset #3: current

hospitalizations, current hospitalizations with artificial
ventilation, cumulative recoveries, and cumulative deaths.

The training was first performed independently for each
COVID-19 indicators (one-target models): the main input
included one of the four COVID-19 time series and the
daily variation. The Google mobility data, total population,
and population density were used in the conditional input.
Subsequently, a multi-task TCN was trained with the
four COVID-19 time series altogether. This training was
performed with the Adam optimizer with a 0.0001 learning
rate and a 256 batch size. Early stopping was used for
regularization purposes.

We observed that performances at regional and depart-
mental levels were generally lower compared to the national
level. Hence, a hierarchical transfer learning scheme was
applied to train regional models with improved accuracy, as
illustrated in Fig. 10. There, a global (or initial) model is
trained with every available data from Dataset #3. Regional
models are then trained by using the weights of the initial
model instead of random weight initialization. The train-
ing at the regional level only uses data from the concerned
region.

Departmental models can also be trained by following
the same technique (the concerned regional model replaces
the global model for the pre-training step). In our case, the
focus was set onto regional levels as the French epidemic is
managed at the regional level.

Training multiple models, one for each region, can be
highly demanding in computation power. For this step, we
could rely on resources from the ROMEO Supercomputing
Center.2 ROMEO resources include a mixed CPU-GPU
cluster dedicated to HPC and Artificial Intelligence (ranked
249th in the TOP500 list, June 2018), as well as a Nvidia
DGX-1 server (8x Nvidia V100 GPUs with 16 GB RAM
each and NVLink), specially dedicated to AI.

The training of the initial model was performed on a
single Nvidia V100 GPU. Regional models were trained
with a multi-thread CPU implementation. Each training was
performed on a single thread on an Intel Xeon 40 cores
CPU.

4.4.3 TCN for confirmed cases forecasting

The proposed TCN with quantile regression was also
applied on French confirmed cases forecasting (Dataset #4)
in three different ways:

1. the TCN was trained on French data only for cumulated
confirmed cases forecasting,

2. the TCN was trained on Worldwide data for cumulated
confirmed cases forecasting

2https://romeo.univ-reims.fr
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Fig. 9 The quantile regression
output block. Each output is
similar to the original output
block. They used the same
feature maps as input and can be
adapted for multi-task
forecasting by adding more
filters to the 1x1 convolutional
layers

3. the TCN was trained on Worldwide data for daily
confirmed cases forecasting

The training used the Adam optimizer with, respectively,
32, 1024, and 1024 samples per mini-batches and with
a learning rate of 0.0001. Early stopping was used as a
regularization technique. Negative values (data error) were
removed as confirmed cases sequences should only contain
positive values.

The three training were performed twice, with and
without data augmentation. The augmentation technique

used is random masking noise (random values of the
sequences are set to 0). Training with augmentation was
performed by creating nine new sequences with between 6
and 20 random corrupted values.

4.5 Evaluation strategies

Classical CNNs showed in Figs. 4 and 5 were respectively
applied to cumulative confirmed cases predictions scenarios
and daily confirmed cases predictions. The second classical
CNN was applied to hospitalizations forecasting (Dataset

Fig. 10 Example of a
hierarchical transfer learning for
regional and departmental
training

Initial Model

Regional Model 1 Regional Model 2

Departmental
Model 1

Transfer Learning

Transfer Learning
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#2). The TCN model was first applied to French COVID-
19 hospital data (hospitalizations, artificial ventilation,
recoveries, and deaths) with the Google Mobility reports
(Dataset #3). The classical CNN performed poorly when
Google mobility data were used as inputs, as predictions
were too sensitive to mobility changes. Finally, the TCN
was applied to both cumulative and daily confirmed
cases forecasting with worldwide COVID-19 and Google
mobility data (Dataset #4). The different experiments are
summarized in Table 2. Performances were measured with
the normalized root mean-squared-error (NRMSE) and the
adjusted R-squared as explained in (3), (4) and (5):

MSE(ŷ, y) =
n∑

i=1

(ŷi − yi)
2

n
(3)

RMSE(ŷ, y) =
√

MSE(ŷ, y) (4)

NRMSE(ŷ, y) = RMSE(ŷ, y)

Mean(y)
(5)

The TCN transfer learning scheme was evaluated by
comparing the sum of regional predictions (which accounts
for the whole country) to country observations. The
average regional NRMSE and the weighted average regional
NRMSE were calculated to evaluate the improvement
of regional forecast performances. Section 5 presents a
dedicated analysis for each model described in Table 2.

5 Results and analysis

This section describes the main results of this paper. A
summary of the results is first presented, and a detailed
description for each indicator is presented later.

As presented before, our first proposed model for
COVID-19 was applied to confirmed cases forecasting.

Table 2 Summary of the 6 modelling experiments

Model Target Dataset Samples Training period Forecast period

Optimistic, compromise
and pessimistic scenarios

Total Confirmed
cases

#1 366 /
2745 /
2379

January 22nd to March
29th

March 30th to April 19th

CNN with dropout Daily Confirmed cases #1 332 January 22th to May 7th May 8th to July 6th

CNN with dropout Hospitalizations #2 1676 March 18th to May 10th May 11th to May 24th

TCNs with quantile regres-
sion

One model per target (Hospi-
talizations, artificial ventila-
tion, recoveries, deaths) One
multi-task model with the 4
targets

#3 5170 March 18th to June 5th June 6th to June 30th

Regional models Same as TCNs #3 5170 March 18th to June 5th June 6th to June 30th

Worldwide
models

Daily or cumulative con-
firmed cases

#4 18426 February 15th August
6th

August 7th to September 9th

Table 3 Performances for the confirmed cases modelling scenarios

Evaluation Optimistic Compromise Pessimistic

First prediction 45,873 45,570 44,882

Last prediction 98,830 110,703 290,864

NRMSE 0.0986 0.1257 0.99

R2 0.85 0.88 0.93

This first model is a classical CNN designed to have a
low number of parameters to avoid over-fitting. It was
trained on worldwide data (Dataset #1) for cumulative
confirmed cases modeling with optimistic, compromise, and
pessimistic scenarios. Results show that confirmed cases
evolution followed a different trend compared to projection.
Observed data were below the lower predictions from May
8th to June 10th and followed a linear increase. A limitation
of this approach is that data filtering must be updated before
each training to produce coherent scenarios.

The same model was retrained later when more data
were available, providing daily confirmed cases forecasts.
Only decreasing sequences were kept during training
to produce an optimistic scenario corresponding to an
extended lockdown. Results show that the model was too
sensitive to extreme values, which produce high daily
increase predictions. The model was indeed too optimistic,
predicting a stop of the daily increase by July 2020. Instead,
observed data from the end of the lockdown to early
July show a linear increase in the cumulative number of
confirmed cases.

The number of confirmed cases is an indicator that must
be carefully evaluated because, while it reflects the spread
of the virus in the population, it does not reflect the actual
burden caused by the virus on hospitals. Indeed, a massive
testing campaign can increase the number of confirmed
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Fig. 11 Optimistic and
compromise predictions from
March 30th to April 19th

compared to observed data

cases by detecting asymptomatic infected people who do
not overload the healthcare system. Instead, COVID-19
hospitalizations is a better indicator because it describes
the actual impact of the virus. This indicator is crucial
to manage the crisis, as its forecast is directly related to
decisions on the number of available beds and medical
staff workers. It is also important to decide when a patient
must be transferred from a heavily impact region to a less
impacted region with available beds.

The classical CNN for confirmed cases forecasting was
then applied to hospitalizations forecasting. The training
was performed using French data at departmental, regional
and national levels (Dataset #2). Subsequent training
campaigns were performed every week, and projections
were communicated to the French Ministry of Health. A
baseline monitoring model was created using data available
up-to May 11th as training data. Again, we adopted an
optimistic scenario corresponding to an extended lockdown,
and projections were compared to observed data every
week. This way, we could observe that the decrease in
hospitalizations was lower than expected from mid-May
to mid-July, which can be explained by the slow-down of

hospitals’ patient recoveries (fewer people are getting out of
the hospitals). These results have shown that modeling can
still be performed despite the small size of the datasets.

Despite these results, the classical CNN model suffers
from many limitations. Performances at the regional and
departmental levels were not satisfying, and the model
was too limited to exploit dynamical data such as Google
Mobility Reports. Therefore this work was extended using
a modified Temporal Convolutional Network (TCN) with
mobility data (Dataset #3).

The TCN model was successfully applied to five
COVID-19 indicators: confirmed cases, hospitalizations,
artificial ventilation, recoveries, and deaths. Besides, the
TCN was successful at different scales: regional predictions
could be made from national data, and national predictions
were performed from worldwide data.

TCN was first applied to hospitalizations predictions,
achieving good performances at the national level, although
regional level performances were insufficient. Regional
forecasts were later improved with a hierarchical pre-
training scheme, as presented in Section 4. Finally, the
TCN was used to confirmed cases forecasting, successfully

Fig. 12 Predictions from May
8th to July 6th compared to
observed data
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Table 4 Performances for confirmed cases forecasting

Evaluation Lower Median Higher

First prediction 139,642 140,155 140,579

Last prediction 155,496 161,134 173,438

NRMSE 0.041 0.057 0.099

R2 0.49 0.53 0.58

modeling both cumulative and daily confirmed cases
(Dataset #4).

The next sections present the detailed analysis for each
modeling approach.

5.1 Results for CNN-based COVID-19modeling

5.1.1 Scenarios for cumulative confirmed cases forecasting

The results presented in this section were obtained with the
first classical CNN proposed earlier. The main objective of
these scenarios is to model the evolution of the epidemic
with the reduced worldwide data available at the time. From
March 30th to April 19th the number of confirmed cases
grew from 44,550 to 112,606 with an average of 3,403
daily increase. The daily increase peak was achieved on
March 31st with 7,578 new cases. Table 3 contains the
performance values for the three scenarios. The optimistic
scenario predicted an average of 2,708 daily increase for the
same period with a peak on April 3rd with 8,889 new cases.
The predicted total cases grew slowly to 98,000 on April
19th with less than 200 daily new cases. The prediction
error rate is equal to 9.86% NRMSE for the entire period
and 12.94% for the last day of the period. Predictions
were optimistic as intended, with a final prediction lesser

Table 5 Performances for hospitalizations forecasting

Evaluation Lower Median Higher

First prediction 20,967 21,554 22,115

Last prediction 7,149 18,597 20,292

NRMSE 0.032 0.06 0.12

R2 0.99 0.99 0.96

than 14,000 than the observed total cases. The model was
optimistic by predicting a slow down to 218 daily increase
for the last five days of the periods against 1,600 observed
daily increase. The model also predicted a higher peak with
a delay of two days.

The compromise scenario is similar to the optimistic
model, with a predicted peak of 9,467 new cases on April
3rd but with a slighter decrease of new daily cases with
an average of 811 for the five last days of the period.
Predictions grew from 45,570 predicted cases on March
30th and 110,703 on April 19th. The prediction error rate
is higher than the optimistic scenario with 12.57% NRMSE
but was low for the last day of the period with only a
1.7% error rate. This scenario predicted an average daily
increase of 3,257 new cases for the whole period, close
to the observed daily increased (3,403 cases). Predictions
for optimistic and compromise scenarios are compared to
the real observations in Fig. 11 (the pessimistic scenario
was omitted for visibility purpose). The pessimistic scenario
was different, with a continuous predicted increase in new
daily cases. Predictions grew from 44,882 predicted cases
on March 30th to 290,864 on April 19th.

Overall, the three scenarios successfully described
the optimistic, compromise, and pessimistic evolution of
the epidemic for the considered period. Optimistic and
compromise scenarios were close to observations, with the

Fig. 13 Predictions from May
11th to May 24th compared to
observed data
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Fig. 14 Predictions from July
6th to July 16th compared to
observed data

main differences being a higher predicted peak and a higher
decrease in new daily cases. This can be seen in Fig. 11 with
observed data below both scenarios predictions until April
12th.

5.1.2 CNN for daily confirmed cases forecasting

Another approach to confirmed daily cases modeling was
carried out with the second version of the CNN described
earlier. This approach was conducted when more data
were available, and data from every country were used.
Predictions and observations are shown in Fig. 12 and
performances are shown in Table 4. Dropout was activated
at inference time to create 95% confidence intervals. The
predicted total confirmed cases grew from about 140,000
cases on May 8th to 155,496 for lower predictions, 164,134
for median predictions, and 173,438 for higher predictions
on July 6th. In the same period, the observed total number of
confirmed cases grew from 138,421 to 168,335. However,
observations and predictions have different slopes. The
model predicted a daily increase much higher, over 1,800
new cases, that would decrease to a few dozen cases, while
observation shows a stagnation with 509 daily confirmed
cases on average. This much higher predicted daily increase
can be explained by the peak in confirmed cases observed

on May 6th as raw data were used. Overall, this model was
too sensitive to extreme values, and it was overly optimistic
by predicting a stop of the virus spread by July 2020.

5.1.3 CNN for hospitalizations forecasting

The second version of the proposed CNN was also trained to
predict the number of hospitalization cases in France at the
country and regional levels. Predictions and observations
are shown in Fig. 13 and Table 5 contains the performances
of the predictions. From May 11th to May 24th, the number
of observed hospitalizations in France decreased from
22,115 to 17,021, with an average of 140 daily decreases in
the number of hospitalizations. Lower predictions decrease
from 20,966 to 17,149, median predictions from 21,554
to 18,587 and higher predictions decrease from 22,115 to
20,292. Observations were inside the confidence intervals
for 12 of the 13 regions. Observations for the whole country
were close to the lower predictions with 3.2% NRMSE. This
model was applied every two weeks on the new data to
compare predictions and observations and detect a potential
new wave. Predictions were very close to observations at the
country level but not for each region.

In most cases, predictions tend to be overly pessimistic,
with a predicted stagnation or increase for some regions. As

Table 6 Performances for hospitalizations predictions with TCNs

Hospitalization models Training RMSE Valid. RMSE Valid. R2

One-target - country 0.02 0.01 0.99

One-target - sum of regions 0.03 0.07 0.95

Multi-task - country 0.02 0.04 0.98

Multi-task - sum of regions 0.02 0.04 0.88

L. Mohimont et al.8798

1 3



Fig. 15 Hospitalizations
predictions from June 6th to June
30th compared to observed data

Fig. 16 Hospitalizations
predictions from June 6th to June
30th compared to observed data

Table 7 Performances for Artificial Ventilation hospitalizations predictions with TCNs

Artificial vent. models Training RMSE Valid. RMSE Valid. R2

One-target - country 0.03 0.09 0.98

One-target - sum of regions 0.03 0.05 0.94

Multi-task - country 0.06 0.41 0.96

Multi-task - sum of regions 0.05 0.4 0.94
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Table 8 Performances for recovery predictions with TCNs

Recovery models Training RMSE Valid. RMSE Valid. R2

One-target - country 0.01 0.03 0.98

One-target - sum of regions 0.01 0.02 0.98

Multi-task - country 0.01 0.01 0.95

Multi-task - sum of regions 0.01 0.01 0.99

we can see in Fig. 13, observed hospitalizations from May
11th to May 24th were close to the lower predictions
because the virus spreading was stopped and new hospi-
talizations were low. These observations were closer to the
upper predictions from July 6th to July 16th as shown in
Fig. 14. A slow-down in the number of recoveries (fewer
people are leaving the hospitals), while new hospitalizations
were still observed, can explain such a situation.

5.2 Results for TCN-based COVID-19modeling

5.2.1 TCNs for COVID-19 hospital indicators forecasting

The TCN with quantile regression described in the
previous section is implemented and trained to predict the
number of hospitalizations, hospitalizations with artificial
ventilation, recoveries, and deaths. These models are
compared to the multi-task model that predicts the four
targets, and the NRMSE is calculated for the validation
set between median predictions and observations. Country-
level performances were compared to regional model
performances by calculating the sum of regional predictions
that should be close to the national level. With TCNs,
the Hospitalization model achieved good accuracy at the
country level with 1.2% NRMSE and 0.99 R2. The sum of

Table 9 Performances for deaths predictions with TCNs

Death models Training RMSE Valid. RMSE Valid. R2

One-target - country 0.01 0.05 0.95

One-target - sum of regions 0.03 0.04 0.94

Multi-task - country 0.01 0.01 0.95

Multi-task - sum of regions 0.01 0.01 0.50

regional prediction accurate well with 6.8% NRMSE and
0.98 R2, and observed data were above median predictions
and below higher predictions. For both regional and country
predictions, the multi-task model creates wider intervals
with an upper limit than stagnate (64 daily decreases against
177 for the higher predictions at the country level). In both
cases, the observed data are close to the median predictions
with 4% RMSE but with lower R2. Performances are shown
in Table 6, and country-level French predictions are plotted
in Fig. 15.

Similar behavior can be observed with the Artificial
Ventilation model, where observed data are close to the
lower predictions with 5.6% NRMSE and 0.98 R2 at the
country level. Furthermore, observed data even went below
the lower limit from June 19th to June 30th. As shown in
Fig. 16 (country-level French predictions), observed data
are close to the median predictions with 5.2% NRMSE
and 0.96 R2 at the regional level. The multi-task model
also produced wider intervals that were expected because
artificial ventilation hospitalization is part of the total
number of hospitalizations. The multi-task model higher
limit has a 2-daily decrease average compared to 16-daily
decreases at the country level. The performances of the
different models are detailed in Table 7.

Fig. 17 Recovery predictions
from June 6th to June 30th

compared to observed data
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Fig. 18 Deaths predictions from
June 6th to June 30th compared
to observed data

The Recovery model also achieved good accuracy at
both country and regional level with, respectively, 3.5%
NRMSE / 0.98 R2 and 2.3% NRMSE / 0.95 R2. The
multi-task model improved the performances on both levels
with respectively 1.2% NRMSE / 0.98 R2 and 0.7%
NRMSE / 0.99 R2. The intervals produced by the multi-
task model were narrower with a 277 daily increase against
410 daily increase for higher predictions at the country
level. It is coherent with hospitalization behavior because
total recoveries are directly linked to the decrease in
hospitalization. Performances are shown in Table 8, and
country-level French predictions are plotted in Fig. 17.

In the case of the number of deaths, we observe that the
error rate is low with, respectively, 5.5% and 4.3% NRMSE
for country and regional levels. However, the increasing
trend is overestimated with a predicted daily increase of
98 compared to the 21 daily increase observed during
the validation period. The predicted increase is lower for

the multi-task models, but they produced anomalies with
a small decreasing cycle. The prediction trends are still
increasing, but there are decreasing values that seem to
correspond to weekends. This is related to the way data are
reported, as fewer deaths are reported on weekends, and
they are added to the following weekdays. Performances are
shown in Table 9, and country-level French predictions are
plotted in Fig. 18.

Finally, we can say that good performance can be
achieved at the country level on the four targets with
individual models. The multi-task model can also achieve
good performances, with broader or narrower intervals
coherent with the task’s high uncertainty. However,
performances on regional data are not homogeneous among
the regions. High accuracy can be achieved in the most
impacted regions such as Ile-de-France (Paris region) or
Grand-Est (north-east of France), while lower accuracy is
still observed in smaller regions.

Fig. 19 Performances of the 4
models on hospitalizations
predictions
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Fig. 20 Performances of the 4
models on artificial ventilation
hospitalizations predictions

Fig. 21 Performances of the
four models on recovery
predictions

Fig. 22 Performances of the
four models on deaths
predictions
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Table 10 Performances for the TCN trained on French data only

Data Training RMSE Validation RMSE

France 4.4% 14.5%

France with data augmentation 8.2% 12.6%

5.2.2 TCNs with transfer learning for regional forecasting

Regarding the hospitalization predictions, better perfor-
mances were found with regional training with transfer
learning with a weighted average of 6.7% NRMSE, an aver-
age of 15% NRMSE, and a 4% sum of predictions NRMSE
against 9%, 22%, and 7% with the initial model, respec-
tively. Performances are better for eight of the 13 regions
and slightly worse for five regions. The initial multi-task
model achieved worse performances with 9.5% weighted
average NRMSE, 32% average NRMSE, but presented a
better sum of prediction performances, reaching 4%. The
regional multi-tasks models achieved the best weighted
average performances with 4.7% but with an average RMSE
similar to the initial model with 21.5%. The regional multi-
task models improved performances in the region that con-
tributed the most to total hospitalization accounts, while
performances were worse in other regions. All these results
are shown in Fig. 19.

Similar results with Artificial Ventilation predictions
were found. Regional models achieved 8.2% weighted
average NRMSE, 20.5% average NRMSE, and 3% sum
of predictions NRMSE against 12.3% weighted average
NRMSE, 28.5% average NRMSE, and 5% sum of
predictions NRMSE. Performances were better on nine
of the 13 regions, while four regions presented slightly
worse results. Performances were worse on each region with
both initial multi-task and regional multi-task models, as
summarized in Fig 20.

Recoveries NRMSE were lower than 10% for 11 of
the 13 regions on both initials and regional models.
Performances were improved slightly by the multi-task
regional models with 1.3% weighted average NRMSE,
2.7% average NRMSE, and 1% sum of predictions NRMSE
against respectively 3.1%, 5.4%, and 2% for the initial
model as shown in Fig. 21.

Table 11 Performances for the TCN trained on worldwide data for
cumulative confirmed cases

Data Training RMSE Validation RMSE

Whole dataset (Dataset #4) 4.1% 2.7%

France 1% 1%

The weighted average NRMSE is slightly lower for
death predictions with multi-task regional models. However,
decreasing predictions can be found with up to 5 values
out of the 25 of the validation periods despite having no
decreasing trend on the training set. The one-target regional
models’ performances are similar to the initial models,
while the initial multi-task model shows slightly worse
performances. While one-target initial and regional models
show a high correlation with 0.94 R2, the predicted daily
increase is off with more than 94 predicted daily increase
compared to the observed 21 daily increase. All these results
are condensed in Fig. 22.

5.2.3 TCNs for confirmed cases forecasting

The TCN trained only on French data shows overfitting
signs with 4.4% NRMSE on the training set and 14.5%
NRMSE on the validation set. Also, this model’s projections
were incoherent because they were below the input
sequences’ values (confirmed cases can only increase or
stay constant). The TCN trained with data augmentation had
similar performances with 8.2% NRMSE on the training set
and a slightly better validation NRMSE of 12.6%, but the
projections remain incoherent. Performances for this model
are shown in Table 10.

On the contrary, the TCN trained on worldwide data
for cumulative confirmed cases forecasting achieved 4.1%
NRMSE on the training set and 2.7% on the validation
set. The performances were of 1% NRMSE for the training
set and also 1% NRMSE for the validation in France. The
TCN trained for daily confirmed cases forecasting achieved
69.5% NRMSE on the training set and 83.4% NRMSE
on the validation set on daily sequences. Performances
are shown in Table 11 and predicted values for the
validation period are compared to observed data in Fig. 23.
Performances for France were 65% on the training set and
29% on the validation set for daily sequences and 5% on
both training and validation sets for cumulative sequences.
Performances are shown in Table 12.

The high NRMSE on daily sequences for this last model
was expected because the daily increase of confirmed cases
is subject to noise and cyclical patterns related to the
COVID-19 test centers’ organization. However, the actual
error on cumulative cases remains low, with 5% in France.
Data augmentation did not improve the performances of
those two models. The performances achieved by both TCN
trained with worldwide data show that the proposed TCN
can be applied successfully to different COVID-19 related
modeling tasks like confirmed cases, hospitalizations,
artificial ventilation, recoveries, and deaths forecasting.
The TCN achieved good performances on both national
modeling (confirmed cases forecasting with worldwide
data) and regional modeling (hospitalizations forecasting
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Fig. 23 Predictions and
observed data from August 6th

to September 9th for confirmed
cases forecasting

with French data). Finally, the proposed TCN overcame the
limitations of the classical CNN proposed in Section 4.1.

6 Discussions and future works

The results presented in the previous section show that
CNN and TCN can produce accurate projections of multiple
COVID-19 indicators. Best performances for confirmed
cases and hospitalizations of the proposed CNN and TCN
are compared in Fig. 24. TCN seems to achieve good
accuracy, but this comparison is limited because the error
rates were calculated for different periods (TCN also
benefited from more data). Overall, TCN can achieve a 1%
error rate or even less in the best case and continued to
present good results. For instance, confirmed cases from
September 11th to September 24th have been computed, as
seen in Fig. 25, demonstrate high accuracy, with only 0.5%
NRSME.

If these results comfort our choices, the algorithm
choices must also be observed in the context of the COVID-
19 outbreak. Since March 2020, multiple data-driven
methods have been applied, with more or less success. In the
specific case of French COVID-19 data, five main methods

Table 12 Performances for the TCN trained on worldwide data for
daily confirmed cases

Data Training RMSE Validation RMSE

Whole dataset (Dataset #4) 70% 83%

France (daily) 65% 29%

France (cumulative) 5% 5%

were explored to forecast confirmed cases during the first
epidemic wave. Table 13 illustrates the principal results
from these works (to perform a fair comparison, reported
metrics such as RMSE were normalized). One of the main
methods used by the authors is ARIMA, a popular time-
series analysis algorithm. It was applied to French data by
several authors such as [8, 32, 46]. Table 13 indicates that
these works present an NRMSE of 23.5%, 7.1%, and 2.9%,
respectively, which can be compared to the NRMSE of 9.9%
obtained with the optimistic CNN method we employed.
This difference in performances between authors can be
explained by the duration of the validation period. [32]
achieved 2.9% with only seven days of validations, while
[46] achieved 23.5% over 22 days. Also, only the training
RMSE was reported by [8]. The performances achieved
by the optimistic CNN were obtained with 20 days of
validation, with less than half of the NRMSE reported by
[46].

Another popular method is Least-square Support Vector
Machine(LS-SVM), which was compared to ARIMA by
[46]. Training NRMSE of less than 1% and validation
NRMSE of 10% were reported, showing signs of over-
fitting. It is very close to the optimistic CNN. Nonlinear
Autoregression Neural Network(NARNN) and LSTM were
also compared to ARIMA by [32]. They achieved 1% and
0.3% NRMSE on a 7-days validation period, respectively.
While both of these methods gave better results than the
CNN method used in our paper, they are similar to the
results we obtained with the TCN method, which gives
about 1% and 0.35% NRMSE for 30 and 14 days forecasts.
The longer validation duration shows that the proposed
TCN is competitive compared to other existing methods.
It is also worth noting that the proposed TCN achieved
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Fig. 24 Comparison of CNN
and TCN error rates on
confirmed cases and
hospitalizations

good performances on hospitalization predictions. Indeed,
1.2% NRMSE was reported from June 6th to June 30th,
during the drop in cumulative hospitalizations after the first
lockdown. Later, the TCN was retrained with data available
up to November 8th. An NRMSE of 2.49% was reported
for a 28 days forecast (from November 9th to December
6th). Predictions and observed data are shown in Fig. 26.
This result shows that the proposed TCN can provide good
forecasts with different dynamics.

Another modeling method based on Genetic Expression
Programming (GEP) was proposed by [44]. It has the

advantage of giving an interpretable formula for different
COVID-19 prediction tasks (confirmed cases and deaths,
for example). This is important because confirmed case
modeling is not easy to model, as confirmed cases are
too dependent on the testing strategy. Hence, only a few
thousand tests per day were performed during the first wave
(from March to May) in France. As part of the new public
health strategies after the first wave, this number has grown
to at least 200,000 tests since July 2020.

Consequently, the formula calculated by [44] is no longer
valid as the testing strategy has changed. In comparison,

Fig. 25 Comparison of
predicted confirmed cases and
observed data from September
11th to September 24th in France
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Table 13 Performances of the discussed methods(confirmed cases)

Authors Methods Validation period NRMSE

Singh et al [46] ARIMA 22 days(April/May) 24%

Singh et al [46] LS-SVM 22 days(April/May) 10%

Chakraborty and Ghosh [8] ARIMA + Wavelet Training accuracy only(January to April) 7.1%

Salgotra et al. [44] GEP 7 days(June) 0.6%

Salgotra et al. [44] GEP 30 days(June) 0.6%

Salgotra et al. [44] GEP 32 days(August to September) 24%

Kırbaş et al [32] ARIMA 7 days(April/May) 3%

Kırbaş et al [32] NARNN 7 days(April/May) 1%

Kırbaş et al [32] LSTM 7 days(April/May) 0.35%

the proposed TCN uses worldwide data to overcome this
limitation. The published formula was able to predict
confirmed cases, starting from May 29th, with 0.6% error
rate at both 7 days and 30 days forecast. However, the same
formula applied from August 6th to September 9th achieved
24% error rate (compared to 1% with TCN).

Besides the modeling method, another legitimate ques-
tion often overlooked is the training time/cost threshold.
Compared to other artificial intelligence applications, the
datasets are relatively small (even after one year). Both
CNN and TCN models are sufficiently simple to allow fast
training in consumer-grade hardware. For instance, if the
TCN model’s training can be achieved in about 20 minutes
with the help of a high-end Nvidia Tesla V100 GPU, it can
also be performed in a reasonable time with a mid-range
GPU, like the Nvidia GTX 1050. The training cost problem
has a more significant impact on the proposed transfer learn-
ing scheme for regional modeling. Each region needs to be
trained on different data, and a single region dataset is too
small to benefit from GPU acceleration. A simple technique

to reduce the training time is multi-threaded CPU paral-
lelization. Sequential training takes about 6 hours, while
parallelized training requires about 45 minutes on two Intel
Xeon E5-2698 v4 (20 cores each). This is an expensive solu-
tion if we consider the material cost (about 6500$ for the
two CPUs), but the use of non-dedicated hardware such as
a cloud computing instance may considerably reduce this
cost.

As future work, we aim at overcoming some limitations
of the current models. For example, the current TCN model
uses constant mobility data for conditional forecasting.
Ideally, mobility data would be selected to create optimistic
and pessimistic scenarios by setting mobility constraints
in the model’s conditional input. One problem is the
availability of dynamic data. Many factors have an impact
on the evolution of the epidemic and cannot be monitored
in real-time. Those factors include the effectiveness of
sanitary measures. People’s behavior has changed since the
first outbreak in March-April. Masks are now mandatory
in closed spaces, telecommuting is recommended, bars

Fig. 26 Predictions and
observed data from November
9th to December 6th for
hospitalizations forecasting

L. Mohimont et al.8806

1 3



and restaurants have been kept closed since November
2020, etc. Another necessary dynamical data is regional
mobility. It could be used to create projection maps of the
virus spreading. An approach using ConvLSTM to generate
disease spreading maps have been proposed by [41], but
they did not use mobility data.

The modeling tool GleamViz uses mobility data like
commuting networks and air travel, but they use compart-
mental models only [7]. This tool is also designed for
a-posteriori analysis or scenario explorations. We believe
that a hybrid solution can be designed where, for example,
compartmental models could be used to generate artificial
datasets. This synthetic data would include many scenarios
based on different sanitary constraints (an idea proposed by
[5]). Another hybrid solution would be to use deep learning
to estimate a compartmental model’s parameters, as pro-
posed by [16] to model the US epidemic. This approach
reached good results, predicting that the number of con-
firmed cases would reach 5 million on August 7th, a number
that was finally attained on August 5th.

Another development front is related to the multi-task
model, which did not improve performances and show signs
of over-fitting on two targets (Artificial ventilation hospi-
talizations and deaths). We believe that this naive multi-
task model with hard-shared parameters can be improved
with soft-shared parameters and regularization techniques.
Constraints would also be necessary to ensure that the
predicted values are coherent (e.g., the number of death
cannot decrease, or the artificial ventilation hospitalizations
should be less than the total hospitalizations). Finally, it is
important to ensure that sufficient data is available to feed
data-driven models. This implies that data-driven models
are less adapted to predict an epidemic’s first wave unless
automatic health data collection systems are implemented
at the regional or the establishment level. Such observation
should be debated as automatic health data collection poses
many security and ethical concerns, a subject under strict
regulation in France.

7 Conclusion

In this paper, multiple data-driven models were proposed for
COVID-19 forecasting in France. The proposed TCN can
achieve a 1% error rate at the national level for confirmed
cases and hospitalizations predictions (compared to 9 and
5% for the proposed CNN). Competitive performances
were also achieved on artificial ventilation hospitalizations,
recoveries, and deaths predictions with respectively 9%,
3.5%, and 4.5% error rates. The proposed transfer-learning
scheme was able to improve accuracy in 8 regions.
Several challenges had to be faced when developing these
models. The first challenge was the lack of data at the

COVID-19 outbreak. Hence, one of our contributions was
designing a model based on Convolutional Neural Networks
and capable of providing short-term confirmed cases and
hospitalizations forecasts, even when little data is available.

Another challenge was the need for more representative
metrics on the advance of the COVID-19 epidemic. Hence,
we trained a Temporal Convolutional Network and achieved
good accuracy forecasts for indicators such as confirmed
cases, hospitalization, artificial ventilation hospitalization,
and recoveries.

We also had to deal with different granularity levels for
our forecasts, as we had to provide both national scale
forecasts and regional/departmental forecasts. Indeed, the
French management of COVID-19 is mainly performed
at a regional scale, with national-level coordination for
resource deployment and patient transfers when needed.
We achieved good national and regional accuracy with
improved performances by using a hierarchical transfer
learning scheme presented in this work.

Our models are now integrated into a COVID-19
monitoring and forecast dashboard developed for the Grand-
Est region within the PrédictEst project. Upon request, the
model can be accessed by other researchers through a REST
API.
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