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Abstract
It is generally acknowledged that driver pathway plays a decisive role in the occurrence and progress of tumors, and
the identification of driver pathways has become imperative for precision medicine or personalized medicine. Due to the
inevitable sequencing error, the noise contained in single omics cancer data usually plays a negative effect on identification.
It is a feasible approach to take advantage of multi-omics cancer data rather than a single one now that large amounts of
multi-omics cancer data have become available. The identification of driver pathways by integrating multi-omics cancer
data has attracted attention of researchers in bioinformatics recently. In this paper, a weighted non-binary mutation matrix
is constructed by integrating copy number variations, somatic mutations and gene expressions. Based on the weighted
non-binary mutation matrix, a new identification model is proposed through defining new measurements of coverage and
exclusivity. Then, a cooperative coevolutionary algorithm CGA-MWS is put forward for solving the presented model. Both
real cancer data and simulated one were used to conduct comparisons among methods Dendrix, GA, iMCMC,MOGA, PGA-
MWS and CGA-MWS. Compared with the pathways identified by the other five methods, more genes, belonging to the
pathway identified by the CGA-MWSmethod, are enriched in a known signaling pathway in most cases. Simultaneously, the
high efficiency of method CGA-MWS makes it practical in realistic applications. All of which have been verified through a
number of experiments.
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1 Introduction

Cancer is a serious disease that has become one of the
leading causes of human death. Scientific researches have
demonstrated that the alterations in genome are closely
related to the formation and progress of cancer [1].
All of these genome mutations can be categorized into
two types, i.e., ‘driver mutations’ triggering the infinite
proliferation and spread of cancer cells [2], and ‘passenger
mutations’ being irrelevant to cancer [3]. Distinguishing
driver mutations from passenger mutations will shine a light
on understanding cancer pathogenesis and developing anti-
cancer drugs [3]. The rapid development of deep sequencing
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technology has produced incredible amounts of multi-omics
cancer data [4, 5], which turns it into reality to identify
cancer related driver mutations [6]. However, many studies
discovered that due to substantial mutational heterogeneity
in cancer genomes, little overlap can be found between the
gene mutations of two samples even though they are from
the same patient [7, 8].

It is well known that there exist many significant
cellular signaling or regulatory pathways in the human
body, which play key roles in cell regulation including
proliferation, metabolism, and apoptosis [9]. The aberration
of any one driver gene involved in the pathway is
usually enough to perturb its regulatory function, and
lead to the formation of tumors. This may account for
why the mutational heterogeneity exists. Consequently, it
is essential to study mutations from the perspective of
pathway level rather than gene level, which is necessary
for capturing the heterogeneity in cancers [10, 11]. Three
types of identification problems, such as individual driver
pathway, cooperative driver pathways, and pan-cancer
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driver pathways, have drawn much attention. The first one
is studied in this paper.

At present, there are mainly two kinds of methods for
identifying individual driver pathway, i.e., prior knowledge-
based methods and de novo ones. The prior knowledge-
based methods try to detect a group of genes with the
assistance of known biological networks. However, the
incomplete and noisy of the prior knowledge may limit the
detection of new combinations of mutated genes [12].

It is crucial to study the identification problem with a de
novomethod. Two fundamental characteristics possessed by
driver pathways, i.e., high coverage and high exclusivity, are
usually adopted in this kind of methods [13]. High coverage
indicates a driver pathway covers a great quantity of cancer
samples, whereas high exclusivity indicates each cancer
sample contains just one driver gene in a pathway. Vandin
et al. [12] first presented the maximum weight submatrix
problem based on the two properties. Dendrix, a method
based onMarkov ChainMonte Carlo (MCMC), was devised
to solve this problem. Zhao et al. [14] put forward a binary
linear programming algorithm and a genetic algorithm (it
is called as GA in this paper), both of which showed
competitive performance compared with Dendrix. The GA
algorithm was also easily applied to solve their presented
integrative model that incorporates the gene expression
profiles. Zhang et al. [15] presented a network-based
approach iMCMC by integrating copy number variations
(CNVs), somatic mutations, and gene expressions. Zheng
et al. [16] devised a more reliable algorithm MOGA by
coordinating high coverage and high mutual exclusivity.
Recently, Wu et al. [17] redefined the model of the
maximum weight submatrix problem, modulating coverage
and mutual exclusivity by using the average weight of
genes in one pathway. Then they presented a pathenogenetic
algorithm PGA-MWS for solving this model.

Among the above mentioned approaches, most of
which try to alleviate the negative effects from the noise
in mutation data with the help of other omics data,
and generate the identification model based on the two
characteristics of a driver pathway. Nevertheless, it is
quite usual that only mutation data is considered in the
calculation of coverage and exclusivity, while the other
omics data is used to calculate the weight of genes to
indicate whether they are important or not. In this paper,
a novel method is introduced, which measures coverage
and exclusivity with not only mutation data but also gene
expression data. The main contributions are depicted as
follows: (1) Introduce a novel method to integrate CNVs,
somatic mutations and gene expressions, and construct a
weighted non-binary mutation matrix. (2) Design a new
identification model by defining new measurements for
coverage and exclusivity. The model may provide new
ideas for identifying driver pathways from a non-binary

mutation matrix. (3) Devise an identification algorithm
CGA-MWS based on cooperative coevolutionary genetic
algorithm. Based on the new identification model, the
CGA-MWS algorithm is able to detect many gene sets
having biological meaning, which has been demonstrated by
extensive experiments.

2 Definitions and notations

This section begins with the integration of multi-omics
data, and then an identification model is proposed. Suppose
that S|P |×|GS | is a somatic mutation matrix, C|P |×|GC | is
a CNV one, and E|P |×|GE | and Ē|P̄ |×|GE | are two gene
expression ones. The rows of these matrices denote a
group of cancer samples P or normal samples P̄ , and the
columns of them denote a group of candidate genes GS ,
GC and GE , respectively. In matrix S, sij=1 (i=1,2,. . . ,|P |,
j=1,2,. . . ,|GS |) denotes that the j th gene mutates in the
ith sample, and sij=0 otherwise. Matrices C, E and Ē are
three real ones, where each entry of them represents relative
variation or expression level of a given gene in a particular
sample.

Construct a |P | × |GA| binary mutation matrix A, where
GA=GS ∪ GC . Let aij=1 when the j th gene mutates
in the ith sample or it is in a statistically significant
variation region of the ith sample [14], and aij=0 otherwise
(i=1,2,. . . , |P |, j=1,2,. . . , |GA|). The common gene set G

is generated for further integrating the mutation data and the
expression one, i.e., G=GA ∩ GE , and the new mutation
matrix and expression ones are still presented as A|P |×|G|,
E|P |×|G| and Ē|P̄ |×|G| for convenience of description.

Given matrix E, a |P | × |G| difference matrix D=(dij )
is defined. The entry dij (i=1,2, . . . , |P |, j=1,2,. . . ,
|G|) measures the difference of eij against the average
expression of the j th gene among all of the normal samples,

i.e., dij=|log2eij − log2x̄j |, where x̄j = |P̄ |−1 · ∑|P̄ |
i=1 ēij .

Then each entry aij in the mutation matrix A can be
weighted into a float value in terms of the difference value
given by dij (i=1,2,. . . ,|P |, j=1,2,. . . ,|G|), i.e., the greater
aij is, the more probability of the j th gene mutates in the
ith sample, as shown in (1):

aij =
{
1.5, if aij = 1, dij ≥ λ1,
dij

2×lj
, if aij = 0, dij ≥ λ2,

(1)

where lj=max{dij |1 ≤ i ≤ |P |}, λ1 and λ2 are two
thresholds compared with difference values (λ2 > λ1).
Then the weighted non-binary mutation matrix A comes
into being. aij=1.5 means the credibility of the j th gene

mutating in the ith sample is further increased, and aij=
dij

2×lj

represents that the j th gene may become a potentially
important gene since its gene expression value in the ith
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cancer sample is much greater than the average one among
normal samples. The schematic diagram for constructing the
weighted non-binary mutation matrix is displayed in Fig. 1.

Assume that M is any |P |×K submatrix of A, for the ith
(i=1,2,. . . ,|P |) row in matrix M , let η(i)=max{aij |a−j ∈
M} record the maximum weight value in the row. ν(i), a
value based on Coefficient of Variation (CV), is used to
measure the dispersion degree of weights in the ith row, as
shown in (2):

ν(i) =
{

σ(i)

2
√

K·μ(i)
, if η(i) < 0.5,

σ (i)
μ(i)

, otherwise,
(2)

where σ(i) and μ(i) denote the Standard Deviation and
Mean Value of weights in the ith row, respectively. The
greater ν(i) is, the greater dispersion degree of weights is

in the ith row. Then CO(M)=
|P |∑

i=1
η(i), ME(M)=

|P |∑

i=1
ν(i)

are used to measure the coverage and mutual exclusivity of
matrix M , respectively.

Based on the above definitions, a new identification
model can be constructed: given a |P | × |G| weighted non-
binary mutation matrixA and a parameterK (0< K < |G|),
determine a |P |×K submatrixM by maximizing the weight
function W (M):

W(M) = CO(M) + ME(M) (3)

3 Algorithm CGA-MWS

In this section, a cooperative genetic algorithm CGA-MWS
is put forward. The input is a weighted non-binary mutation
matrix A|P |×|G|, and a parameter K . The output is a |P | ×
K submatrix of M . We begin with describing the critical
techniques in designing algorithm CGA-MWS, and then the
pseudo code of it is given.

3.1 Chromosome encoding

A chromosome, namely an individual, is used to represent
a solution to the problem. In the CGA-MWS algorithm,
a chromosome X={x1, x2, . . . , xK}(xi ∈{1,2,. . . , |G|},
i=1,2,. . . , K) is encoded by a group of K genes. It can be
initialized as follows: (1) Produce a random permutation of
the numbers 1 to |G|, each number denotes a gene in the
matrix A. (2) Select the former K genes to construct an
initial chromosome.

3.2 Fitness function

Since chromosomes correspond to feasible solutions to
the identification problem, a fitness function should be
defined to estimate chromosomes according to how well
they perform on the problem objectives. Let MX represent
the submatrix of M corresponding to chromosome X, i.e.,
MX is a matrix with |P | rows and |X| columns. W(MX)

is used to measure the fitness of chromosome X, and
Fitness(X) is defined as in (4). The greater Fitness(X) is,
the better the solution X is.

Fitness(X) = W(MX). (4)

3.3 Selection operator

In general, a more diversity and not deteriorate population
is desired for genetic algorithm. Elitist strategy as well as
roulette wheel selection are used, remaining the individual
with the highest fitness in the evolution population, and
picking the individual with higher fitness from parent
population to participate in other evolutionary processes.

3.4 Crossover operator

Since the crossover operator can improve global search
capability of genetic algorithm, a problem dependent
crossover operator is proposed to inherit properties from
parents to offsprings. Given a pair of parent individuals
X1 and X2, fetch the common genes of them into two
offspring individuals X̂1 and X̂2. Randomly generate a
uniform order for the genes remained in X1 and X2, as
well as a binary string whose length equals to half of the
number of the remained genes. Each adjacent pair of genes
is respectively allocated into X̂1 and X̂2 according to each
bit of the generated binary string. For example, assume
that X1={1,4,5} and X2={1,6,7}, the common gene ‘1’ is
firstly fetched into X̂1 and X̂2, i.e., X̂1={1} and X̂2={1}.
The remained genes {4,5,6,7} are shuffled randomly, and
an uniform order 〈5, 4, 7, 6〉 is determined. Let ‘10’ be the
random binary string, the adjacent pair of genes 〈5, 4〉 is
allocated into X̂1 and X̂2 in terms of ‘1’, and 〈7, 6〉 is
allocated into X̂2 and X̂1 in terms of ‘0’. Then the final
X̂1={1,5,6} and X̂2={1,4,7} are obtained.

3.5 Mutation operator

Although the mutation operator plays an auxiliary role in
generating new individuals, it determines the local search
ability in genetic algorithm. A mutation operator based
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on the greedy strategy is devised as follow. Given an
individual X, a candidate gene set HX={g|g ∈ G, g /∈
X} is identified. Randomly drop a gene g from X to
generate the offspring individual X̂, i.e., X̂=X−{g}. Then
the optimal gene g is extracted from any one 
√|HX|�-
size subset Hs

X of HX based on a greedy strategy. It means
that the gene g=argmax

g∈Hs
X

F itness(X̂∪{g}) is inserted into

X̂ to obtain the final offspring individual. For example,
given X={1,4,5}, HX={2,3,6,7}. The gene ‘1’ is randomly
deleted from X to generate X̂={4,5}. Let Hs

X={6,2} be
any one subset with size of 2, then gene 2 is inserted
into X̂={4,5} due to Fitness({4,5,2})(30.2) is greater than
Fitness({4,5,6})(20.3).

3.6 Cooperative operators

Generally, cooperative operators can be leveraged to
construct the cooperation between populations, so as to
enhance the population diversity, and to avoid premature
convergence and falling into local optima. In this study,
two cooperative operators are devised as follows: (1) Create
a cooperative pool which is composed of the individuals
from all of the populations. Perform selection and crossover
operators on the individuals in the cooperative pool, and
produce half of the offsprings for all populations. (2)
Compare the best and the worst individuals between each
pair of populations, and replace the worst individual with
the best one when the best one has the higher fitness. The
detailed cooperative process is displayed in Algorithm 1,
where Step 2, Step 5 and Step 8 describe the first
cooperative operator, and Step 10, Step 11, Step 12 and Step
13 describe the second one.

3.7 CGA-MWS

In Algorithm 1, the CGA-MWS algorithm is summarized.
In step 1, some parameters used in algorithm CGA-MWS
are set. In step 2, the initial populations and cooperative
pool are generated. Step 3 to Step 16 execute the cooperative
evolution. In Step 4, selection and crossover operators are
performed on parent populations to generate half of the
offsprings for the new populations, respectively. Step 5
performs cooperation to generate the other half of offsprings
for the new populations by using the first cooperative
operator. After mutation operator is performed in Step 6,
the new populations and cooperative pool are constructed
in Step 7 and 8. Step 10 to Step 13 make pop1 cooperate
with pop2 by using the second cooperative operator. Finally,
the best individual in current generation is recorded if it is
better than the best individual of the whole evolution. The
whole evolution is controlled with two parameters, i.e., the

maximum evolution generation maxg and the threshold of
generation maintaining unchanged optimal solution maxt .
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Fig. 1 Schematic diagram for
constructing the weighted
non-binary mutation matrix.
Firstly, a binary mutation matrix
A is constructed by combining
the somatic mutations in matrix
S and CNVs in matrix C, and a
difference matrix D is
constructed from cancer
expression data in matrix E and
normal expression data in matrix
Ē. Then a weighted non-binary
mutation matrix A is obtained
from the integration of matrices
A and D

4 Results

In the experiments, real biological datasets as well as
simulated ones were leveraged to compare the identification
performance of the Dendrix [12], the GA [14], the iMCMC
[15], the MOGA [16], the PGA-MWS [17] and the CGA-
MWS methods. All of the experiments were performed on a
Lenovo PC with Intel(R) Core(TM) i5-6500 3.20GHz CPU
and 16GB RAM. The operating system was Windows 10,
and the compiler was JAVA 8 in MyEclipse 2016 CI.

4.1 Biological data

Both glioblastoma (GBM) and ovarian datasets were
adopted, where the mutation data were obtained from Zhao
et al. [14], and the expression data were obtained from
TCGA (http://tcga-data.nci.nih.gov/tcga/). The parameters
of the CGA-MWS method were set as follows: N= |G|

4 ,
maxg=1000, maxt=10, Pm=0.3, λ1=3 and λ2=7, which
were determined from a large number of experiments. The
parameters of methods Dendrix, GA and PGA-MWS were
set as in the literatures. The Dendrix algorithm was run
for 106 iterations and sampled a set every 103 iterations.
The parameters of algorithm GA were set as: maxg=1000,
maxt=10, N=|G|, pm=0.1, and those of algorithm PGA-

MWS were set as: maxg=500, maxt=10, N=log2(
K−1∏

i=0
|G|-

i). The gene sets identified by algorithms iMCMC and
MOGA were respectively obtained from [15] and [16],
for we have not acquired the source code of them. The
significance of identification results were evaluated with a

random test [15]. Let W (M) be the weight score for the
submatrix M with K identified genes, and W(Mi) be that
for the submatrix Mi with K randomly selected genes. The
process of random selection was repeated for 1000 times.
The significance of submatrix M is calculated as (5).

p − value =

1000∑

i=1
W(Mi) > W(M)

1000
(5)

4.1.1 Glioblastoma

In the GBM dataset, the number of samples for copy number
variation, somatic mutation, normal gene expression and
cancer gene expression was 206, 91, 10 and 529,
respectively. After processing these data, 90 cancer samples,
10 normal samples, and 1126 genes were retained.
Moreover, the genes mutating less than 1% in the samples
were removed, and 920 genes were remained. In Table 1, the
identified gene sets are displayed, where K ranges from 2
to 6. The genes enriched in the same biological pathway are
indicated in bold, which is the same in the following tables.
W denotes the score W (M) of detected gene set M .

When K was set to 2, as described by Zhao et al.
[14], method GA began with identifying two optimal
gene sets from the binary mutation matrix. One was
(CDKN2A, TP53), and the other was CDKN2B and a
metagene including CDK4 as well as TSPAN31. Then gene
CDK4 was selected, for CDKN2B had stronger relationship
with CDK4 than with TSPAN31, which was calculated
with gene expression data. It has really been reported in
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Table 1 The experimental results on the GBM data

K GA Dendrix

Gene set W Gene set W

2 CDKN2B CDK4 148.6 CDKN2A TP53 147.2

CDKN2A TP53 147.2

3 CDKN2B CDK4 RB1 183.8 CDKN2B CDK4 RB1 183.8

4 EGFR PTEN PIK3R1 PIK3CA 169.4 PTEN PIK3R1 PIK3CA SH3YL1 145.3

5 EGFR PTEN PIK3R1 PIK3CA GRIA2 186.8 PTEN PIK3R1 PIK3CA SULT2A1 ROR2 160.0

6 EGFR PTEN PIK3R1 PIK3CA GRIA2 MAP2 202.5 PTEN PIK3R1 PIK3CA RELN FGF21 NPTX2 174.1

K PGA-MWS iMCMC

Gene set W Gene set W

2 CDKN2B CDK4 148.6 CDKN2A CYP27B1 139.9

3 CDKN2A CDK4 TP53 194.0 TP53 PTEN MTAP 158.9

4 EGFR PTEN PIK3R1 PIK3CA 169.4 EGFR MDM2 NF1 CHAT 134.6

5 EGFR PTEN PIK3R1 PIK3CA NF1 187.0 – –

6 EGFR PTEN PIK3R1 PIK3CA NF1 CPT1B 203.6 – –

K CGA-MWS MOGA

Gene set W Gene set W

2 CDKN2B CDK4 148.6 CDKN2A TP53 147.2

3 CDKN2A CDK4 TP53 194.0 CDKN2B CDK4 TP53 193.5

4 EGFR PTEN PIK3R1 PDGFRA 169.5 – –

5 EGFR PTEN PIK3R1 PIK3CA PDGFRA 190.8 – –

6 EGFR PTEN PIK3R1 PIK3CA PDGFRA COL1A2 209.7 – –

KEGG database that gene set (CDKN2B, CDK4) is the
part of the RB signaling pathway (Figure 2), while the
evidence supporting for the association of TSPAN31 and
CDKN2B is not clear. The presented method CGA-MWS
is able to detect more significant gene set (CDKN2B,
CDK4) (W (·)=148.6) while exclude (CDKN2B, TSPAN31)
(W (·)=147.6) directly, even though CDK4 and TSPAN31
mutate in the same samples. Each identified gene set, except
for (CDKN2A, CYP27B1) detected by the iMCMC method,
is enriched in a biological pathway.

When K=3, gene set (CDKN2B, CDK4, RB1), part of the
RB signaling pathway (Fig. 2), is identified by method GA
and Dendrix. Methods PGA-MWS and CGA-MWS identify
the same set (CDKN2A, CDK4, TP53), which is recorded in
KEGG as the part of p53 signaling pathway (Fig. 2). It has
been regarded that the mutation of gene TP53 reduces tumor
suppressor activity and promotes the growth of tumors [18],
and GBM cell lines having inactivated mutant p53 are more
resistant to DNA-damaging therapeutic drugs [19]. In the
gene set identified by methods iMCMC or MOGA, there are
just two genes involving in the same biological pathway.

As implemented by [14], the genes removed by them
were also dropped before performing the tests with K=4 to
K=6, so as to identify additional gene set. Since method
MOGA detects set (CDKN2B, RB1, CDK4, ERBB2) without
dropping these genes, its result is omitted here. The gene
sets identified by methods GA, PGA-MWS and CGA-MWS
are all enriched in the PI3K-Akt signaling pathway (Fig. 2),
which plays a significant role in regulating cell proliferation
and is regarded as a potential target for preventing and
treating metastatic tumors [20]. In contrast, in the gene
set (PTEN, PIK3R1, PIK3CA, SH3YL1) detected by the
Dendrix method, the first three genes are enriched in the
PI3K-Akt signaling pathway, and in the gene set (EGFR,
MDM2, NF1, CHAT) detected by the iMCMC method,
only two genes (EGFR, MDM2) are enriched in the PI3K-
Akt signaling pathway. For K=5 and K=6, neither iMCMC
nor MOGA has reported the identification result in the
literatures, hence the results of them are also omitted here.
From Table 1 we can see that when K=5 and K=6, the gene
sets identified by the CGA-MWS algorithm are all in the
PI3K-Akt signaling pathway (Fig. 2). The gene PDGFRA
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Fig. 2 Biological pathways
involved with the gene sets
identified by CGA-MWS (GBM
dataset). The real line indicates
genes interact directly according
to the KEGG database, and the
dash one otherwise. The pink
nodes represent the gene sets
identified by method CGA-
MWS. They have the same
meaning in the following figures

is a direct and functionally consequential target of miR-
34a, which has specifical effect on the growth of proneural
glioma cells [21]. The gene COL1A2 is a critical gene in
the local adhesion pathway, it may be a potential target gene
for the diagnosis of GBM [22]. By contrast, in the gene sets
identified by methods GA, Dendrix and PGA-MWS, there
are still only a part of genes involving in the same biological
pathway.

Significant tests were implemented for the five gene sets
detected by method CGA-MWS. Since their p-values are
less than 0.001, they are all statistically significant. Figure 3
demonstrates coverage as well as mutual exclusivity of these
detected sets, where the white bars denote no mutation, the
red ones denote mutually exclusive mutations, and the light
green ones denote co-occurring mutations.

4.1.2 Ovarian carcinoma

In the ovarian carcinoma dataset, the number of samples
for copy number variation, somatic mutation, normal gene
expression and cancer gene expression was 489, 316, 8 and
568, respectively. After processing these data, 313 cancer
samples, 8 normal samples, and 5385 genes were retained.
Similarly, the genes with mutation frequencies lower than
1% in the sample were dropped out, and 1416 genes were

kept in the three matrices. Genes TP53 and TTN were
filtered out from the dataset, for TP53 mutations are very
prevalent (mutating in more than 80% of the samples), and
TTN mutations are probably to be artifacts [14]. Table 2
shows the identification results with different settings for
parameter K . The results of method MOGA are omitted for
Zheng et al. [16] have not offer the detected sets.

When K=2, methods GA, Dendrix, PGA-MWS and
CGA-MWS identify the same gene set (MYC, CCNE1)
covering 127 samples. Gene MYC is a strong proto-
oncogene, which is usually continuously expressed in
many cancers [23]. The amplification of gene CCNE1
relates to poor survival [24], which indicates it is able to
become a potential therapeutic target for treating ovarian
carcinoma. Both of these genes are enriched in PI3K-
Akt signaling pathway (Fig. 4). The two genes (KRAS,
PPP2R2A) detected by method iMCMC are not enriched in
the same biological pathway.

Methods GA, Dendrix, PGA-MWS and CGA-MWS
initially still identified the same gene set (MYC, CCNE1,
NINJ2) with K=3. Since gene NINJ2 was not enriched in
the same biological pathway along with the former two
genes, we dropped it and applied these four methods again
with K=3. The new identification gene sets are displayed in
Table 2. It is discovered that the genes in set (MYC, CCNE1,

Fig. 3 Results for the GBM
dataset
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Table 2 The experimental results on ovarian carcinoma data

K GA Dendrix

Gene set W Gene set W

2 MYC CCNE1 323.4 MYC CCNE1 323.4

3 MYC CCNE1 SLC6A12 427.2 MYC CCNE1 SLC6A12 427.2

4 KRAS MAPK8IP2 NF1 STMN3 321.8 KRAS MAPK8IP2 NF1 STMN3 321.8

5 KRAS MAPK8IP2 NF1 STMN3 MUC16 397.7 KRAS MAPK8IP2 NF1 MUC16 ZGPAT 397.7

6 KRAS MAPK8IP2 NF1 STMN3 MUC16 KCTD14 469.7 KRAS MAPK8IP2 NF1 MUC16 GAS8 LIME1 465.8

K PGA-MWS iMCMC

Gene set W Gene set W

2 MYC CCNE1 323.5 KRAS PPP2R2A 182.5

3 MYC CCNE1 RAD52 426.4 MYC CCNE1 RAD52 426.4

4 KRAS MAPK8IP2 NOTCH3 PRPF6 319.9 – –

5 KRAS MAPK8IP2 NOTCH3 PRPF6 KCTD14 397.2 – –

6 KRAS MAPK8IP2 NF1 ILF3 KCNQ2 KCTD14 471.4 – –

K CGA-MWS

Gene set W

2 MYC CCNE1 323.5

3 MYC CCNE1 KRAS 430.3

4 KRAS MAPK8IP2 NOTCH3MUC16 326.9

5 KRAS MAPK8IP2 NOTCH3MUC16 KCTD14 400.4

6 KRAS MAPK8IP2 NOTCH3 NF1 PRPF6 KCTD14 475.6

KRAS), detected by method CGA-MWS, are all enriched
in PI3K-Akt signaling pathway (Fig. 4). Nevertheless, in
respect of the other four methods, only two genes of the
identified sets involve in the same pathway.

Prior to implementing the tests with K=4 to K=6, the
genes removed by Zhao et al. [14] were also dropped. The
results of method iMCMC are omitted here, for they have

not been reported in [15]. As performed by Zhao et al.
[14], when K=4, method GA was applied with parameter
λ=1, and gene set (RYR2, PPP2R2A, KRAS, PRPF6) was
obtained. Then it was further implemented with λ=10 for
detecting the gene set having stronger correlations, and
identified (KRAS, MAPK8IP2, NF1, STMN3), as shown in
Table 2. Methods Dendrix, PGA-MWS and CGA-MWS

Fig. 4 Biological pathways
involved with the gene sets
identified by CGA-MWS
(ovarian carcinoma dataset)
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initially identified the same gene set (RYR2, PPP2R2A,
KRAS, BRD4), where genes RYR2 and PPP2R2A are
two significant genes engaged in the adrenergic signaling
pathway (Fig. 4), and gene BRD4 is considered as a
potential therapeutic target for ovarian carcinoma [25]. We
removed the genes (RYR2, PPP2R2A, BRD4), belonging
to the difference set between (RYR2, PPP2R2A, KRAS,
BRD4) identified by Dendrix, PGA-MWS and CGA-MWS
and (KRAS, MAPK8IP2, NF1, STMN3) detected by GA,
and apply methods Dendrix, PGA-MWS and CGA-MWS
to obtain the additional gene sets (KRAS, MAPK8IP2,
NF1, STMN3), (KRAS, MAPK8IP2, NOTCH3, PRPF6) and
(KRAS, MAPK8IP2, NOTCH3, MUC16), respectively. It is
well known that genes KRAS, NOTCH3 and MAPK8IP2
are enriched in Apelin signaling pathway (Fig. 4), which
may promote the angiogenesis and development of ovarian
cancer, and be a potential pathway to target ovarian TME
[26]. Gene MUC16 has been demonstrated to regulate the
growth, tumorigenesis and metastasis of epithelial ovarian
carcinoma cells [27].

The genes detected with either K=5 or K=6 can not
engage in a certain pathways together. As shown in Table 2,
when K=6, among the gene set identified by the CGA-
MWS method, the former four genes KRAS, MAPK8IP2,
NOTCH3 and NF1 involve in Apelin signaling pathway
(Fig. 4), and gene PRPF6 has been regarded as presumably
critical for cancer cell survival and proliferation [28]. Since
the p-values of the five gene sets detected by method
CGA-MWS are less than 0.001, they are all statistically
significant. Figure 5 exhibits the coverage and mutual
exclusivity of these detected sets under different K values.

4.2 Simulated data

In this section, experiments on simulated data were carried
out to compare the execution efficiency of these methods
for solving large size data sets. As described by Zhao
et al. [14], a simulated binary mutation matrix, covering |P |
patient samples and |G| genes, was generated. A group of

submatrices M1, M2, . . . , MI (I ≥1) was chosen randomly,
where each one contains r genes. For each sample, a gene
was selected randomly from Mi (i=1, 2, . . . , I ) to mutate
with rate pi=1-i ·Δ. When a gene in matrixMi was mutated,
the other genes of this matrix mutated with rate p0. p0

and pi respectively regulate the exclusivity and coverage
of Mi . The genes that were not contained in any submatrix
mutated in at most three randomly selected samples. The
data complexity can be adjusted by parameter I , and the
increase of I increase the complexity of both the simulated
data and the problem. In this study, r=10, p0=0.04, and
Δ=0.05, which are the same as [14]. |P | ∈{100, 200,
. . . , 1000}, |G| ∈{1000, 2000, . . . , 10000}, I∈{1, 5, 10}.
Furthermore, based on the binary mutation matrix, a non-
binary mutation matrix was constructed as follows: each
entry in the binary mutation matrix was changed to a non-
binary one with a probability of 0.1. If the binary entry
is 0, it was changed to a value of uniform distribution
between 0 and 0.5, otherwise it was changed to 1.5. For
each parameter setting, ten data sets were generated, and
the average over ten runs at each parameter setting was
calculated and presented.

We began with just comparing the execution efficiency
of algorithms without considering the identification models,
i.e., the running time was compared among the Dendrix
algorithm [12], the GA algorithm [14], the MOGA [16],
the PGA algorithm [17] and the presented CGA algorithm
when they were used to solve the model of the maximum
weighted submatrix problem [12]. Then the efficiency of
method CGA-MWS was also tested, i.e., the execution time
of the CGA algorithm on dealing with the presented model.
Since the iMCMC algorithm is not related with the size
of gene set K , it was not put into the comparison here.
As mentioned above, the source code of algorithm MOGA
were not obtained, hence it was implemented with JAVA
language.

It is accepted that the execution efficiency is closely
related to algorithm’s iteration times, which is affected
by the convergence of the algorithm. In Figure 6, the

Fig. 5 Results for the ovarian
carcinoma dataset
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(a) (b) (c)

(d) (e)

Fig. 6 the relationship between the fitness and the number of iterations (I=10, K=10). a the GA algorithm. b the MOGA algorithm. c the PGA
algorithm. d the CGA algorithm. e the CGA-MWS algorithm

relationship between the fitness and the number of iterations
are illustrated for five genetic algorithm based methods,
where I=10, K=10. From this figure we can see that
all of the five algorithms present good convergence. The
complexity of problems may increase the number of
iterations required for convergence, hence the iteration
times of algorithms CGA and CGA-MWS were set to
1000 for tackling problems with different complexity. In
addition, the threshold of generation maintaining unchanged
best solution was used to avoid useless iteration, i.e., the
iteration exits when the best solution remain unchanged for
a certain iteration times. In the following experiments, all of
the parameters of these algorithms were set as described in
the experiments on biological data. Since algorithm MOGA
is devised based on the GA algorithm, it had the same
parameter setting as the GA algorithm.

In Fig. 7, the execution time under different model
complexity and gene number (I=1, 5, 10) is compared,
where |P |=500 and K=2. From this figure, we can easily

see the Dendrix algorithm runs the slowest among the five
algorithms. The execution time of algorithms GA, MOGA,
PGA and CGA all increases apparently with the increase
number of genes, and the execution time of algorithms GA
and MOGA increases faster than that of algorithms PGA
and CGA. It is also noticed that the execution efficiency
is not decreased with the increase of problem complexity.
For example, in Fig. 7a-c, the execution time of algorithms
Dendrix, GA,MOGA, PGA and CGA ranges from 422.9s to
629.3s, 0.4s to 41s, 1.2s to 111.1s, 0.6s to 14s, and 0.12s to
10s, respectively. In addition, under different combinations
of I and |G|, the CGA algorithm exhibits the highest
execution efficiency among the three algorithms.

Figure 8 shows how the execution time scales with the
increase number of patient samples |P | under different I

and |G|, whereK=2. It is found that the execution efficiency
is still effected by parameter I slightly. With the increase
of |P |, the execution time of algorithm PGA and Dendrix
increases obviously, while that of the other three algorithms

(a) (b) (c)

Fig. 7 Efficiency comparisons with different |G| and I . a I = 1. b I = 5. c I = 10
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Efficiency comparisons with the increase of |P | under different |G|, I . a |G| = 1000 cv , I = 1. b |G| = 5000, I = 1. c |G| = 10000,
I = 1. d |G| = 1000, I = 5. e |G| = 5000, I = 5. f |G| = 10000, I = 5. g |G| = 1000, I = 10. h |G| = 5000, I = 10. i |G| = 10000, I = 10

increases slightly or fluctuates between a narrow range. It
is also discovered that when |G|=1000, the CGA algorithm
spends the least amount of time under different |P | and
I . However, when |G|=5000 and |G|=10000, the PGA
algorithm performs the best in case of small size of samples,
while the CGA algorithm does in case of large size of
samples.

In Fig. 9, nine groups of parameters were set in
dealing with parameter K , where |G|=10000, |P |=1000

Fig. 9 Efficiency comparisons with different K

and I=10. As shown in this figure, with the increase
of K , the execution time of algorithm PGA increases
sharply, while that of algorithms Dendrix, GA, MOGA,
CGA and CGA-MWS has a slight increase. Among the
six algorithms, the CGA one presents the best execution
efficiency, and the running time is only 58.85s even when
K=10. The CGA-MWS algorithm, applying algorithm
CGA on the presented model, also exhibits high execution
efficiency under different K , hence it is feasible for realistic
applications.

5 Discussion and conclusion

The identification of mutated driver pathways has received
widely concerned in bioinformatics due to its importance
for cancer related studies. In this paper, three types of
omics data are applied to the identification. The information
harboured in gene expression data is fused into the
mutation data by a novel means of weighting each entry
in the mutation matrix. Based on the new measurements
of coverage and mutual exclusivity for the non-binary
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mutation matrix, a new identification model is devised.
Then a cooperative coevolutionary algorithm CGA-MWS is
presented for solving this model. The proposed method of
integrating multi-omics data as well as the new definitions
of of coverage and exclusivity for the non-binary mutation
matrix may offer new ideas for other related studies.

Abundant experimental comparisons were implemented
by using both biological data of glioblastoma and ovarian
cancer, and simulated one. In comparison with methods
Dendrix, GA, MOGA, iMCMC, PGA-MWS, the pathway
identified by the CGA-MWS method usually contains more
genes engaging in a known signaling pathway. In addition,
the comparison results on simulation data indicate that
method CGA-MWS still performs with high efficiency even
when solving large-scale data, making it feasible in realistic
applications. It may become a beneficial complement tool
for identifying cancer pathways.
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